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Abstract We introduce a new class of exponentials of Artin—Hasse type, called
m-exponentials. These exponentials depend on the choice of a generator & of
the Tate module of a Lubin-Tate group & over Z,. They arise naturally as solu-
tions of solvable differential modules over the Robba ring. If & is isomorphic to
G over Zy,, we develop methods to test their over-convergence, and get in this
way a stronger version of the Frobenius structure theorem for differential equa-
tions. We define a natural transformation of the Artin—Schreier complex into
the Kummer complex. This provides an explicit generator of the Kummer unra-
mified extension of 5 , whose residue field is a given Artin—Schreier extension
of k((¢)), where k is the res1due field of K. We then compute explicitly the group,
under tensor product, of isomorphism classes of rank one solvable differential
equations. Moreover, we get a canonical way to compute the rank one g-module
over 5;( attached to a rank one representation of Gal(k((?))°P/k((¢)), defined
by an ATtin-Schreier character.
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0 Introduction

The aim of this paper is to make the theory of rank one solvable differential
equations over the Robba ring Rk (cf. 1.1) as explicit as possible, where (K, |.|)
is a complete ultrametric field with residue field &. It is known (cf. [1,16,20])
that, under some restrictions on K and k, a p-adic differential module with
Frobenius structure over Rg becomes unipotent, after pull back on a covering
of Rk, coming from a separable extension of E := k((¢)). In particular, in [20]
the aim is to express this module via extension of rank one modules, and get a

p-adic analogue of Turritin’s classical Theorem for K((7))-differential modules.

Let o7 := TdiT' We shall answer to the following questions:

1. When is a given differential equation
L=or—g(T), gT) =Y aT eRg (0.1)

solvable? Can we read the solvability of L from the coefficients a; of g(T)?

2. What is the irregularity of L?

3. Can we explicitly describe the group (under tensor product) Pic*!(R) of
isomorphism classes of rank one solvable differential equations over Rx?

4. How does this differential equation change under Artin—Schreier exten-
sions? In particular what is the family of rank one solvable modules becom-
ing trivial after a given separable extension of E = k((¢))?

5. Let E*P be the separable closure of E. What is explicitly the rank one
¢-module attached to an Artin—Schreier character (or rank one representa-
tion) of Gg := Gal(E**P/E) via the theory of Fontaine-Katz? In particular
what is the solvable equation attached to this ¢-module?
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0.1 Robba exponentials

The first example of irregular solvable differential equation was given by Dwork
with the function exp(x 7~1) which is the Taylor solution at co of the irregular
operator 37 + 7 T~!, where r is a solution of the equation X?~! = —p. Dwork
shows that the exponential (T~ = exp(r (TP — T~ 1)) is over-convergent
(i.e. converges for |T| > 1 — ¢, for some ¢ > 0). This provides the so called
“Frobenius Structure” isomorphism between d7 + 7 7~!, and its pull back by
Frobenius o7 + pn T7P.

In [22], Robba generalizes the example of Dwork by producing a class of
exponentials, here called E,,;(T), commonly known as Robba’s exponentials.

1

Namely Robba shows that, for all number g such that |7g| = |p|7—T, there
exists a sequence o1, ®y,. .. such that, for all m > 1, the exponential

m m—1
TP TP
Em(T—1>=exp(no( e +"'+05mT_1)) (02)

pm—l

converges in the disk |7| > 1, and hence the operator L = a7 + mo(T "y
o 77" 44 o, T~Y), with E,,(T~!) as solution, is solvable at p = 1.
Moreover Robba shows the necessity of the condition |mpa;| = |70 /7", for
all i > 0. This construction leads Robba to define the p-adic irregularity of a
solvable differential equation as the slope at 1~ of the radius of convergence
(cf. Definition 1.8).

But Robba’s construction is not sufficient for two reasons. The first one is that
the numbers «; are obtained as intersection of a decreasing sequences of disks,
and then the field K must be algebraically closed and spherically complete. The
second reason is that Robba was not able to prove the over-convergence of
Ep(T7P)/E,(T~1), since the «;’s are essentially unknown.

These problems are solved by Matsuda in [18]. He simplifies remarkably the
proof of Robba by using the Artin—Hasse exponential. The idea of introducing
the Artin—-Hasse exponential is due to Dwork (cf. [13, 21.1]), and Robba
(cf. [22, 10.12]). Matsuda shows that, if &,,, is a primitive p”**!th root of 1,

and if &,,11_; = ’;‘ZH, then we can choose «; = (§; — 1)/(§9 — 1). Then

m pm—l

T
En(T™") = exp ((51 —D @D

+o o Gt — 1>T—1).

(0.3)

pmfl

Matsuda proves also that, if p # 2, then the exponential E,,(T77) /Em(T’l) is
over-convergent. He obtains these results by a quite complicates, but elemen-
tary, explicit estimation of the valuation of the coefficients of this exponential.

For the first time we see, in the paper of Matsuda, the algebraic nature of
these analytic exponentials. Indeed, if « : Gg — A* is a character of Gg into
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a finite extension A /Q),, such that «(Gg) is finite, then Matsuda shows that the
irregularity of the differential equation, attached to the ¢-V-module over 8;
defined by «, is equal to the Swan conductor of «.

Independently from Matsuda, Chinellato, under the direction of Dwork,
obtains a new algorithm showing the existence of the «;s (cf. [8]).

Even with the great progress given by Matsuda, André, Kedlaya, Crew,
Mebkhout, Tsuzuki and others, the questions given in 0.1 are still open, and are
the object of this paper.

We generalize, and improve, the techniques of Matsuda and Chinellato, by
invoking the Lubin-Tate theory. We recall that the Artin—Hasse exponential
E(—,T) is the group morphism E(—,T) : W(B) — 1+ TBI[[T]], functorial on
the ring B, sending the Witt vector A = (Ao, A1,...) € W(B) into the series

TP L

where (¢, ¢1,...) € BNisthe phantom vector of A (cf. Eq. (1.17)). If B = Ogay,
then this exponential has bounded coefficients, and hence converges at least for
|T| < 1. Given a Frobenius automorphism of Z,[[X]], that is a series P(X) €
XZy|[X]1] lifting XP € F,[[X]], we consider a sequence {r}};>0 in Ogal, such
that P(mo) = 0, and P(rj;1) = mj, for all j > 0. Then we provide, for all m > 0,
a Witt vector [7,,] € W(Ogalg), Whose phantom vector is (1, .. .,m0,0,0,...).
In this way, we obtain a large class of exponentials of “Robba” type:

TP "
En(T) == E([tn], T) = exp 7TmT+7Tm—l7 +"'+770p_m . (0.5)

We show then that the radius of convergence of these exponentials is 1 if and only
if P(X) is a Lubin-Tate series (cf. Eq. (1.24)), which thus defines a Lubin-Tate
group Gp. In this case m := ())j>0 is a generator of the Tate module of &p
(cf. Proposition 2.2). If &p is the formal multiplicative group G, that is if
P(X) = (X + 1) — 1, then we recover Matsuda’s exponentials (0.3). On the
other hand, if P(X) = pX + X?, we recover, for m = 0, Dwork’s exponen-
tial. Observe that, in the case considered by Dwork, the formal group &p is
isomorphic, but not equal, to G,.

Furthermore, we show that E,,,(TP)/E,,(T) is over-convergent, for allm > 0,
ifand only if ® p is isomorphic (but not necessary equal) to G- This is the reason
of the over-convergence of the exponentials E,,(T?7)/E;;(T) of Matsuda and
Dwork.

From this starting point we develop the explicit link between abelian char-
acters of Gal(k((#)*°P/k((¢))) and rank one solvable differential equations over
Rk, and examine various applications.
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0.2 Organization of the paper

In Sects. 1.1, 1.2, 1.3, 1.4, and 1.5 we give the definitions and recall some facts
used in the sequel.

In Sect. 2.1 we define some canonical Witt vectors with coefficients in Z, [ X]],
and show their properties with respect to the Artin—-Hasse exponential. In
Sect. 2.2 we introduce a new class of exponentials called m-exponentials (cf.
Definition 2.4), and show their main properties with respect to the convergence/
over-convergence.

In Sect. 2.3, we give the first application. Fix a Lubin-Tate group &p iso-
morphic to G, and a generator # = (7j);>0 of the Tate module. Let L be a
complete discrete valued field, with residue field k7, and let ¢ : L — L be a
lifting of the Frobenius x +— x” of k;. Let L, := L(&,,), where &, is a primitive
p"*1th root of unity. It is well known that we have the Henselian bijection

{Finite unramified extensions of L.} —> {Finite separable extensions of ky }.

We shall describe an inverse of this map. Let k’/k;, be a finite cyclic abelian
extension of degree d, and let L’/ L be the corresponding unramified extension.
If (d,p) = 1, and if k1, contains the dth roots of 1, then k’/k is of Kummer type,
and hence L' = L(0), where 6 is the Teichmiiller representative of a Kummer
generator § € k'.

On the other hand, if d = p™, then k' is of Artin—Schreier type (cf. Remark
1.10), and itis generated, over kj , by (the entries of) a Witt vector v € W, (kSLep),
which is solution of an equation of the type F(v) — v = X, where A € W,,,(k;)
is a so called Witt vector “defining” k’. In this case L), /L,, is again a Kummer
extension, since all cyclic extensions of L,, whose degree is p™ are Kummer.
Now choose an arbitrary lifting A € W,,(Or) of A, and solve the equation
pv)—v=2A,vE wm(funr). Then a Kummer generator 6 of L), is given by the
value at 7' = 1 of a certain m-exponential, called 6,m (v, T), (cf. Theorem 2.9).

The Artin—Schreier theory and Kummer theory are given by some complexes
computing the Galois cohomology. Roughly speaking, we shall obtain a natural
transformation of functors which “deforms” the Artin—Schreier complex into
the Kummer complex and induces a quasi isomorphism:

m+1
1 —— (L) s (L) ——1 (0.6)
A A

9 epVﬂ

00— Wy(kr) g Wn(kp) —=0.
Actually, such a natural transformation can not exist, because the Artin—Schre-
ier complex is in characteristic p, and the Kummer complex is in characteristic

0. As a matter of fact, we lift the Artin—Schreier complex to characteristic 0
and deform it into the Kummer complex, by using the value at T = 1 of some

@ Springer



494 A. Pulita

over-convergent m-exponentials called Opym (—, T) and epm (—, T)Pm+1 (see diagram
(2.44)). This provides a well defined morphism between the cohomologies.

Under some assumptions on K (cf. Eq. (2.53)), even if the field L = 5;( is
not complete, we show that this diagram exists for E}Q and its finite unramified
extensions (cf. Corollary 2.4). The commutative diagram is then:

+1
frop?™ oK 1
1 Byme1 (g}(m)x (S;F(m)x um_ H (G‘S};-{m ,Itpm+1) —
7
‘ A
' T T%m(,l) Tepm (7,1)Pm+1
: = L 1
L WO Win(0)) ——> Win(O)p) e "
00— z/p"mtlz, Win(E) - Wn(E) 5 HY(Gg.z/p"Hz) —> 0
(0.7)

where Gg = Gal(k((1))5°P/k((t))) and Ggr = Gzall(é’;;’alg /5}; ). We specify the
K}’ll m m

kernel and the image of the morphism € between the cohomologies. If f(1) €
W, (k(®)) is a Witt vector defining an Artin—Schreier separable extension of
k((?), then (up to add the p™+'th roots of 1) a generator of the corresponding
unramified extension of Elzm is given by 6,m(v,1), where v € Wm(fl‘énr) is a
solution of the equation ¢(v) — v = f(7T), and f(T) € Wm(Ob is an arbitrary
lifting of £(t).

Let K,,, := K(m,) = K(&), Koo := UKy, and let k,,, be the residue field
of K. In Sects. 3, 3.1, and 3.2 we classify all solvable rank one differential
equations over R, . The key point is the following equality, arising from the
diagram (0.7), and useful for describing the Kummer generator 6,m (v, 1):

m-+1

B (0, P = epn (F(T), 17" (0.8)

The expression e,n (f (T), 1) has no meaning, because e,n (—, Z) is not over-con-
vergent as a function of Z. We make sense of this symbol in some cases: in
Sect. 3.1 we define a class of exponentials of the form

m

_ _ ¢ (T) (1)
epn(f(T),1) = exp (ﬂm¢0 (1) + 71 1p ++ no¢'; . (09
where f7(T) e Wy (T~' Ok [T~']),and (¢ (1), ..., (1)) € (T~ Ok [T~ ]!
is its phantom vector. This exponential is 7~ !-adically convergent and defines
a series in 1 + T‘l(’)Km[[T_l]], whose p”*1th power lies in R,,. These Witt

vectors correspond to totally ramified Artin—Schreier extensions of E := k().
The exponential (0.9) is then the desired Kummer generator 6,m (v, 1).
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We state then the explicit bijection between the abelian Galois theory for
E = k((1)), and the theory of rank one differential equations over Rg_ . Matsu-
da, in [18], has pointed out, under some restrictions, that such a correspondence
should exist. We go further by removing any restrictions, improving his methods,
and by making the correspondence more explicit (cf. Theorems 3.1 and 3.2).
Namely we introduce the fundamental exponential e,n (f ~ (T),1). We show that
every rank one differential module M over Rg_ comes, by scalar extension,
from a module My ], Over Kool T71], whose Taylor solution at co is of the form

T - epm(f~(T), 1), (0.10)

for some m > 0, ap € Zp, and f(T) € Wm(T”OKm[T*l]). Moreover, the
isomorphism class of M depends only on the class of ag in Z,/Z, and on the
Artin—Schreier character « defined by the reduction of £ (7) in W,,,(k,, (?))).
Suppose that ag belongs to Z, := Q N Z,. Then ag corresponds to the mod-
erate extensions of E = k((t)), generated by . On the other hand, f~(7T)
corresponds to the Artin—Schreier extension given by (the kernel of) the
Artin—Schreier character defined by the reduction f~ (7). We recover in this
way the well known bijection

Isomorphism classes of rank one
solvable differential equations ¢t, (0.11)

Rank one ] ~
—
over R, with rational residue

characters of Z;_ (s

where Zy_ (s is the inertia subgroup of Gal(koo (1)*P / koo (1).
The central point is that the following w-exponential is over-convergent

epn (f g, (1) 1)

eng- o Ve DD, (0.12)

where f ;F) (7) is an arbitrary lifting of the reduction F(f () € Wy(kn(@)). If a
lifting of the p-th power map ¢ : Rg — Rk is given, then this result implies the
usual Frobenius Structure Theorem. Observe that we do not need the existence
of ¢ (cf. Remark 2.9), because actually the isomorphism class of a given module
M depends only on the reduction of f~ (7)) in characteristic p. This represents a
progress in two directions, with respect to the analogous Theorem of [6]: firstly
we do not suppose k perfect, and secondly we get a precise description of the
isomorphism class of M. In particular, we find that, if ag = 0, then “the order”
(cf. Definition 1.11) of the Frobenius structure is 1 (cf. Remark 4.1).

In Sect. 3.2 we prove these Theorems essentially by reducing the study to
the “elementary” m-exponentials corresponding to simpler Witt vector called
s-co-monomials. These exponentials are studied in detail in Sect. 2.2.

We give then some complements (Sects. 4.1, 4.2, 4.3, 4.4, 4.5). In particular,
in the Sect. 4.2, we compute the group of rank one solvable equations killed
by a given Artin—Schreier extension and then answer the question (4) of 0.1.
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In Sect. 4.3 we extend the definition of w-exponentials to a larger class of dif-
ferential equations, and we provide an algorithm (see Proof of Lemma 4.5),
which gives a criterion of solvability, (cf. Corollary 4.6). In particular we show
that there is no irregular rank one equations if K/Q), is unramified (cf. Corollary
4.7). This answers the question (1) of 0.1. Then we compute the irregularity in
some classical cases (cf. Sect. 4.4). We describe the Tannakian group of the
category whose objects are successive extensions of rank one solvable modules.
We remove the hypothesis “K is spherically complete” present in the literature.
In Sect. 4.6 we compute the ¢ — V-module attached to a character with finite
image of Gg. This answers question (5) of 0.1.

1 Definitions and notations
1.1 General notations

Let p > 0 be a fixed prime number. Let (K, |.|) be a complete valued field
containing (Qp, |.|). For every valued extension field L/K, we denote by O;, =
{x € L | |x| <1} the ring of integers of L, by p;, = {x € L | |x| < 1} its maximal
ideal and by k; = Op /pp its residue field. We set k := kg, and take K22 to be
a fixed algebraic closure of K, and k218 = k gz will be its residue field. /K will
be a spherically complete extension field containing K212, satisfying |Q2| = R0,
and whose residue field kq/k is not algebraic. We set

1
© = |p|7T.

We denote by dr := T% the usual derivation. For all rings R we denote by R*
the group of invertible elements in R.

1.1.1 Analytic functions and the Robba ring

For every (non vacuous) interval I C [0, co[C Rweset Ax(]):= {f(T) = D ic7 i
T" | sup;(laj|p") < oco0,Vp € I}, The topology of Ag (1) is defined by the family of
absolute values

F(Dlp :=maxailo’, Vo el. (L.1)

Let Rk := U A (11 — &, 1) be the Robba ring. R is complete with respect to
the limit topology. Let £k = {> ;7 a;T! | sup; |a;| < oo ,lim;, o a; = 0} be
the Amice ring. £k is endowed with the Gauss norm |.|; and is complete. We
denote by Og, := {f € £ | |[fl1 < 1} its ring of integers. If the valuation on K is
not discrete we may have |a;| < sup; |a;|, for all i € Z.

Definition 1.1 For all algebraic extensions H/K we set

Au) = Ax(D Q@ H, Ry =RxQx H, Ey:=Ekx Qx H. (1.2)
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Since K is algebraically closed in Ag (1) (resp. R, £x) then Ay () (resp. Ry,
Ex) is a domain. All p-adic differential equations over Ag(I) (resp. Ry, i)
come, by scalar extension, from an equation over Ay (/) (resp. Rr, &) with
L /K finite. This will justify the Definition 1.9.

Definition 1.2 For all formal series f(T) = > ;. a;T" we define

f(T):= Z a;T!, fH(T):= Za;Ti, (1.3)

i<—1 i>1
we have f(T) = f~(T) +ao + f+(T).

Definition 1.3 For all algebraic extension H/K, let 5;11 =Ry NEx. We denote
by O;I,T = Og,; NRy. If no confusion is possible we will write SJ'LI (respectively
OL) instead of 521 (respectively OL’T).

Remark 1.1 The quotients Og, /{f € Og, : |fl1 < 1} or O;/{fe O;{ Sfh < 1}
are equals to k((?)) if and only if the valuation on K is discrete. Nevertheless, if
the valuation is not discrete, the rings Og, and (’)}f( are always local, their maxi-
mal ideals POe,. and p ol are formed by series f = > ; a;T" such that |a;| < 1, for
all i € Z, observe that, since the valuation is not discrete, this condition do not
implies that |f|; < 1. The residue fields O;/p o and Og, /pOSK are actually

always equals to k((t)).

1.2 Generalities on rank one differential equations

Let B be one of the rings Ak (), Rk, 8;(, Ex.Letor — g(T), g(T) € B be afirst
order linear differential operator. The differential module defined by a7 — g(7T)
is the free rank one module M over B, endowed with the action of the derivation
dor : M — M given, in the chosen basis e, by d7(e) = g(T) - e. We will say that
g(T) is the matrix of the derivation d7 in the basis e. In the sequel we will work
with both derivations d7 and d/d7. We set

gs(T) = the matrix of 3};  g(s(7) = the matrix of (d/dT)"; (1.4)

Then one has

d
8is+11 = d—T(g[s](T)) + gis1(Dgn(T),  goy(T) := 1. (1.5)

Let C be a B-differential algebra. A solution of 37 — g(T), g(T) € B, with values
in C is, by definition, an element y € C satisfying d(y) = g(T) - y. If M is the
rank one module defined by d7 — g(T), then the solution y define a morphism
of B-modules e — y : M — C commuting with the derivation. The operator

corresponding to the basis f - e, f € B*,is a7 — (g(T) + ‘)TTV)) On the other
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hand, the tensor product of the modules defined by o7 — g(T) and a7 — g(7) is
the module defined by the operator d7 — (g(T) + g(T)). Then we will identify
the group, under tensor product, of isomorphism classes of (free) rank one
differential modules (here called Pic(B)) with the group

B/0710g(B™),
where 97 os : B* — B is the morphism of groups f — 97(f)/f.
1.2.1 Taylor solution and radius of convergence
Let I € R be some interval. In this subsection, M will be a rank one Ag(I)-

differential module defined by the operator a7 — g(7).
Let x € @, |x| € I. We regard Q[[T — x]] as an Ak (])-differential algebra

by the Taylor map f(T) = 3o ( ¥ () ) (T;j”k : Ax(I) — QI[T — x]]. The
Taylor solution of 87 — g(T) at x is (recall that g(T) = Tgp11(1))

T — k
sy(T) 1= Zg[k] (x)g. (1.6)

k!
k>0

Indeed a7(sx(7T)) = g(T)sx(T). The radius of convergence of s.(7T) at x is, by
the usual definition, Ray(M,x) = lim inf (g« (x)|/ |k!|)_%.

Definition 1.4 The radius of convergence of M at p € I is
Ray(M, p) := min(p, tim inf (gl /K1) /%)
. . ~1
= mm(,o, a)[hmksup(|g[k]|p)1/k] )

The second equality follows from the fact that the sequence |k!|'/% is conver-

gent to w, and |gyx) |})/k is bounded by max(|g1;/,, p~1). The presence of p in the
minimum makes this definition invariant under change of basis in M.

Theorem 1.1 (Transfer) For all p € I we have

Ray(M, p) = min (p, inf  Ray(M, x)) . (1.7)

XEQ,|x|=p

Assume now that I = [0, p]. Then

Ray(M, p) = min (p, min Ray(M, x)) . (1.8)

XeQ,|x|<p

In particular Ray(M, p) < min(p, Ray(M, 0)).
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Proof Since for p = |x| we have |gsj(T)|, > |g[s1(x)|, hence by Definition 1.4,
Ray(M, p) < min(p,Ray(M,x)). Let 1, € Q be such that {x € Q | |x —1,| <
PN K =@, then |gl, = Igs1(tp)|, for all s > 0 ([10, 9.1]), hence Ray(M, p) =
min(p, Ray(M,1,)). The last assertion follows similarly. O

Lemma 1.1 (Small Radius) Let p € I. Then
Ray(M, p) = wp - min (1,1g(T)[;"). (1.9)
Moreover Ray(M, p) < wp if and only if |g(T)|, > 1, and in this case we have
Ray(M, p) = wp - |3(T)],". (1.10)

Proof By induction on Eq. (1.5), Igl, < max(p‘l,lg[1]|p)s = pSmax

(1,1gl,)* (cf. Eq. (1.4)), and equality holds if |gpjl, > p~'. Then apply
Definition 1.4. O

Definition 1.5 M is called solvable at p € I, if Ray(M, p) = p.

Theorem 1.2 [7] The map p — Ray(M, p) : I — R is continuous and locally
of the form r - pP*1, for suitable r € R, and B € N. More precisely there exist a
partition I = Uyczl,, supl, = inf 1,1, and two sequences {rn}ncz, {Bninez, such
that B, € Z,Ray(M, p) = rpp PtV V p e I, and (cf Lemma 1.3)

,3n > IBn+1- (1.11)

Proof The existence of the partition follows from the Small Radius Lemma 1.1
and Theorem 1.3. For more details see [9, 8.6] and [7, 2.5]. ]

Definition 1.6 We will call the property (1.11) the log-concavity of the function
p — Ray(M, p). We will call B, the slope of M in the interior of I,,. More generally
if p = supl, = inf L1, we set sl” (M, p) := B, and sI" (M, p) := B,.1.

Remark 1.2 The Taylor solution of M ® N is the product of the Taylor solu-
tions of M and N. Hence, by the transfer Theorem 1.1, Ray(M ® N, p) >
min(Ray(M, p), Ray(N, p)). If Ray(M, p) # Ray(N, p), then we have Ray(M ®
N, p) = min(Ray(M, p), Ray(N, p)).

1.2.2 Solvability, slopes and irregularities

In this subsection, M is the rank one module over Rk, defined by a7 + g(T),
g(T) = ZieZ a;T" € Rg.

Lemma 1.2 There exists d > 0 such that M is isomorphic to the module defined
by or + zizfd a;T". In other words there exists f(T) € R; such that dt0¢(f) =

Zi<—d aiTl'
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Proof By hypothesis g(T) € Ax(]1 —¢,1]), fo; some ¢ > (0. Then Zi;é() a;T i e
Ax(J1 — &,1[). In particular lim;_, _ |a;/i]p* = 0, for all p €]1 — &, +o0].
Let d > 0 be such that supi<7d(|a,-/i|,5i) < o for a fixed p €]1 — ¢,1[. Then
sup;__4(la;/ilp’) < o, for all p > p. Then f(T) = exp(— Die—d a;T'/i) lies in
Rik. O

Definition 1.7 Let M be a differential module over Rg. The module M is called
solvable if and only if lim,_, ;- Ray(M, p) = 1. We will denote the category of
solvable differential modules over Rx by MLS(Rk).

Lemma 1.3 Let M € MLS(Rk) be defined in some basis by the operator o1 —
g(T), g(T) € Rk. Then

1. There exist 0 < ¢ < 1 and a last slope B :=sl” (M, 1) > 0 such that

Ray(M, p) = pP*1, forall p €]l —¢,1[. (1.12)

N

There exists €' such that |g(T)|, < 1, for all p €]1 — g 1.
3. Ifg(T) =>%,a;T",d > 0, then |a_4| < w and, for p close to 0,

Ray(M, p) = wla_q| "' p™*!. (1.13)

4. Moreover,ifd > 0,and if |a_4| = w, then B = d.
5. Ifd <0, then Ray(M, p) = p, for all p €]0,1[ and B = 0.

Proof The slopes are positive natural numbers, hence the decreasing sequence
{Bn}n becomes constant for n — oo. Then B = min,z{B,}. The second asser-
tion follows from the Small Radius Lemma 1.1. Let now g(T) = > .., a;T',
with d > 0. We study the function p > Ray(M, p)/p. Let -

R(M,r) :=log(Ray(M, p)) —log(p), r:=1log(p). (1.14)

Then R(M,r) < 0, for all r < 0, and the function r — R(M,r) : ] — 00,0[—>]
— 00, 0] is of the following form

R(M,r)
log(w/la—al)

Ismallradius), (A

formal slope = d
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Since d > 0, one has [g(T)|, = la_qlp~% > 1, for p close to 0. Hence, near 0,

we can apply the Small Radius Lemma (cf. Remark 1.3): we have Ray(M, p) =
wla_g| "1 pd*1. Since lim,_, - Ray(M, p) = 1, hence by log-concavity and conti-
nuity, we must have w|a_y4|~! > 1 (or equivalently log(w/|a_g|) > 0 asin the pic-
ture) and if |a_4| = w, then, again by continuity and log-concavity, this graph is a
line,and g = d.If d < 0, then |g(T)|, < 1,forall p < 1, hence the Small Radius
Lemma gives R(M,r) > log(w) for all r < 0. Since R(M,r)— 0 for r— 0 (solv-
ability), then by log-concavity and continuity this implies R(M,r)=0,Vr < 0. O

Remark 1.3 We maintain the notation of Lemma 1.3 part (3). We recall that
sIT(M,0) = min(0,d) is equal to the classical formal slope Irrp(M) of M as
K((T)-differential module (cf. [27]). This is actually true in all ranks.

Definition 1.8 Let M be a solvable rank one differential module over R. The
p-adic irregularity of M is the natural number Irr(M) = sl™ (M, 1).

Remark 1.4 1f M is defined by an operator a7 + g(7), g(T) = Ziod a;T' € Rk,
then by log-concavity and continuity we have Irrp(M) > Irr(M).

Definition 1.9 If K'/K is a finite extension, then we denote by Pic*®(Rx:) the
group, under tensor product, of isomorphism classes of solvable rank one differ-
ential modules over Ry. For all algebraic extensions H/K, we set

Pic™®(Ry) = U Pic™®(Rk). (1.15)
KcK'cH , K'/Kfinite

Corollary 1.1 We have Irr(M ® N) < max(Irr(M), Irr(N)), for all M,N € MLS
(Rk). Moreover the equality holds if Irr(M) # Irr(N).

Proposition 1.1 Let o7 — g(T), g(T) =2 ;. a;T' € Ry, be a solvable differen-
tial equation. Then 37 — g~ (T), 07 —ag, 37 — g (T) are all solvable (cf. Definition
1.2).

Proof Let us call My1_, o], Mo, Mg 11 the differential modules defined by a7 —
g (T),dr—ap,dr—g " (T),respectively. Then M = My1_¢ 0] @M@ M 11. By the
Small Radius Lemma 1.1, the equation 37 — g~ (T) (respectively 37 — g™ (7)) has
a convergent solution at co (respectively at 0), hence Ray(My1_. o, p) = p, for
large values of p, and Ray(Mg 1(, p) = p, for p close to 0. While Ray(My, p) =
Ry - p, for all p (cf. Lemma 1.4). Hence the slopes of Mj;_, o (respectively
Mo 11, Mo) in the interval |1 — &, 1[ are strictly positive (respectively strictly
negative, respectively equal to 0) as in the picture (cf. (1.14)).

Rop—gD,0 4 R(M,r)
0ep 1°g<1*5>\\_« r = log(p)
RO —gt(T)r) /@< ROT =g (T),)
o ‘
R@T — ag,r) = log(R()
T il radius) T gy
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We have Ray(M, p) = inf (Ray(M}1_¢ o), p), Ray(M[o 11, p), Ray(Mo, p)), for all
1 —¢ < p < 1, with the exception of a finite numbers of p, this follows by
Remark 1.2. By continuity of the radius, we have equality even for these iso-
lated values of p. Since lim,_, - Ray(M, p) = 1, this implies Ray(Mo 1, 0) = p
for all p < 1, Ray(Mp,p) = p for all p, and Ray(My1_; ,0) = p for all
p > 1. O

The classification of the equations of the type dr — ag, ap € K, is well known
(see Sect. 1.2.5), while the solvable equations of the form d7 — g™ (T) are always
trivial:

Proposition 1.2 Let 37 — g™(T), g7(T) = > ;o4 a;T' € Ag([0,1]) C Ry be
solvable at 1~ (cf. Definition 1.7). Let M be the module attached to 37 — g™ (T),
then

1. We have gt (T) € TOy|[T]]. Hence M comes, by scalar extension, from a
differential module M 1; over Oy[[T]];

2. We have Ray(Mio1;, p) = p, forall p < 1;

3. Moy is trivial as Og[[T1]-module;

4. The exponential exp(D>_;-, a;T' /i) lies in 1 + TOg[[T]].

Proof We have |a;] < 1, because the Small Radius Lemma 1.1. Since 97 — g™ (T)
has a convergent solution at 0 (namely this Taylor solution is exp(}_;- ; a;T' /D)),
then Ray(Mo 11, p) = p for all p close to 0. Since lim,, ;- Ray(M[OH[,p) =1,
then by log-concavity we must have Ray(M)o 1, 0) = p, for all p < 1. By the
transfer Theorem 1.1 the Taylor solution exp(D ;.1 a;T*/i) converges in the disk
|T| < 1 and belongs to Ok[[T]] (because a non trivial solution of a differential
equation has no zeros in its disk of convergence). O

Corollary 1.2 Every rank one solvable differential module over Ry has a basis
in which the matrix lies in Ox[T™1].

Proof By Proposition 1.2 there exists a basis in which the matrix lies in Rx N
Ox[[T~1]]. The base change matrix to obtain this basis is an exponential con-
vergent in [0, 1[. Now, by Lemma 1.2 we recover the good basis. This last base
change matrix is again an exponential convergent in ]1 — ¢, 0o[. O

1.2.3 Frobenius structure and p-th ramification

Definition 1.10 An absolute Frobenius on K is a Q,-endomorphism o : K — K
such that |o (x) — xP| < 1, for all x € Ok.

If an absolute Frobenius o : K — K is given, an absolute Frobenius on R is
then a continuous endomorphism of rings ¢ : Rx — Rk extending o, and such
that

o(T) — TP = zai(q;)Ti, with |a;(¢)| <1 foralli e Z, aj(p) € K. (1.16)
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By continuity ¢ is given by ¢ and by the choice of ¢(7T). Namely if we set
S a;iTH? :=> o (a) T, then o(f(T)) = f (p(T)), for all f € Ri. The simplest
absolute Frobenius is given by the choice ¢(7) = TP and we denote it by ¢, .

Let ¢ : R — R be an absolute Frobenius. By scalar extension (and change
of derivation), we have a functor: ¢* : MLC(R) ~» MLC(R). If M € MLC(R)
is defined by the operator a7 — g(7), then ¢*(M) is defined by the operator
97 — (0710g(0(T)) - g° (9(T))). The isomorphism class of ¢* (M) does not depend
on the choice of ¢ (cf. [9, 7.1]).

1.2.4 p-th ramification

Let o be an absolute Frobenius on K. For all analytic functions f(T) :=
> a;T' € Ad), we set ep(f(T)) = f(TP). Observe that ¢, is not an abso-
lute Frobenius. We set ¢, (f(T)) := f°(T?). The p-th ramification map ¢, :
A(I?) — A(l) defines, as before, a functor denoted by (p; : MLC(Ag (IP)) ~»
MLC(Ak(1)).

Theorem 1.3 [9] Let M € MLC(Ag(IP)). Then forall p € I one has Ray(¢} (M),
p) = Ray(g, (M), p), and

. ((Ray.pP)\'P | Ray(M, pP)
Ray(g; (M), p) > pmm((y—p) N
P P
and equality holds if Ray(M, p) # &P p.

Proof Since f(T) — f°(T) is an isometry, we have the first equality. The second
one follows from a quite complex, but elementary, explicit computation. O

Example 1.1 The radius of the operator a7 — 1/p is equal to w|p|p = &’ p (cf.
Lemma 1.1), but its image by Frobenius is the trivial module.

Corollary 1.3 Let M € MLS(Rk), let ¢ : Rk — Rk be an absolute Frobenius,
then sl™ (p*(M),1) =sl” (M, 1).

Definition 1.11 (Frobenius structure) Let M be a module over Rx. We will say
that M has a Frobenius structure of order A, if M is isomorphic to (¢*)"(M).

Remark 1.5 If M has a Frobenius structure, then it is solvable by Theorem 1.3
applied to “antecedents” of M. (see [9, 8.6 and 7.7 infra]).

Remark 1.6 By Theorem 1.3 we have Irr(¢*(M)) = Irr(gp;‘ (M)) = Irr(M).
1.2.5 Moderate characters
Letap € K. We denote by M(ag, 0) the module defined by the constant operator

a1 — ag (cf. Sect. 1.2). We will call moderate every solvable differential module
(over Ri) of the form M(agp,0). By [22, 5.4], M(ao, 0) is solvable if and only if
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ay € Zp. Moreover the equation d7,10¢(f(T)) = ag has a solution f(T) € R,? if
and only if ag € Z, and in this case f(T) = T%. This shows that the group under
tensor product of moderate differential modules is isomorphic to Z,/Z. On the
other hand it is well known that an M(ag, 0) has a Frobenius structure if and
only if ap € Zp) (cf. Lemma 4.2).

Lemma 1.4 Let a(ap) := limsup,(|lag(ap — 1)(ap —2)---(ap — s + 1)|%). Then
Ray(M(agp,0),p) = p - Ro < p, forall p > 0, with Ry := min(l, w - a(ag)™).

Proof A direct computation gives gi(T) = as(ap)T—*, with ay(ap) := ap(ap —
1)---(ao —s+ 1) (cf. Eq. (1.4)). Then apply Definition 1.4. O

1.3 Notations on Witt vectors and covectors

Let R be a ring. Notations concerning the ring W(R) of Witt vectors will follow
[3], except for the indexation “m” of the ring W,,(R) of Witt vector of finite
length. We set W,,,(R) := W(R)/V"TIW(R) (see Sect. 1.3.1). We denote by

n n—1
¢n = n(Xo,.... Xp) = Xy +pX] 4 +p"Xy (1.17)

the Witt polynomial. Vectors in RY and in R”+! will be distinguished from Witt
vectors by the notation (¢o, @1, ...) instead of (¢o, ¢, ...). For all Witt vector
r = (ro,r1,...) € W(R), the vector ¢(r) = (¢po(r0), d1(ro,71),...) is called the
phantom vector of 7. The map r — ¢ (r) : W(R) — RY is a ring morphism.

Lemma 1.5 ([3, Lemme 3 Sect. 1, N°2]) Let A — ¢(X) : W(R) LY RN be the
phantom component map. If p € R is not a zero divisor, then ¢ is injective. If
p € Ris invertible then ¢ is bijective.

Lemma 1.6 ([3, Lemme 2 Sect. 1, N2]) Let o : R — R be a ring morphism
satisfying o (a) = a” (mod pR), forall a € R. Then a vector (¢o, ..., Pm) € R+l
is the phantom vector of a Witt vector if and only if

¢i=o0(pi_1) modp'R, foralli=1,...,m. (1.18)

Remark 1.7 All assertions concerning relations between Witt vectors or prop-
erties of m-exponentials (see below) will be proved by translating these relations
or properties in terms of phantom components.

1.3.1 Frobenius and Verschiebung

We denote by F : W(R) — W(R) and V : W(R) — W(R) the usual Frobenius
and Verschiebung morphisms. We denote again by F : W, 1(R) — W, (R),
V:W,(R) - W,,.1(R) the reduction of F and V to W,,,(R). We have again
FV(r) = p - rin W,,(R). We recall that ¢ (V(rg,r1,...)) = (0,p¢o,pod1,...) and

¢ E(ro,r1,..)) = ($1,02,...).
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If R has characteristic p, then F(rg,r1,...) = (rg, r’l’ ,...). Hence it is possible
toreduce the morphism F of W(R) to a morphism of W, (R) into itself, by setting

F(ro,...,rm) = (£,..., ). We denote this morphism byF W, (R) — W, (R).
1.3.2 Completeness

Let R be a topological ring. We identify topologically W,,,(R) with R”*1, via the
function (rg,...,"m) — (ro,...,"m). The operations on W,,(R) are continuous,
because defined by polynomials.

Lemma 1.7 If R has a basis Ur of neighborhood of 0 formed by ideals, then R is
complete if and only if Wy, (R) is complete for all m > 0.

Proof 1t is evident for m = 0. Let m > 1 and {ru},, v == (Fn0,-- - nm),
be a Cauchy sequence in W,,,(R). The sequence rp,, is Cauchy in R and we
denote ry := lim, r¢ . The translate sequence r}l :=r, — (r9,0,...,0)is Cauchy,
so we can suppose ro = 0. For every ideal I € Ug there exists n; such that
r,111 — r,112 = (S0n,m295- -2 Smnym) € WD), for all ny,n; > ny. Let us write
St = r}ll’l - r}lz’l + P(rrlzho,r}lz,o). By [3, Sect. 1 n%3 a)] the polynomial
Sk, 18 isobaric without constant term. Since r}w € I, for n > n), sufficiently

large and since [ is an ideal, hence r}ll] - r}lz] € I, for all ny,ny > nj. So

the sequence r}ll is Cauchy and converges to r; € R. Moreover the sequence
r,2Z = r,l1 —(0,r1,0,...,0) is such that both ri o and rlz1 1 £o to 0. This process can

be iterated indefinitely. O

Corollary 1.4 If (R, |.|) is an ultrametric valued ring, then R is complete if and
only if W, (R) is complete for all m > 0.

1.3.3 Length

Let R be a ring of characteristic p. If the vector r € W,,(R) is such that rg =
-+ =rr_1 = 0and ry # 0, then we define the length of r as £(r) := m — k, and
£(0) := —oo. If R is not of characteristic p, then we will define £(r) as the length
of the image of rin W,,,(R/pR).

1.3.4 Covectors

We recall that the covectors module CW(R) is the additive group defined by the
following inductive limit ([3, Sect. 1 ex. 23 page 47]): CW(R) := lim (W, (R) ¥

W1 (R) N )- In the sequel we must work with a slightly different sequence.
Let R be a ring of characteristic p. Then VF = FV and VF(r,...,ry) =
(0,75,..., ). Let CW(R) be the following inductive limit:

CW(R) := lim(W,,(R) VE W,i1(R) VE . (1.19)
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If R is a perfect field of characteristic p, then CW(R) is isomorphic to CW (R).
This results from the following commutative diagram:

R—Y> W (R) —>W(R) —> - —> CW(R) (1.20)

P,

@
R~ Wi(R) —E> Wh(R) —> ... — > CW(R) .

Remark 1.8 If R is a field of characteristic p, then CW (R) = CW (RP).

1.4 Notations in Artin—Schreier theory

Definition 1.12 Let R be a field of characteristic p > 0 and let R°°P /R be a fixed
separable closure of R. We denote by Gr = Gal(R**P/R). If R is a complete
discrete valuation field, we denote by Ig the inertia group and by Pg the pro-
p-sylow subgroup of Ir.

We have H' (G, Z/p™7Z) = Hom®™(Gg, Z/p™7Z) (cf. [23, Ch.X, Sect. 3]). The
situation is then expressed by the following commutative diagram:

F-1 K}
0 —— z/pm+ly, Wi (R) Wi (R) Hom®"(Gg,Z/p"*17) —=0
\Ll o] lv (0] lv o] ij
F— s
0 —> Z/p"t27 —— Wy 1 (R) ——> W, 11 (R) ——— Hom " (G, Z/p"+27) —> 0

(1.21)

where 1 : 1 — p is the usual inclusion, and ; is the composition with :. For
A € W, (R), the character « = §(A) sends the automorphism y to the element
a(y) == y(v) —v € Z/p"T1Z, where v € R*P is a solution of the equation
F(v) — v = \. Taking the inductive limit, we get the following exact sequence:

0 Qp/Zy — CW(R) *=% CW(R) > Hom™™(Gg.Qp/Z,) — 0, (1.22)

where the word “cont” means that all characters Gg — Q) /Z,, factorize on a
finite quotient of Gg. Indeed li_r)nm Hom(Gg,Z/p"™7Z) can be seen as the subset

of Hom(Gg, Q,/Zy) formed by the elements killed by a power of p.

Remark 1.9 1If the vertical arrows V are replaced by VF in the diagram (1.21),
then the morphisms ¢ and ; remain the same. Indeed (1) = §(F(X)), because
FA) =LA+ F -1, for all A € W, (R). Hence we have also

0 — Qy/Zy, - CW(R) L eW®R) - Hom®"(Gg,Q,/Z,) — 0. (1.23)
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Remark 1.10 Let A = (Ag,..., Am) € W, (R). The kernel of o := §(A) is the
subgroup of Gr whose corresponding extension field is R({vo,...,vm}), (i.e.
the smallest field containing the set {vo,...,v,}), where v = (vo,...,v,) €
W,,.(R%P) is solution of F(v) — v = A. All cyclic separable extensions of R,
whose degree is a power of p, are of this form for a suitable m > 0, and A.

1.4.1

Let « be a field of characteristic p > 0, and let R := «(¢)). The Galois group
of an abelian extension of «((¢)) is the product of its p-torsion part (controlled
by the Artin—Schreier theory) and its moderate part (controlled by Kummer
theory).

Definition 1.13 We set P(x) :== Hom*“™ (Pg, Q,/Z,) = Hom “"(Zg, Q,/Zp).

. C
Remark 1.11 We will see that P(x) = (ngc(i)v% This group describes
the abelianization of the pro-p-Sylow of the quotient Pg. On the other hand

CW(x)/(F — 1)CW(x) = Hom®"(Gg/Zr, Qp/Zp)-

1.5 Notations in Lubin-Tate theory

For notations and results on Lubin-Tate theory we refer to [17]. In this paper
we will treat only Lubin-Tate groups over the field QQ,. We recall briefly only
the facts used in this paper. Let w := p - u € pZ,, u € Z,, be a uniformizing
element. Let §y be the family of formal power series P(X) € Z,[[X]] satisfying

P(X)=wX  (mod X?Z,[[X1]), P(X)=X"  (mod WZ,[[X]]). (1.24)

A series in Fw will be called a Lubin-Tate series. For all P € §y, there exists
a unique formal group law &p(X,Y) € Z,[[X, Y]] such that P(Gp(X,Y)) =
&p(P(X),P(Y)) (i.e. P(X) is an endomorphism of &p(X,Y)).

Lemma 1.8 Let P,P € Fy. Forall a € Zp there exists a unique formal series
lalpp(X) € Zpl[X]] such that

L [alpp(X) =aX (mod X?Z,[[X]]),
2. [alpp(&p(X,Y)) = &p(lalpp(X), [alp (V).

In other words [a] PJ;(X ) is a morphism of group laws.

We set [a]p(X) := [a]lp,p(X). By the uniqueness, we have that P(X) = [w]p(X).
The setting x x y := Gp(x, y) defines a new group law on px, denoted by p(px).
Let P® denote the series Po Po - - - o P, k-times. Following [17] let

Apm = Ker(P™) = Ker([w"]p) = {x € C, | P (x) =0 and |x| <1}
(1.25)

@ Springer



508 A. Pulita

be the set of [w]”-torsion points of & p(pcp), and Ap := UyuAp,,. We have

Ap C Q;lg. Moreover Q,(Ap,,)/Qp is Galois and depend only on w. The
formal group law &p makes Ap,,; a group.

Theorem 1.4 ([17, Theorem 2]) We have the following properties:

1. Wehave Apy, = Z/p™Z, for all m > 1, and then Ap = Q[ Zyp.
2. Lety € Gal(Q,(Ap)/Qp). There exists an unique unit u, € Z; such that

y(x) = [u,]lp(x), Vxe Ap.

3. The map y — u, is an isomorphism of Gal(Q,(Ap)/Qp) onto the group
Ly . The same map gives an isomorphism

Gal(Qy(Ap)/Qp(Apm)) > 1+ W"Zp, Ym > 1.

4. Letu e Z;, then [ulp(x) = (u_l,Qp(Ap’m)/Qp)(x),for all x € Ap,,, where
(w1t Qp(Apm)/Qp) € Gal(Qy(Ap)/Qp) is the norm residue symbol.

Remark 1.12 The simplest Lubin-Tate series is P(X) = wX + X?. If w = p,

then a non trivial zero mp of P is the “x” of Dwork. If again w = p and
P(X) = (X +1)? — 1, then &p = G, and all torsion points are of the form

& —1, with él’k =1, for some k > 0. This was the choice made by Matsuda [18].

Theorem 1.5 ([15, Proposition 8.3.22]) Let & and & be two Lubin—Tate groups
relative to the uniformizers w and w, respectively. Then & is isomorphic to & (as
formal groups over Zy) if and only if w = W.

1.5.1 Tate module

The multiplication by [w]p sends A,, into A,,_i. The Tate module of &p is,
by definition, T(&p) := lim,; Ap;y. A generator m = (mpj)j>0 of the Tate
module T(&p) is a sequence (7pj)j=0, 7j € Ap, such that P(mpg) =0, mpg # 0
and P(rmpj 1) = npj, for all j > 0. If no confusion is possible, we will write
7 instead of wpj. The Newton polygon of P shows that P has exactly p — 1

1 . .
non trivial zeros of value w = |p|r-1, and inductively P(X) — 7;_1 has p zeros
1

of valuation w? . Hence 7| = wl/P , for all j > 0, and the Galois extension
Qp(Apm) = Qp(my—1) is totally ramified. On the other hand the field K (r,,,—1)
is not always totally ramified.

Definition 1.14 We set K,;, := K(m;,,) (respectively K(Ap)), and denote by ki,
(respectively ky,) its residue field. Moreover, if w = p, we put Ko = K(Ap)
and ky, := kp. For all algebraic extensions L/K, Ly, will be the smallest field
containing L and K .
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o~

Example 1.2 If P(X) = (X +1)’ —1,then &p = G, and Ay = {§n — 1 | Ef}lm =
1} is the set of pth root of unity minus 1. A generator of T(G,,) is a family
(§j — 1)j>0 satisfying Ef =¢& g forall0 <i<j.

Definition 1.15 Let P,ﬁ € §w be two Lubin—Tate series. We will say that x € Ap
andy € Ap are equivalent if y = [1]p p(x) (cf. Lemma 1.8).

Remark 1.13 Since [1] pp(X) =x+ (things divisible by x%), it follows that |x —
[1] P,;,(x)| < |x]2. In particular, if w = p and if 7, is fixed, then there exists a

2
unique p"™Hth root of 1, say &, such that [(§, — 1) — 7| < w?” (cf. Remark
1.12).

2 m-exponentials and applications
2.1 Construction of Witt vectors
Let P(X) € Zy[[X]] be a series, with P(0) = 0, satisfying
P(X)=X? mod pZ,[[X]]. (2.1)

We consider the Frobenius op : Z,[[X]] — Z,[[X]] given by op(h(X)) :=
h(P(X)).

Lemma 2.1 ([3, Ch. IX, Sect. 1, ex. 14, a]) There is a unique ring morphism

—1: Zpl[X W(Z,[[ X 22
[=1: Zpll ]]m (ZplLX1D (22)

such that ¢j o [—] = 01];,. In other words, for all h(X) € Z,[[X]], the Witt vector
[A(X)] is the unique one whose phantom vector is equal to

(h(X), h(P(X)), h(P(P(X))), ...). (2.3)

Moreover [—] is also the unique ring morphism satisfying the relation
F([A(X)]) = [A(P(X))]. (24)
Proof By Lemma 1.6, the ring morphism A(X) — (h(X),h(P(X)),...) :
Zpll X1l — (ZpllX DY has its values in the image of the phantom compo-
nent map ¢ : W(Z,[[X]]) — (Zp[[X]])N. Since, by Lemma 1.5, ¢ is injective,
the Lemma is proved. O

Definition 2.1 Let B be a complete topologized Zy-ring, and let b € B be a topo-
logically nilpotent element. The specialization X +— b : Z,[[X]] — B provides,
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by functoriality, a morphism W(Z,[[X]1]) — W(B). For brevity, we denote by
[A(b)] the image of h(X) via the morphism

ZoIX1 25 Wz, 1x1) 225 wB). 2.5)

We will denote again by [h(D)] its image in W ,(B).

Remark 2.1 The phantom vector of [h(b)] is
(h(b), h(P(b)), h(P(P(b))), ...). (2.6)

In general there is no morphism Z,[b] — W(B) sending h(b) into [h(D)], the
notation [A(b)] is imprecise, but more handy.

Lemma 2.2 (key lemma) Let (B,|.|) be a Z,-ring, complete with respect to an
absolute value |.|, extending the absolute value of Z,. Let h(X) = > ;_qa; X' €
Zpl[X]1), and let [h(b)] = (Ao, A1,...) € W(B), with |b] < 1. Then the following
statements are equivalent:

1. laol = Ipl',
2. A0l hra] < 1, and A = L.

Proof Let o = (Ao,A1,...) = [h(b)]. We denote by B the residue ring. The
condition (2) is equivalent to A, # 0,and A; = 0, for alli < r, or, if kK > O is

given, it is equivalent to )_Jr”k £ 0, and A7 * = 0, for all i < r. This last condition
is equivalent to the condition (2) for the vector FK(*). Now the phantom vec-
tor of FX(1) is (h(P®) (b)), h((P*+D (b)), .. .) (cf. Sect. 1.3.1). Moreover |P(b)| <
sup(|bIP, |p||b]), hence, for all ¢ > 0, there exists k > 0 such that [PV (b)| < e,
for all i > k. If ¢ is small enough, then |h(P? (b))| = |ag|, for all i > k. Let

(0. v1..-..) = FX(L), then, since plv; = (PO () — 0f + -+ p/ 17 ). we

see, by induction, that |ag| = |p|" if and only if |v,| = 1 and |vj| = \p|"~, for all
j<r—1. O

Definition 2.2 We fix now a sequence w := {wj}j>( in Q;lg satisfying |wp| < 1,
P(wy) =0, and P(wj,1) = @y, forall j > 1.

Remark 2.2 The ring Z,[wy,] is complete, for all m > 0. Indeed @, is algebraic
and integral over Z, hence Zy[w,] is a free module over Zj,.

Remark 2.3 If P is a Lubin-Tate series, and if @w( # 0, then @ is a generator of
the Tate module T(®p), while if P(X) = X? mod X”HZP[[X]], then @; = 0
for all j > 0. Observe that, taking 4#(T) := T and b := w,, in the lemma 2.1,
then [w,] € W(Zp[w@;,]) is the unique Witt vector whose phantom vector is
(@m, @1, --.,®0,0,...). The uniqueness follows from the injectivity of the
phantom map ¢ : W(Z,[@,]) — (Zp[zzrm])N.
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Proposition 2.1 For all Z,|w,]-algebra B of characteristic 0
[@;]W(B) C [@;1]WB), j=0,....,m—1. 2.7)
Moreover, forall A e WB), and allj =0,...,m—1
F(wj1]) = [ojl; V(@] - X) = [@j41]- V). (2.8)

Hence F([wj;.1]W(B)) C [@;]W(B) and V([w;]W(B)) C [@j;1]W(B).

If now @wqy # O, then the kernel of the morphism A +— [wy,]A is the ideal
V"YW (B). The induced morphism W,,(B) — W(B) is a functorial isomor-
phism of W,,,(B) into the ideal [w,,]W(B) (as W(B)-modules), which commutes
withV:W,(B) > W,, . 1(B) and F : W,,,1(B) > W,,(B)

A= [y ]

WB) —7"% W(B) (2.9)

i

Wy (B) —— [@] - W(B) .

Proof Let h(X) = P(X)/X, then [@j]A = [P(wj;1)IA = [@j41 - W(@j;1)IA =
[@j41]- [A(wj;1)IL. This shows the inclusion (2.7). All other assertions are easily
verified on the phantom components. O

Corollary 2.1 Let (¢o,...,¢m) € Zp[wm]””‘l. If there exists a formal series
h(X) = Zizo a; X' € Zp[[X]] satisfying

hW@m,—j) = ¢j, forall0<j<m, (2.10)
then (¢, ...,¢m) is the phantom vector of [W(@)] = (vo,...,vm) € Wy (Zy,
[@m]). Moreover, |ag| = |p|", for some r > 0, if and only if |vol,...,|v,—1] < 1
and vy = 1.

2.1.1 Artin—Hasse exponential and Robba exponentials
Definition 2.3 ([3, ex. 58]) Let B be a Zy)-ring, and let

™ TP
E(T) :=exp| T+ i + ra +-- e 1+ TZyT1. (2.11)

Forall A .= (Mg, M,...) € W(B), the Artin—-Hasse exponential relative to A is

2

. P

EQ,T):=[]E0-T") = eXP(¢0T+ ¢1T7 +¢2i—2 + - ) e 1+ TBIIT]],
j=0

2.12)
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where (¢o, @1, . . .) is the phantom vector of A.

Remark 2.4 The Artin—Hasse exponential is then a group morphism
E(—-,T7):W@B) - 1+ TB[[T]], (2.13)

functorial on the Z,)-ring B.

Proposition 2.2 Let [w;,] € W(Zp[w,]) be as in Definition 2.2. The exponential

" "
En(T) = E(@n). T) = exp| @n T+ oy — -+ + oo (2.14)

converges exactly in the disk |T| < 1, for all m > 0, if and only if P(X) is a
Lubin-Tate series, and w := (w})j>0 is a generator of the Tate module T(&p).

Proof Assume that the radius of convergence of E([w,,], T) is equal to 1, for all
m > 0.Then, for m = 0, the radius of convergence of exp(woT) is 1, hence |wy| =
o. The Newton polygon of P(X) implies that P(X) = wX mod XZ,[[X]], for
some w, with |w| = |p|, hence P(X) is a Lubin-Tate series. Conversely, assume
that P(X) is a Lubin-Tate series, and that @ := (@;);>0 is a generator of T(&p).
Consider the differential operator L := dr+wy, T 4w, TP+ +wy Tr",
Then E,,(T1) is the Taylor solution at +oo of L. Since |wy| = w, by Lemma
1.3, we have Ray(L, p) = pP" 1 forall p < 1.In particular, the irregularity of
L is p™. Then E,,(T~1) is not convergent for |T| < 1, because otherwise, by
transfer at oo, E,,(T~1) € R, and L will be trivial. O

Theorem 2.1 Let P(X) = WX +- - - be a Lubin-Tate series, and let @ := (m})j>0
be a generator of T(®). Then the formal series E,,,(TP)/E;,(T) is over-convergent
(i.e. convergent for |T| < 1 + ¢, for some ¢ > 0) if and only if

lw —p| < |pI™*2.

In particular, Ep(TP)/Ep(T) is over-convergent for all m > 0 if and only if &p
is isomorphic to the formal multiplicative group Gy, (cf. Theorem 1.5).

Proof This Theorem will follow easily from the theory of m-exponentials (cf.
the proof of Theorem 2.5 infra), and is placed here for expository reasons. O

2.2 w-exponentials
We maintain the notations of Sect. 2.1. In this section we fix a uniformizing
element w of Z,, a Q,-Lubin-Tate series P € Z,[[X]], P € §w, and a generator

7 = (1j)j>0 of the Tate module. We fix three natural numbers n, m, d such that

d=n-p" >0, and (n,p)=1. (2.15)
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Definition 2.4 Let B be a Zy|m;,]-algebra. Let A = (Lo, ..., ) € Wy(B), and
let (¢, ..., om) € B" L be its phantom vector. We set

" T4
eq(A, T) := E([mm]A, T") = exp (nm%T” + 191 » +--+ Jro¢mp—)-

m
(2.16)

We will call e4q(A, T) € 1 + m,,, TB[[T]] the m-exponential attached to A.
Proposition 2.3 The map A — eq(A, T) defines a group morphism

W,(B) — 1+ 7, TB[[T]] . (2.17)
Moreover, for all A,v € W,,(B), we have

m .
edhT) = [ Em- (,\,-T"P’) : (2.18)

j=0
Em(T) = epm((la 0’ e 70)’ T)’ ed(x’ T) = epm ()"> Tﬂ)’
ed, IP) = ep.a(V(A), 1),  eq+v,T) =eq,T)-eqv,T).
Furthermore, if B = Oy is the ring of integers of some finite extension L/K, and
if, for some r > 1, there exists a Frobenius o on Oy, lifting the p"-th power map
x — xP" of ky, and satisfying o(mj) =m;, ¥V 0 <j < m, then we have

where o (Ao, ..., Am) = (6(A0),...,0(Ay)) and, for all f(T) = ZaiTi, we set
o) =S o(a)T' (cf Sect. 1.2.4).

Proof All the assertions are easily verified on the phantom components. O
2.2.1 Study of the differential module attached to a w-exponential

We maintain the notations of Sect. 2.2. As usual d = np” > 0, with (n,p) = 1.
In this subsection H/K is an algebraic extension (not necessary complete) and

Hy = H(p). (2.20)

Remark 2.5 The Witt vectors we are considering have a finite number of entries.
Hence the exponential e;(A, T) has its coefficients in a finite (thus complete)
extension of K. This will solve all problems concerning convergence.
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Definition 2.5 Let A = (ho,.. ., hm) € Wn(Opp), and let (¢, . .., ¢m) € ON1 be
its phantom vector. We define

m .
Ly(A) := 07 — dr10g(ea M T~ ) = dr +n- [ D ey ¢y T
j=0
We denote by Md(X) the differential module over Ry, defined by L;(X).
Lemma 2.3 L,;()) is solvable at p = 1, and hence My(X) € PicSOI(RHm).
Proof The Taylor solution at +-00 of Ly(A)iseq(A, T~1) € 147, T Oy, [[T7 111,
which has bounded coefficients and so converges for |T| > 1. By transfer (cf.

Theorem 1.1), Ray(Ly(X), p) = p, for all p > 1. By continuity of the radius,
Ray(L;(A),1) = 1. O

Proposition 2.4 The map A — ey(A, T~V defines a group morphism
W, (On) — 1+ 1, T 0y, [[T7']] . (2.21)
More precisely, for all .,v € W,,,(Op), one has:
9 Mg(L) = Mpg(V(A) . Myg(d + v) = Mg(A) @ My(v), (2.22)
where ¢, (f(T)) = f(TP) (cf. Sect. 1.2.4). Moreover, if there exists an absolute

Frobenius o on Hy, (cf. Definition 1.10) such that 71;7 =mj, forall 0 < j < m,
then

9o (€ad, 1)) = ealpe M), T7), 93 (Ma(V) = Mpa(V(e W),
where oo (f(T)) =f° (TP), (cf Sect. 1.2.3), and o (1o, . ., k) := (0 (A0), - - . , 0 (Am)).
Proof The first part is a direct consequence of Proposition 2.3. The last asser-
tion is a consequence of Corollary 2.3 and is placed here for expository reasons.
Observe that, in the sequel, we do not suppose the existence of o on H. Indeed,

our “Frobenius structure Theorem” does not require the existence of ¢ (cf.
Remark 2.10). O

Remark 2.6 In particular M, defines a morphism of groups

My : W,,(Op) —> Pic™(Ry,). (2.23)
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Theorem 2.2 Let A := (Ao, ..., m) € W,u(On) and let (o, ..., In) € (’)Z“ be
its phantom vector. The following assertions are equivalent:

1. l\~/Id(X) is trivial (i.e. isomorphic to Ry, ).
2. The exponential e (A, T) is over-convergent (i.e. convergent in some disk
IT| <1+¢ withe > 0).

3. Aolyeeosdml < 1.
Moreover, if |hol,..., |1 —1] < 1 and |A,] = 1,r < m, then we have (cf.
Sect. 1.3.3)

Irr(MgA) = n - p'® = dyp’. (2.24)

Proof The equivalence (1) < (2) is evident. By Eq. (2.18) and Proposition 2.2,
condition (3) implies that e4(A, T-YH e Ru,,, SO 1\~/Id(k) is trivial. The converse
follows from the last assertion below. Let then |Ag[,...,|A,—1| < 1,and |A,| =1,
r < m. Clearly |¢,,,(A)| = 1 if and only if |Ag] = 1 (cf. Eq. (1.17)). Then, if r = 0,
we can apply Lemma 1.3, and hence Irr(M) = Irrp(M) = d. Letnow 0 < r < m,
then E,, j(%; ") belongs to R;Im, forallj =0,...,r—1. Then we change basis
by the function f(7) := ]_[]’-;é E,,,_j(/\]-T_I”/)_1 € RIX—I,,, By Proposition 2.3, the
new solution is

f(T) : ed(Aﬂ T) = ed((os v 707)")‘3 .. 7)"}’)1)9 T) = ed/p’ (()\r, e a)"m)s Tpr) .
(2.25)

In other words, we have 1\~/Id(/\0, o Am) = <p;,"(1\~/ld/pr AryevosAm)) (cf.
Eq. (2.22) and Sect. 1.2.4). By Remark 1.6, the Theorem is proved by induction,
since |A,| = 1. O

Remark 2.7 In particular, 1\7Id passes to the quotient W,,,(kp), and induces an
injective additive map called M:
Md . 1
Wi (On) — Pic**(Ry,,) (2.26)
Wi (kH)

Corollary 2.2 Consider the morphism of groups

ZolIX1) 55 Wi Zplim]) € Win(On,) 24 Pics® Ry, ). (2.27)
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Let h(X) = Zizo a;X' e Zpl[X1] be such that |ag| = |p|” (vp(ao) = r). Then
Md([h(nm)]) has irregularity d/p”, and is trivial if and only if r > m+ 1. In other
words, the kernel of the composite map is the idealpm+1Zp[[X]] + XZp[[X]].

Proof Combine Corollary 2.1 and the reduction Theorem 2.2. O

2.2.2 Dependence on the Lubin—Tate group and on «t

We maintain the notations of the previous sections. As usual d = np" > 0,
(n,p) = 1.

Theorem 2.3 (Dependence on the choice of &) Let w1 = (7})j>0, #’ = (71].’ )j=0 be
two generators of T(Gp). Denote by M/;(—), E]’-(T) and e;i(—, T) the constructions
attached to t’. Then My(1,0, .. .,0) and M;(1,0,.. .. ,0) are isomorphic over Ry,
if and only if m,, = n),. Moreover, in this case, Mg(L) and M:i(k) are isomorphic
over Ry, forall . € Wy, (kpp).

Proof The solution at co of My (1,0, ...,0)is ez((1,0,...,0), =Y = E (T™™).
We shall show that E,,,(T~")/E, (T™") € R*, thatis E,,(T"Y/E, (T~!) e R,
if and only if 7, = 7,,. We have

m o _pj
En(T™)/Ep (T =exp [ D 7w (1 _ D ) r . (2.28)

j=0 Tm-j ) P’

There exists y € Gal(Q, (A p)/Qp) such that ”j/ = y(xj), for allj > 0 and, by the
Lubin-Tate Theorem 1.4, y () = [uy, |p(7)), u,, € Z*. We set 1

hy (X) :=1—[u,]lp(X)/X, (2.29)
in order to have
En(T™Y/E,(T™Y = eq(lhy ()], T™H. (2.30)

Indeed, by construction (cf. Corollary 2.1 and Definition 2.4), we have
¢i([hy (mm)]) =1 — n}/n_]./nm,j. Since A, (0) = 1 — u,, hence, by the Reduc-
tion Theorem 2.2 and Lemma 2.2, the series Em(T_l)/E;n(T_l) lies in R* if
and onlyif [1—u,| < [p|™*!,i.e.u, € 1+p™*+'7Z,. Then, again by the reciprocity
law Theorem 1.4, the automorphism y is the identity on Q, (A p 1) = Qp (7).
Hence 7, = 7). o

1 Note that the symbol [—]p was defined in Lemma 1.8 and is different from [—] given in the
definition 2.1.

@ Springer



Rank one p-adic differential equations via Lubin-Tate groups 517

We recall that two Lubin-Tate groups are isomorphic (as formal groups over
Zp) if and only if they are relative to the same uniformizer w (cf. Theorem 1.5).

Theorem 2.4 (Independence on the Lubin-Tate group) Let P,P € §y be two
Lubin-Tate series, let ® = (1j)j>0 and & = (T(i),j)jzo be a generator of T(Gp) and
T(&p), respectively. Let us denote by M;P)(—), E,Sf ) (T), efip)(—, T) the construc-
tions attached to &, and denote in the usual way the constructions attached to .

If w5, = (Up pGrpm), then M) = MP ) over R, for all » € W ().

Proof LetA € Wy, (kpy),and let X eW,,(O)bea lifting of A. We shall show that
eq(x, T) /e(dp) (X, T) belongs to Ry,,. By Eq. (2.18), we reduce to showing that

Enj(T"Y/EQ) (T™1) € Ry, ;. for all 0 < j < m. Since 75, = [11pp(Tpm),
then np; = [1]P’;,(np,j), for all 0 <j < m. We have

I — e Tpm—j\ T
En(T™HY/ED(T ™) =exp | D mmj|1- — - (2.31)
=0 TTPm—j p

Let us set, as usual, & P,F(X ):=1-—11] PJ;(X )/X, in order to have (cf. Corol-

lary 2.1 and Definition 2.4) E,,(T~1)/Ey (T~") = eq(lhp p(tm)]. T~"). Since
[1]P’;,(X) = X mod XZZP[[X]], we have hPJs(X) € X - Zp[[X]], and, by the
reduction Theorem 2.2 and Lemma 2.2, this exponential lies in Ry,,. By the

way, its inverse lies also in Ry, so Mg(X) = Mf) (A), over Ry,,. O
Remark 2.8 If w = p, and if P is given, then, by Definition 1.15 and Remark
1.13, the isomorphism class of M4 () is determined by the choice of a sequence

{&}j=0 of p/*1th roots of 1 such that 551] = Em—j.

Corollary 2.3 Lety : H(Ap) — H(Ap) bea continuous endomorphism of fields.
Then y(Ep(T~Y))/E (T € RH,, if and only if y is the identity on Q,(my,),
and in this case, for all . € W, (Op(ap)), we have

e (A T) =eq(y),T), (2.32)

where, for all f(T) = > a;T', we set {7 (T) := > y(a)T".

Proof The proof follows the same lines as the proof of Theorem 2.3. O
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2.2.3 Frobenius structure for w-exponentials

Theorem 2.5 Letr > 0 and let X € Wy, (kpp). Let A € W, (Opy) be a lifting of X,

and let A\® € W,,(Oy) be an arbitrary lifting of F\) € W,,(kgp). The following

statements are equivalent:

1. The power series ed(k(F), TP)/eq(A, T) is over-convergent, for all choices of
A, A and A, ) o .

2. The modules My(A) and M,,4(VE(X)) are isomorphic over Ry, for all . €
Wm (kH)

3. The power series E,,(TP)/ E,,,(T) is over-convergent.

4. We have the inequality |w — p| < |p|"*2.

Proof (1) & (2) and (1) = (3) are evident. Let us show (3) < (4). Write
TPt
pl

m m Tp/'
En(TP)/En(T) = exp Zﬂm—j - Z”m—j?
=0 =0

m+1 p/

7Tm—j T

= exp(—prm1T) - exp 2 T +1—‘(p— )—
: A Tm—j1/) P!

where 7m_1 := P(wg) = 0. Let hpop(X) := p — P(X)/X, in order to have (cf.
Corollary 2.1 and Definition 2.4)

En(TP)/En(T) = exp(—=ptm1 T) - €pms1 ([AFrob (Tim+1)]1, T). (2.33)

Since the function exp(—pm,,+17), and its inverse, are over-convergent, then the
quotient E,,,(TP)/E,,(T) is over-convergent if and only if € (lhgrob (Tm+1)1, T)
is over-convergent. The constant term of Ao (X) is p — w. Hence, as usual,
by the Reduction Theorem 2.2 and Corollary 2.1, E,,(T?)/E(T) is over-
convergent if and only if |[p — w| < |p|/”*2. Let us now show (3) = (1).
Since (3) and (4) are equivalent, we see that E;(T?)/E;(T) is over-conver-
gent, for all j = 0,...,m. Let A = (Ag,...,Am) and AP = (k(()F),...,)Lg)).
We can suppose A](.F) = )Lf ,Vj=0,...,m Indeed, the Witt vector 5 :=
2B b b)Y = (o, ) € Wi(Op) satisfies [nj] < 1,V j =0,...,m.
Hence eg,AF), TP) = e (y, TP) -e4((AF, ..., Ab), TP), and the function e4(y, TP)
is over-convergent by the reduction Theorem 2.2. Now, by Eq. (2.18), we have

j+1
ea(GL, by, Ty ey (777

T _ (2.34)
Since E,,_j(TP)/E;,—j(T) is over-convergent, for all j = 0,...,m, all factors
Em_j(x][" T +1) / Em_j(AjT"Pj ) are over-convergent. O
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Remark 2.9 In this Theorem we do not need the existence of an absolute Frobe-
nius on H. This is due to the fact that the isomorphism class of M; (1) depends
only on the reduction A € W,,(ky), and ky is endowed naturally with the
Frobenius given by the pth power map.

Remark 2.10 We will generalize this Theorem for all rank one differential
equations (cf. Theorem 3.1). Let us show how to recover, from Theorem 2.5,
the Frobenius structure Theorem in the usual sense. Let A € W,,,(Op) be a
lift of A € W,,(kg). Suppose that w = p, in order to apply Theorem 2.5.
Suppose that o : Hy, — Hyo is an absolute Frobenius (cf. Definition 1.10)
such that n]." = mj, for all j > 0, and such that o (H) € H. By Corollary 2.3,
we have ¢, (eq(A, T)) = e4(A°, TP), and hence ¢ (Md(X)) = di(V()J’)) By
Theorem 2.2, the isomorphism class of Mpd (V(A?)) depends only on the reduc-
tion VA°) = VFQ) € Wor1(ku,), so Mpd(V()f’)) is isomorphic to

pd(VF(l)) over Ry, . Then Theorem 2.5 gives us the usual Frobenius struc-
ture. Indeed,

9 (Mg(V) ——> M, a(V(A%)) ——> M,.a(VER)) — Ma(L).
Cor.2.3 Th.2.2 Th.2.5

Remark 2.11 Let g be the pth ramification map (cf. Sect. 1. 2 4),andlet A € Op.

We observe that we cannot have an isomorphism M (L) — ((p Y1 (M; (1)), for
all » and all 2 > 1. In other words there exists module Wthh do not admits
a “ramification structure”. This error is present in the papers of Christol and
Mebkhout. For example, suppose that 4 is such that A”" # X in kg, for all r > 0
(i.e. 1 ¢ ]F;lg). Then exp(mgrTP)/ exp(moAT) is not over-convergent. Indeed, for

all liftings ) € Oy of 27" we have |2 — 1| = 1, then

exp(morT?)  ef(L,TP) e (), 17)

— — . A — A(F’), TP ,
xpr D)~ anD) — amn) N )

and while e; (A F", TP) /e, (x, T) is over-convergent, the function e (A — AED TPy
is not over-convergent, since the reduction of AF) — 1 is not 0 in kp (cf.
Theorem 2.2).

2.3 A natural transformation of the Artin—-Schreier complex
into the Kummer complex, via Dwork’s splitting functions

Hypothesis 2.6 From now on, we will suppose w = p in order to have the The-
orem 2.5. Then &p — G,,, the formal multiplicative group (cf. Theorem 1.5).
We fix moreover a generator & = (71j);>0 of T(&p).

In this section L will be a complete valued field, containing (Qp, |.|), and en-
dowed with an absolute Frobenius ¢ : Oy, — O, (i.e. alifting of the map x > x?
of kp).
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We set as usual L,, := L(wy,) and Ly = UyL,. We denote by kyy,
(respectively ko) the residue field of L, (respectively Lo ). We fix an alge-
braic closure L2 of L, then kalg = k., is an algebraic closure of k. Let k}7

sep K alg

(resp. k", kal) be the separable closure of k7 (respectlvely km, ko) in k)
(we recall that ky is not supposed to be perfect). We denote by L (resp. L%‘r)
the completion of the maximal unramified extension of L (resp. L,,) in L&,
We set Gy, = Gal(k, " /kr), Gy, := Gal(ky," /km), G1, = Gal(L¥2/L), and

Gy, = Gal(LY/Lyy).

Remark 2.12 Let k(i = kSLep N k,, be the separable closure of k. in k,; and let
L0 = W(kOL) ® wk;) L = L"™ NL,,. The extension km/k% is purely inseparable
(i.e. for all x € k;;, there exists r > 0 such that X e kO) SO Gal(km/ko) =1,

and we have a canonical identification Gy, := Gal(ky,’ /kp) — Gal(k; P /KY).
Hence Gy, is naturally contained in Gy, :

Ly € LU kim S kon”
u- ol Ul Ul (2.35)
LC LY kp €KY kP

All these extensmns are normal. We will identify Gy, w1th Gal(Lurlr /L), and
Gy, with Gal(L"™/L). In this way Gy, acts naturally on Luor,

Remark 2.13 The absolute Frobenius ¢ extends uniquely to all unramified
extensions of L, and hence it commutes with the action of Gy, . It extends
also (not uniquely) to an absolute Frobenius ¢ of L,,. Indeed, since ¢ extends
uniquely to L, then to prove the existence of & one can assume that L = LY, and
hence k;, is a purely inseparable extension of k;, = k%. Since the map x +— x” of
k1, extends uniquely to k,, then every field morphism ¢ : L,, — L,, extending
¢ is an absolute Frobenius of L,,. Such a ¢ exists since, by [2, Sect. 6, no. 1,
Proposition 1], ¢ extends to a Q,-linear morphism ¢ : L¥¢ — [ inducing an
automorphism of Q (7).

In general there is no absolute Frobenius on L,, satisfying ¢ () = m,.
Indeed if L is totally ramified over QQ,, and if ¢ = Id;, then the unique exten-
sion of ¢ to L,,, fixing 7, is the identity. On the other hand L,,/Q), is not always
totally ramified, hence the identity of L,, is not always an absolute Frobenius.?

In the sequel of the paper we will never use such a ¢, hence we do not fix it.

On the other hand, we need the existence of ¢ because the functor of Witt
vectors of finite length W,,(—) is not canonically endowed with an additive
functorial Frobenius morphism (see Remark 2.16 to improve this situation).

2 Indeed let p =3, m=0,and L := Qp(rpy), where P(X) is the Lubin-Tate series P(X) =
—3X + X3, I 513 = 1 is a primitive root of unity, then Ly = Qp(p,&1) is not totally rami-
fied since the element x := 7 /mp(, where 7 = (§; — 1), verifies |x| = 1 and X = —1, indeed

—37 372
X—(7)9—(3 3 )3:_553:

70 ITpo x°. But there is no element X in F3 verifying x> = —1.
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Definition 2.6 Forall A := (Lo, ..., Am) € W, (OL), we set

ea(p), I?)

(¢) .
0 T) = est 1)

(2.36)

To simplify the notations, we will write 04(X, T) if no confusion is possible.

Example 2.1 Letd = 1 and P(X) = pX + X? (cf. Remark 1.12). Then 7y is
the “z of Dwork”, and 6y (1, T) = exp(mo(7P — T)) is the usual Dwork splitting
function. While in general, if . € O, we have 61 (A, T) = exp(mo(p(A)TP —AT)).

The following Theorem shows that the over-convergent function A — 64(A, 1) is
a splitting function in a generalized sense with respect to Dwork (cf. [13, Sect. 4,
a), p.55]). In a paper in preparation we shall analyse such functions in detail.

Definition 2.7 Set Ozzl = {1 e Or | o) = A} and Oi=1 — Oz=1/(o},i:1 n
pL). We see that (’)izl =F).

Theorem 2.7 Let a’ = a € Oy, and let A € Wm(OI(‘jzl). Then Hé(i‘p) A, a) is a

p"toth root of 1. Moreover the group morphism

05" (= @) : Wi (OF™) —> i C Zplmn]

factorizes on Wm((’)}/i=1) =W, (IFp) = Z/p" 'V Z and defines an isomorphism
(@) . m-+1 ~
04 (=) Z/p"" L —> pymi. (2.37)

More precisely the image of 1 € 7./p" 17 is the inverse of the unique primitive
P th root of 1, say &y, satisfying

"7t — Em — DI < |a"7ml. (2.38)

In particular, if a = 1, then &, is the p"'th root of 1 defined in Remark 1.13.

m+1

Proof Let A = (ho,..., m) € Wm((’)izl). Let us show that 6;(&,a)? = 1.
Indeed T+ e4(A, T)""" is over-convergent (cf. Remark 2.14), 506, (A, a)”""" =

ed(rp()»),ap)pm+1 /<3,,1()~,a)1’m+1 = 1, since both numerator and denominator do
make sense and are equal. If [A;| < 1,forallj =0,...,m, then T > e4(A, T)
is over-convergent (cf. reduction Theorem 2.2), hence both numerator and
denominator of the expression e;(,a”)/ey(A,a) do make sense and are equal.
Let us show the last assertion. By Eq. (2.33), we have

= exp(—pmp 1 T") - epd([hFrob(nerl)], T).
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By Eq. (2.17) this series lies in 1 + 7,11 TZp 70,41 1[[ T1]]. To show that this root
is £-1 it is sufficient to show that [6,((1,0,...,0),a)~" — &u| < |m| = |&n — 1].
We work therefore modulo the following sub group

Ci= {1 +> T | ci € Zplams, lcil < |mml,  forall i > 1}.
We have exp(—pm;,,+1T") =1 mod C. Let us consider (cf. Eq. (2.33))

[AFrob (Tm D] = [P — P(Tms 1) /Tma1] = (V05 - -+ Ving 1) (2.40)
Then vy = p — (mn/7m41) and, since p = w, by Corollary 2.1, we have |v;| <

|71, for all j = O,_. ..,m+ 1. By Eq. (2.18) we have e,4([hFrob(7pm+1)]1, T)
H;’:gl Ei1-i(v; ™). Moreover, we know that (cf. Eq. (2.17))

Em+1_j(v,~T"pj) =1 + (things of valuation < |11 - vj]), (2.41)
forallj=0,...,m+ 1. Then
64((1,0,...,0), ) ' = E,, . i(voT™™' mod C. (2.42)

Since V5| = |7, P~ 1, it follows from Eq. (2.17) that only the first p — 1 terms of
E1(vo 71 are greater than or equal to ||, that is

L e TP

Em+] (UOT")_I =1+ Tl UOTn 4+ .. 4+ (p 1)' mod C. (243)

Since 7,4 1v0 = P - Tiy1 — Tm, hence 64((1,0, ..., 0), N '=14+7,T" mod C.
O

Remark 2.14 Observe that T — ey (A, T)pm+] = eq(p™*1A, T) is over-conver-
gent for all A € W,,,(Opr), because the reduction of pmHk in W, (k) is O (cf.
Theorem 2.2).

Remark 2.15 We recall that we do not fix an absolute Frobenius on L,, (cf.
Remark 2.13).

Theorem 2.8 The following diagram is well-defined, commutative and functori-
al, on the complete (or algebraic) unramified extensions of L
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f’—’fpm+l SKum 1
1 Fpmt (Lim)* (Lim)* HY(G Ly 1) —— 1
7
- T 9pm(7.1) €pm (771)pn1+1
C W0 e Win(Op) ——= Win(Op) s, m (0"

‘ i i w_ i 3

s :
0 —— z/pmtlz Win(kp) ——= Win(kp) ——= H'(Gy, ,Z/p"*+12) —— 0

F-1

(2.44)

where G, = Gall(L';l,llg /Lm). More explicitly ,m (—, 1) induces the identification
(cf. Theorem 2.7)

1 %‘nzl : Z/pM-‘rlZ — ,upm+1a (245)
where &, is the unique p"*'th root of 1 satisfying |(En — 1) — | < |7ml
(cf Remark 1.13). Moreover € sends H' (Gy, ,Z/p"™ ' Z) in Hl(ka,[me+1) <
HY(G Lyps Bpm+1) via the canonical diagram

GkL QGI(M

al : e(a)
N

Z/pm+1Z ;) [me+1

1»—)5,;1

(2.46)

In other words the Artin-Schreier character y — a(y) : Gy, — Z/p" 7, is

sent by € into the Kummer character y v+ e(a)(y) = £ Gi,, — Wymi1. In

particular €(o) = 1 if and only if Gy, € Ker(x).

Proof Let L'/L be an unramified extension, and let ' = (Ay,...,A,) €
W,,(Op). If L'/L is not complete, but algebraic, then the series 6, (1’, T'), and
epm (), T)pmH, are convergent at 7 = 1, since the finite extension L({A}};)/L is
complete. By Theorem 2.7, to show the commutativity it is enough to prove that
gis well-defined. Let A € W,,(Op) be such that §(A) = 0 (cf. diagram (1.21)). By
definition, there exist z,n € W,,,(OL), such that n = (no, ..., ), with |n;| < 1,
forallj=0,...,m,and A = ¢(2) — 2+ . Hence

epm (P = (2, P ey 1P (2.47)

Then e,m (A, 1)1"m+1 € (OLm)Pm+l. In other words, even if the symbol e,m (X, 1)

has no meaning, the number e,m (X, 1)1”'"+1 is the pm“th power of the number

Oym(z,1) - epm (0, 1) Of Ly, Hence Sgum(epm (L, 1P = 1.
Let us show that the map € works as indicated in the diagram (2.46). Let
a =38(A),and let A € W,,,(Op) be an arbitrary lifting of A € W,,,(k;,). By Lemma
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2.4 below, an easy induction on m shows that there exists v € W, (O7unr) such
that
pv) —v=2»r. (2.48)

By definition (cf. Diagram (1.21)), for all y; € Gg,,we have a(y)) = y1(») —v €
Z/p"*17Z. On the other hand, by definition, e(«) is the Kummer character
of Gy, defined by e,m(A, )P, and is given by &@)(y) = y()/y, for all

y € Gp,,, where y is an arbitrary root of the equation yP"t = epm(A, 1)Pm+1.

We let y := Opm(v,1). Then

@) =yW/y =y Em®,1)/6pm(,1) = Opm(y(v) = v,1) € pymi,
(2.49)
because y (1) = my, since y € Gr,,. Now y(v) —v € (’)I‘/i=1, because y (v) is
again a solution of the Eq. (2.48). By Theorem 2.7, the root O,m(y(v) — v,1)

depends only on the reduction of y (v) — v in kSLep, and is equal to é;‘,,_?a(’/). O

Lemma 2.4 Let L have discrete valuation, and let L"™ be the completion of the
unramified extension of L. Then for all & € Ofun, the equation ¢(v) —v = A has
a solution in L"™.

Proof The equation ¥’ — ¥ = A has a solution in kSLep, hence [(p(v) —Vv) —A| < 1,
for all lifts v of v. Since L has discrete valuation, the lemma follows from an
induction on the value of the “error” n, in the equation p(v) —v=A+7n. 0O

Theorem 2.9 Let L have discrete valuation. Let « = 8(\) be the Artin-Schreier
character defined by X € W, (k) (cf Diagram (1.21)). Let ko /ky be the separa-
ble extension of k1, defined by the kernel of a, and let Ly /L be the corresponding
unramified extension. Then

Ly () = Lm(gp’” (v, 1)), (250)

where A is an arbitrary lifting of): inW,,(Op), andv € Wy, (Ofun) is a solution of
the equation ¢(v) —v = A. In other words, up to replacing L by L,,, the extension
Ly is generated by 6,m (v, 1).

Proof Since both L () and L, (6,s(v,1)) contain L0 (cf. Remark 2.12), and
since ¢ extends uniquely to L, we can suppose L = L. In this case € is
injective, L, /L is totally ramified, and Gy, can be identified with Gy, ,. Let us
show the inclusion L, (0ym (v,1)) € Ly (). If Gy, := Gal(kif’p/ka) = Ker(a),
then the inclusion follows from the fact that 6,m (v, 1) is fixed by Gy, (S ka:>
Gal(z}l,l“r /Lm)). Indeed, for all y € Gal(z}‘n‘“ /L), we have, as in the proof of
Theorem 2.8,

¥ (Bpm (0, 1)) = Opm (y (v) — v, 1) - Opm(v,1) = £ Gm(v,1), (2.51)
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and if y € Gy, we have a(y) = 0. Then L, (0pm (v,1)) € L (7). In particular,
[Lin(Opm(w,1)) : Liy] < [Lo(mm) @ Lin] = [Kagn : k], (2.52)

where kg, is the smallest field in k¥ containing k;, and k, (i.e. the sub-field
of k;,F fixed by Gy, acting on k,sfjp). The inclusion Lq () S L (@pm(v,1))
follows from the equality [L;,(@pm(v,1)) : L] = [kqm : km]. Indeed, since
Lo = L, the map € is injective. Hence [L,,(6,m (v, 1)) : L] = [kq : k1], because
these two degrees are equal to the cardinality of the cyclic Galois groups gen-
erated by €(«) and « respectively. On the other hand, since k;, = k%, we have
ko t k1] = [ka,m Dkl ]

Remark 2.16 The hypothesis of discreteness of L, in Theorem 2.9, and the

hypothesis of existence of ¢ can be removed as follows. Let F,, : W,, — W,,, be

the map (Ao, ..., Am) — AR, Ak, Replace ¢ by F,, and define QLEF”)(A, T) :=

eq(Fp(X), TP)/eq(X, T). Then F), is defined for all extensions of L, and commutes
with the Galois action. It is easy to recover Theorems analogous to Theorems
2.7, 2.8, and 2.9. In particular the analogues of diagram (2.44) is defined and
functorial, on all complete (or algebraic) extensions of L. Observe that the

map A +— 6, " (X, T) is not a group morphism, but induces again the group

morphism 1+ &1 : Z/p" 17 5 rpmi1 (cf. Eq. (2.37)), which is the reduction

of the set Wm((’)i"zl) = {A € W,,(OL) | F,(A) = A}, formed by Witt vectors

whose entries are 0 or p — 1 roots of 1.
2.3.1 Application to the field 5;{

Remark 2.17 These methods apply to obtain a description of the Kummer
extensions of &k (resp. 5;() coming by henselianity from an Artin—Schreier
extension of k((¢)) (see below). This description is really entirely explicit, since
the Kummer generator 6, (v, 1) is explicitly and directly given by the vector A.
Indeed, we will give meaning to the expression 6,m(v,1) = e,m (X, 1), and we do
not need to find a solution of the equation ¢(v) — v = A (cf. Definition 3.1, and
Theorem 4.6-(3)).

The precedent theory can be applied to the field L = &k, under the following
assumptions on K:

(1) K has a discrete valuation (used in Lemma 2.4).
(2) There exists an absolute Frobenius o : K — K (2.53)
(i.e. a lifting of the pth power map of k).

Fixing an absolute Frobenius of £k, the theory applies without problems. Recall
that we can suppress these two hypothesis if necessary (cf. Remark 2.16).
The situation is slightly different for the field £ ', because it is not complete.

Nevertheless the preceding results are still true for 6;{. Let K satisfy Eq. (2.53),
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and fix an absolute Frobenius ¢ : (’);( — (’);(, extending o, by choosing ¢(7) in
O}, lifting # € E = k(@) (cf. Definition 1.10).

Remark 2.18 Since ¢o(T) € (Q}L< is a lifting of ## € E, hence there exists 0 < g, <
1 such that ¢ (Ag,, (IP)) € Ak,,(I), where I =]1 — g,,1[ .

Theorem 2.10 ([11,4.2], [18,2.2]) If K has discrete valuation, then (’);< is Hens-
elian, hence we have a bijection

{Finite unramified ext. of EIT(} ~ {Finite separable ext. of E = k() } .

Proposition 2.5 Letf(T) € Wy, (O}'(), then both series Oym (f (T), 1) and epm (f (T),
1)11’m+1 lie in O}Lm. Moreover if u(T) = (up(T), ..., un(T)) € Wm(0;<m) is such
that luj(T)|y < 1, for all i, then epm (u(T), 1) makes sense, and lies in O;(m.

Proof Let ¢ > 0 be such that f(T) € W,,(Ax(]1 — &,1])). For all compact
J C]1 — ¢,1], the algebra Ak (J) is complete with respect to the absolute value

F(Dlly = sup ey [f(T)],. Hence epn (F(T), P € Wy(Ax,, (1)), for all com-

pact/ C]l1—e,1[,and thene,m (f (T), 1)"’"+1 € W, (Ak,, (11—¢,1[)). On the other
hand, O,m (f(T),Z) € 1 + tmZQOg; [[Z]]1s aseries in Z depending only onf(T)
and ¢(f(T)). By Remark 2.18, there exists ¢’ such that both f(7T') and ¢(f(T)) lie
in W, (Ax (11 — ¢’,1])). Hence as before 6,m (f(T), Z) € 1+ n,, Ak, (DIIZ]], for
all compact/J C]1—¢’,1[,and hence 6, (f (T), Z) € 147, Z Ak, (11—¢', 1DI[Z]].
The assertion on u(7T) follows from the Reduction Theorem 2.2, and the same
considerations. O

Corollary 2.4 The diagram (2.44) can be computed for £y ¥ instead of L. The other
assertions of Theorems 2.8 and 2.9 remain true (see dzagram (0.7)). In particular,
zf a = §(f(?)) is the Artin-Schreier character defined by f(t) € Wy, (E), and if
F,/E is the separable extension defined by the kernel of «, then the (Kummer)
unramified extension of £ Tm, corresponding to F, is 5;(," (Opm (v,1)), where v is
a solution of p(v) — v = f(T), for an arbitrary lifting f(T) of]_‘(t).
Proof Let F,/E be the separable Artin-Schreier extension defined by f(f) €
W, (E), and let F be the corresponding unramified extension of 8};. Letv €
W (ER™) be a solution of ¢(v) — v = f(T). The non trivial fact is that 6,m (v, 1)
lies in ]—"j () and not only in its completion, say Fy (77,,). In other words, we
shall show that FJ () = £ (@pm(v,1)). Both £ (6pm(v,1)) and F] () are

unramified over & w0 = = & i nE&x U since their completions are unramified.

Moreover, by Theorem 2 9 they have the same residue field, since this last
coincides with that of their completions. By uniqueness (cf. Theorem 2.10),
they are equal. O

Remark 2.19 The study of a generic Artin—Schreier character, given by f(7T) €
W(O}.{), will be reduced to the case f(T) € Wy(Og[T~']) (cf. Lemma 2.5,
Remark 3.1, and Proposition 3.1).
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Lemma 2.5 Let f(T) € Wy, (O ), then there exist f(T) € Wy (O, [[TTI[T 1))
and u(T) = (ug(T),...,uu(T)) € Wm(O;%) such that \ui(T)l1 < 1 for all
j=0,....mand f(T) = u(T) +f(T). In particular Oprm w,1) = epm(T),1) -
Opm (v,1), where v, and v, are solutions of ¢(v) — v = f(T) and ¢(v) — v = f(T)
respectively.

Proof Thisis evident for m=0. By induction the lemma follows from the follow-
ing relation valid for Witt vectors in general ([3, Chap. 10, Sect. 1, Lemme 4]):

(fo(D), ... fim(T)) = (fo(T),0,...,00+(O, f1(T),...,[im(T)). (254 o
(2.54)

3 Classification of rank one differential equations over Rg_

Throughout this third part, we will not need the results of Sect. 2.3. Namely,
(K, |.]) is only a complete ultrametric field containing (Qp, |.|), and we will not
suppose that K satisfies Eq. (2.53), nor that its residue field is perfect. We fix a
Lubin-Tate group & p, isomorphic to @m, and fix a generator r = (7;);>0 of the
Tate module T(&p).

We recall that Ky = K(75), and that k; is its residue field (cf. Definition 1.14).
For all algebraic extension H/K, we set Hy := H(wg). The residue fields of H
and Hy are denoted by ky and kp, respectively. We set E; := kg (1)).

3.0.2

The starting point of the classification is the equation
O 0, P = e (F(D), 17" 3.1)

with the notations of Corollary 2.4 and diagram (0.7). In some cases the symbol
eps (f(T), 1) does make sense, and the interesting “Kummer generator” 6ps (v, 1)
is equal to e,s(f(T),1). We will show that all rank one solvable differential
equations over Rg,, admit, in some basis, such an exponential as solution.

Definition 3.1 Letf™(T) € W (T 1Ok[T1)), then we set

- T _
ep(f (1),1) = exp(nsqu_(T) + ﬂsl% + -+ 9 (ST)) , (32)

where ¢]._(T) is the j-th phantom component of f~(T) = (fy (T),....f; (T)).
Remark 3.1 Clearly qu_(T) lies in T YO [T 1], for allj =0,...,s, and hence

the expression (3.2) converges T~ !-adically. Moreover,

ep(f (D), 1) = HEs,j(fj—(T)) el +m T Ok [T (33)
j=0
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In particular, eps(f (7),1) is convergent for |T| > 1. As mentioned in Re-
mark 2.19, Lemmas 2.5, 3.4, and 4.5, will be useful to reduce the study of fs (v, 1),
with ¢ (v) — v = f(T), to the case in which f(T) € W, (Ox[T~1)).

3.1 Survey of the results
Remark 3.2 For all algebraic extensions H/K, the function (cf. 3.1)
ST(D) = ep(f~ (D), (34)

defines a group morphism (as we can see by considering the phantom compo-
nents)
ep (= 1) Wo(T7'OplT ') — 1+ 7T 10T (35)

Indeed f~ (T) involve only a finite numbers of coefficients of H, then the series
eps(f(T),1) lies in a finite (and hence complete) extension of K.
Letf(T) € Wo(T-1O»[T~1]), we set

L0,/ (1)) = 91 — 3710 (€ps (f (1), 1)). (3.6)

Observe that 1 + 7, 7! (’)HS[[T”]] is not contained in £y, = £k ®k Hy. How-
ever, every series in this multiplicative group is convergent for |T| > 1 (cf.
Remark 3.1). Then, by the transfer Theorem 1.1 and by continuity of the radius,
L(0,f™ (7)) is solvable over Ry,.

Theorem 3.1 (Main theorem) Let M be a rank one solvable differential module
over Rk, (i.e. over Rk, for some m > 0, or over Ry (cf. Definition 1.9)). Then
there exists a basis of M such that

1. The 1 x 1 matrix of the derivation of M lies in OxlT~ 1
2. There existan s > 0, and a Witt vector f~(T) € W (T (’)KS[T’l]) such that
the Taylor solution (cf. Eq. (1.6)) of M, at oo, is

T - eps(f(T),1), 3.7)
with ay € Zp. In particular M is defined (in this basis) by the operator

L(ao.f (1)) := 01 — 0710g (T - eps (f (1), 1))

s J y
= dr —ao+ Y 7y [ (TP oriee(fi (D). (3.8)
j=0 i=0
Moreover the isomorphism class of M depends bijectively on
o The class of ay in Zy | Z;

o The Artin—-Schreier character o := S(F (t)) defined by the reductionf__(t) €
W, (Ey) of f~(T).
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Definition 3.2 We will denote indifferently by M(ao,®), M(ao,f__(t)) or M(ay,
Jf (D)), the differential module defined by L(ag,f (T)).

Assume the point (1) and (2) of the Theorem 3.1. Then the last assertion
can be translated in terms of m-exponentials as follow. Recall that p = w (cf.
Theorem 2.5).

Theorem 3.2 Letf(T) € Wy(T~ Ok [T 1), and let f~ (1) € Wy(r~ ksl 1]) be
its reduction. Then

3. Iff (T) € Wy(T~ 1Ok [T]) is another lifting of f~ (1), then

s(f(T),1 _ ~
w DY _ oy —F 1) (3.9)
eps(f (T)vl)

is convergent for |T| > 1 — ¢, for some ¢ > 0 (i.e. lies in R, ).
4. Iff(*F)(T) € WS(T_l(’)KS[T_l]) is an arbitrary lifting ofl_:(ff (1)), then

ep(f (T, 1)

(D 7 5D~ (D, (3.10)

is convergent for |T| > 1 — ¢/, for some ¢’ > 0 (i.e. lies in Rg,).
5. Conversely the function eps (f~(T),1) lies in R, if and only if the equation
F(v7) — v~ =/ (t) has a solution v~ € Wy(t~ ks[171]).

Notation 3.3 The point (5) will be called the Frobenius structure theorem.

3.1.1

By the Main Theorem 3.1, Definition 3.1 and by the rules introduced in Sect. 1.2,
it follows that, for all s > 0, and for all algebraic extensions H/K, we have an
exact sequence of abelian groups (functorial on the algebraic extensions H
of K)

W kgl ) B W k) 2O picsel Ry (3.11)
On the other hand, it follows from the Definition 3.1, that we have

et (VI (D), 1) = eps(f (1), D). (3.12)
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Hence, for all s > 0, we have the following functorial commutative diagram

F-1 M©O,-) .
Wt k(™) ——= W kylt™1) —— Pic™ (Ru,,,)  (3.13)

vl E v

Wi (k) ——> Wy ¢kl 1)

This shows, by passing to the inductive limit, that we again have an exact
sequence

CW( k') 25 ewe ket MO,

Pic*® (Ry). (3.14)
The group Z,/7Z has no p-torsion element. On the other hand, every element

of CW( ky[t1)) is killed by a power of p. Since we are assuming that all
solutions are of the form Eq. (3.7), this proves the following:

Lemma 3.1 Let H be an algebraic extension of K. The image of M(0, —) is the
sub-group of the p-torsion elements of Pic*®°(Ry), and if H/Ky is Galois, then
Picc°(Rp) is isomorphic, as Gal(H /K )-module, to the direct sum of Z, | Z with
the image of M(0, —).

Corollary 3.1 The map (ap, ) — M(ag, «) induces an isomorphism

CW (koo [t -
Zp)T @ —— Kool D MED picsol Ry ). (3.15)
(F = DHCW(E koot~ ~
Proof By Galois descent M(—,—) induces an isomorphism, with k‘;f;rf

‘= (k?12)Galk®/koo) instead of koo, But actually, the co-vector quotient is invari-
ant under inseparable extension of ko, as explained in Subsect. 3.1.3 below. O

3.1.2

On the other hand, it is well known that (cf. Lemma 3.4 and Proposition 3.1)
H' (Gal (koo ()P /Koo (1)), @/ Zp) = P (ko) & H' (Gal (k5P ko), Qp /),

where P(k) is the character group of Pg_, with Ecc = koo (?)) (cf. Remark
1.11). More precisely we have the following (for a more convenient description
of P(«x) see Lemma 4.1)

Lemma 3.2 For all fields k of characteristic p > 0, one has

_ CW(@kr'))
 F—DCW@E k1)

P(x) (3.16)
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Proof This will follow from Lemma 3.4 and Proposition 3.1. O
3.1.3

Furthermore we have P(kggrf) = P(kx), because, by Remark 1.8 (or Remark
1.9), the Artin—Schreier complex is stable under purely inseparable extensions,

that is Gal&ggrf’sep /kggrf) iGal(kSo%ﬂkoo). In othE words, for all | r > 0, the
co-vectors f (1) = (...,0,fy (0),....f; ) and F'(f~(0) = (..., 0, fy P, ..,
£ (") have the same image in the right hand quotient of Eq. (3.16).

3.2 Proofs of the statements

We first prove the statements (3), (4), and (5) of Theorem 3.2. The idea is to
express €,s(f(7),1) as a product of w-exponentials of the type es (X, T-h.
The main tool will be the notion of s-co-monomial which reduce the study to
r-exponentials (see Eq. (3.21)). The principal lemma will be Lemma 3.3.

Definition 3.3 Let H/K be an algebraic extension. Let d = np™ > 0, (n,p) = 1.
Lets > 0. We will call s-co-monomial of degree —d relativeto A :== (Ao, ..., Am) €
W,.(Oy) the Witt vector in Wo(T 1Oy [T 1)

s—m

———
AT 4= 10,...,0,0T ", \T"P,. .. AT 4 it m<s,
(3.17)

m—s+1

AT — ()\m_ST—"P’”‘S,,\m,sHT—"P ,...,/\mT‘d) it m>s.

We denote by Wg_d)((’)H) the sub-group of Wy(T~'Oy[T~']) formed by
s-co-monomials of degree —d, and by Wg_d) (kpp) its image in Wt kg 1)).

Remark 3.3 By looking at the phantom components we find an isomorphism of
groups Wy (Or) = Wiin(s.m (Or), and hence W™ (ki) = Waingsm (k-

Lemma 3.3 Let now H/K be an algebraic extension. Let d = np™ > 0, (n,p) =
1, lets > 0, and let A := (ro,...,Am) € Wi (Op). If m <s, we have

ep AT~ 1) =e 0, T7H. (3.18)

Proof The phantom vector of (0,...,0, x0T ", 2 T"P,...,Am T-9,is
——

sS—m

<o, 0P MG T P T T, S T*d>, (3.19)

where (¢o,...,¢m) is the phantom vector of (Ag,...,As). The proof follows
immediately from the Definitions 3.1 and 2.4. O
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Definition 3.4 For all algebraic extensions H/K we set Efy := kp (¢)).

Lemma 3.4 Forall s > 0, there is a (functorial) decomposition

L Wy(En) = ®a-oW. ki) @ Wetkin) & Ws(tkullA1) ;

2. Wy(OulITIT ') = ®4-0Ws ?(On) & We(On) & W(TOHIITI)).
Proof Lets =0, then kg ((t)) = Dokt @ ki @ tky([t]]. The proof follows
easily by induction from Eq. (2.54). O

Remark 3.4 Witt vectors in @g-oW' P (On) (respectively W (Opp), W(TOk
[[T1])) have their phantom components in T-loy T (respectively Op,
TOkIIT1)).

Corollary 3.2 We have a (functorial) decomposition
Wo(T~'ORIT ™) = @a-oWe " (On) . Wslt™ kplt™']) = @40 W (ko).

Proof The inclusion C follows by Remark 3.4. Since all monomials belong to
W (T 1Oy[T1]) we have the inclusion D. The right hand equality follows
from the first one by reduction. O

Definition 3.5 For all f(T) € W (O TIT ), we will denote by
SO =f~ (D) +fo+f7 (D) (3.20)

the unique decomposition of f(T) satisfying f(T) € Wo(T'Oy[T~), f, €
W (Op), fT(T) e W (TOgIITID) (cf Lemma 3.4). The same notation will be
used for a Witt vector f(t) € W(Ep).

Remark 3.5 By Eq. (1.21), we then have a corresponding decomposition of
o = 8(f (1), i.e.o = a” +ap, (@ = 0 by Proposition 3.1), with a™ = §(f (1)),
and ap = §(f). This shows that Gal(EZ‘?p/EH)ab = Gal(kiﬁp/kH)ab &) Iﬁt]’i,
where Eg = kg (1)) .

Proposition 3.1 W, (tky[[{]]) < (F — DW(tky (D, forall s > 0.

Proof Since Ep is complete, by Corollary 1.4, W;(Ep) is complete. Le‘[fr (1) €
Wi (tky[[£]]). Then the series g* (f) := — Zizo Fl(f+ (1)) is Cauchy for this topol-
ogy, and hence converges in Wy (Ep). Moreoverf+(t) =FE@ 1) —-g (. O

Remark 3.6 Let H/K be an algebraic extension and let f(7) €
W, Oy[t71]). Let vp(—) be the p-adic valuation (namely v,(d) = m if
d = np™, (n,p) = 1). Let f~(T) = Y oraT~%, with Ay € W, (q)(kpy) be
its decomposition in s-co-monomials of degree —d. We can suppose s > 0 (cf.
Eq. (3.12)), then

ep (f (D), ) =¢eps (Z AT, 1): [Ter®aT=% D) Lemma 3.3 [Teaka. T7H.

d>0 d>0 d>0
(3.21)
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Theneys(f(T),1) is a (finite) product of elementary x -exponentials. In terms of
differential modules, we have M(0,f ™ (T)) = ®4-0M(0, A4 T—%). Hence, by the
basic rules introduced in Sect. 1.2, the study can be reduced to w-exponentials.

3.2.1 Proof of the statements (3), (4), (5) of Theorem 3.2

Notation 3.4 For all d > 0, we set d = np™, with (n,p) =1 and v, (d) := m. In
the sequel the letters n and m will indicate always this decomposition.

By Lemma 3.3, for all d appearing in the product (3.21), we have (cf. Definition
2.5)

Li(Ag) = LO,AT™Y, Mg(hg) = M(O,A,T~9), (322)

where A;7~ is the s-co-monomial of degree —d attached to Ay € W,,(1)(On)
(cf. Definition 3.3). Actually, by the rule (3.12), we can suppose s > v,(d) =m,
for all d > 0 appearing in the (finite) product (3.21).

The assertions (3) and (4) are consequences of the Reduction Theorem 2.2,
and the Frobenius Structure Theorem 2.5 for m-exponentials, respectively. Let

us prove the assertion (3). We decompose f~(T) — f (T) in s-co-monomials
of degree —d, f(T) —f (1) =3, AaT~% with Ay € W, @) (Or) (cf. Lemma
3.4). Then

ep (f (1) = (1, 1) = [[ ephaT=4 1) “™ 3 [T eaha, 7. (323)
d>0 d>0

The over-convergence of e,s (f~ (T) —f_(T), 1) will result from the over-con-
vergence of every ez(Ag, T‘l)in order to apply the reduction Theorem 2.2, we
shall show that the reduction A; of A, is 0, for all d > 0. Since the reduction of
7 —f_(T) is 0, it follows from Lemma 3.4 that the reduction of A;7~¢ in
Wffd) (kp) is 0, for all d > 0. By Remark 3.3, for all d > 0, we have an isomor-
phism A;T~4 > Az : WP 0 S W, @) (On). Hence hg = 0in W, () ki),
for all d > 0.

The proof of (4) follows the same lines. Namely, by the assertion (3), the iso-

morphism class of M(0,f (7)) depends only on the reduction f~(¢) €
W, (t L kg[t71]) of £7(T). As usual, we decompose f__(t) =2 40 gt~ with
At e Wg_d) (kgr). The morphismF : Wi (En) — W(Ep) sends the monomial
Aqt~% into F(xz)r P4, Hence F(F(t)) =3, oFg)tP4. Then

M(©O0,f~ (1) > ®a=oMa(Rg) ﬁ ®4-0M,a(VER ) > MO, B¢~ (1)),

where the last isomorphism follows from the fact that V(FEQXy )t P and
F(,,)tP? define the same differential module (cf. Eq. (3.12)).
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The proof of the assertion (5) of Theorem 3.2 follows from assertions (3)
and (4) of Theorem 3.2 in the following way. Suppose that eps(f~(7),1) is

over-convergent. We want to show that the equation F@®) —v =f(t) has a

solution v € W, (t Yky[t1)). In other words, we shall show that J~(¢) belongs
to (F— 1)W,(t kg [t~1]). Let us write f~(T) = 2 d=0 AqT~% as a (finite) sum of
s-co-monomials. We need to replace f~ (T) by a more convenient Witt vector.

Definition 3.6 A Witt vector fp_(T) e Wy (T YOy[T 1)) is called pure if its
decomposition in s-co-monomials is a (finite) sum of the type

L= A T, (3.24)

nelp
whereJ, ={neZ| (n,p) =1, n> 0}, and Aypmon € Wiy (OR).

Remark 3.7 9710g(eps (f, (T),1)) = Zner_n ]-n;(g) nm(n)_jqﬁnpm(m’jT_"Pﬁ where
(Dppm 05 -+ s Prpm () 18 the phantom vector of X, ,me . In this case the coeffi-
cients of the differential equation are simpler and directly related to A
instead of )\.npm(n) "
Corollary 4.7).

npm(n)
m(n)

. This will be useful for explicit computations (cf.

Lemma 3.5 Letf;(T) e W(T-1Oy [T~ 1) be a pure Witt vector. The exponen-
tial eps (f;(T), 1) is over-convergent if and only ifE(t) = 0. Moreover,

Irr (M(o, f;(T))) = max Irr (M,,pm(n) (xnpm(m)) : (3.25)
nedp

m(n)

Proof Write M(O,f;(T)) = ®nes, MO, X, mon T™"P
M(0, x

). The irregularity of

T_”Pm(m) SN Mn mn (A, ,me) 15, by Theorem 2.2, a number
Eq. (3.22) P P

belonging to the set {0} U {n - p™ | m > 0}. Hence, for different values of n,

we have different values of the p-adic slope of anm(n) (anm(n>). Corollary 1.1

npm(n)

then implies the Eq. (3.25). Suppose now that es (f;(T), 1) is over-convergent,
then this irregularity is equal to 0. Hence all anm(m (lnpm(m) are trivial, and

eps ().npm(n) T-"r
Theorem 2.2 this implies

m(n)

,1) is over-convergent (i.e. lies in Ry), for all n € J,. By

)\-npm(n) =0,foralln € J,. O
Assertion (5) of Theorem 3.2 follows then by point (1) of the following:
Lemma 3.6 Letf (T) € Wy(T'Oy[T1]). Then

1. There exists a pure Witt vectorf;(T) e W(T1Oy[T~1) such that

(D) ~f, (D) € F = DW(  kylr™'). (3.26)
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In particular, by assertion (4) of Theorem 3.2, eps (f ~(T) —f;(T), 1) is over-
convergent, and M(0,f~(T)) = M(O,fp_(T)), over Ry,
2. There exists a pure Witt vector h;(T) e Wy(T! Ou,, [T1) such that

eps (f (1), 1) = eps (hyy (1), 1). (3.27)

Proof Let us write f(T) = 3 ;.o T~ as a (finite) sum of s-co-monomials.
Write

AT =(0,...,0,0q0T ™" ..., g T™7") € Wo(T'OL[T7'D),

where, for all d > 0, we set d = np™, m = v, (d). Now set

m+1

F) p—pd .__ P - P -
A TP = (0,...,0,00 TP, T,

then the reduction XSZ) T-pd — \yT~lies in (F — 1)W,(k((¢))). Hence we can re-

place A, T—¢ with X;IZI) T-P4. Replacing in this way Xyppm T-"P" with kg}m 7" ,

step by step, we obtain a pure Witt vector. In other words, we can suppose that
for all n € J,, there exists a unique m(n) > 0 such that knpmm) 7" # 0. Now
let us construct h;(T). First we arrange the sum f~ (7) = Zner Zmzo Xppm
T-""" . Then we construct, foralln € J p»anatural number m(n) > 0, and a Witt
vector v, mm € W,(Op), satisfying ps (¥ pmon T*”Pm("),l) = eps(zmzo Xy
7" 1). Let m(n) = sup{m | Aypm # 0}. By Eq. (3.12), we can suppose
s = m(n). Let Lypm = (Appm o, ..., Anpmm), and let (Gupm o, . .., Pppm m) be its

phantom vector. Then eps(zz(:”(% A TP 1) = exp(ﬂm(n)aOT" + o+

—npm(n)
noam(n)p,:—(n)), where, for all j =0, ...,m(n), we have
0 1 Tm(n)—j
Gj=—— Q@ ji+——— P r1;+ -+ P pmn) - (3.28)
" ey Y A T

Let P(X) be the chosen Lubin-Tate series. Denote by P()(X) := P(X), P7)(X)
:= P(P(--- P(X) --)), r-times. We set hy(X) := 1, and h,(X) := P (X)/X, for
r = 1,...,m(n). The phantom vector of [A(7nmn))] € Wi (Og) is as usual
(hy (Tm@my)> b (Tmy—1), - - - hr (1)) and is then equal to

<”’”<">’ Tm=r=t 704 . o>eo’"<"”1 if r>0 (3.29)
ﬂm(n) ’ ﬂm(n)_l ’ 77_[r7 ’ ’ H ’ ’
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while [ho(m,n))] = 1, and its phantom vector is (1,...,1). Hence we have

*

a; = hm(n) (nm(n)—j)d);j + hm(n)—l(nm(n)—j)d):;p’j +---+ hO(”m(n)—j) apm jo

where, for all k = 0,...,m(n), (¢:pk,0’ .. ,qb:;pk,m(n)) is the phantom vector of
)‘Zpk = ()ank’o, o Ak e ®y s *) € Wynn)(On), where the last m(n) — k com-
ponents are arbitrarily chosen. Observe that ¢Zp’<j = Pupk j» forallj =0,...,k,

while, if j > k we have A, () —k (Tpm(n)—j) = 0. This shows that
Vypmn) = m) T Iy + Py —1 @) Ay + -+ 4 1ho@m) - O
3.2.2 Proof of (1) and (2)

The assertions (1) and (2) of Theorem 3.1 will be a direct consequence of the
following Theorem, and standard considerations (cf. Sec. 3.1.1 and Cor. 1.2).
The algorithm employed is due to Robba [22, 10.10] (see also [10, 13.3]). We
translate his techniques in terms of Witt vectors. Recall that, by Corollary 1.2,
every rank one solvable equation has a basis in which the matrix is a polynomial
in T-! with coefficients in Ok.

Theorem 3.5 Let H/K be a finite extension. Let M be a solvable rank one differ-
ential module over Ry, defined by an operator d7—g(T), g(T) =2 _ ic_1 ti T e
OulT~1). Then there exists a Witt vector f (D) e W (T 1Oy [T~1)), whose
coefficients lies in a finite extension H'/H, such that 97 — g(T) = L(O,f (T)).
More explicitly we have (cf. Eq. (3.8))

s J .
aT' == my; fl‘_(T)p/_laT,log(fi_(T))’
> PEEDD

—d<i<—1 j=0 i=0
and in particular exp(Y._yi-_ a;T'/i) = eps(f (1), 1).

Proof We shall express exp (3. _;-;-_; a;T'/i) as a product of elementary -

exponentials, with coefficients in H2'2. Observe that solvability does not change
by scalar extension of H. Let d = np™, (n,p) = 1, and let by € H™2 be such

that me =a_g4/(nm). By Lemma 1.3, |a_y4| < w < 1, hence |b;| < 1. We con-
sider the Witt vector A4 := (b4,0,...,0) € Wy, (Opare), whose phantom vector

is (bg, bfi, e, bfim). By construction, we have
mn m—1
Laka) = 7 +n- (mobly T~ mbl) TP 4o 4 7byT™) . (330)
Then M®M(by,0,. . . ,0) is defined by an operator of the form o7 -2 ;1< 1

@; T, 3 a; € HY® (cf. Sect. 1.2). Moreover M ® My(b4,0, . ..,0) is again solv-
able, so, by Lemma 1.3, we have again |@_4,1| < w. This shows that we can
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iterate this process. More precisely there exist A; = (b;,0,...,0) € W, i) (Oppate),
i=1,...,d,such that

d
e =[] e T H=ep [ D NT1), 530, (3.31)
i=1,...,d i=1

satisfies d710g(€(T)) = 2. 4= 1 a;T'. Then f~(T) = D l<i<d AT~ (cf. Eq.
(3.21)). ]

4 Applications
4.1 Description of character group

Lemma 4.1 Let], :={n e Z| (n,p) = 1,n > 0}. For all fields k of characteristic
p, one has the following isomorphisms of additive groups (cf. Sect. 1.3.4):

CW( k[t = @4 oWy (k) Plk) = CW(i) 7, (4.1)

where EW(K)(JP) means ®neJ, EW(K) (direct sum of copies OfEW(K)).
Proof We have CW(t~ k[ 1) = lim_ s W(t~k[t~1]) “™ 34 lim_s g0
W (k). Observe that W™ (k) = Winings,v, @) (k) (cf. Remark 3.3), hence

CW( k(1711 = @40 1im Winins.v, (a)) () = B0 W, (@) () - (4.2)

N

Now we write d = np™,nel, ={neZ| (n,p) =1,n > 0} and m > 0, then
on the right hand side we have ®4-0Wy,@a) () = ®ney, (BmWy,npm) (k). The
Frobenius morphism F sends Wg_d) (k) into W§7p D (x), and, under the isomor-
phism W§_d) (k) = Wnin(s.v, (d)) (€) (cf. Remark 3.3), it becomes the morphism

FV: Wy, mpm) (k) — W m+1)(k) as illustrated in the picture

Vp (np

Then

Pc) = Ganer (Gamz()va(np'”) (K)/(FV - 1)(®m20va(np’") (K)))
= @z Win(6)/(EV = D(@pmzoWon(c) ™. (4.3)
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One sees that @,,>0W,, (K)/(FV — D (@®m=0Wm(k)) is isomorphic to EW(K) =

(W () > Wiy (k) > ). o

4.2 Equations killed by an abelian extension
4.2.1 Extension of the field of constants

Corollary 4.1 The natural morphism
M — M ® K : Pic*®(Rg) — Pic* (R gai)

is a monomorphism. In other words, two R-differential modules are isomorphic
if and only if they are isomorphic over Ray after scalar extension.

Proof We show that the kernel of Pic®®/(Rg) — PicSOI(RKalg) is equal to 0. Let
M be defined by the operator L = 97 — g(1), g(T) == > ; a;T' € Rg, and sup-
pose that M @ K?!2 is trivial over R ga. By Corollary 1.2, we can suppose a; = 0,
for all i # —d,...,0. We know that M ® K& 5 M(ag, f~(T)) = M(ap,0) ®
M(0, £~ (T)), for a suitable f(T) € W(T~' Ok, [T~']). Then M @ K?!# is triv-
ial only if both M(agp,0) and M(0, f~(T)) are trivial over K22, This implies
that agp € Z, and hence M(ag,0) is trivial also over Rg. On the other hand,
M(0, f~ (1)) is trivial if and only if eps (f~ (7), 1) lies in R gai;. By Theorem 3.5,
the series e,s (f (1), 1) has its coefficients in K, and M(0, f~ (7)) € Pic*° (R k).
Since the convergence does not change by scalar extension of K, it follows that
MO0, f~(T)) is trivial over Rg. O

Corollary 4.2 We have Pic*® (Rg) = Pic*® (R, ) Cal(Ke/K),
4.2.2 Frobenius structure

Assume now that K has an absolute Frobenius ¢ : K — K (cf. Definition 1.10),
and fix an absolute Frobenius ¢ : Rk — Rg. By Theorem 3.2-(5), for any
Artin-Schreier characters «, the module M(0, @) has a Frobenius structure of
order 1 over Ko, (with respect to one, and hence any absolute Frobenius, cf.
Sect. 1.2.3). By Corollary 4.1, this isomorphism descends to K.

Lemma 4.2 M(ag,0) has a Frobenius structure of order h (cf. Definition 1.11) if
and only if ay € Z). Moreover let ag = a/b, a,b € Z, and let b = []; qi' be the
factorization of b in positive prime numbers. For all q,r € Z,r > 0, we define

..q ~
lq): := q7 . r-times,(i.e. [ql1 = q and [q]y+1 = q9). Then (¢*)" (M(ao,0)) —
M(aO, 0)7 Wlth h == Hl([CIz]r, - 1)

Proof By Sect. 1.2.3 we can suppose ¢ = ¢,. Suppose that M(ap,0) has a
Frobenius structure of order A. Since M(agp,0) is solvable (cf. Remark 1.5),
hence ap € Z,. By Definition 1.11, ph-ao —ap € Z, hence ap € Q. Conversely, let
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ap = a/b € Zp), b > 0. We have pldh—1 =1 (mod ¢"). Thenif h = [[;([gil;, — 1)
we have (p* — 1)ag € Z. O

Remark 4.1 Let L = o7 + > ;7 a;T', be an operator over Rx with Frobenius
structure. The order /4 of the Frobenius structure depends only on the exponent
ao € Zp). Explicitly, if ap = a/b, a,b € Z, (b,p) = 1, and if b = []; gl >0,
qi > 0, is a factorization of b in prime numbers, then, by Lemma 4.2, we have

h <Tl;gilr, — D).

Definition 4.1 We denote by Pic"™®(Rx_ ) € Pic™(Rk.,) the sub-group of
differential modules having a Frobenius structure of some order.

Corollary 4.3 Pic"™®(Rk_ ) = Z,)/Z & P(ko).
4.2.3 Artin—-Schreier extensions

In order to apply Theorem 2.10, and Proposition 4.1 below, in this subsection
K has a discrete valuation, and k will be perfect.

Proposition 4.1 ([18,3.4], [25,2.2.2]) Let F/k((t)) be a finite separable extension.
Let F' be the corresponding unramified extension of 8};’7. Then

1. There exist a finite unramified extension K /K, a new variable T and an iso-
metric isomorphism t : (F',|.|) = (5’11< T,|.|;1), where |.|7 is the Gauss

norm with respect to T.In particular, forall f(T) € SIT(’T, onehas |f(T)|11 =
IF (D7 4-

2. Lettand t be the reductions of Tand T respectively. Let F = k((t)) Let r be
the ramification index of F/k((t)). Write t = art’ + a1 7l witha; e k.
Then T can be chosen such that t(T) = a1 +a 1 Tt 4+... a4 ¢ Oz,
where the a;’s are liftings in Oy of the a;’s.

Proof Let Q(T) := a,T + ap T + . The proof consists in showing that
F(D) B t(F(T):=fQ(T)) : Ef 7 — 5 7 is étale (cf. [18, 3.4]). o

Notation 4.1 We denote by R 7 the corresponding Robba ring.

Remark 4.2 We have (97 o 1)(f(T)) = 87’log(Q(AT)) - (t 0 d7)(f(T)), where as

usual a‘f,log(Q(T)) = —"—a?gg))
tial operator a7 — g(7T") becomes 97 — aﬂog(Q(T)) -g(Q(T)). Indeed the unique
K derivation of the étale extension Ry 7 extending o is 8T’log(Q(T))*1 - 0.
The solutions of this operator are the same as those of a7 — g(7).

Corollary 4.4 Let E = k(). Let F/E be the Artin-Schreier extension defined
by the kernel of a = §(f (1)), with f(t) € Ws(E). Let Rxk,r — Rk 7 be the
corresponding étale extension. Then the kernel of the scalar extension map

. Then, after scalar extension, a generic differen-

Res : Pic™™ (Rk,,.1) —> Pic™™ (Rg_ 7) (44)
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is the (finite and cyclic) sub-group of Pic*® (R, 1), formed by (isomorphism
classes of) modules of the type M(0,f~(T))®*, k > 0, (cf Definition 3.5), where
f(T) € Wo(Ok[[TNIT~ ) is an arbitrary lifting off(t) This kernel has order
[F: E].

Proof By Corollary 4.1, we can suppose K = K% We decompose f(1) =
f o +f +f+(t) (cf. Definition 3.5). Since k = k, we have 8(fy) = 0 (cf. Eq.
(1.21)). On the other hand, by Proposition 3.1, we always have § (f+ ®) = 0.
Hence we can supposef(t) =f"0 =, ®,....fs (). Since the Artin-Schre-
ier complex is invariant by V (cf. Eq. (1.21)), we can suppose f;, (t) # 0 (i.e. the

degree [F : E]is p*t1). By Corollary 3.1, the morphism in the Eq. (4.4) can be
viewed as a map

CW( k1] Res CW(E ki 1))
_ Zp|Z & — — ,
F— 1)CW(t*1k[t*1]) F— 1)CW(t*1k[t*1])

Zy/Z.® (4.5)

where 7is the reduction of 7. We start by studying the term Z, /Z. By Proposition
41, T = Q(T), with Q(T) = ay,i TP + .-, with a; € Ok.,. The differential
operator d7 — ag, ag € Zj is sent to 3 — 8f’]0g(Q(T)) - ap. Observe that

0710 QM) =p* ' + 01(T), Q1(T) e T OkIITI . (4.6)

Hence the new operator is 97 — gy — 01(T) - ap. By Proposition 1.2, this
operator is isomorphic to 97 — —p*tlag. Then the morphism in the Eq. (4.5) sends
Zp/Z into itself by multiplication by p*+1 = [F : E], and so is bijective on ZLp| 2.

On the co-vectors quotient, the morphism in the Eq. (4.5) is the usual func-
torial map corresponding to the inclusion ~1k[t~1] — 7 1k[71]. The module
M(O0,f(T)) = M(0,f~ (7)) then lies in the kernel. Indeed, by definition of F/E,
there exists v(7) € W(i'k[7~1]) such that (cf. Remark 1.10)

Fo@®) —v@D =f ), (4.7)

hence, by Theorem 3.2, s (f(T), 1) liesin R KT In other words, this exponential

is over-convergent in the new variable T. Conversely, a module M(0,g~ (7)) lies
in the kernel, if and only if the exponential e,s (g™ (7),1) belongs to Ry 7. By

Theorem 3.2, this happens if and only if the equation F(v) — v = E(t) has a
solution v € W,(k(()). Thﬁ happens if and only if the kernel ci 5(g—(¢)) con-

tains the kernel of @ = §(f™ (¢)). gnce the quotient Gg/Ker(8(f™ (1)) is cyclic,
this implies that S(g_*(t)) =m-§(f (1)), for some m > 0. Hence M(0,g~ (7)) =
M(O,f~(T)®". O

Remark 4.3 As suggested by the referee, this corollary is in relation with the
Proposition 4.11 of [11].
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4.2.4 Kummer extensions

Corollary 4.5 Let F/E be an abelian totally ramified extension of degree [F :
El =n, with (n,p) = 1. Let R, — RK,T be the corresponding étale extension.

Then the scalar extension morphism Res : Pic®® (R 1) — PicSOI(RKOCj) is
multiplication by n, and so its kernel is (%Z) /Z.

Proof Indeed, in this case we can choose 7 satisfying t = Q(7) = 7". O

4.3 A criterion of solvability

This sub-section is devoted to proving the Corollary 4.6. The aim of this result
is to characterize the solvability of the differential equation a7 — g(7), with
g(T) = > a;T" giving an explicit condition on the coefficients “a;”. Roughly
this Theorem shows that every solvable differential equation over £k has, with-
out change of basis, a solution which can be represented by the symbol

E(f~(D),1)- T - E(f"(D), ), (4.8)

where f~(T) € W(T-1Og[[T~11]) and f~(T) € W(TOk[[T1])) are certain (infi-
nite) Witt vectors, satisfying some convergence properties which ensure that
the series E(f(T),1) makes sense (cf. Lemma 4.3). Similarly to the previous
situation, this Witt vector will be a sum of monomials (dual notion of s-co-
monomial, cf. Definition 4.3). If a Lubin-Tate group &p is chosen, then this
classification is a generalization of Theorem 3.1, because w(T! OKOO[[T_l]])
contains CW(T_IOKOC[[T_l]]), via the choice of a generator # € T(Gp) (cf.
diagram (4.15)), and the exponential E(f (7),1) becomes e,s(—, 1) if applied
to the image of a co-vector (cf. Eq. (4.14)).

We maintain the notations of Sect. 2.1. In the sequel we will work both with
TOk[[T]] and T~1Og[[T~!]]. Almost all assertions have a dual meaning.

Lemma 4.3 Let E(—,Y) : W(OkI[[T]]) — 1+ YOkI[[TNI[Y]] be the Artin Hasse
exponential (cf. Definition 2.3). Let vy be the T-adic valuation. Let f(T) =
(fo(T), f1(T),...) e W(TOkI[TI)), and let ¢;(T) be its j-th phantom component.
If limj, o v7(fi{(T)) = 400, then lim;_, o v7(¢;(T)) = +oo, and E( f(T),Y)
converges T-adically at’Y = 1. O

Definition 4.2 We denote by WYTOKIITI) the ideal of W(OkII[T]]) formed by
series satisfying the condition of Lemma 4.3.

Remark 4.4 For all f*(T) = (f (1).f;}(T),...) € WH(TOk[[T]]), we have

() ef(T
E(ft(1),1) :=HE(fj+(T))=exp(¢6r(T)+%+¢2p(2 )+---), (4.9)

j=0
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where qb;“(T) is the jth phantom component of f (7). The T-adic convergence
of this product is guaranteed by Lemma 4.3.

Definition 4.3 (Monomials) Let A = (A9, A1,...) € W(Ok) and d a positive
integer. We will call A\T% := (T, 1 T% 5,T% ..y € WHTOKIT]) the
monomial of degree d relative to the Witt vector A.> In analogy with Definition
3.3, we call W9 (O) the sub-group of WY(TOk[[T1)), formed by monomials
of degree d.

Lemma 4.4 Let], :={neZ| (n,p) =1,n > 0}. There is an injection
[T W™ k) c WHTOKIITI) , (4.10)
nelp

given by Ay T")pey, = Zner AT

Proof 1f ¢ = (¢n0,¢n1,...) is the phantom vector of A,, then the phantom

vector of L, T is (pnoT", pp 1 T, 2 T”pz, ...). Hence all terms have different
degree and they do not “blend” when we sum the phantom components. O

Remark 4.5
1. Letft(T) e WH(TOk[[T])), let A, g € W(Ok), d > 0. Then we have

ENV(fH(T),1) = Ef*(T),1), (4.11)

EX T = EQT,1), (4.12)

H Eg, TY = E(Z AT, 1). (4.13)
d>1 d>1

2. If¢—_pn = (p—n0.$_n1,...)is the phantom vector of A_,, then we have

7"
E Z A T7" 1) =exp <Z Z D—nm P )

nelp nel, m>0 p

3. IEf(T) = (fy (D).f; (T),...) € WHT'OgI[T~'1]) and if pr,, (f (7)) is
the image of f (T) in W, (T LOK[[T~ 1)), then (cf. Definition 2.4)

E(ltm] -f (D, 1) = epn(pr, (f (D), 1) = [ [ Emj (7 (T (414)
j=0

The exponentials used in the preceding section are then a particular case of
E(—,1).

3 Observe thatif AT~ is a monomial in W+ (Tfl OK[[T*1 1D, its reduction in Wm(T*] OkllT™ i)
is NOT a co-monomial of degree —d, but it is a co-monomial of degree —dp™.
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Remark 4.6 Recall that W, (T~ 1Ok, [T~']) = [mn]W(T Ok, [T~']) ¢ W
(T71 Ok, [IT~1]) (see Eq. (2.9)). We have the following commutative diagram

E(-.1)
—1 -1 —1 —1 -1 -1
W1 (T Ok, [T ])CWWHT Ok, IT71) — 14T O 11T 1]

| 1

W (T~ 0k, [T‘ll)(? wH(rtog, 1Tt

(4.15)

Indeed, we see, looking at the phantom components, that
[Tml(fy s s SonsFppgrs ) = ml(fy s -+ £, 0,0,..0), (4.16)

for all f~(T) = (fy '+ sfonsfopyrs ) € W OKIT™)). Hence [m,1f (1)
lies in WY(T~1Ox[T~1)), for all f(T) € W(T-1 O[T~ 1)).

Remark 4.7 By definition one has W (Ox) ¢ WH(TOkI[[T]]), for all d > 1.
The group W¥(TOk[[T])) is not generated by the family {W'® (O)} 4=0 of sub-
groups. Indeed, for example, the m-th phantom component ¢,,(T) of a Witt
vector of the form > ;A4 T4 is always of the type ¢, (T) = h(TP™), for some
W) € OklIT]].

However, the basic fact is that, for all f 7 (T) € WY(TOk[[T1]) (resp.f(T) €
wh(r1 OK[[T_l]])), there exists an (infinite) family of monomials {A,, 7" Ynel, €

Hne],, w (Ok) (reSP- {An T_n}nej,, € Hner wn (OK)) satisfying

EfH(T),1)=E anT”,1 . Ef(I),1)=E Zx_nT—",l

nelp nelp

In other words, a general Witt vector is not an infinite sum of monomials, but the
Artin—Hasse exponential of this Witt vector is always equal to the Artin—-Hasse
exponential of an infinite sum of monomials with supportin J,, (cf. Lemma 4.5).

Lemma 4.5 The differential equation 3y — g*(T), g*(T) = X i a;T' € R is
solvable if and only if there exists a family {Antnes,, An € W(Ok), with phantom
components ¢ = (¢n0, Pn1, .. .) satisfying

appm = NPy, Torallnel,, m=>0. (4.17)
In other words we have exp (Zizl aiTTi) = E(anp AT, 1).

Proof The formal series E (3,5, AaT",1) € 14 TOk([T1} s a solution of the

equation L := 07 — 35 2 n=01Pnm T"P". Since this exponential converges
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in the unit disk, then Ray(L, p) = p, for all p < 1 and L is solvable. Conversely
if 37 — gt (T) is solvable, then the Witt vectors A, = (A,0,A1,...) are defined
by the relation (4.17) (cf. Lemma 1.5). For example for all n € J, we have

A = %" dot = 1% (”% - (%”)p) . (4.18)

We must show that |A,,,,| < 1foralln e J,,m > 0.

Step 1 By the Small Radius Lemma 1.1, we have |a;| < 1, for all i > 1. Hence,
for alln € J,, we have |A, | < 1. Then the exponential

E( > (10.0.0,..0T" 1) = exp zz,\%%

nelp nelp m>0

converges in the unit disk and is a solution of the operator Q) := 7 — hO(T),
with hO(T) = > nel, Zm=0*n0 TP"  which is therefore solvable.

Step 2 The tensor product operator o7 — (g (T) — hO(T)) is again solvable
and satisfies g*(T) — hO(T) = p - g (TP), for some g(T) € TK[[T]]. In
other words the “antecedent by ramification” ¢ (cf. Sect. 1.2.4) of the equation
ar — (g7 (T) — hO(T)) is given by 37 — gV (T), which is therefore solvable.

m+1

Step 3 We observe that gV(T) = 1 > el 2mz0@gpmer —n(EP" ) T", and
again by the Small Radius Lemma we have | 117 llany— n(%”)p| < 1, which implies
|An1] < 1. The process can be iterated indefinitely. O

Remark 4.8 We shall now consider the general case of an equation d7 — g(7),
with g(T) = > ;. a;T" € Rk, and get a criterion of solvability. Suppose that
a7 — g(T) is solvable. We know that 37 — g~ (T), 37 — ag and 37 — g™ (T) are all
solvable (cf. Proposition 1.1). We can then consider a7 — g~ (T) as an operator
on ]1,00] (instead of ]1 — ¢,00]) and Lemma 4.5 gives us the existence of a
family of Witt vector {A_p}ne, satistying a_,pm = —n¢_pm, for alln € J,, and
all m > 0. Conversely suppose that we are given two families {A-n}nes, and
{An}nes,, with &, € W(Ok). Since the phantom components of &, are bounded
by 1, then g™ (T) is bounded and belongs to R x. Now we need a condition on the
family {A_,}nes, in order that the series g~ (7) := ZnEJ,, Zsz —nP_pnm "
belongs to Rg.

1
Lemma 4.6 Letc < w = |p|?~T,n €y, p < 1befixed. Let (Ao, 71,...) € W(Ok)
and let ¢ = (¢o, 1, . ..) be its phantom vector. Then |¢;/p'| < cp' foralli >0
if and only if || < cp™" for all i > 0.

Proof Recall that ¢? < |plic, for all i > 0. Suppose that |¢i/p| < cp"l’f' for all
i > 0. Then |Ag| = |¢o| < cp”. By induction suppose that |A;| < cp™’ for all
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i i—1 .
j=0,...i—1 then ;| = |5:(d; — 20 —pA] —...—p"'27_))|. By induction
; i i—k i— i— i ; i
il < Iplico™ and [p*A% | < plk(co ' = plke? ™ pP' < |pilep™, hence
[Ail < cp™'. Conversely suppose that |A;] < cp” for all i > 0. Then |¢;| =
y supp

i i—1 . i i—1 . i . i
IXG +PA) - p'hil < sup((cp™P, Iplcp™)P .. pli(cp™)) < Iplicp™".
O

Definition 4.4 Let c < w and p < 1. We denote by

emma 4.4
WL oklT ) € [T W o - whrtogir )

nelp
the sub-group formed by the sums Zner A_p,T7" such that
A'—l’l = ()\—n,Oa )\'7}’1,1’ . ) S W(OK)

verifies the conditions of Lemma 4.6. In other words |A_p ;| < co?".

Remark 4.9 Observe that, by Lemma 4.6, a Witt vector >, 5, A-nT™" belongs
to the subgroup Wip(T_lC)K[[T_l]]) if and only if the argument of the expo-
nential E(}_,,c5, A-n T 1) = exp(X 5, 2 m=0 ¢>_,,,mT;+p) satisfies

n

z Z d—nm Tpnmp = sup (Mp*”pm) <c<ow (4.19)

nel, m=0 nelpm=0 lp|™

p

Definition 4.5 Let Wi (T 1Ox[[T11]) ¢ WHT O[T 1)) be the subgroup
defined as the sum of the sub-group Uc<w’p<1 Wc{p(T”OK[[T’]]]) with the

sub-group (Ujzolmj] - WH(T ™1 Ogas T-11)) Y WHT 1 OkIT1]) .
Corollary 4.6 (Solvability criterion) Let 37 — g(T), g(T) == > ;. aiT € Rk

be a solvable equation. Then ay € Z;, and there exist two families {A—ntnes, and
{Antnes,, with A_,, A, € W(Ox) such that for all n € 1, and all m > 0 we have

a_ppm = —N¢_nm; appm = nonm ,

where (¢p—n0, O—n1,--.) (resp. ($n0, Pn1,- - .)) is the phantom vector of A, (resp.
An). Moreover Zner A_,T7" belongs to W (T Ox[[T~11]).

Conversely given a triplet (3_,c5, A—nT ™", a0, 25, M T"), with

DAL eW T OkIT M, a0 €Zp, D A T" € WTOKIITI),

nelp nelp
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then

g =D > —np umT """ +ao+ D > npumT™"

nelp m>0 nelp m>0

belongs to R, and the equation 3 — g(T) is solvable.

Remark 4.10 This corollary asserts that Zne],, A_p,T7"" is a sum of a “small”
vector, i.e. verifying the relation (4.19), and a vector of “type Robba”, i.e. of
the type [7;[f (1), f (1) € W(T‘l(’)Ka]g[[T_l]]), for some j > 0 and such that
the product [7;]f (T) lies in W(TYOk[[T~ 1)) ie. has its coefficients in K.
Actually the proof will show that f~(7T) can be chosen pure (see below).

Proof of Corollary 4.6 Let a7 — g(T) be solvable. By Lemma 4.5, we know
the existence of {A_n}ney, and {An}neg, (cf. Remark 4.8). We must show that
> ey, AonT7" lies in WHTLOKI[T]]). Let d > 0 be such that |>,_
aiTi/i|p < w for some p < 1 (cf. Lemma 1.2). Write g~ (T) = Zk_daiTi +
> geic_1@T'. By Lemma 1.2 we know that exp(3>’;__,a;T'/i) € Rk, hence
the equation 97 — > ;__,a;T" is solvable (and actually trivial). In particular
0T — D jeic_q i T' is solvable and hence, again by Remark 4.8, there exists a
family {A" , }ney,, such that

—ng' | a—ppmif —np™ < —d,
—nm 0if —d=<-np™<-1,

where (¢p—,0,¢_pn1,...) is the phantom vector of A_,. Since, by construction
|2 ic—q@iT'/ily < o, this implies | 3,,c; 3,20 6—nmT ™" /p"|, < @, hence
Zner A_, T~ " lies in Wip(T_l(’)K[[T_l]]) for some ¢ < w. Now we consider
A", =Xy — A, the family {1”, },.cj, then satisfies

0 if — np™

<
"

—n = .

P—nm a_ppm if —d < —np™ <

—d,
—1.

By Theorem 3.5, and by Lemma 3.6 there exists a pure Witt vector f~(T) =
(fo (Do f (1) € Wo(T 'Oa[T~']) such that LO, f~(T) =
07 — 2 _g<i<—1 @T". Hence [z]f(T) and 3, A", T~" have the “same”
phantom vector because they are both pure. Then Znejp A, T~" lies in the

image of the morphism WS(T_lOKalg[T_l]) = [l - W(T_IOKalg[T_l]). O

Remark 411 Let L := 97 — >,y a;T', g(T) € Rk be a given equation. Then
L is solvable if and only if ag € Zp, and, for all n € J,, both the operators
T — D pmo @npn T and 87 — X", g a—ppn T~"P" are solvable.
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Corollary 4.7 If K is unramified over Q, then every solvable differential module
over Ry of rank one is isomorphic to a moderate module (cf. Sect. 1.2.5). In other
words,

. .sol _ Zp/Z B ifp 75 2,
PICT (RO =1\ 2,/Z ® k(0)/(F = Dk(@)) if p = 2. (420)

Proof We must show that all m-exponential eps(f~ (7),1) whose logarithmic
derivative has its coefficients in K is trivial. Actually we can suppose that
the co-monomial f(7) is pure (cf. Lemma 3.6). Write a7 j0g(eps (f ~ (1),1)) =
> geic_i@l" with a; € Ok for all i = —d,...,—1. Write f () =

—_pm(n)
Zner A_ppmn T " A _ppmny = A pypm g5 -+ A pypmn ) € Wingm) (Ocale)-
Since f~ (T) is pure, one has (cf. Remark 3.7)

(l_npj = —nﬂm(n)_j(p_”pm(n)yj, (421)

forallj =0,...,m(n), where <¢_npm(n)’(), . ,¢_npm(n)’m(n)> is the phantom vec-
tor of A_,,mm. On the other hand the criterion of solvability (Corollary 4.6)
asserts the existence of a family {A”, },,c j, With phantom vectors (@, ne 1,> With
¢., = (P_,0:P1_p1s---)> Such that a_ppm = —ng’, , foralln € Jp, m > 0.
Observe that ¢’ ,,,, € Ok. Since K is unramified over Q, then we can employ
Lemma 1.6. Then ¢’ ,, = U(¢Ln,m71) mod p™ Ok foralln € J,,m > 0, that is

a_ppi =0(a_,,-1)  mod pOg  forallj > 0. (4.22)

Sincea_ ppm+ = 0 we obtain, by equation (4.21), the estimate |7, () —j¢p_ npm j
< |p|1+1, forallj=0,...,m(n). Then we have a system of conditions

—1

I P ' j+1 -1
)“_npm(n)’o +p)“_npm(n)’1 +- +p/)‘fnp’”(”>,j = ‘P| |7Tm(n)—j| >

which easily gives |A_,mm ;| < |Pl|7m(m—jI ", this last is < 1, and is = 1 if and
only if p = 2, and m(n) = j = 0. If p # 2, then by Theorem 2.2, and Corollary
4.1, ed(A_ppmom s T-1) liesin Rk, foralln € Jp,and Ly(0,f (7)) is trivial. O
4.4 Explicit computation of the irregularity in some cases

Let v, be the t-adic valuation of k((¢)).

Lemma 4.7 Let f(T) € T-'Ox[T~'] be a polynomial in T-L and let ]_‘(t) €
t~Yk[t~1] be the reduction of f(T). Let n := —v,(f(¢)) > 0. If (n,p) = 1, then
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Irr(M(O, (0,...,O,f(T),O,...,0 ))) =n-p', (4.23)
———’
{+1

where £ = £(0,...,0,f(T),0,...,0) (cf. Sect. 1.3.3).

Proof We have M(0, (0,...,0,f(7),0,...,0)) = M(0, (f(1),0,...,0)) . (cf. Eq.
(3.12)). Moreover, the isomorphism class of this module depends only on f(),
hence we can suppose that f(T) =a_, T "+---4+a_4 T-1, with |a_,| = 1. Then

7S @ 4 7 f @ ot (]

We have 9710¢(f(T)) = —n + TO(T), with Q(T) € Ok|[[TT], so that

g =—-mpy-n- a’ien .npt + (terms of degree > —np*) . (4.24)

Since (n,p) = 1,we canapply Lemma 1.3 and Irr(d7+g(7T)) = Irrp(d7+8(T)) =
¢
np*. O

Corollary 4.8 Letf__(t) = (f?,...,f?) € Wyt k[t~ 1]). Let nj = —v (ff) If
(nj,p) =1,0rnj =0, forallj=0,...,s, then

Irr (M(O,f_‘(t))) = max (n,- -ps—f) . (4.25)

Proof Let M; be the differential module defined by (0, ... ,O,fj__(t),O, ..., 0).
By Lemma 4.7, Irr(M)) = n]-ps_f. Since M(0,f (1)) = ®;M; (cf. Eq. (2.54)),
and since njps*f are all different, then, by Corollary 1.1, we have the desired
conclusion. O

4.5 Tannakian group

In this section we study the category of solvable differential modules over R g
which are extensions of rank one sub objects. We remove the hypothesis “K is
spherically complete”, present in the literature. Let H/K be an arbitrary alge-
braic extension. We set HL = U, Ag(J1 — &,00[). Let S be a sub-group of Z,
without Liouville numbers and containing Z.

Definition 4.6 Let C be an additive category. If there exists a function rank on C,
then we denote by Cg.1 (resp. Cexi-1) the full sub-category of C whose objects are
finite direct sum (resp. finite successive extension) of rank one objects.

Definition 4.7 An object is said to be simple if it has no non trivial sub-objects.
1t is said indecomposable if it is not a direct sum of non trivial objects.
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Definition 4.8 Let MLS(HL) be the category of (free) differential modules over
HL solvable at 1 (i.e. Ray(N,1) = 1, cf Sect. 1.2.2). Recall that, by definition,
such a module comes, by scalar extension, from a module over HTL, for some

finite extension L/K (cf. Eq. (1.2)). Let N € MLSext.l(HL) be extension of
rank one modules, say {N;}i=1,. k. We will say that N is regular at oo, write

N € MLS™® (HL), if, for all i, the module N; is defined, in some basis, by an

ext-1

operator 1 + gi(T), satisfying

gi(T) = Zai,ij , witha;;=0, forallj>1. (4.26)

We will say that N € MLSLs (H},,S), if N € MLSL% (H}), and if a;g € S,Vi.

ext-1 ext-1

emma 4. chur’s lemma) Let M1, M be two rank one objects in H
L 4.8 (Schur’s 1 Let M{,M> b k bj in MLS(Ry)
(resp. MLSZigt_l(HL)). Every non zero morphism o : M1 — M3 is an isomor-
phism.

Proof Let ap; € Z, be the exponent of M;. In Theorem 3.5 we have seen
that M; has a basis e; € M; in which the solution is of the type T%i¢;(T),
where €;(T) € Ay(]1,00]) is a series with coefficients in H. We have then
o(er) = h(T)ez, with h(T) = T2~%1¢,(T)e (T)~' € Ry. Thenags —ag; € Z,
and e2(T)e (T)~! € Ry. Since €(T) is a product of r-exponentials, both h(T)

and its inverse lie in Ry. If M{,M;, € MLS;:_gl (H;I), then, by the proof of

Lemma 1.2, the base change necessary to obtain e; lies in (HL)X. O

Remark 4.12 By Lemma 4.8, rank one objects in MLS(Rp) are simple in
Mod-Rg[d7]. Then, by the Jordan—Holder Theorem in Mod-R g[d7], the cate-
gories MLS¢y¢.1 (Rp), and MLSy 1 (Rpy,S) are abelian, and, for all objects M,
the set of rank one objects appearing in a decomposition series of M does not
depend, up to the order, on the chosen decomposition. Moreover the sub-cate-
gories MLS4 1 (Ry) and MLSg 1 (R, S) are abelian and semi-simple. The same
facts are true for MLS'-® 1 (HL), MLS'® 1 (HL) and MLS..® (HL, S).

ext- ext- -1

Theorem 4.2 Let N € MLScx1(Ry,S) (resp. N € MLSLS (M}, S)). There
exists a basis of N in which the matrix of the derivation is in Jordan canonical
form. In other words, N is a direct sum of objects of the form M ® U,,, where M

is a rank one object and Uy, is defined by the operator 97’

Proof Let M{,M> € MLS¢x1(Rpy). By the Robba’s index Theorem for rank
one operators whose matrix is a rational fraction [21], we have
dim Hom(M;,M>) = dimEXt%zK[aT](MhMg). This fact does not need the
“spherically complete” hypothesis on the field K. The Theorem results then
by classical considerations. O

Remark 4.13 a7 : ¢ — € has a big co-kernel, hence Exty, . (£.€x) is not
KLoT
one dimensional (see [9, pp. 133-134]). While the theory of rank one equation

over Rk coincide with the theory over £ 1 , this is false for rank > 2.
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Theorem 4.3 (Canonical extension) The canonical restriction functor Res :
MLS™® (’H;[, S) = MLSe.1 (Ry,S) is an equivalence.

ext-1

Proof By Theorem 3.1, Res : MLS'® (H1,,8) — MLS¢y.1(Rpz,S) is essen-

ext-1
tially surjective. Indeed L(ag,f ™ (T)) has its coefficients in HL. By Lemma 4.8,
two rank one modules in MLS:;%_1 (HL, S) are isomorphic if and only if they are
isomorphic over Ry, because the base change is given by an over-convergent
exponential in 1 4 T-1Oy[[T1]]. Hence, by the Schur Lemma 4.8, Res is also

fully-faithful. O
Corollary 4.9 The Tannakian category MLSey(.1 (R, S) is neutral.

Proof Let wg : MLS:;‘g1 (’H},,S) — Vect™(H) be the fiber functor sending a
rank one object in the vector space of its Taylor solutions at 1 (cf. Eq. (1.6)).
An H-linear fiber functor of MLS4 1 (R#,S) is given by composing wg with a

quasi-inverse of Res. O

Definition 4.9 An affine group scheme H (over H) is linear if there exists a closed
immersion H — GLg(V), for some finite dimensional vector space V.

Definition 4.10 Let ws : MLSg 1 (Ry,S) — Vect™(H) be a fiber functor. We
denote by G := Aut®(wy) the Tannakian group of MLSg.1(Ry, S).

Remark 4.14 By Theorem 4.2, the Tannakian group of MLSex 1(Rpy,S) is
Gu x Gg.

4.5.1 Study of G

For all (finite dimensional) representations py : Gy — GLy(V),wesetGp y =
pv(Gr). The group Gy v is then linear and affine. Moreover, Gy is diagonal-
izable (i.e. closed subgroup of the group of diagonal matrices). The group Gy
is the inverse limit of its linear (compact) quotients Gy v, and is endowed with
the limit topology. Hence G is abelian, because every V is a direct sum of rank
one objects, and Gy is abelian.

Remark 4.15 Let I be a non empty directed set. The functor 1i_n)1l,6 p is exact if

applied to exact sequences of compact algebraic groups (see [4, Chap.3, Sect. 7,
Corollary.1]). All exact sequences in the sequel will be studied at level Gy y.

Definition 4.11 We set X(Gp) = Homgr’nt(g i, Gy ® H), where “cont” means

that such a morphism Gy — G, ® H factors on a linear quotient Gy y.

Let PicfgOl (Ru.,) be the sup-group of Pic*®! (R, ) formed by modules whose
residue lies in S. By Tannakian equivalence, we have an isomorphism of groups

X(Gn.) = Pic® (Ry,) — S/Z® P(ky.,). (4.27)
This leads us to recover the group Gg_ itself (cf. [24, 3.2.6]). Let us write

S/7 = S/Z(p) D Z(p)/Z . (4.28)
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Theorem 4.4 Gy is the product of a torus Ty, (dual of S/Z)) with a pro-
finite group Ty, (dual of Zy)/Z®P(kp,,)). This last is isomorphic to the Galois
group I%l;{ = Gal(Eiji /EHm)ab, where Ep_ = kp, (7)) (cf Remark 1.11)

zggm — Iy, . (4.29)

Proof The proof is standard. These two groups have the same character groups.
Namely, by Tannakian equivalence and by Corollary 3.1, the character group of
TH, is Zy)/Z @ P(kp,,). By Artin-Schreier theory, and Kummer theory, this
last is also the character group of Zy, . O

Remark 4.16 We will see in the next section that this isomorphism is induced by
the Fontaine—Katz functor M'. Actually, this isomorphism exists even without
the hypothesis required in the definition of this functor.

4.6 Differential equations and ¢-modules over 8;; in the abelian case

In this section the notations, and hypotheses, will follow [25]. We recall that
w = p (cf. Hypothesis 2.6). We suppose k perfect (used in Proposition 4.1). Let
A/Q), be a finite extension containing Q,(&;). Let Fy, g := p’, be the residue
field of A.

Hypothesis 4.5 We assume the existence of an absolute Frobenius op : A — A
(i.e. lifting of the p-th power map x +— x” of ), satisfying oj = Ids and
00(ms) = m,. This is always possible if A/Q, is Galois.

We let K := A ®@w,) Wk) and o := Idy ® F'. We denote again by o
the morphism (o9 ® F) on K, then o = o;5. We fix a continuous absolute Frobe-
nius ¢o on O;;, by setting ¢o(3>_ a;Th = Zao(ai)goo(T)i, where ¢o(T) € Oj\ is
a lifting of #* € k((t)) (see Definition 1.10). Then ¢q verifies ¢ (rs) = 5, and
(p()(é'j\) c Sj\. We set ¢ = ¢,. Both ¢ and ¢y extend uniquely to all unramified
extensions of 5};, hence they commute with the action of Gg := Gal(E*P/E),
with E = k((?)).

Definition 4.12 [et Repin(GE) be the category of continuous (finite dimen-
sional) representatiorﬁ : GE = GLA(V), such that a(Zg) is finite.

Definition 4.13 Let o : GE — A be a character such that «(Zg) is finite. Then
we denote by V, € Repf}\n(GE) the rank one representation of Gg given by

y(e):=ua(y)-e, forall y e Gg,

where e € V, is a basis. We denote by D (V,) (respectively MT(VO,)) the ¢ — V-
module over 51T< (resp. V-module over Ri) attached to V. Namely

D (Vo) = (Vo @4 EF"™CE , M (V) = DT(Vy) ®gr Rk (430)
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We recall that M (V) is endowed with the unique derivation “commuting”
with ¢ (cf. [14, 2.2.4]). This derivation is V. = 1 ® dr. By Remark 1.5, M'(Vy) €
MLS(Rk).

Definition 4.14 We will identify 7./p*t'Z with Hpst1, by sending
1 & : 2/p*tlz = Ropsi1,
where & is the unique p**'th root of 1 verifying (cf Remark 1.13)
|(6s — 1) — 75| < |ms] . (4.31)

If « € Hom®"(Gg, Z/p*t1Z), we again denote by V,, the representation given
by

y(e):=&*") e, forall y € Gg.

Remark 4.17 This definition is chosen “ad hoc” to be the inverse of the action
of Gg described by the Eq. (2.45).

Remark 4.18 Let o : GE — A be a continuous character, then « factors on
the abelianized Gg?°. Let Igb be the inertia of Gg2°, and G;ib be the abelian-
ized of Gal(k%°P /k). Since k is perfect, then, by Remark 3.5, the exact sequence
1— 7% — G — G — 1is split, hence

GE® =T® 0 G, (4.32)
and o« = o~ - g, where o~ :Igb — AXand o : sz — A*. Then
Vo =Vyu- @ V.

We observe that MT(V%) = Rk, is trivial because its solution is a constant.
Indeed, the extension of (’);( defined by «p is (92 ®xk H, for some unramified
extensions H/K. In the sequel we will treat only characters « : Gg — A* with
finite image, this will be restrictive in terms of g-modules but not in terms of
differential modules. Indeed,

D (V) =D' (Vo) @ DT (V) s M'(Vy) = MT (V). (4.33)

Remark 4.19 Points (4) and (5) of the following theorem have been already
proved in [18] in the case p # 2 and rank one, and in [12], [19], [26] in the gen-
eral case. Moreover we thank the referee to pointed out to us that the explicit
form of the differential operator (answer to (5) of Sect. 0.1) was probably
written in the proof of Lemma 5.2 of [18], in the case p # 2.
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Theorem 4.6 Letf(t) € Wy(E) and let o = 8(7 (1)) be the Artin—Schreier charaq-
ter defined by f(t) (cf Eq. (1.21)). Let (5;()/ be the unramified extension of &

corresponding, by henselianity, to the separable extension of k((t)) defined by «.
Then

1. A basis ofDT(Va) is given by
yi=e® (v, 1), (4.34)
where e € V is the basis of Definition 4.14 and v € Ws(g}é“r) is a solution of
po(v) —v =f(T), (4.35)
where f(T) € Ws(Og[[T1I[T~1) is an arbitrary lifting off(t);
2. The Frobenius ¢q acts on Vo, moreover ¢o(y) = 6ps(f(T),1) - y. Hence, if
Te(f (D)) = f (D) + @o(f (1) + - - + ¢ (F(T), we have
9() = Op (Tr(F(1)), 1) - y; (4.36)
3. By Corollary 2.4, since K = K, one has (5};)/ = ;[st(v,l)] (cf. Defini-

tion 3.5). Ifj_”o € (F — D)W (k(2), i.e. if ag = O, then this extension can be
identified with the extension

ER0p (0, D] = Ef 0 0™, )] — Exleps (f (D), 1] (4.37)
by sending 6,5 (v~,1) into eps (f~(T),1). In particular, since g € K, one has
y=e®ep( (1),1). (4.38)

Moreover ¢o) = 6y (f (1), 1) -3, and ¢(3) = bps (Te(f (7)), 1) - 3.
4. The isomorphism class of M' (V) depends only on «~ and

M (V) — M@©,a7); (4.39)

5. The irregularity of M' (Vy) is equal to the Swan conductor of V.

Proof Let E = k((t)). For all y € Gg = Gal(E**P/E), we have (cf. Eq. (2.51))
y(e®@0,m, 1)) =&Y @ E" 0p, 1)) =e@0p(v,1),  (440)
hence e®60ps(v,1) € D'(V,). Moreover, 0(e®6bys (v,1)) = e®qo(Bps(v,1)) and

9068 (2. 1)) 2 65 (00 (). 1) = B (0 (¥) = v.1) - B (v, 1) . (4.41)
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The equality (%) is true because ¢g(75) = op(ws) = s, for all s > 0. The deri-
vation on M'(V,) arises from the derivation on £"™ (cf. Eq. (4.30)), hence
the operator attached to the basis e ® 6,s(v,1) € M%(Va) is (cf. Sect. 1.2)
d7 — 07,10g(Ops(v,1)). As explained in Remark 4.18, the isomorphism class of
M’ (V,) depends only on o~ = 8(f (1)). Hence, we can suppose o = a~ and
f(T) =f(T) € W(T~'Og[T~']) (cf. Definition 3.5). Let us write v~ instead
of v. By Eq. (3.1), we have
Op 07, P = e (F (1,17 (4.42)
hence 07 1o (Bps (v, 1)) = 7 10g(€ps (f ~ (T),1)). This establishes point (3) and (4).
Both the Swan conductor and the irregularity are stable under extension

of the constant field K, hence we can suppose K = K22 We can suppose

that f~(7T) is pure (cf. Definition 3.6), because both the Swan conductor and
the irregularity depend only on a~. Write f~(T) = > iy TP
Since the irregularities of the A, ,mw T-"">s are all different we can suppose

f_ (T) = )\.npm(n) T_np

nelp )‘np

m(n)

. Now write explicitly (cf. Definition 3.3)

m(n) m(n)

)»npm(n) T_np = (}\.r T_npr, )"l’+1 T‘_npr+1 ge ey A.m T_np )

= T 0.0+ 4 (0. 0,3, T

Since, by reduction Theorem 2.2, the irregularities of the these vectors are all
different, and since both the irregularity and the Swan conductor are invariant
by V (cf. Eq. (4.23)), we can suppose f (T) = (AT~ ",0,...,0), with |A»| = 1.
Moreover, since K = K12, the residue field is perfect and, replacing 7" with
AP T=1/P" e can suppose (n, p) = 1 (cf. Remark 1.9). The irregularity is then
np® (cf. Lemma 4.7), and it is equal to the Swan conductor (see for example [5]).
This Theorem is the analogue of Corollary 4.8 for Artin—Schreier characters of
GEg). O

Remark 4.20 Suppose that the character is totally ramified, and choose f~ (T)
in Wy(T~1Og[T~1]), then s (v, 1) = e, (f ~(T), 1).

Remark 421 Letag = %} € Z, N Q. Suppose that p,, C k. Let B4y : G — p,, C
A be the Kummer character defined by 1. We have B,,(y) = y (t%)/t". As
before, a basis of DT(VﬂaO) is given by e® T~ € Vg, ® EIT{’um, because y (e) 1=
Bay(y)e. Then (e ® T~%) = T™@(T~%) - (e ® T~%), and MT(V;;O) = M(ay, 0).
We do not necessarily have an action of g, because oy does not fix the nth root
of 1.
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