Small connections are cyclic

Andrea Pulita

Abstract

The main local invariants of a (one variable) differential module over the complex numbers are given by means of a cyclic basis. In the p-adic setting the existence of a cyclic vector is often unknown. It results then interesting to obtain definitions that does not involve cyclic vectors. We investigate the existence of such a cyclic vector in a Banach algebra or an algebra defined by a family of semi-norms. We follow the explicit method of Katz [Kat87], and we prove the existence of such a cyclic vector under the assumption that the matrix of the derivation is small enough in norm.

Contents

1 Katz's simple algorithm for cyclic vectors 1
1.1 Three cyclic vector theorems. 2
1.1.1 About the assumptions of Katz's Theorems. 3
1.2 The Katz's base change matrix. 4

2 Small connections are cyclic over an ultrametric Banach algebra. 7
2.1 Norms and matrices . 7
2.1.1 Norm of derivation . 7
2.2 Norm of the matrix of the connection and cyclic vectors . 7
2.3 Upper bound for the sup-norm. 8
2.4 Upper bound for the ρ-sup-norm with $\rho=|t|^{-1}$. 9
2.5 Upper bound for the ρ-sup-norm with $\rho=|d|$. 10

1. Katz's simple algorithm for cyclic vectors

Let (\mathscr{B}, d) be a commutative ring \mathscr{B} with unit, together with a derivation ${ }^{1} d: \mathscr{B} \rightarrow \mathscr{B}$. We denote by $\mathscr{B}^{d=0}:=\{b \in \mathscr{B}$ such that $d(b)=0\}$ the sub-ring of constants. A differential module M is a free \mathscr{B}-module of finite rank together with an action of the derivation

$$
\begin{equation*}
\nabla: \mathrm{M} \rightarrow \mathrm{M} \tag{1.1}
\end{equation*}
$$

i.e. a Z-linear map satisfying $\nabla(b m)=d(b) m+b \nabla(m)$ for all $b \in \mathscr{B}, m \in \mathrm{M}$. A cyclic vector for M is an element $m \in \mathrm{M}$ such that the family $\left\{m, \nabla(m), \nabla^{2}(m), \ldots, \nabla^{n-1}(m)\right\}$ is a basis of M over \mathscr{B}. Such a vector does not always exists. Namely if $d=0$ is the trivial derivation, then ∇ is merely a \mathscr{B}-linear map and (M, ∇) is a torsion module over the ring of polynomials $\mathscr{B}[X]$ where the action of X on M is given by ∇. There is another counterexample in the case in which $\mathscr{B}=\mathbb{F}_{p}(X)$ is a functions field in characteristic $p>0$: let $\mathrm{M}:=\mathbb{F}_{q}[X]^{n}$, with $n>q=p^{r}$, together with the trivial connection $\nabla\left(f_{1}, \ldots, f_{n}\right)=\left(f_{1}^{\prime}, \ldots, f_{n}^{\prime}\right)$, then, since $d^{q}=0$, one has $\nabla^{q}=0$ so M does not have any cyclic vector. The same happens replacing \mathbb{F}_{q} by a ring A having a maximal ideal \mathfrak{m} such that $A / \mathfrak{m} \cong \mathbb{F}_{q}$. The trivial connection of $A[X]^{n}$ (with respect to $d / d x$) can not admit a cyclic vector, since otherwise its reduction to $\mathbb{F}_{q}[X]$ would be cyclic too.

[^0]
1.1 Three cyclic vector theorems.

P.Deligne provided the existence of such a cyclic vector for all differential modules over a field of characteristic 0 with non trivial derivation (cf. [Del70, Ch.II,Lemme 1.3]).

Theorem 1.1 [Del70, Ch.II, Lemme 1.3]. Let \mathscr{B} be a field of characteristic 0, then all differential modules over \mathscr{B} admit a cyclic vector.

Subsequently N.Katz generalized the result of Deligne providing the following simple explicit algorithm:

Theorem 1.2 ([Kat87]). Assume that there exists an element $t \in \mathscr{B}$ such that $d(t)=1$. Assume moreover that $(n-1)!$ is invertible in \mathscr{B}, and that $\mathscr{B}^{d=0}$ contains a field k such that ${ }^{2} \# k>n(n-1)$. Let $a_{0}, a_{1}, \ldots, a_{n(n-1)}$ be $n(n-1)+1$ distinct elements of k, and let $\mathbf{e}:=\left\{e_{0}, \ldots, e_{n-1}\right\} \subset \mathrm{M}$ be a basis of M over \mathscr{B}. Then Zarisky locally on $\operatorname{Spec}(\mathscr{B})$ one of the vectors

$$
\begin{equation*}
c\left(\mathbf{e}, t-a_{i}\right):=\sum_{j=0}^{n-1} \frac{\left(t-a_{i}\right)^{j}}{j!} \sum_{k=0}^{j}(-1)^{k}\binom{j}{k} \nabla^{k}\left(e_{j-k}\right) \tag{1.2}
\end{equation*}
$$

is a cyclic vector of M .
Theorem 1.3 ([Kat87]). If \mathscr{B} is a local $\mathbb{Z}[1 /(n-1)!]$-algebra, and if $a \in \mathscr{B}^{d=0}$ is such that the maximal ideal of \mathscr{B} contains $t-a$, then $c(\mathbf{e}, t-a)$ is a cyclic vector for M .

The arguments of the Katz's proofs are the following. We consider the polynomial ring $\mathscr{B}[X]$ and we extend the derivation of \mathscr{B} by $d(X)=1$. We denote again by ∇ the action of d on $\mathrm{M} \otimes_{\mathscr{B}} \mathscr{B}[X]$ given by $\nabla \otimes \mathrm{Id}_{\mathscr{B}[X]}+\mathrm{Id}_{\mathrm{M}} \otimes d$. Each element c_{0} in $\mathrm{M} \otimes_{\mathscr{B}} \mathscr{B}[X]$ can be uniquely represented as $c_{0}:=\sum_{j \geqslant 0} c_{0, j} X^{j}$, with $c_{0, j} \in \mathrm{M}$ for $j=0,1, \ldots$ The derivatives $\nabla^{i}\left(c_{0}\right)$ of c_{0} then have the same form $c_{i}:=\nabla^{i}\left(c_{0}\right)=\sum_{j \geqslant 0} c_{i, j} X^{j}$, with $c_{i, j}=\sum_{k=0}^{i} k!\binom{j+k}{j}\binom{i}{k} \nabla^{i-k}\left(c_{0, j+k}\right)$.

The main point is now that, if $(n-1)$! is invertible in \mathscr{B}, and if the degree (with respect to X) of c_{0} is less or equal to $n-1$, then the 0 -components $\left\{c_{0,0}, c_{1,0}, \ldots, c_{n-1,0}\right\}$ of $\left\{c_{0}, \nabla\left(c_{0}\right), \ldots, \nabla^{n-1}\left(c_{0}\right)\right\}$ uniquely determine c_{0}. In fact we have the inversion formula

$$
\begin{equation*}
c_{0, j}:=\frac{1}{j!} \sum_{k=0}^{j}(-1)^{j-k}\binom{j}{k} \nabla^{j-k}\left(c_{k, 0}\right), \quad j=0, \ldots, n-1 \tag{1.4}
\end{equation*}
$$

The idea is then to choose the 0 -components equal to the basis of $\mathrm{M}: c_{k, 0}:=e_{k}$. We then obtain the vector (1.2):

$$
\begin{equation*}
c(\mathbf{e}, X):=\sum_{j=0}^{n-1} \frac{X^{j}}{j!} \sum_{k=0}^{j}(-1)^{k}\binom{j}{k} \nabla^{k}\left(e_{j-k}\right) . \tag{1.5}
\end{equation*}
$$

This choice implies that the determinant of the base change is a polynomial $P(X) \in \mathscr{B}[X]$ verifying $P(0)=1$, because the matrix $H(X) \in M_{n}(\mathscr{B}[X])$ expressing $\left\{c_{0}, \nabla\left(c_{0}\right), \ldots, \nabla^{n-1}\left(c_{0}\right)\right\}$ in the basis e verifies $H(0)=\mathrm{Id}$. In other words $P(X)$ is invertible as a formal power series in $\mathscr{B}[[X]]$, so that c_{0} is a cyclic vector for $\mathrm{M} \otimes_{\mathscr{B}} \mathscr{B}[[X]]$.

[^1]
Small connections are cyclic

We now specialize X into an element $t-a$ verifying $d(t-a)=1$, this guarantee that the specialization commutes with the action of the derivation. Let us come to the proof of the above results. If \mathscr{B} is local, and if $t-a$ belongs to the maximal ideal, then $P(t-a)$ is clearly invertible since it is of the form $P(t-a)=P(0)+(t-a) Q(t-a)=1+y$, with y in the maximal ideal. This proves theorem 1.3. Notice that if \mathscr{B} is a field of characteristic 0 , then $\mathscr{B}^{d=0}$ is an infinite field, hence there exists at least a constant $a \in \mathscr{B}^{d=0}$ such that $P(t-a) \neq 0$, this is enough to prove Deligne's Theorem 1.1. ${ }^{3}$ Now we come to the proof of Theorem 1.2. Katz proves that the ideal \mathscr{I} of \mathscr{B} generated by the values $\left\{P\left(t-a_{i}\right)\right\}_{i=0, \ldots, n(n-1)}$ is the unit ideal. He argues as follows. We observe that the polynomial $P(X)$ has degree $\leqslant n(n-1)$, since

$$
\begin{equation*}
c_{0} \wedge \nabla\left(c_{0}\right) \wedge \ldots \wedge \nabla^{n-1}\left(c_{0}\right)=P(X) \cdot e_{0} \wedge e_{1} \wedge \cdots \wedge e_{n-1} \tag{1.6}
\end{equation*}
$$

and the n vectors $c_{0}, \nabla\left(c_{0}\right), \ldots, \nabla^{n-1}\left(c_{0}\right)$ have all degree $\leqslant(n-1)$. So we write $P=\sum_{s=0}^{n(n-1)} r_{s} X^{s}$ and $P\left(t-a_{i}\right)=\sum_{s=0}^{n(n-1)} r_{s}\left(t-a_{i}\right)^{s}$. Now for $i \neq j$ one has $\left(t-a_{i}\right)-\left(t-a_{j}\right)=a_{j}-a_{i} \neq 0$ in k, so $\left(t-a_{i}\right)-\left(t-a_{j}\right)$ is invertible in \mathscr{B}. Hence the Van Der Monde matrix $V:=\left(\left(t-a_{i}\right)^{j}\right)_{0 \leqslant i, j \leqslant n(n-1)}$ is invertible because its determinant is $\prod_{0 \leqslant i<j \leqslant n(n-1)}\left(a_{j}-a_{i}\right)$. This implies that the ideal \mathscr{I} is equal to the ideal generated by the coefficients $r_{0}, \ldots, r_{n(n-1)} \cdot{ }^{4}$ Since $r_{0}=1$, then $\mathscr{I}=\mathscr{B}$. This concludes the Katz's proofs.
1.1.1 About the assumptions of Katz's Theorems. The assumption about the existence of t such that $d(t)=1$ is not completely constrictive. Indeed it is enough to assume the existence of an element $\widetilde{t} \in \mathscr{B}$ such that $d(\widetilde{t})=f$ is invertible in \mathscr{B}. Then we replace the derivation d by $\widetilde{d}:=f^{-1} \cdot d$ in order to have $\widetilde{d}(\widetilde{t})=1$. We then consider the connection $\widetilde{\nabla}:=f^{-1} \cdot \nabla$ on M , and we form the Katz's cyclic vector (1.2) constructed from the data of ($\widetilde{d}, \widetilde{t}, \widetilde{\nabla})$. Then
Lemma 1.4. The vector c is a cyclic vector for the differential module (M, ∇) over (\mathscr{B}, d) if and only if c is a cyclic vector for $(\mathrm{M}, f \cdot \nabla)$ over $(\mathscr{B}, f \cdot d)$, for an arbitrary invertible element $f \in \mathscr{B}$.

Proof. It is enough to prove that if c is cyclic with respect to (M, ∇) then it is a cyclic vector with respect to (M, $f \nabla$). We have to prove that the base change matrix from the basis $\left\{c, \nabla(c), \ldots, \nabla^{n-1}(c)\right\}$ to the family $\left\{c,(f \nabla)(c),(f \nabla)^{2}(c), \ldots,(f \nabla)^{n-1}(c)\right\}$ is invertible. The Leibnitz rule of ∇ gives the relation $\nabla \circ f=f \circ \nabla+d(f)$ where f and $d(f)$ denote respectively the multiplication in M by $f \in \mathscr{B}$ and $d(f) \in \mathscr{B}$. One sees then that $(f \nabla)^{k}=f^{k} \nabla^{k}+\sum_{0 \leqslant i \leqslant k-1} \alpha_{i}(f) \nabla^{i}$, for convenient elements $\alpha_{i}(f) \in \mathscr{B}$. This implies that the base change matrix is triangular with $\left(1, f, f^{2}, \ldots, f^{n-1}\right)$ in the diagonal.

Remark 1.5. The Katz's algorithm is not invariant under the above change of derivation. In other words the Katz's vector c_{0} obtained from (d, t, ∇) does not coincide with the Katz's vector \widetilde{c}_{0} constructed from $(\widetilde{d}, \widetilde{t}, \widetilde{\nabla}) .{ }^{5}$ If one of them is a cyclic vector, then it is simultaneously cyclic for ∇ and $\widetilde{\nabla}$, thanks to the above lemma. But actually, in our knowledge, the fact that one of them is cyclic does not imply necessarily that the other is cyclic too.

1.2 The Katz's base change matrix.

We now investigate the explicit form of the base change matrix $H(X)$. For this we need to introduce some notation. If a basis \mathbf{e} of M is fixed then we can associate to the n-times iterated connection

[^2]$\nabla^{n}:=\nabla \circ \nabla \circ \cdots \circ \nabla$ a matrix $G_{n}=\left(g_{n ; i, j}\right)_{i, j=0, \ldots, n-1} \in M_{n}(\mathscr{B})$ whose rows are the image of the basis e by ∇^{n} :
\[

$$
\begin{equation*}
\nabla^{n}\left(e_{i}\right):=\sum_{j=0}^{n-1} g_{n ; i, j} \cdot e_{j} \tag{1.7}
\end{equation*}
$$

\]

Proposition 1.6. The Katz's base change matrix $H(X)$ verifying $\left(\nabla^{i}\left(c_{0}(\mathbf{e}, X)\right)\right)_{i}=H(X)\left(e_{i}\right)_{i}$ has the form

$$
\begin{equation*}
H(X):=H_{0}(X)+H_{1}(X) \cdot G_{1}+\cdots+H_{2 n-2}(X) \cdot G_{2 n-2} \tag{1.8}
\end{equation*}
$$

where the matrices $H_{s}(X), s=0, \ldots 2 n-2$, all belong to $\mathbb{Z}\left[\frac{1}{(n-1)!}\right][X]$ and satisfy the following properties:
i) One has

$$
H_{0}(X)=\left(\begin{array}{ccccccc}
1 & X & \frac{X^{2}}{2} & \frac{X^{3}}{3!} & \cdots & \cdots & \frac{X^{n-1}}{(n-1)!} \tag{1.9}\\
0 & 1 & X & \frac{X^{2}}{2} & \frac{X^{3}}{3!} & \cdots & \frac{X^{n-2}}{(n-2)!} \\
0 & 0 & 1 & X & \frac{x^{2}}{2} & \cdots & \frac{x^{n-3}}{(n-3)!} \\
0 & 0 & 0 & 1 & X & \cdots & \frac{X^{n-4}}{(n-4)!} \\
\cdots \cdots & \cdots & \cdots & \cdots . & \cdots & \cdots & \cdots \\
\cdots . & \cdots . & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & 0 & \cdots & . . & 1 & \cdots \\
0 & 0 & 0 & 0 & \cdots & \cdots & 1
\end{array}\right)
$$

ii) If $H_{s}(X)=\left(h_{s ; i, j}(X)\right)_{i, j}$ then

$$
\begin{equation*}
h_{s ; i, j}(X)=\alpha(s ; i, j) \frac{X^{s+j-i}}{(s+j-i)!} \tag{1.10}
\end{equation*}
$$

with

$$
\begin{equation*}
\alpha(s ; i, j)=\epsilon_{s ; i, j} \cdot\left[\sum_{k=\max (0, s+j-(n-1))}^{\min (i, s)}(-1)^{s+k}\binom{s-k+j}{j}\binom{i}{k}\right] \in \mathbb{Z} \tag{1.11}
\end{equation*}
$$

where

$$
\epsilon_{s ; i, j}=\left\{\begin{array}{ccc}
1 & \text { if } & (s, j) \in[0, n-1+i] \times[\max (0, i-s), \min (n-1, n-1+i-s)] \tag{1.12}\\
0 & \text { if } & (s, j) \notin[0, n-1+i] \times[\max (0, i-s), \min (n-1, n-1+i-s)]
\end{array}\right.
$$

iii) In particular one has $h_{s ; i, j}=0$ if $j-i$ does not belong to the interval $[\max (1-s, 1-n), n-1-s]$.

Proof. Applying ∇^{i} to the vector $c_{0}(\mathbf{e}, X)$, and re-summing by setting $s:=m+k-j$ one obtains

$$
\begin{align*}
\nabla^{i}\left(c_{0}(\mathbf{e}, X)\right) & =\sum_{m=0}^{n-1} \sum_{j=0}^{m} \sum_{k=0}^{i}(-1)^{m-j}\binom{m}{j}\binom{i}{k} d^{i-k}\left(\frac{X^{m}}{m!}\right) \nabla^{m-j+k}\left(e_{j}\right) \tag{1.13}\\
& =\sum_{s=0}^{n-1+i} \sum_{j=\max (0, i-s)}^{\min (n-1, n-1+i-s)} \alpha(s ; i, j) \frac{X^{s+j-i}}{(s+j-i)!} \nabla^{s}\left(e_{j}\right), \tag{1.14}
\end{align*}
$$

where $\alpha(s ; i, j)$ is

$$
\begin{equation*}
\alpha(s ; i, j):=\left[\sum_{k=\max (0, s+j-(n-1))}^{\min (i, s)}(-1)^{s-k}\binom{s-k+j}{j}\binom{i}{k}\right] \in \mathbb{Z} . \tag{1.15}
\end{equation*}
$$

Small connections are cyclic

In matrix form, if $H_{s}(X)=\left(h_{s ; i, j}(X)\right)_{i, j=0, \ldots, n-1}$, then

$$
\begin{align*}
\left(\nabla^{i}\left(c_{0}(\mathbf{e}, X)\right)\right)_{i} & =\left(\sum_{s=0}^{2 n-2} H_{s}(X) G_{s}\right) \cdot\left(e_{i}\right)_{i}=\sum_{s=0}^{2 n-2}\left(H_{s}(X) G_{s}\right) \cdot\left(e_{i}\right)_{i} \tag{1.16}\\
& =\sum_{s=0}^{2 n-2}\left(\sum_{j=0}^{n-1} h_{s ; i, j}(X) g_{s ; j, k}\right)_{i, k} \cdot\left(e_{i}\right)_{i}=\sum_{s=0}^{2 n-2}\left(\sum_{k=0}^{n-1} \sum_{j=0}^{n-1} h_{s ; i, j}(X) g_{s ; j, k} e_{k}\right)_{i} \tag{1.17}\\
& =\sum_{s=0}^{2 n-2}\left(\sum_{j=0}^{n-1} h_{s ; i, j}(X)\left(\sum_{k=0}^{n-1} g_{s ; j, k} e_{k}\right)\right)_{i}=\sum_{s=0}^{2 n-2}\left(\sum_{j=0}^{n-1} h_{s ; i, j}(X) \nabla^{s}\left(e_{j}\right)\right)_{i} . \tag{1.18}
\end{align*}
$$

So that $\nabla^{i}\left(c_{0}(\mathbf{e}, X)\right)=\sum_{s=0}^{2 n-2} \sum_{j=0}^{n-1} h_{s ; i, j}(X) \nabla^{s}\left(e_{j}\right)$. This means that

$$
\begin{equation*}
h_{s ; i, j}(X)=\alpha(s ; i, j) \cdot \frac{X^{s+j-i}}{(s+j-i)!} . \tag{1.19}
\end{equation*}
$$

Andrea Pulita

Below we write the first examples of $H(X)$ for $n=2,3,4,5$.
$n=2:$
$H(X)=\left(\begin{array}{cc}1 & X \\ 0 & 1\end{array}\right)+\left(\begin{array}{cc}-X & 0 \\ 0 & X\end{array}\right) G_{1}+\left(\begin{array}{cc}0 & 0 \\ -X & 0\end{array}\right) G_{2}$
$n=3:$
$H(X)=\left(\begin{array}{ccc}1 & X & \frac{X^{2}}{2!} \\ 0 & 1 & X \\ 0 & 0 & 1\end{array}\right)+\left(\begin{array}{ccc}-X & -2 \frac{X^{2}}{2} & 0 \\ 0 & -X & -\frac{X^{2}}{2} \\ 0 & 0 & 2 X\end{array}\right) G_{1}+\left(\begin{array}{ccc}\frac{X^{2}}{2} & 0 & 0 \\ 0 & -2 \frac{X^{2}}{2} & 0 \\ 0 & -3 X & \frac{X^{2}}{2}\end{array}\right) G_{2}+\left(\begin{array}{ccc}0 & 0 & 0 \\ \frac{X^{2}}{2} & 0 & 0 \\ X & -2 \frac{X^{2}}{2} & 0\end{array}\right) G_{3}+\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 \\ \frac{X^{2}}{2} & 0 & 0\end{array}\right) G_{4}$
$n=4:$
$H(X)=\left(\begin{array}{cccc}1 & X & \frac{X^{2}}{2!} & \frac{x^{3}}{3!} \\ 0 & 1 & X & \frac{X^{2}}{2!} \\ 0 & 0 & 1 & X \\ 0 & 0 & 0 & 1\end{array}\right)+\left(\begin{array}{cccc}-X & -2 \frac{x^{2}}{2} & -3 \frac{x^{3}}{3!} & 0 \\ 0 & -X & -2 \frac{X^{2}}{2} & \frac{x^{3}}{3!} \\ 0 & 0 & -X & 2 \frac{x^{2}}{2} \\ 0 & 0 & 0 & 3 X\end{array}\right) G_{1}+\left(\begin{array}{cccc}\frac{x^{2}}{2} & 3 \frac{X^{3}}{3!} & 0 & 0 \\ 0 & \frac{x^{2}}{2} & -3 \frac{x^{3}}{3!} & 0 \\ 0 & 0 & -5 \frac{x^{2}}{2} & \frac{x^{3}}{3!} \\ 0 & 0 & -6 X & 3 \frac{x^{2}}{2}\end{array}\right) G_{2}+$
$\left(\begin{array}{cccc}-\frac{X^{3}}{3!} & 0 & 0 & 0 \\ 0 & 3 \frac{X^{3}}{3!} & 0 & 0 \\ 0 & 4 \frac{X^{2}}{2} & -3 \frac{X^{3}}{3!} & 0 \\ 0 & 4 X & -8 \frac{X^{2}}{2} & \frac{X^{3}}{3!}\end{array}\right) G_{3}+\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ -\frac{X^{3}}{3!} & 0 & 0 & 0 \\ -\frac{X^{2}}{2} & 3 \frac{X^{3}}{3!} & 0 & 0 \\ -X & 7 \frac{X^{2}}{2} & -3 \frac{X^{3}}{3!} & 0\end{array}\right) G_{4}+\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{X^{3}}{3!} & 0 & 0 & 0 \\ -2 \frac{X^{2}}{2} & 3 \frac{X^{3}}{3!} & 0 & 0\end{array}\right) G_{5}+\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -\frac{X^{3}}{3!} & 0 & 0 & 0\end{array}\right) G_{6}$
$n=5:$
$H(X)=\left(\begin{array}{ccccc}1 & X & \frac{x^{2}}{2!} & \frac{x^{3}}{3!} & \frac{x^{4}}{4!} \\ 0 & 1 & X & \frac{X^{2}}{2!} & \frac{X^{3}}{3!} \\ 0 & 0 & 1 & X & \frac{X^{2}}{2} \\ 0 & 0 & 0 & 1 & X \\ 0 & 0 & 0 & 0 & 1\end{array}\right)+\left(\begin{array}{ccccc}-X & -2 \frac{x^{2}}{2!} & -3 \frac{x^{3}}{3!} & -4 \frac{X^{4}}{4!} & 0 \\ 0 & -X & -2 \frac{X^{2}}{2!} & -3 \frac{X^{3}}{3!} & \frac{X^{4}}{4!} \\ 0 & 0 & -X & -2 \frac{X^{2}}{2!} & 2 \frac{X^{3}}{3!} \\ 0 & 0 & 0 & -X & 3 \frac{X^{2}}{2!} \\ 0 & 0 & 0 & 0 & 4 X\end{array}\right) G_{1}+\left(\begin{array}{ccccc}\frac{x^{2}}{2!} & 3 \frac{x^{3}}{3!} & 6 \frac{x^{4}}{4!} & 0 & 0 \\ 0 & \frac{X^{2}}{2!} & 3 \frac{X^{3}}{3!} & -4 \frac{X^{4}}{4!} & 0 \\ 0 & 0 & \frac{X^{2}}{2!} & -7 \frac{X^{3}}{3!} & \frac{X^{4}}{4!} \\ 0 & 0 & 0 & -9 \frac{X^{2}}{2!} & 3 \frac{X^{3}}{3!} \\ 0 & 0 & 0 & -10 X & 6 \frac{X^{2}}{2!}\end{array}\right) G_{2}+$
$\left(\begin{array}{ccccc}-\frac{X^{3}}{3!} & -4 \frac{X^{4}}{4!} & 0 & 0 & 0 \\ 0 & -\frac{X^{3}}{3!} & 6 \frac{X^{4}}{4!} & 0 & 0 \\ 0 & 0 & 9 \frac{X^{3}}{3!} & -4 \frac{X^{4}}{4!} & 0 \\ 0 & 0 & 10 \frac{X^{2}}{2!} & -11 \frac{X^{3}}{3!} & \frac{X^{4}}{4!} \\ 0 & 0 & 10 X & -20 \frac{X^{2}}{2!} & 4 \frac{X^{3}}{3!}\end{array}\right) G_{3}+\left(\begin{array}{ccccc}\frac{X^{4}}{4!} & 0 & 0 & 0 & 0 \\ 0 & -4 \frac{X^{4}}{4!} & 0 & 0 & 0 \\ 0 & -5 \frac{X^{3}}{3!} & 6 \frac{X^{4}}{4!} & 0 & 0 \\ 0 & -5 \frac{X^{2}}{2!} & 15 \frac{X^{3}}{3!} & -4 \frac{X^{4}}{4!} & 0 \\ 0 & -5 X & 25 \frac{X^{2}}{2!} & -13 \frac{X^{3}}{3!} & \frac{X^{4}}{4!}\end{array}\right) G_{4}+$
$\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ \frac{X^{4}}{4!} & 0 & 0 & 0 & 0 \\ \frac{X^{3}}{3!} & -4 \frac{X^{4}}{4!} & 0 & 0 & 0 \\ \frac{X^{2}}{2!} & -9 \frac{X^{3}}{3!} & 6 \frac{X^{4}}{4!} & 0 & 0 \\ X & -14 \frac{X^{2}}{2!} & 21 \frac{X^{3}}{3!} & -4 \frac{X^{4}}{4!} & 0\end{array}\right) G_{5}+\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{X^{4}}{4!} & 0 & 0 & 0 & 0 \\ 2 \frac{X^{3}}{3!} & -4 \frac{X^{4}}{4!} & 0 & 0 & 0 \\ 3 \frac{X^{2}}{2!} & -13 \frac{X^{3}}{3!} & 6 \frac{X^{4}}{4!} & 0 & 0\end{array}\right) G_{6}+\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{X^{4}}{4!} & 0 & 0 & 0 & 0 \\ 3 \frac{X^{3}}{3!} & -4 \frac{X^{4}}{4!} & 0 & 0 & 0\end{array}\right) G_{7}+$
$\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \frac{X^{4}}{4!} & 0 & 0 & 0 & 0\end{array}\right) G_{8}$

Small connections are cyclic

2. Small connections are cyclic over an ultrametric Banach algebra.

In this section we provide a sufficient condition for differential modules over an ultrametric Banach algebras, in order to guarantee that the Katz's vector (1.2) is a cyclic vector.

2.1 Norms and matrices

We recall that an ultrametric norm on a commutative ring with unit \mathscr{B} is a map $||:. \mathscr{B} \rightarrow \mathbb{R} \geqslant 0$ satisfying $|0|=0,|1|=1,|a+b| \leqslant \max (|a|,|b|),|a b| \leqslant|a| \cdot|b|$, for all $a, b \in \mathscr{B}$. We require moreover $|n a|=|n||a|$ for all $n \in \mathbb{Z}, a \in \mathscr{B}$. Hence, in particular, the norm on \mathbb{Z} induced by $|$.$| is ultrametric$ and so $|n| \leqslant 1$ for all $n \in \mathbb{Z}$. If \mathscr{B} is complete an separated ${ }^{6}$ with respect to |.| then we say that \mathscr{B} is an ultrametric Banach algebra. A norm on $M_{n}(\mathscr{B})$ is a map $\|\cdot\|: M_{n}(\mathscr{B}) \rightarrow \mathbb{R}_{\geqslant 0}$ satisfying $\|0\|=0,\|1\|=1,\|A+B\| \leqslant \max (\|A\|,\|B\|),\|A B\|=\|A\| \cdot\|B\|,\|b A\|=|b|\|A\|$ for all $b \in \mathscr{B}$, $A, B \in M_{n}(\mathscr{B})$. In the sequel we will consider on $M_{n}(\mathscr{B})$ two norms

$$
\begin{array}{rll}
\text { sup-norm: } & \left|\left(a_{i, j}\right)\right|:=\sup _{i, j}\left|a_{i, j}\right|, \\
\rho \text {-sup-norm: } & \left|\left(a_{i, j}\right)\right|^{(\rho)}:=\sup _{i, j}\left|a_{i, j}\right| \rho^{j-i}, & \rho>0 . \tag{2.2}
\end{array}
$$

Notice that if \mathscr{C} is a \mathscr{B}-algebra together with a norm $|.|_{\mathscr{C}}$ extending ${ }^{7}$ that of \mathscr{B}, and if $c \in \mathscr{C}$ is an element with norm $|c|=\rho^{-1}$, then $|A|^{(\rho)}=\left|\Lambda_{c}^{-1} A \Lambda_{c}\right|$, for all $A \in M_{n}(\mathscr{B})$, where Λ_{c} is the diagonal matrix with diagonal equal to $\left(1, c, c^{2}, \ldots, c^{n-1}\right)$.
2.1.1 Norm of derivation Let $(\mathrm{B},|\cdot|)$ be an ultrametric Banach algebra, and let $\|\cdot\|: \mathrm{M}_{n}(\mathscr{B}) \rightarrow$ $\mathbb{R}_{\geqslant 0}$ be a fixed norm. Let now $d: \mathscr{B} \rightarrow \mathscr{B}$ be a continuous derivation. We extend d to $M_{n}(\mathscr{B})$ by $d\left(\left(a_{i, j}\right)_{i, j}\right):=\left(d\left(a_{i, j}\right)\right)_{i, j}$. Let $|d|$ denotes the norm operator of d acting on \mathscr{B} :

$$
\begin{equation*}
|d|:=\sup _{b \neq 0, b \in \mathscr{B}} \frac{|d(b)|}{|b|} . \tag{2.3}
\end{equation*}
$$

We will always assume that the norm $\|$.$\| verifies$

$$
\begin{equation*}
\|d(A)\| \leqslant|d| \cdot\|A\| \tag{2.4}
\end{equation*}
$$

for all $A \in M_{n}(\mathscr{B})$. This holds for the sup-norm and the ρ-sup-norm.

2.2 Norm of the matrix of the connection and cyclic vectors

We consider as above an ultrametric Banach algebra ($\mathrm{B},|\cdot|$), together with a continuous derivation $d: \mathscr{B} \rightarrow \mathscr{B}$. Let $\|\|:. \mathrm{M}_{n}(\mathscr{B}) \rightarrow \mathbb{R}_{\geqslant 0}$ be a fixed norm satisfying (2.4), for which $M_{n}(\mathscr{B})$ is complete and separated. Let (M, ∇) be a differential module. We assume that there is a element $t \in \mathscr{B}$ such that $d(t)=1$. In order to consider the Katz's base change matrix (1.8) we assume that ($n-1$)! is invertible in \mathscr{B}. As in the above sections we denote by G_{n} the matrix of the n-th iterated connection $\nabla^{n}: \mathrm{M} \rightarrow \mathrm{M}$ with respect to a basis \mathbf{e}. The simple idea of this section is the following.

Lemma 2.1. If the matrices $G_{1}, \ldots, G_{2 n-2}$ are small enough in norm, in order to verify

$$
\begin{equation*}
\left\|H_{0}(-t) H_{s}(t) G_{s}\right\|<1 \tag{2.5}
\end{equation*}
$$

for all $s=1, \ldots, 2 n-2$, then the Katz's base change matrix

$$
\begin{equation*}
H(t):=H_{0}(t)+H_{1}(t) G_{1}+\cdots+H_{2 n-2} G_{2 n-2} \tag{2.6}
\end{equation*}
$$

is invertible.

[^3]Proof. Indeed $H_{0}(t)$ is always invertible with inverse

$$
\begin{equation*}
H_{0}(t)^{-1}=H_{0}(-t) . \tag{2.7}
\end{equation*}
$$

So that $H(t)$ is invertible if and only if $H_{0}(t)^{-1} H(t)=1+\sum_{s=1}^{2 n-2} H_{0}(-t) H_{s}(t) G_{s}$ is invertible.
Of course a sufficient condition to have (2.5) is

$$
\begin{equation*}
\left\|G_{s}\right\|<\left(\left\|H_{s}(t)\right\| \cdot\left\|H_{0}(-t)\right\|\right)^{-1} \tag{2.8}
\end{equation*}
$$

In the following subsection we provide an explicit upper bound on the sup-norm and on the ρ-supnorm of $G:=G_{1}$ sufficient to guarantee (2.8) for all $s=1, \ldots, 2 n-2$. In order to do that we relate the norm of G_{s} with that of G_{1} by the following

Lemma 2.2. For all $s \geqslant 1$ one has

$$
\begin{equation*}
\left\|G_{s}\right\| \leqslant\left\|G_{1}\right\| \cdot \sup \left(\left\|G_{1}\right\|,|d|\right)^{s-1} \tag{2.9}
\end{equation*}
$$

Proof. We have the recursive relation $G_{s+1}=d\left(G_{s}\right)+G_{s} G_{1}$. Since we assume $\left\|d\left(G_{s}\right)\right\| \leqslant|d|\left\|G_{s}\right\|$, then one easily has $\left\|G_{s+1}\right\| \leqslant\left\|G_{s}\right\| \cdot \max \left(|d|,\left\|G_{1}\right\|\right)$. By induction the lemma is proved.

2.3 Upper bound for the sup-norm.

Let now the chosen norm $\|\|=.|$.$| be the sup-norm (2.1). We are looking for a condition on \left|G_{1}\right|$ that guarantee

$$
\begin{equation*}
\left|G_{s}\right|<\left(\left|H_{s}(t)\right| \cdot\left|H_{0}(-t)\right|\right)^{-1}, \tag{2.10}
\end{equation*}
$$

for all $s=1, \ldots, 2 n-2$. Thanks to Proposition 1.6 one has ${ }^{8}$

$$
\begin{align*}
& \left|H_{0}(t)\right|=\left|H_{0}(-t)\right|=\sup _{i=0, \ldots, n-1}\left|t^{i}\right| /|i!| \tag{2.11}\\
& \left|H_{s}(t)\right| \leqslant\left|H_{0}(-t)\right|, \text { for all } s=1, \ldots, 2 n-2 . \tag{2.12}
\end{align*}
$$

Indeed since $\alpha(s ; i, j)$ is an integer, and since the norm $|$.$| is ultrametric, one has |\alpha(s ; i, j)| \leqslant 1$. From this we have

$$
\begin{equation*}
\left(\left|H_{0}(-t)\right|\left|H_{s}(t)\right|\right)^{-1} \geqslant\left|H_{0}(t)\right|^{-2} . \tag{2.13}
\end{equation*}
$$

On the other hand by Lemma 2.2 one has

$$
\begin{equation*}
\left|G_{s}\right| \leqslant\left|G_{1}\right| \cdot \max \left(\left|G_{1}\right|,|d|\right)^{s-1} \tag{2.14}
\end{equation*}
$$

Hence it is enough to prove that

$$
\begin{equation*}
\left|G_{1}\right| \cdot \max \left(\left|G_{1}\right|,|d|\right)^{s-1}<\left|H_{0}(t)\right|^{-2} \tag{2.15}
\end{equation*}
$$

for all $s=1, \ldots, 2 n-2$.
Proposition 2.3. Assume that

$$
\begin{equation*}
\left|G_{1}\right|<\left|H_{0}(t)\right|^{-2} \cdot \min \left(1, \frac{1}{|d|^{2 n-3}}\right)=\min \left(1, \frac{1}{|t|}, \frac{|2|}{\left|t^{2}\right|}, \ldots, \frac{|(n-1)!|}{\left|t^{n-1}\right|}\right)^{2} \cdot \min \left(1, \frac{1}{|d|^{2 n-3}}\right) . \tag{2.16}
\end{equation*}
$$

Then (M, ∇) is cyclic and the Katz's vector $c_{0}(\mathbf{e}, t)$ is a cyclic vector for M .
Proof. We observe that both minimums are $\leqslant 1$, moreover $\min \left(1,1 /|t|,|2| /\left|t^{2}\right|, \ldots,|(n-1)!| /\left|t^{n-1}\right|\right) \leqslant$ $1 /|t|$. Since $d(t)=1$, then $|d||t| \geqslant 1$, and hence $1 /|t| \leqslant|d|$. Our assumption then implies $\left|G_{1}\right|<|d|$. Hence (2.15) becomes $\left|G_{1}\right| \cdot|d|^{s-1}<\left|H_{0}(t)\right|^{-2}$ for all $s=1, \ldots, 2 n-2$. This inequality is fulfilled if and only if $\left|G_{1}\right|<\min _{s=1, \ldots, 2 n-2}\left|H_{0}(t)\right|^{-2} /|d|^{s-1}=\left|H_{0}(t)\right|^{-2} \cdot \min \left(1,1 /|d|^{2 n-3}\right)$ which is our assumption.

[^4]
Small connections are cyclic

2.4 Upper bound for the ρ-sup-norm with $\rho=|t|^{-1}$.

We assume that

$$
\begin{equation*}
\rho:=|t|^{-1}, \quad\left|\left(a_{i, j}\right)_{i, j}\right|^{\left(|t|^{-1}\right)}=\sup _{i, j}\left|a_{i, j}\right||t|^{i-j} . \tag{2.17}
\end{equation*}
$$

As above we shall provide a condition on G_{1} to guarantee

$$
\begin{equation*}
\left|G_{s}\right|^{\left(|t|^{-1}\right)}<\left(\left|H_{s}(t)\right|^{\left(\left.|t|\right|^{-1}\right)} \cdot\left|H_{0}(-t)\right|^{\left(|t|^{-1}\right)}\right)^{-1} \tag{2.18}
\end{equation*}
$$

for all $s=1, \ldots, 2 n-2$. Since $|$.$| is not assumed to be multiplicative, hence \left|t^{i}\right| \leqslant|t|^{i}$. This implies

$$
\begin{equation*}
\left|H_{0}(-t)\right|^{\left(|t|^{-1}\right)}=\left|H_{0}(t)\right|^{\left(|t|^{-1}\right)}=\sup _{i, j=0, \ldots, n-1} \frac{\left|t^{i}\right||t|^{-i}}{|i!|} \leqslant \sup _{i=0, \ldots, n-1} \frac{1}{|i!|}=\frac{1}{|(n-1)!|} \tag{2.19}
\end{equation*}
$$

Of course if |.| is power multiplicative ${ }^{9}$, the above inequality is actually an equality. Notice that since $|$.$| is ultrametric on \mathbb{Z}$, then $|(n-1)!| \leqslant 1$.

Lemma 2.4. One has

$$
\begin{equation*}
\left|H_{s}(t)\right|^{\left(|t|^{-1}\right)} \leqslant \frac{\left|t^{s}\right|}{|(n-1)!|} . \tag{2.20}
\end{equation*}
$$

Proof. Thanks to proposition 1.6, for all $s=1, \ldots, 2 n-2$ one has

$$
\begin{equation*}
\left|H_{s}(t)\right|^{\left(\left.|t|\right|^{-1}\right)}=\max _{i, j=0, \ldots, n-1}\left|h_{s ; i, j}\right||t|^{i-j}=\max _{i, j=0, \ldots, n-1}|\alpha(s ; i, j)| \frac{\left|t^{s+j-i}\right|}{|(s+j-i)!|}|t|^{i-j} \tag{2.21}
\end{equation*}
$$

Now $|\alpha(s, i, j)| \leqslant 1$, and it is equal to 0 for $j-i \notin[\max (1-s, 1-n), n-1-s]$. So, since $\left|t^{s+j-i}\right| \leqslant\left|t^{s}\right||t|^{j-i}$, then we obtain $\left|H_{s}(t)\right|^{\left(|t|^{-1}\right)} \leqslant \max _{j-i \in[\max (1-s, 1-n), n-1-s]} \frac{\left|t^{s+j-i}\right|}{\mid(s+j-i)!!}|t|^{i-j} \leqslant$ $\max _{r \in[\max (1-s, 1-n), n-1-s]} \frac{\left|t^{s}\right|}{(s+r)!\mid}=\frac{\left|t^{s}\right|}{\mid(n-1)!!}$.

Then one has

$$
\begin{equation*}
\left(\left|H_{0}(-t)\right|^{\left(|t|^{-1}\right)} \cdot\left|H_{s}(t)\right|^{\left(|t|^{-1}\right)}\right)^{-1} \geqslant \frac{|(n-1)!|^{2}}{|t|^{s}} \tag{2.22}
\end{equation*}
$$

On the other hand by Lemma 2.2 one has

$$
\begin{equation*}
\left|G_{s}\right|^{\left(\left.|t|\right|^{-1}\right)} \leqslant\left|G_{1}\right|^{\left(|t|^{-1}\right)} \cdot \max \left(\left|G_{1}\right|^{\left(|t|^{-1}\right)},|d|\right)^{s-1} . \tag{2.23}
\end{equation*}
$$

So condition (2.18) is fulfilled if

$$
\begin{equation*}
\left|G_{1}\right|^{\left(|t|^{-1}\right)} \cdot \max \left(\left|G_{1}\right|^{\left(|t|^{-1}\right)},|d|\right)^{s-1}<\frac{|(n-1)!|^{2}}{|t|^{s}} \tag{2.24}
\end{equation*}
$$

for all $s=1, \ldots, 2 n-2$.
Proposition 2.5. Assume that

$$
\begin{equation*}
\left|G_{1}\right|^{\left(|t|^{-1}\right)}<\frac{|(n-1)!|^{2}|d|}{(|d||t|)^{2 n-2}} . \tag{2.25}
\end{equation*}
$$

Then (M, ∇) is cyclic and the Katz's vector $c_{0}(\mathbf{e}, t)$ is a cyclic vector for M .
Proof. Since $d(t)=1$, then $|d||t| \geqslant 1$. Our assumption then implies $\left|G_{1}\right|^{\left(\left.|t|\right|^{-1}\right)}<|(n-1)!|^{2}|d| \leqslant|d|$. Hence (2.24) becomes $\left|G_{1}\right|^{\left(|t|^{-1}\right)} \cdot|d|^{s-1}<\frac{|(n-1)!|^{2}}{|t|^{s}}$ for all $s=1, \ldots, 2 n-2$. This inequality is fulfilled if and only if $\left|G_{1}\right|^{\left(\left.|t|\right|^{-1}\right)}<\min _{s=1, \ldots, 2 n-2} \frac{\left.|(n-1)!|\right|^{2}|d|}{(|t||d|)^{s}}=\frac{\left.|(n-1)|\right|^{2}|d|}{(|t||d|)^{2 n-2}}$ which is our assumption.

[^5]
2.5 Upper bound for the ρ-sup-norm with $\rho=|d|$.

We now set

$$
\begin{equation*}
\rho:=|d|, \quad\left|\left(a_{i, j}\right)_{i, j}\right|^{(|d|)}=\sup _{i, j}\left|a_{i, j}\right||d|^{j-i} . \tag{2.26}
\end{equation*}
$$

We quickly reproduce the computations of section 2.4. As usual we have to prove that $\left|G_{s}\right|^{(|d|)}<$ $\left(\left|H_{0}(-t)\right|^{(|d|)} \cdot\left|H_{s}(t)\right|^{(|d|)}\right)^{-1}$. One has

$$
\begin{equation*}
\left|H_{0}(-t)\right|^{(|d|)}=\left|H_{0}(t)\right|^{(|d|)}=\max _{i=0, \ldots, n-1} \frac{\left|t^{i}\right||d|^{i}}{|i!|} \leqslant \max _{i=0, \ldots, n-1} \frac{(|d||t|)^{i}}{|i!|} \tag{2.27}
\end{equation*}
$$

As usual this becomes an equality if $|$.$| is power multiplicative.$
Lemma 2.6. Let $\rho \geqslant 1$ be a real number, and let $s \geqslant 0$ be an integer. The sequence of real numbers $i \mapsto \rho^{i} /|(s+i)!|$ is increasing.

Proof. One has $\rho^{i+1} /|(s+i+1)!| \geqslant \rho^{i} /|(s+i)!|$ if and only if $\rho /|s+i+1| \geqslant 1$. This last is true since the norm of a integer is $\leqslant 1$, because the norm is ultrametric.

Since $d(t)=1$, then $|d||t| \geqslant 1$, so we then have

$$
\begin{equation*}
\left|H_{0}(-t)\right|^{(|d|)} \leqslant \frac{(|d||t|)^{n-1}}{|(n-1)!|} \tag{2.28}
\end{equation*}
$$

Lemma 2.7. One has

$$
\begin{equation*}
\left|H_{s}(t)\right|^{(|d|)} \leqslant\left|t^{s}\right| \cdot \frac{(|d||t|)^{n-1-s}}{|(n-1)!|} \tag{2.29}
\end{equation*}
$$

Proof. As in lemma 2.4 one has

$$
\begin{equation*}
\left|H_{s}(t)\right|^{(|d|)}=\max _{i, j}|\alpha(s ; i, j)| \frac{\left|t^{s+j-i}\right||d|^{j-i}}{|(s+j-i)!|} \leqslant \max _{i, j} \frac{\left|t^{s}\right|(|d||t|)^{j-i}}{|(s+j-i)!|}=\left|t^{s}\right| \cdot \max _{r} \frac{(|d||t|)^{r}}{|(s+r)!|}, \tag{2.30}
\end{equation*}
$$

where i, j runs in $[0, n-1]$, and $r \in[\max (1-s, 1-n), n-1-s]$. By Lemma 2.6 the last maximum is equal to $(|d||t|)^{n-1-s} /|(n-1)!|$.

Then one has

$$
\begin{equation*}
\left(\left|H_{0}(-t)\right|^{(|d|)} \cdot\left|H_{s}(t)\right|^{(|d|)}\right)^{-1} \geqslant \frac{|(n-1)!|^{2}}{\left|t^{s}\right| \cdot(|d||t|)^{2 n-2-s}} . \tag{2.31}
\end{equation*}
$$

As usual one also has $\left|G_{s}\right|^{(|d|)} \leqslant\left|G_{1}\right|^{(|d|)} \cdot \max \left(\left|G_{1}\right|^{(|d|)},|d|\right)^{s-1}$, so what we need is

$$
\begin{equation*}
\left|G_{1}\right|^{(|d|)} \cdot \max \left(\left|G_{1}\right|^{(|d|)},|d|\right)^{s-1}<\frac{|(n-1)!|^{2}}{|t|^{s}(|d||t|)^{2 n-2-s}} \tag{2.32}
\end{equation*}
$$

for all $s=1, \ldots, 2 n-2$.
Proposition 2.8. Assume that

$$
\begin{equation*}
\left|G_{1}\right|^{(|d|)}<\frac{|(n-1)!|^{2}|d|}{(|d||t|)^{2 n-2}} . \tag{2.33}
\end{equation*}
$$

Then (M, ∇) is cyclic and the Katz's vector $c_{0}(\mathbf{e}, t)$ is a cyclic vector for M .
Proof. Since $d(t)=1$, then $|d||t| \geqslant 1$. Our assumption then implies $\left|G_{1}\right|^{\left(\left.|t|\right|^{-1}\right)}<|(n-1)!|^{2}|d| \leqslant|d|$.
Hence (2.32) becomes $\left|G_{1}\right|^{||d|)} \cdot|d|^{s-1}<\frac{|(n-1)!|^{2}}{|t| s(|d||t|)^{n-1-s}}$, for all $s=1, \ldots, 2 n-2$. But this is actually our assumption.

References

Del70 Pierre Deligne, Équations différentielles à points singuliers réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin, 1970. MR MR0417174 (54 \#5232)
Kat87 Nicholas M. Katz, A simple algorithm for cyclic vectors, Amer. J. Math. 109 (1987), no. 1, 65-70. MR MR878198 (88b:13001)

Andrea Pulita pulita@math.univ-montp2.fr, www.math.univ-montp2.fr/~pulita/
Departement de Mathématique, Université de Montpellier II, Bat 9, CC051, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France, December 27, 2012.

[^0]: 2000 Mathematics Subject Classification ???????????
 Keywords: cyclic vector, p-adic differential equations, p-adic local monodromy theorem ???????
 ${ }^{1}$ i.e. a \mathbb{Z}-linear map satisfying the Leibnitz rule $d(a b)=a d(b)+d(a) b$

[^1]: ${ }^{2}$ The symbol \#k means the number of elements of k, or, if k is infinite, its cardinality.

[^2]: ${ }^{3}$ Notice that Deligne does not ask for the existence of $t \in \mathscr{B}$ satisfying $d(t)=1$. But it is easy to reduce the general case to this one by replacing the non trivial derivation d by $\widetilde{d}:=f \cdot d$, with $f:=d(t)^{-1}$, and then using Lemma 1.4. ${ }^{4}$ The ideal \mathscr{I} is the set of linear combinations $\sum_{i=0}^{n(n-1)} b_{i} P\left(t-a_{i}\right)={ }^{t} w \cdot\left(P\left(t-a_{i}\right)\right)_{i}$ with coefficients b_{i} in \mathscr{B}. Since V is invertible, for all vector v with coefficients in \mathscr{B}, there exists w such that ${ }^{t} w \cdot V={ }^{t} v$ and reciprocally. So that any linear combination ${ }^{t} w \cdot\left(P\left(t-a_{i}\right)\right)_{i}$ of the family $\left\{P\left(t-a_{i}\right)\right\}_{i}$ is in fact a linear combination of the family $\left\{r_{i}\right\}_{i}$, because ${ }^{t} w \cdot\left(P\left(t-a_{i}\right)\right)_{i}={ }^{t} w \cdot V \cdot\left(r_{i}\right)_{i}={ }^{t} v \cdot\left(r_{i}\right)_{i}$, and reciprocally. So \mathscr{I} is the ideal generated by the family $\left\{r_{i}\right\}_{i}$. ${ }^{5}$ Notice that $d(t)=\widetilde{d}(\widetilde{t})=1$. Once we change d we also have to change t in order to preserve this relation.

[^3]: ${ }^{6} \mathscr{B}$ is separated if and only if $|a|=0$ implies $a=0$.
 ${ }^{7}$ i.e. in order that the structural morphism $\mathscr{B} \rightarrow \mathscr{C}$ is an isometry

[^4]: ${ }^{8}$ Notice that $|$.$| is not assumed to be multiplicative, hence \left|t^{i}\right| \leqslant|t|^{i}$.

[^5]: ${ }^{9}$ The norm $|$.$| is power multiplicative if it verifies \left|b^{n}\right|=|b|^{n}$ for all $b \in \mathscr{B}$, and all integer $n \geqslant 0$

