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The convergence Newton polygon of a p-adic

differential equation III : global decomposition and

controlling graphs

Jérôme Poineau and Andrea Pulita

Abstract

We deal with locally free OX-modules with connection over a Berkovich curve X. As a
main result we prove local and global decomposition theorems of such objects by the
radii of convergence of their solutions. We also derive a bound of the number of edges of
the controlling graph, in terms of the geometry of the curve and the rank of the equation.
As an application we provide a classification result of such equations over elliptic curves.

This is a first draft, containing a maximum number of details. We plan to reduce its
volume in a next version.
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Introdu
tion

Following an original idea of Dwork, if a differential equation has two solutions with different radii of
convergence, then it should correspond to a decomposition of the equation. Decomposition theorems
are the central tool in the classification of p-adic differential equations. As an example they are the
first step to obtain the p-adic local monodromy theorem [And02], [Ked04], [Meb02].

The main contributions to the decomposition results are due to Robba [Rob75a], [Rob75b],
[Rob80], Dwork-Robba [DR77], Christol-Mebkhout [CM00], [CM01], Kedlaya [Ked10], [Ked13]. We
also recall [DMR07, p. 97-107], and [Ram78] for the decomposition by the formal slopes of a differ-
ential equation over the field of power series K((T )) (cf. Section 5.7).

There are very few examples of global nature of such decomposition theorems by the radii
(mainly on annuli or disks), and all with restrictive assumptions (as an example see [Ked10, Ch.12],
[Ked13, 5.4.2]). As a matter of fact, a large part of the literature is devoted to the following two
cases: differential equations defined over a germ of punctured disk, or over the Robba ring. In the
language of Berkovich curves this corresponds respectively to a germ of segment out of a rational
point, or a germ of segment out of a point of type 2 or 3. Except in those two situations, there is a
lack of results.

We present here a general decomposition theorem of a global nature in the framework of
Berkovich smooth curves, that works without any technical assumption (solvability, exponents,
Frobenius, harmonicity, ...).

A theoretical point of a crucial importance is the definition itself of the radii of convergence.
The former definition of radii relates them to the spectral norm of the connection. This (partially)
fails in Berkovich geometry because there are solutions converging more than the natural bound
prescribed by the spectral norm. Here we deal with a more geometrical definition of the radii due
to F. Baldassarri in [Bal10], following the ideas of [BV07]. He improves the former definition by
introducing over-solvable radii, i.e. radii that are larger than the spectral bound (cf. (2.26)). These
radii are not intelligible in terms of spectral norm even if the point is of type 2, 3, or 4. Moreover
he “normalizes” the usual spectral radii of convergence, with respect to a semi-stable formal model
of the curve. He is also able to prove the continuity of the smallest radius. In [PP12b] we introduce
in that picture the notion of weak triangulation as a substitute of Baldassarri’s semi-stable model.
In fact such a semi-stable model produces a (non weak) triangulation (see [Duc] for instance). This
permits to generalize the definition to a larger class of curves, and it has the advantage for us of
being completely within the framework of Berkovich curves. Exploiting this point of view, we have
proved in [Pul12] and [PP12b] that there exists a locally finite graph outside which the radii are
all locally constant, as firstly conjectured by Baldassarri. This proves that there are relatively few
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numerical invariants of the equation encoded in the radii of convergence. The finiteness theorem
have been proved in [PP12b] by recreating the notion of generic disk in the framework of Berkovich
curves, as in the very original point of view of Bernard Dwork and Philippe Robba. The global
decomposition theorem presented here enlarges the picture, it makes evident that Baldassarri’s idea
for the definition of the radii is the good one, and gives to it a more operative meaning.

We come now come more specifically into the content of the paper. Let (K, |.|) be a complete
ultrametric valued field of characteristic 0. Let X be a quasi-smooth K-analytic curve, in the sense
of Berkovich theory1. We assume without loss of generality that X is connected. Let F be a locally
free OX -module of finite rank r endowed with an integrable connection ∇.

In [PP12b] we explained how to associate to each point x ∈ X the so called convergence Newton
polygon of F at x. Its slopes are the logarithms of the radii of convergence RS,1(x,F ) 6 · · · 6
RS,r(x,F ) of a conveniently chosen basis of solutions of F at x. Here S is a weak triangulation.

Following [Pul12], we then define for all i ∈ {1, . . . , r = rank(F )} a locally finite graph ΓS,i(F ),
as the locus of points that do not admit a virtual open disk in X − S as a neighborhood on which
RS,i(−,F ) is constant.

We say that the index i separates the radii (globally over X) if for all x ∈ X one has

RS,i−1(x,F ) < RS,i(x,F ) . (0.1)

Theorem 1 (cf. Theorem 5.3.1 and Proposition 5.3.3). If the index i separates the radii of F , then
there exists a sub-differential equation (F>i,∇>i) ⊆ (F ,∇) of rank r− i+1 together with an exact
sequence

0 → F>i → F → F<i → 0 (0.2)

such that for all x ∈ X one has

RS,j(x,F ) =

{
RS,j(x,F<i) if j = 1, . . . , i− 1
RS,j−i+1(x,F>i) if j = i, . . . , r .

(0.3)

Moreover F>i is independent on S, in the sense that if i separates the radii of F with respect to
another weak triangulation S′, then the resulting sub-object F>i is the same.

In section 8 we provide an explicit example where (0.2) does not split. In section 5.4 we provide
criteria to guarantee that F>i is a direct summand of F . More precisely we have the following

Theorem 2 (cf. Theorems 5.4.3 and 5.4.10). In each one of the following two situations F>i is a
direct summand of F :

i) The index i separates the radii of F ∗ and of F , and (X,S) is either different from a virtual
open disk with empty triangulation, or, if X is a virtual open disk D with empty triangulation,
there exists a point x ∈ D such that one of R∅,i−1(x,F ) or R∅,i−1(x,F

∗) is spectral at x.

ii) One has
(
ΓS,1(F ) ∪ · · · ∪ ΓS,i−1(F )

)
⊆ ΓS,i(F ).

In both cases (F ∗)>i is isomorphic to (F>i)
∗, and it is also a direct summand of F ∗.

In section 6 we provide conditions to describe the controlling graphs, and in particular to fulfill
the assumptions of Thm. 2.

1Quasi-smooth means that ΩX is locally free, see [Duc, 2.1.8]. This corresponds to the notion called “rig-smooth” in
the rigid analytic setting.
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Condition ii) of Thm. 2 implies i), and it has the advantage that it involves only the radii of
F . Nevertheless i) is more natural, and general, by the following reason. If one is allowed to choose
arbitrarily the weak triangulation, then to guarantee the existence of F>i one has to choose it as
small as possible, and the same is true for condition i). On the other hand to fulfill ii) one is induced
to choose it quite large. For more precise statements see Remarks 5.3.4 and 5.4.11.

As a corollary we obtain the following:

Corollary 3 (cf. Cor. 5.6.8). Let F be a differential equation over X. There exists a locally finite
subset F of X such that, if Y is a connected component of X − F, then:

i) For all i < j one has either RS,i(y,F ) = RS,j(y,F ) for all y ∈ Y , or RS,i(y,F ) < RS,j(y,F )
for all y ∈ Y .

ii) Let 1 = i1 < i2 < . . . < ih be the indexes separating the global radii {RS,i(−,F )}i over Y .
Then one has a filtration

0 6= (F|Y )>ih ⊂ (F|Y )>ih−1
⊂ · · · ⊂ (F|Y )>i1 = F|Y , (0.4)

such that the rank of (F|Y )>ik is r− ik+1 and its solutions at each point of Y are the solutions
of F with radius larger than RS,ik(−,F ).

Note that we did not endow Y with a weak triangulation, and that the radii of the Corollary
3 are those of F viewed as an equation over X. In section 5.6 we also provide conditions making
(0.4) a graduation.

A direct corollary of the above results is the Christol-Mebkhout decomposition over the Robba
ring [CM00] (cf. Section 5.5). Another corollary is the following classification result:

Theorem 4 (cf. Cor. 7.3.1). Assume that X is either a Tate curve, or that p 6= 2 and X is an
elliptic curve with good reduction. Consider a triangulation S of X formed by an individual point.
Let F be a differential equation over X of rank r. Then

i) For all i = 1, . . . , r the radius RS,i(−,F ) is a constant function on X, and ΓS,i(F ) = ΓS;

ii) One has a direct sum decomposition as

F =
⊕

0<ρ61

F
ρ , (0.5)

where RS,j(−,F
ρ) = ρ for all j = 1, . . . , rankF ρ.

The proof of the existence of F>i (cf. Theorem 5.3.1) is obtained as follows. Firstly, in section 3,
we prove a local decomposition theorem by the spectral radii for differential modules over the field
H (x), of a point x of type 2, 3, or 4 of a Berkovich curve. This generalizes to curves the classical
Robba’s classical decomposition theorem [Rob75a], originally proved for points of type 2 or 3 of the
affine line. Then, in section 4, we descends that decomposition to OX,x ⊆ H (x) (i.e. to a neighbor-
hood of x in X). This is a generalization to curves of Dwork-Robba’s decomposition result [DR77],
originally proved for points of type 2 or 3 of the affine line. The language of generic disks introduced
in [PP12b] permits to extend smoothly these proofs to curves, up to minor implementations.

Such local decompositions are also present in [Ked13], where one makes everywhere a systematic
use of the spectral norm of the connection, as in [Ked10]. Methods involving spectral norms work
thank to the Hensel factorization theorem of [Rob80], and [CD94, Lemme 1.4]. We presents here the
same local decomposition results as a consequence of the original, and more geometric, techniques
of [Rob75a] and [DR77].

Robba’s and Dwork-Robba’s local decompositions take in account only spectral radii, because
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over-solvable radii are not invariant by localization. For this reason Dwork-Robba’s local decompo-
sitions (at the points of type 2, 3, and 4) do not glue, and they do not give the global decomposition.
We then augment the Dwork-Robba decomposition of the stalk Fx by taking in account the de-
composition of the trivial submodule of Fx coming from the existence of solutions converging in a
disk containing x, i.e. taking in account over-solvable radii. This augmented decomposition of Fx

glues without any obstructions, and it provides the existence of F>i.

In Theorem 1 we actually use the continuity of the radii RS,i(−,F ) (cf. proof of Proposition
2.9.7). Implicitly we also use the local finiteness of ΓS,i(F ), since for i > 2 the continuity is an
indirect consequence of the finiteness (cf. [Pul12] and [PP12b]).

In the second part of the paper, we provide an operative description of the controlling graphs,
that is essential, for instance, to fulfill the assumptions of the above theorems.

As a consequence we obtain, in section 7, a bound on the number of edges of ΓS,i(F ). We prove
that this number is controlled by the knowledge of the slopes of the radii at a certain locally finite
family of points, that are roughly speaking those where the super-harmonicty fails.

If X is a smooth geometrically connected projective curve, then we find unconditional bounds,
in the sense that they depend only on the geometry of the curve and the rank of F , not on the
equation itself.

In particular, when i = 1, we prove the following neat result:

Theorem 5 (cf. Cor. 7.2.3). Let X be a smooth geometrically connected projective curve of genus g >

1. Let ES be the number of edges of the skeleton ΓS of the weak triangulation. Then the number of
edges of ΓS,1(F ) is at most

ES + 4r(g − 1) . (0.6)

Similar bounds are derived if i > 2. The key point in the proof of Theorem 5 is the control of the
locus of failure of the super-harmonicity property of the partial heights of the convergence Newton
polygon, as in [Pul12]. In particular, in section 6.2, we use the local part of the decomposition
theorem to reprove a formula of [Ked10, Thm. 5.3.6] describing the Laplacian of the partial heights
of the convergence Newton polygon (cf. Thm. 6.2.26). We extend it by taking into account solvable
and over-solvable radii.

NOTE. This is a first draft, containing a maximum number of details. We plan to reduce its
volume in a next version. We shall also improve the bounds of section 7, with further developments.

Structure of the paper.

In Section 1 we recall some notations and basic results. In Section 2 we define the radii and their
graphs together with their elementary properties. In Section 3 we give Robba’s local decomposition
by the spectral radii over H (x), for a point of type 2, 3, or 4. In Section 4 we descend that
decomposition to the local ring OX,x ⊆ H (x) following Dwork-Robba’s original techniques. In
Section 5 we obtain the global decomposition Theorem 5.3.1, and the criteria to have a direct sum
decomposition (cf. Theorems 5.4.3 and 5.4.10). In Section 6 we provide an operative description of
the graphs ΓS,i(F ), together with the control of the failure of super-harmonicity using Christol-
Mebkhout index theorems. In section 7 we obtain the bound on the number of their edges, and
the classification results for the elliptic curves (cf. Corollary 7.3.1). In Section 8 we provide explicit
counterexamples of the basic pathologies of over-solvable radii (incompatibility with duality, and
exact sequence, a link between super-harmonicity property and presence of Liouville numbers, by
means of the Grothendieck-Ogg-Shafarevich formula). In Appendix A we discuss the definition of
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the radius.

Acknowledgments. Thanks to Yves André, Francesco Baldassarri, Gilles Christol, Kiran S.
Kedlaya, Adriano Marmora, and Zoghman Mebkhout for helpful comments.

1. Definitions and notations

In this section we give definitions and notations that are used in the sequel of the paper.

Let K be an ultrametric complete valued field of characteristic 0. Let p be the characteristic of

its residue field k (either 0 or a prime number). We denote by K̂alg the completion of an algebraic
closure Kalg of K.

Setting 1.0.1. Let X be a quasi-smooth K-analytic curve endowed with a weak triangulation S as
in [PP12b]. Without loss of generality from now on we assume that X is connected.

By a differential equation or differential module over X we mean a coherent OX -module F

endowed with an (integrable) connection ∇. Proposition 1.0.2 below shows that F is automatically
a locally free OX -module of finite rank. This is locally a differential module as defined in section
1.2. In the sequel of the article, we shall switch freely between the different terminologies.

Proposition 1.0.2. Let F be a coherent OX -module with a connection ∇. Then F is locally free
of finite rank over OX .

Proof. If OX,x is a field, then Fx is free and finite dimensional, hence we are done. Otherwise x
is L-rational for a finite Galois extension L/K. By Galois descent, one easily reduces to the case
x = 0 and d = d/dT . The ring OX,x ⊂ K[[T ]] of convergent power series at x = 0 is then a
discrete valuation ring without non trivial ideals stable by d/dT . A classical result then says that
a differential module over OX,x has no torsion, hence it is free (cf. the proof of [Ked10, 9.1.2]). See
also [And01, Cor. 2.5.2.2] and [Kat70, Prop.8.8].

Corollary 1.0.3. The category of locally free of finite rank OX -modules with connection is an
abelian category. ✷

Recall that X is connected by Setting 1.0.1.

Proposition 1.0.4. Let σ : F → F ′ be a morphism between two differential equations over X.
If there exists x ∈ X such that σ(x) : F (x) → F ′(x) is an isomorphism (resp. monomorphism,
epimorphism) over H (x), then σ is globally an isomorphism (resp. monomorphism, epimorphism).

Proof. The ranks of the kernel and the cokernel of σ are locally constant functions.

1.1 Curves

Here we introduce some definitions and notations that will be frequently used in the paper.

Notation 1.1.1. Let A1,an
K be the Berkovich affine line with coordinate T . Let L be a complete
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valued extension of K and c ∈ L. We set

D+
L (c,R) =

{
x ∈ A1,an

L

∣∣ |(T − c)(x)| 6 R
}
, R > 0 (1.1)

D−
L (c,R) =

{
x ∈ A1,an

L

∣∣ |(T − c)(x)| < R
}
, R > 0 (1.2)

C+
L (c;R1, R2) =

{
x ∈ A1,an

L

∣∣R1 6 |(T − c)(x)| 6 R2

}
, R2 > R1 > 0 (1.3)

C−
L (c;R1, R2) =

{
x ∈ A1,an

L

∣∣R1 < |(T − c)(x)| < R2

}
. R2 > R1 > 0 (1.4)

If D ⊆ A1,an
L is a disk, we denote by O(D) (resp. B(D)) the ring of analytic (resp. bounded

analytic) functions on D. If D = D−
L (c,R), then

O(D) :=
{∑

n>0

an(T − c)n, an ∈ L, lim
n

|an|ρ
n = 0, ∀ ρ < R

}
, (1.5)

B(D) :=
{∑

n>0

an(T − c)n, an ∈ L, sup
n

|an|R
n < +∞

}
. (1.6)

We write OL(D) and BL(D) instead of O(D) and B(D) respectively when we want to specify the
base field.

The ring BL(D) is a Banach algebra with respect to the sup-norm ‖.‖D on D. If D = D−
L (c,R),

this norm will be denoted by |.|c,R. For f ∈ B(D−
L (c,R)) one has |f |c,R = supn>0

∣∣∣ 1
n!(

d
dT )

n(f)(c)
∣∣∣
L
·Rn.

This norm is indeed multiplicative. Hence it defines a point of Berkovich line A1,an
K . We will denote

it by xc,R.

More generally, for all complete valued field extensions L/K, and all pairs (t, R), with t ∈ L,

R > 0, the formula |f |t,R := supn>0

∣∣∣ 1
n!(

d
dT )

n(f)(t)
∣∣∣
L
·Rn, for all polynomial f ∈ K[T ], defines a

point of A1,an
K . We will denote it by xt,R.

Definition 1.1.2. A virtual open disk (resp. annulus) is a connected analytic space that becomes

isomorphic to a union of open disks (resp. annuli) after base change to K̂alg.

1.1.1 Radius of a point. If x ∈ A1,an
K we define

r(x) := max
(
r > 0 such that there exists t ∈ L/K satisfying x = xt,r

)
. (1.7)

This is the radius of the point (cf. [Ber90, 4.2]). The real number r(x) is not an invariant of the
point x because it depends on the coordinate T . It is not invariant by arbitrary extension of K, but

it is stable under extension contained in K̂alg. We refer to [Pul12, sections 1.3.1, 1.3.2] for additional
properties of r(x).

1.1.2 Modulus of an inclusion of virtual disks. The radius of a disk is not invariant by K-
linear isomorphisms. On the other hand, annuli carry an intrinsic numerical datum: their so-called
modulus.

Assume first that K is algebraically closed. The modulus of an annulus is the ratio R2/R1 > 1
of the external radius R2 by the internal radius R1 with respect to an arbitrary coordinate (cf.
[PP12a, Def. 2.2.2]). The definition is extended to a punctured disk D − {x} where x is a point of
type 1.

Assume now that K is not algebraically closed. Let C be a virtual annulus (resp. D − {x} be a
disk without a point x of type 1 or 4). Since the Galois group Gal(Kalg/K) acts isometrically, all the

connected components of C⊗̂K̂alg (resp. (D − {x})⊗̂K̂alg) are isomorphic annuli (resp. punctured
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disks if x is of type 1, open annuli if x is of type 4) having all the same modulus. We call it the
modulus of C (resp. D − {x}).

Let D′ ⊆ D be an inclusion of virtual open disks. If D 6= D′, the modulus of the semi-open
annulus D −D′ is called the modulus of the inclusion D′ ⊆ D. If D = D′ we define the modulus of
the inclusion to be 1.

1.1.3 Branches, germ of segments and sections. Let X be a curve as in Setting 1.0.1. The
Berkovich space X is naturally endowed with a graph structure (cf. [Duc]). By a closed segment
[x, y] ⊂ X we mean the image in X of an injective continuous path [0, 1] → X with initial point x
and end point y. We also call segments the images ]x, y[, ]x, y], [x, y[ of ]0, 1[, ]0, 1], [0, 1[ respectively.
In this case we say that the segments are open, or semi-open. By convention a segment is never
reduced to a point nor to the empty set.

A germ of segment b out of x ∈ X is an equivalence class of open segments ]x, y[ given by
]x, y1[∼]x, y2[ if and only if there exists z such that ∅ 6=]x, z[⊆]x, y1[∩]x, y2[. By abuse we often write
b =]x, y[ instead of ]x, y[∈ b.

If x is a point of type 2 or 3, then a germ of segment b out of x is always represented by an
open segment ]x, y[ which is the skeleton of a virtual open annulus C. In particular x belongs to
the boundary of C in X. If x is a point of type 1 or 4, then ]x, y[ corresponds to D−{x}, where D
is a virtual open disk containing x. By abuse we say that ]x, y[ is the skeleton of D − {x}, indeed
this is the set of points that do not admit a disk as a neighborhood in of D − {x}.

A section of a germ of segment b out of x in X is a connected open subset of U of X containing
such an annulus C (resp. D − {x}), if x is of type 2 or 3 (resp. 1 or 4), and such that x belongs to
the closure of U in X, but not to U itself.

We refer to [Duc] for the definition of a branch. Roughly speaking a branch out of x corresponds
to a direction out of x. Germs of segments out of x correspond bijectively to branches out of x.
They will often be denoted by the same symbol b. By a section of the branch b, we mean a section
of the corresponding germ of segment.

1.1.4 Slopes. Let b be a germ of segment out of x ∈ X, let ]x, y[ be a representative of b, and let
F : [x, y] → R be a continuous function. If it has a meaning, we use the symbol ∂bF (x) to indicate
the log-slope at x of F along b. The definition is the following.

Assume firstly that x is of type 2 or 3, and that K is algebraically closed. Then ]x, y[ is the skele-
ton of an open annulus Cx,y inX. Choose a coordinate T on Cx,y identifying Cx,y with C

−
K(0;R1, R2).

Then we set

∂bF (x) := lim
y→x
]x,y[∈b

log(F (y)) − log(F (x))

log(|T (y)|) − log(|T (x)|)
. (1.8)

If the resulting limit exists, then it is independent on the chosen coordinate, because |T (y)|/|T (x)|
is the modulus of Cx,y. In general the definition descends from Kalg to K as the modulus does. So
the slope ∂bF (x) is a K-rational notion, and it only depends on b and F .

If now x is of type 1 or 4, then ]x, y[ is the skeleton of a virtual open disk D − {x}, with x
removed. We express D − {x} as a union of annuli Cz,y, with z ∈]x, y[. In this case we define

∂bF (x) := lim
z→x

z∈]x,y[∈b

∂bF (z) . (1.9)

We say that F is log-affine over ]x, y[ if it is continuous on ]x, y[ and if its slope function z 7→ ∂bF (z)
is constant on ]x, y[.

The functions of this paper will always be piecewise log-affine. With the above settings, this
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implies that for all z ∈ [x, y[ one has log(F (z)) = α log(|T (z)|)+β, with α, β ∈ R. Hence ∂bF (x) = α.

1.1.5 Graphs. The reader can find in [Duc, 1.3.1] the definition of a graph. A single point and
the empty set are graphs. We say that a germ of segment b out of x belongs to a graph Γ ⊆ X if b
is represented by a segment ]x, y[⊂ Γ. A point x ∈ Γ is a bifurcation point if there is more than two
germs of segments out of x belonging to Γ. A point x ∈ Γ is an end point of Γ if there is no open
segments ]z, y[ in X such that x ∈]z, y[⊂ Γ.

In this paper by a locally finite graph we mean a closed connected subset Γ ⊂ X such that

i) Each point x ∈ Γ admits a neighborhood U in X such that Γ∩U is a finite union of segments
and points;

ii) X − Γ is a disjoint union of virtual open disks.

All the graphs of this paper are locally finite with the exception of those in the Appendix A.

1.1.6 Weak triangulations. Following [Duc, Section 4] and [PP12b, Section 2.1], a weak trian-
gulation of X is a locally finite subset S ⊂ X, formed by points of type 2, and 3, such that X − S
is a disjoint union of virtual open annuli and virtual open disks. The skeleton ΓS of S is then the
union of S and the skeletons of the open annuli that are connected components of X − S.

Remark that the empty set is a triangulation of a virtual open annulus or virtual open disk.

1.1.7 Star-shaped neighborhoods. A connected open neighborhood U of a point x ∈ X will be
called star-shaped if

i) U is a virtual open disk containing x, if x is of type 1 or 4;

ii) U is an open subset of X such that {x} is a weak triangulation of U , if x is of type 2 or 3.

We define the canonical weak triangulation SU of U as the empty set in the first case, and as
SU = {x} in the second case. We define the pointed skeleton of U (as a neighborhood of x) as

iii) the open segment connecting x to the boundary of the disk U , if x is of type 1 or 4;

iv) the skeleton ΓSU
of SU = {x}, if x is of type 2 or 3.

Let us now consider a connected affinoid neighborhood Y of x in X. If ∂Y denotes the topological
boundary of Y , we say that Y is a star-shaped affinoid neighborhood of x in X if the connected
component UY of Y −∂Y containing x is a star-shaped open neighborhood of x in X, and the other
connected components of Y − ∂Y are all virtual open disks. We define the canonical triangulation
of Y as ∂Y ∪ {x}, and the pointed skeleton as the union of the pointed skeleton of UY with ∂Y .

1.2 Differential modules and trivial submodules

Let A be a commutative ring with a non zero derivation d : A→ A is called a differential ring.

Definition 1.2.1. A differential module (M,∇) over (A, d) is a locally free A-module with finite
rank, together with a connection ∇ : M → M, i.e. a Z-linear map satisfying the Leibnitz rule
∇(am) = d(a)m+ a∇(m) for all a ∈ A, m ∈ M.

Remark 1.2.2. By [Bou98, II.5.2, Thm. 1], M is locally free of finite rank over A, if and only if
M is projective of finite rank over A.

Denote by A〈d〉 the Weyl algebra of differential polynomials. As an additive groups one has
A〈d〉 = ⊕n>0A◦dn, and the multiplication ◦ is given by a◦d = d◦a+d(a) for all a ∈ A. A differential
module is naturally an A〈d〉-module which is locally free of finite rank over A, and where the action
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of d on M is given by ∇. Morphisms between differential modules are A〈d〉-linear morphisms, or
equivalently A-linear maps commuting with the connections. The linear algebra constructions on
M are naturally A〈d〉-modules, so they acquire canonically a connection. As an example the dual
module M∗ := HomA(M, A) is endowed with the connection (∇∗(α))(m) = α ◦ ∇ − d ◦ α.

Let (A′, d′) be another ring with derivation, and let A → A′ be a ring morphism commuting
with the derivations. Let M be an A〈d〉-module. The scalar extension of M is the module M⊗A A

′

endowed with the connection ∇′ := ∇ ⊗ IdA′ + IdM ⊗ d′. A solution of M with values in A′ is an
element in the kernel of ∇′:

H0(M, A′) := ω(M, A′) := Ker(∇′ : M⊗A A
′ → M⊗A A

′) . (1.10)

The kernel of the derivation Ad=0 := Ker(d : A → A) is a sub-ring of A. The group ω(M, A) is
naturally an sub-Ad=0-module of M, and the rule M 7→ ω(M, A) is a covariant functor.

We denote the co-kernel by

H1(M, A′) := Coker(∇′ : M⊗A A
′ → M⊗A A

′) . (1.11)

We often write H1(M) := H1(M, A), if no confusion is possible.

χ(M, A′) := rankH0(M, A′)− rankH1(M, A′) . (1.12)

Lemma 1.2.3 ([Bou62, II.4.2]). If M is a differential module, then

ω(M, A′) = HomA〈d〉(M
∗, A′) . ✷ (1.13)

Let M be a A〈d〉-module. The canonical arrow

jM : A⊗Ad=0 ω(M, A) −→ M , (1.14)

defined by jM(a ⊗ v) := a · v ∈ M, is a morphism of differential modules, if A ⊗Ad=0 ω(M, A) is
endowed with the connection ∇(a⊗v) := d(a)⊗v. The collection {jM}M is a natural transformation
of functors. We denote by MA the image of jM. If f : M → N is a morphism, then f(MA) ⊆ NA,
and the rule M 7→ MA is a functor. If N → M → P is exact, then NA → MA → PA is a complex
(i.e. the image of NA in MA lies in the kernel of MA → PA).

Definition 1.2.4. We say that the A〈d〉-module M is trivial if jM is an isomorphism. We say that
M is trivialized by A′ if M⊗A A

′ is trivial as a differential module over A′.

Remark 1.2.5. If ω(M, A) is a finite free Ad=0-module, then M is trivial if and only if it is iso-
morphic, as A〈d〉-module, to Ar with the connection ∇(a1, . . . , ar) := (d(a1), . . . , d(ar)).

Remark 1.2.6. Assume that the derivation d : A → A is a surjective map. Then for every trivial
A〈d〉-module M the connection ∇ : M → M is surjective too. Indeed so is the connection d′ ⊗ Id of
A⊗Ad=0 ω(M, A).

Lemma 1.2.7 ([Ked10, 5.3.3, and 5.3.4]). Let M and N be two A〈d〉-modules. Denote by Ext1(M,N)
the Yoneda extension group of exact sequences 0 → N → P → M → 0. If M is projective as A-
module, then Ext1(M,N)

∼
→ H1(M∗ ⊗N). ✷

Lemma 1.2.8. Let E : 0 → N → M → Q → 0 be an exact sequence of A〈d〉-modules. Then

i) The sequence ω(E,A) is left exact, moreover ω(N, A) = ω(M, A) ∩N.

ii) Assume the derivation d : A → A is surjective, and that N is trivial. Then ω(E,A) is also
right exact.
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iii) Assume that the derivation d : A → A is surjective, and that N and Q are both trivial. Then
M is trivial.

Proof. i) Clearly ω(N, A) ⊆ ω(M, A). If x ∈ M is killed by ∇, and if its image in Q is 0, then
x ∈ ω(M, A) ∩N = ω(N, A). This proves the exactness of ω(E,A).

ii) If moreover d : A′ → A′ is surjective, and N is trivialized by A′, then the connection ∇′ :
N⊗AA

′ → N⊗AA
′ is surjective by Remark 1.2.6. So the snake lemma of the diagram ∇′ : E⊗AA

′ →
E ⊗A A

′ provides the exactness of the sequence ω(E,A′).

iii) Assume moreover that Q is trivialized by A′ too. Let E′ := E ⊗A A
′ and M′ := M ⊗A A

′.
Then the five lemma applied to the diagram jE′ : A′⊗(A′)d′=0ω(E′, A′) → E′ implies that the middle

map jM′ is an isomorphism, and M′ is trivial.

Remark 1.2.9. Let A′ be a differential ring over A. With the notation of Lemma 1.2.8, if TorA1 (Q, A
′) =

0, then E⊗AA
′ is exact, and hence ω(E,A′) is left exact by i). Under this condition the statements

of ii) and iii) holds replacing the word trivial by trivialized by A′, and the condition d is surjective
by d′ is surjective.

Recall that a derivation d′ on an integral domain A′ extends uniquely to a derivation on its
fraction field F (A′). We will abuse notation and also denote it d′.

Lemma 1.2.10. Assume that A is an integral domain such that Ad=0 = F (A)d=0. Then

i) If M is a A〈d〉-module which is projective as A-module, then jM is injective.

ii) Assume that M trivial. Let 0 → N → M → Q → 0 be an exact sequence of A〈d〉-modules such
that Q is projective as A-module. Then N and Q are both trivial (in particular M, N and Q
are free A-modules).

iii) With the assumptions of ii), if moreover the derivation d : A → A is a surjective map, then
the sequence 0 → N → M → Q → 0 splits.

Proof. i) If A = F (A), then it is classical (cf. [Ked10, Lemma 5.1.5]). If A 6= F (A), we deduce
the injectivity of jM from the injectivity of jM⊗AF (A). For this it is enough to prove that the
induced map ω(M, A) ⊗Ad=0 A → ω(M ⊗A F (A), F (A)) ⊗Ad=0 F (A) is injective. The inclusions
ω(M, A) ⊆ ω(M, F (A)) := ω(M ⊗A F (A), F (A)) follows by left exactness of ω(M,−), using (1.13).
This is an inclusion of vector spaces over the same field Ad=0 = F (A)d=0. We deduce that the maps
deduced by scalar extension ω(M, A) ⊗Ad=0 A → ω(M, A) ⊗Ad=0 F (A) and ω(M, A) ⊗Ad=0 F (A) →
ω(M⊗A F (A), F (A))⊗Ad=0 F (A) are injective. So the composite map ω(M, A)⊗Ad=0 A→ ω(M⊗A

F (A), F (A)) ⊗Ad=0 F (A) is injective.

ii) If M is trivial, and if E : 0 → N
i
→ M

p
→ Q → 0 is an exact sequence, we consider the morphism

of sequences jE : ω(E,A) ⊗Ad=0 A → E. From the surjectivity of p ◦ jM we deduce the surjectivity
of jQ. By i) one has its injectivity, hence Q is trivial. Moreover the map ω(p,A) ⊗ IdA coincides
with p, so it is surjective. Now Ad=0 is a field, hence A is flat over Ad=0, and ω(E,A) ⊗Ad=0 A is
left exact. Then we can apply the snake lemma, and N is trivial.

iii) Now Ext1(Q,N) = H1(Q∗ ⊗ N), by Lemma 1.2.7. Since all modules are trivial, Q∗ ⊗ N is
trivial too. In this situation if d : A→ A is surjective, then H1(Q∗ ⊗N) = 0 by Remark 1.2.6.

Remark 1.2.11. The trivial sub-module MA is rarely a direct factor of M. We provide explicit
examples of this in section 8.

Remark 1.2.12 (Duality and trivial sub-modules). The duality endo-functor M 7→ M∗ is an additive
and exact equivalence of category of differential modules. Unfortunately it is not compatible with the
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functor M 7→ MA. Namely there exists a canonical composite morphism

(M∗)A → M∗ → (MA)
∗ (1.15)

which is often not an isomorphism. The dimensions of (MA)
∗ and (M∗)A can be different (see the

counterexamples of section 8). But even when the two dimensions are equal, there is no reasons to
have an isomorphism. This means that ω(M∗, A) can not be identified to the dual of ω(M, A). This
is closely related to the assumption of Theorem 5.4.3.

Remark 1.2.13. The dual convention, which is often used in literature2, consists in defining the
solutions of M with values in A′ as the morphisms HomA〈d〉(M, A

′) = HomA′〈d〉(M ⊗A A′, A′).
With respect to the convention (1.10) these are the solutions of the dual module M∗. Duality is an
equivalence of the category of differential modules, so each statement admits a dual statement.

1.2.1 Change of derivation. Let d1, d2 : A → A be two derivations satisfying d2 = ad1 with a
invertible in A. The two categories of differential modules with respect to d1 and to d2 are isomorphic
as follows: to a d1-module (M,∇1) one associates the d2-module (M,∇2) with ∇2 = a ·∇1. Then an
A-linear morphism commutes with∇1 if and only if it commutes with ∇2. In other words the functor
is the identity on the morphisms. A differential module is d1-trivial if and only if it is d2-trivial.

1.2.2 Filtrations of cyclic modules, and factorization of operators. We say that a differential
module M is cyclic if it is of the form A〈d〉/A〈d〉P , for some unitary differential polynomial P . The
latter module will be denoted by MP . If A is a field, any differential module is cyclic (cf. [Del70,
Ch.II, Lemme 1.3], [Kat87]).

If P factorizes in A〈d〉 as P = P1 · P2, then right multiplication L 7→ L · P2 by P2 identifies
A〈d〉P1 to A〈d〉P and one has an exact sequence

0 → MP1 → MP → MP2 → 0 . (1.16)

If A is a field, then the converse is also true: given an exact sequence of differential modules 0 →
N → MP → Q → 0, there exists a factorization P = P1 · P2 such that N ∼= MP1 and Q ∼= MP2 (cf.
[Chr83, 3.5.6] for more details).

2. Radii and filtrations by the radii

In this section we introduce the radii of convergence of a differential equation over X, and we
recall some results of [Pul12] and [PP12b]. Without explicit mention of the contrary, we assume
everywhere that the curve X is endowed with a weak triangulation S.

2.1 Generic disks

We begin by recreating the framework of Dwork’s generic disks, in the context of Berkovich analytic
curves.

Definition 2.1.1. Let x ∈ X. The map M (H (x)) → X lifts canonically to a map M (H (x)) →
XH (x) by the universal property of the Cartesian diagram XH (x)/H (x) → X/K. We denote by
tx ∈ XH (x) the H (x)-rational point so obtained.

There is another way of lifting the points of X:

2This is indeed the convention adopted in all the papers by Christol, Dwork, Mebkhout, Robba,. . .
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Proposition 2.1.2 ([PP12b]). Assume that K is algebraically closed. Let Ω be a complete valued
field extension of H (x), and let XΩ := X⊗̂KΩ. Denote by πΩ : XΩ → X the canonical projection.
For all x ∈ X there exists a unique point σΩ(x) ∈ π

−1
Ω (x) such that π−1

Ω (x)−{σΩ(x)} is a union of
virtual open disks D ⊆ XΩ such that their topological closure D in XΩ is D ∪ {σΩ(x)}. ✷

Definition 2.1.3. Assume that K is algebraically closed. For all field extensions L/K one has a
canonical section

σL : X → XL (2.1)

associating to x the image of the point σΩ(x) ∈ XΩ of Prop. 2.1.2 by the canonical projection
XΩ → XL, where Ω/K contains L and H (x).

The map σL is well defined and independent on the choice of Ω (cf. [PP12b, Def. 2.1.10]).

Remark 2.1.4. The map σL is defined in [Ber90, p.98], see also [Poi12].

2.1.1 Generic disks. If now K is arbitrary, then X ∼= X
K̂alg/Gal(Kalg/K). This allows to

describe π−1
Ω (x) as follows. Consider the composite arrow πΩ : XΩ −→ X

K̂alg → X, where the first
projection π

Ω/K̂alg is that of Proposition 2.1.2. If {x1, . . . , xn} is the set of points in X
K̂alg lifting

x ∈ X, then one has a disjoint union

π−1
Ω (x) =

n⋃

i=1

π−1

Ω/K̂alg
(xi) . (2.2)

By Proposition 2.1.2, π−1
Ω (x)− {σΩ(x1), . . . , σΩ(xn)} is a disjoint union of virtual open disks.

Now if x is of type 1, then these disks are empty for all Ω/K. Otherwise, if x is of type 2, 3, or 4,
then they are not empty as soon as H (x) embeds into Ω. In this case we call them Dwork generic
disks for x. The group Galcont(Ω/K) acts transitively on these disks (cf. [PP12b, Cor. 2.1.14]). So
we often say “the” generic disk to indicate one of them, and we denote it by

D(x) ⊂ XΩ . (2.3)

By construction D(x) exists if and only if x is not of type 1, and it always comes by scalar extension
from a H (x)-rational disk, still denoted by D(x).

Notation 2.1.5. In the sequel we choose tx as a canonical center of D(x).

2.1.2 Existence of a big field. The field Ω appears

i) in Prop. 2.1.2 to describe the structure of π−1
Ω (x)− {σΩ(x)};

ii) to prove the independence of the radii on the center tx (cf. Remark 2.3.2);

iii) when one needs a spherically complete field to make differential modules free over D(x) by
Lazard’s theorem [Laz62] (cf. also [Chr12, Ch.II]).

By convenience of notations, from now on we fix a field spherically complete and algebraically closed
field Ω/K containing the family of fields {H (x)}x∈X . This is possible thanks to Proposition 2.1.7
below. The field Ω does not play any essential role, and it will not be specified anymore.

Remark 2.1.6. The point tx plays no particular role too, since two centers of two disks D(x) are
always conjugated by Galcont(Ω/K). We fix tx and Ω merely by convenience of notation.

Proposition 2.1.7. Let L be a valued field. Let I be a set and (Li)i∈I be a family of valued extensions
of L. Then, there exists a valued extension M of L such, for every i ∈ I, there exists an L-linear
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isometric embedding ji : Li →֒M .

Proof. For every i ∈ I, consider an isometric embedding hi : L →֒ Li. Fix a set W of cardinality at
least

∑
i∈I Card(Li) + ℵ0.

Consider the collection T of tuples (M,σM , hM , J, (ji)i∈J) such that

i) M is a subset of W;

ii) σM is a valued field structure on M (which will be implicit in what follows);

iii) hM is an isometric embedding of L into M ;

iv) J is a subset of I;

v) for every i ∈ J , ji is an L-linear isometric embedding of Li into M ;

vi) the subfield generated by the union of the images of the ji’s is dense in M .

By the first condition, T is a set.

Remark that, if M is a valued field that satisfies all the conditions but the first one, then there
exists a valued field M ′, that is isometrically isomorphic to M , and satisfy all the condition. Indeed,
the last condition implies that the cardinality of M is at most

∑
i∈I Card(Li) + ℵ0, hence there

exists a bijection between M and a subset M ′ of W. Transporting the structures, we are done. For
this reason, from now on, we will forget this first condition.

We endow T with the following order relation: (M,σM , hM , J, (ji)i∈J ) 6 (M ′, σM ′ , hM ′ , J ′, (j′i)i∈J ′)
if

i) there exists an L-linear isometric embedding jM ′,M of M into M ′;

ii) J is a subset of J ′ ;

iii) for every i ∈ J , we have j′i = jM ′,M ◦ ji.

By an inductive limit construction, it is easy to check that every totally ordered subset of T

has an upper-bound. Hence, by Zorn’s lemma, there exists a maximal element (M,J, (ji)i∈J) in T .

We claim that J = I, which proves the lemma. By contradiction, assume that J ⊂ I and choose
k ∈ I \ J . It is known that there exists a valued field M ′ that is both an extension of M and Lk:
we have isometric embeddings jM ′,M : M → M ′ and j′k : Lk → M ′. Moreover, we may assume that
jM ′,M ◦hM = j′k◦hk, and that the subfield generated by jM ′,M (M)∪jk(Lk) is dense inM

′. Set hM ′ =
jM,M ′ ◦ hM and, for every i ∈ J , j′i = jM ′,M ◦ ji. Then the tuple (M ′, σM ′ , hM ′ , J ∪ {k}, (j′i)i∈J∪{k})
is an element of T that is greater than (M,σM , hM , J, (ji)i∈J).

2.2 Maximal disks

Definition 2.2.1. Let Z ⊆ X be any subset such that X − Z is a disjoint union of virtual open
disks or annuli. Let x ∈ X, and let Ω/H (x) be any complete valued field extension. We define

D(x,Z) ⊆ XΩ − σΩ(Z) (2.4)

as the largest open disk centered at tx and contained in XΩ − σΩ(Z).

Remark 2.2.2. If x ∈ Z, then D(x,Z) = D(x). As a consequence if Z = X, then one has
D(x,Z) = D(x) for all x ∈ X. Note however that the field Ω depends on x.

Definition 2.2.3 (Maximal disks). Let x ∈ X. We call maximal disk of x (with respect to the weak
triangulation S) the disk

D(x, S) = D(x,ΓS) . (2.5)
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If Ω/K is algebraically closed and spherically complete, all maximal disks in XΩ are isomorphic
under the action of Galcont(Ω/K).

Remark 2.2.4. There are two possibilities for D(x, S). If x belongs to the skeleton ΓS, then D(x, S)
is contained in π−1

Ω (x), and D(x, S) = D(x) (cf. Remark 2.2.2). Otherwise, if x /∈ ΓS, then D(x, S)
contains π−1

Ω (x), and it is strictly larger than the generic disk. In this case D(x, S) has a Kalg-
rational center, and its image in X is an open virtual disk containing x (cf. [Pul12, Lemma 1.5]).

2.3 Multiradius.

Assume that Ω/K is algebraically closed and spherically complete. Choose an isomorphismD(x, S)
∼
→

D−
Ω(0, R) sending tx at 0. By a result of M. Lazard (cf. [Laz62] and [Chr12, Ch.II, Section 4.4]) the

restriction F̃ of F to D−
Ω (0, R) is free of rank r = rank(Fx), and it is hence given by a differential

module over O(D−
Ω (0, R)). Denote by

RF̃
S,i(x) > 0 (2.6)

the radius of the maximal open disk centered at 0 and contained inD−
Ω (0, R) on which the connection

of F̃ admits at least r − i+ 1 horizontal sections that are linearly independent over Ω.

Definition 2.3.1 (Multiradius). We call multiradius of F at x the tuple

RS(x,F ) := (RS,1(x,F ), . . . ,RS,r(x,F )) (2.7)

where, for every i, one has

RS,i(x,F ) := RF̃
S,i(x)/R ∈ ]0, 1] . (2.8)

The definition only depends on x and (F ,∇). Each RS,i(x,F ) is the inverse of the modulus (cf.
1.1.2) of a well defined sub-disk DS,i(x,F ) ⊆ D(x, S), centered at tx:

∅ 6= DS,1(x,F ) ⊆ DS,2(x,F ) ⊆ · · · ⊆ DS,r(x,F ) ⊆ D(x, S) . (2.9)

For every 0 < R 6 1, we denote respectively by

DS(x,R) ⊆ D(x, S) (2.10)

D(x,R) ⊆ D(x) (2.11)

the open sub-disks centered at tx of modulus equal to 1/R. With this convention one has

DS,i(x,F ) := DS(x,RS,i(x,F )) . (2.12)

Remark 2.3.2. If tx is replaced by another center of D(x), the radius RF̃
S,i(x) does not change. This

is because all centers of D(x) are permuted by the Galois group Galcont(Ω/K) that acts isometrically
(cf. [Pul12, Section 4.3]).

Remark 2.3.3. Let S, S′ be two weak triangulations of X. If ΓS = ΓS′, then RS(−,F ) = RS′(−,F ).
Indeed the disk D(x, S) only depends on ΓS.

Definition 2.3.4 (Convergence Newton polygon). We call convergence Newton polygon of F at
x ∈ X the epigraph of the unique continuous convex function hx : [−∞, r[→ R>0 satisfying

i) hx(0) = 0, and hx(i)− hx(i− 1) = − log(RS,r−i+1(x,F )), for all i = 1, . . . , r;

ii) For all i = 1, . . . , r the function hx is affine over [i− 1, i], and constant on ]−∞, 0].

In other words it is the polygon whose slopes are − logRS,r(x,F ) 6 · · · 6 − logRS,1(x,F ). For
all i = 1, . . . , r the numbers hx(i) =

∑r
j=r−i+1− logRS,j(x,F ) are called the partial heights of the
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polygon.

The following definition is convenient for technical reasons concerning the super-harmonicity
properties (cf. section 6.2):

Definition 2.3.5 (Partial heights of F ). Let i 6 r = rank(F ). We call i-th partial height of F

the function

HS,i(x,F ) :=
∏

j=1,...,i

RS,j(x,F ) . (2.13)

With the notations of Def. 2.3.4 one has

ln(HS,i(x,F )) = hx(r − i+ 1)− hx(r) . (2.14)

2.4 Controlling graphs

In [Pul12] and [PP12b] we obtained the following result.

Theorem 2.4.1 ([Pul12],[PP12b]). For all i = 1, . . . , r the functions x 7→ RS,i(x,F ) are continu-
ous. Moreover there exists a locally finite graph Γ ⊆ X such that for all i the radius RS,i(−,F ) is
constant on every connected components of X − Γ.

If S = ∅, then, by definition X is a virtual open disk or annulus (recall that X is connected by
Setting 1.0.1). On the other hand ΓS = ∅ if and only if X is a virtual open disk with empty (weak)
triangulation. This is the unique case in which there is no retraction X → ΓS . Any other connected
curve X admits a canonical retraction

δΓS
: X → ΓS . (2.15)

The map δΓS
is the identity on ΓS , and it associates to x /∈ ΓS the boundary in ΓS of the maximal

disk D(x,ΓS) = D(x, S). This makes sense since X − ΓS is disjoint union of virtual open disks.

Definition 2.4.2. Let T be a set, and let f : X → T be a function. We call S-controlling graph
(or S-skeleton) of f the set ΓS(f) of points x ∈ X that admit no neighborhoods3 D in X such that

i) D is a virtual disk;

ii) f is constant on D;

iii) D ∩ ΓS = ∅ (or equivalently D ∩ S = ∅).

In particular ΓS ⊆ ΓS(f).

Remark 2.4.3. The graph ΓS(f) is different from the locus defined as the complement of the union
of the open subsets of X on which f is constant. Indeed f can be constant along some segments in
ΓS(f), and hence on the corresponding annulus in X. This is because the definition involves only
disks on which f is constant, and not arbitrary subsets.

We denote by ΓS,i(F ) the controlling graph of the function RS,i(−,F ). By definition

ΓS ⊆ ΓS,i(F ) . (2.16)

Hence X − ΓS,i(F ) is a disjoint union of virtual open disks. If X = D is a virtual open disk with
empty weak triangulation, and if RS,i(−,F ) is constant on D, then ΓS,i(F ) = ΓS = ∅. In all other

3Note that D(x) is not a neighborhood of x in X.
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Jérôme Poineau and Andrea Pulita

cases ΓS,i(F ) is not empty, and there is a canonical continuous retraction

δΓS,i(F ) : X → ΓS,i(F ) . (2.17)

The controlling graph ΓS(F ) of (F ,∇) is by definition the union of all the ΓS,i(F ):

ΓS(F ) :=

r⋃

i=1

ΓS,i(F ) . (2.18)

One has ΓS(F ) = ∅ if and only if X = D is a virtual disk with empty weak triangulation, and
RS(−,F ) is a constant function on D. In all other cases ΓS(F ) 6= ∅ is the smallest graph containing
ΓS on which RS(−,F ) factorizes by the canonical continuous retraction

δΓS(F ) : X → ΓS(F ) . (2.19)

An operative description of the controlling graphs is given in section 6.

2.5 Filtered space of solutions

We now define the space of solutions of F at a point x ∈ X, and its filtration by the radii.

Definition 2.5.1. We say that a tuple (d1, . . . , dr) is a scale if

i) for all i ∈ {1, . . . , r} one has di ∈ {1, . . . , r};

ii) d1 = r and d1 > d2 > · · · > dr;

iii) If di 6= di−1, then di = r − i+ 1.

It follows from the definition that r − i+ 1 6 di 6 r, for all i = 1, . . . , r.

Definition 2.5.2. Let V be a vector space of dimension r over a field Ω. A filtration by the radii
of V is a totally ordered family of r sub-spaces

Vr ⊆ Vr−1 ⊆ · · · ⊆ V1 = V (2.20)

such that the sequence (d1, . . . , dr) := (dim V1, . . . ,dim Vr) is a scale. Note that for i ∈ {2, . . . , r}

Vi 6= Vi−1 if and only if dimVi = r − i+ 1 . (2.21)

If i = 1, or if i is an index such that (2.21) holds, we say that the index i separates the filtration.

2.5.1 Filtration by the radii of the solutions. Let x ∈ X, and let tx and Ω/H (x) be as in
Section 2.1.1. We call solution of F at x any element in the stalk Ftx := Fx ⊗OX,x

OXΩ,tx which is
killed by the connection ∇. The kernel of ∇ acting on Ftx will be denoted by

ω(x,F ) . (2.22)

Let D ⊆ D(x, S) be an open disk containing tx. We define

ω(D,F ) (2.23)

as the image in ω(x,F ) of the kernel of the connection of the O(D)-differential module F (D). The
rule F 7→ ω(D,F ) is a left exact functor (cf. Lemma 1.2.8). We then define (cf. (2.9))

ωS,i(x,F ) := ω(DS,i(x,F ),F ) . (2.24)

The Ω-vector space ω(x,F ) admits a filtration:

0 6= ωS,r(x,F ) ⊆ ωS,r−1(x,F ) ⊆ · · · ⊆ ωS,1(x,F ) = ω(x,F ) . (2.25)

Lemma 2.5.3. The filtration (2.25) is a filtration by the radii. ✷
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Condition (2.21) is then expressed by the following

Definition 2.5.4. Let i ∈ {1, . . . , r}. We say that the index i separates the radii of F at x ∈ X if
either i = 1 or if one of the following equivalent conditions holds:

i) RS,i−1(x,F ) < RS,i(x,F );

ii) ωS,i−1(x,F ) ⊃ ωS,i(x,F ).

We say that i separates the radii of F if it separates the radii of F at all x ∈ X.

Remark 2.5.5. The index i separates the radii of F (at all point) if and only if the function
x 7→ dimΩ ωS,i(x,F ) is constant on X of value r − i+ 1.

2.6 Spectral, solvable, and over-solvable radii.

We say that the i-th radius RS,i(x,F ) is




spectral if DS,i(x,F ) ⊆ D(x) ,
solvable if DS,i(x,F ) = D(x) ,
over-solvable if DS,i(x,F ) ⊃ D(x) .

(2.26)

Solvable radii are spectral by definition. We also say that the index i, or the i-th step of the filtration
ωS,i(x,F ), or the disk DS,i(x,F ) is spectral, solvable, over-solvable.

Definition 2.6.1. We denote by 0 6 ispx 6 isolx 6 r the indexes such that

i) RS,i(x,F ) is spectral non solvable for i 6 ispx ,

ii) RS,i(x,F ) is solvable for ispx < i 6 isolx ,

iii) RS,i(x,F ) is over-solvable for isolx < i.

We call ispx and isolx the spectral and over-solvable cutoffs respectively.

If isolx = 0 (resp. isolx = r), then all the radii are over-solvable (resp. spectral). If ispx = 0 (resp.
ispx = r), then all the radii are solvable or over-solvable (resp. spectral non solvable). If ispx = isolx ,
then F has no solvable radii.

Remark 2.6.2. If x ∈ ΓS,i(F ), then the indexes 1, . . . , i are all spectral at x. Indeed if i is over-
solvable at x, then DS,i(x, S) is an open neighborhood of x in X on which RS,i(−,F ) is constant,
so x /∈ ΓS,i(F ). The case where i is solvable at x is also particular. It will be discussed in Lemma
6.1.4.

2.6.1 We now provide a criterion to test whether a point lies in ΓS,i(F ). Define the constancy
disk of F at x as the maximal open diskDc

S,i(x,F ) centered at tx and contained inD(x, S) on which
RS,i(−,F ) is constant. With the notations of Definition 2.2.1 one has Dc

S,i(x,F ) = D(x,ΓS,i(F )).
Then D(x) and DS,i(x,F ) are both contained in Dc

S,i(x,F ) (cf. [Pul12, Eq. (4.9)]):

D(x) ∪ DS,i(x,F ) ⊆ Dc
S,i(x,F ) ⊆ D(x, S) (2.27)

The following proposition follows immediately from Definition 2.4.2 (cf. [Pul12, Prop. 2.2, iv)]):

Proposition 2.6.3. A point x ∈ X lies in ΓS,i(F ) if and only if D(x) = Dc
S,i(x,F ). Moreover

ΓS,i(F ) = X −
⋃

x∈X[1]

Dc
S,i(x,F ) , (2.28)

where X[1] ⊂ X is the subset of points of type 1. ✷
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2.7 Change of triangulation

Here, we discuss how the radii depend on the triangulation. Let S and S′ be two triangulations of
X. From Definition 2.3.1 for all x ∈ X one has

DS′,i(x,F ) ∩D(x, S) = DS,i(x,F ) ∩D(x, S′) . (2.29)

Note that either D(x, S) ⊆ D(x, S′), or D(x, S′) ⊆ D(x, S), because they are both disks centered at
tx. So either the left hand side of (2.29) is reduced to DS′,i(x,F ), or the right hand side is reduced
to DS,i(x,F ). If ΓS ⊆ ΓS′ , then D(x, S′) ⊆ D(x, S) for all x ∈ X, and we have the following

Proposition 2.7.1 ([PP12b, (2.3.1)]). Let S, S′ be two triangulations such that ΓS ⊆ ΓS′. Then
for all i = 1, . . . , r one has

DS′,i(x,F ) = DS,i(x,F ) ∩D(x, S′) . (2.30)

In particular DS′,i(x,F ) = DS,i(x,F ) if D(x, S) = D(x, S′). Hence for all i = 1, . . . , r one has

RS′,i(x,F ) = min
(
1 , fS,S′(x) · RS,i(x,F )

)
, (2.31)

where fS,S′ : X → [1,+∞[ is the function associating to x the modulus fS,S′(x) > 1 of the inclusion
of disks D(x, S′) ⊆ D(x, S) (cf. (1.1.2)). ✷

Proposition 2.7.2 ([PP12b, 3.3.1]). Let S, S′ be two triangulations such that ΓS ⊆ ΓS′. Then

ΓS′,i(F ) = ΓS′ ∪ ΓS,i(F ) . (2.32)

Proof. Indeed fS,S′ is determined by the following properties:

i) fS,S′ is constant on each connected component of X − ΓS′ (which is necessarily a virtual open
disks);

ii) fS,S′(x) = 1 for all x ∈ ΓS ⊆ ΓS′ ;

iii) Let x ∈ ΓS′−ΓS. Let R be the radius of D(x, S) in a given coordinate. Then fS,S′(x) = R/r(x),
where r(x) 6 R is the radius of the point x with respect to the chosen coordinate of D(x, S).

Let D be a virtual disk such that D∩ (ΓS′ ∪ΓS,i(F )) = ∅. Since D∩ΓS,i(F ) = ∅, RS,i(−,F ) is
constant on D. Since D∩ΓS′ = ∅ then fS,S′ is constant on D. So by (2.31) the function RS′,i(−,F )
is constant on D. This proves that ΓS′,i(F ) ⊆ (ΓS′ ∪ ΓS,i(F )).

Conversely ΓS ⊆ ΓS′ ⊆ ΓS′,i(F ). So it is enough to prove that ΓS,i(F ) ⊆ ΓS′,i(F ). By Prop.
2.6.3 this amounts to prove that for all point x of type 1 one has Dc

S′,i(x,F ) ⊆ Dc
S,i(x,F ). By

definition Dc
S′,i(x,F ) ⊆ D(x, S′), so we have to prove that if RS,i(−,F ) is constant on a disk

D ⊆ D(x, S′), then so does RS′,i(−,F ). This follows from (2.31) since fS,S′ is constant on D.

2.8 Localization

One of the major differences between spectral and over-solvable cases is that the spectral terms of
the filtration are preserved by localization, while over-solvable ones result truncated.

The pre-image π−1
Ω (x) is independent on S and X (cf. Proof of 2.1.2), as well as the generic disk

D(x), the separating index isolx , and all the disks DS,i(x,F ) for i 6 isolx . Hence we obtain

Proposition 2.8.1. Let U ⊂ X be an analytic domain. And let SU be a weak-triangulation of U .
For all i = 1, . . . , r and all x ∈ U one has

DSU ,i(x,F|U ) ∩D(x, S) = DS,i(x,F ) ∩D(x, SU ) . (2.33)

In particular DSU ,i(x,F|U ) = DS,i(x,F ) if D(x, SU ) = D(x, S), or if i 6 isolx . Then for all x ∈ U
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and all i = 1, . . . , isolx one has

ωS,i(x,F ) = ωSU ,i(x,F|U ) . (2.34)

For all i = isolx + 1, . . . , r one has

ωSU ,i(x,FU ) =

{
ωS,i(x,F ) if DS,i(x,F ) ⊆ D(x, SU )

ω(D(x, SU ),F ) if DS,i(x,F ) ⊃ D(x, SU ) .
✷ (2.35)

The proof of the following proposition is similar to those of section 2.7

Proposition 2.8.2. Let Y ⊆ X be an analytic domain. Let SX and SY be triangulations of X and
Y respectively such that (ΓSX

∩ Y ) ⊆ ΓSY
. If y ∈ Y , then for all i = 1, . . . , r we have

DSY ,i(x,F|Y ) = DSX ,i(x,F ) ∩D(x, SY ) . (2.36)

and

RSY ,i(y,F|Y ) = min
(
1 , fSX ,SY

(y) · RSX ,i(y,F )
)
, (2.37)

where fSX ,SY
: Y → [1,+∞[ is the function associating to y ∈ Y the modulus fSX ,SY

(y) > 1 of the
inclusion D(y, SY ) ⊆ D(y, SX). Hence

ΓSY ,i(F|Y ) = (ΓSX ,i(F ) ∩ Y ) ∪ ΓSY
. ✷ (2.38)

2.8.1 Local nature of spectral radii. Let x ∈ X be a point of type 2, 3 or 4. By section 2.1.1 the
pull-back of an element f ∈ H (x) is a (constant) bounded function on D(x), and |f(x)| coincides
with the sup-norm ‖f‖D(x) on D(x). The inclusion

H (x) ⊂ BΩ(D(x)) (2.39)

obtained in this way is isometric.

Let M be a differential module over OX,x or H (x). Let MD(x) be the pull-back on D(x) of M,
considered as a free O(D(x))-module with connection. More precisely one can consider D(x) as an
Ω-analytic curve with empty triangulation and MD(x) as an equation on D(x). Definition 2.3.1 then
applies, and it make sense to attribute to MD(x) the multiradius

R∅(tx,MD(x)) . (2.40)

The vector space of solution ω(tx,MD(x)) is then filtered by the sub-spaces ω∅,i(tx,MD(x)), corre-
sponding to the disks D∅,i(tx,MD(x)) ⊆ D(tx, ∅) = D(x). The i-th radius R∅,i(tx,MD(x)) is the
inverse of the modulus of the inclusion D∅,i(tx,MD(x)) ⊆ D(x).4

We now come back to our global sheaf F on X. Since FD(x) = F (x)⊗H (x) O(D(x)), the space
of convergent solutions around tx only depends on F (x) (cf. (2.22)):

ω(tx,FD(x)) = ω(x,F ) . (2.41)

By Proposition 2.8.1, the spectral steps of the filtration ωS,i(x,F ), i 6 isolx , are intrinsically
attached to x, so that ω(tx,FD(x)) carries the spectral part of the filtration coming from the global
definition of the multiradius. More precisely

D∅,i(tx,FD(x)) = DS,i(x,F ) ∩D(x) , (2.42)

so that the corresponding i-th radius results truncated (cf. (2.12)). The vector space ω(tx,FD(x))
then results filtered by

ω∅,i(tx,FD(x)) :=

{
ωS,i(x,F ) if i 6 isolx

ωS,isolx
(x,F ) if i > isolx .

(2.43)

4Notice that the maximal disk here is D(tx, ∅) = D(x).
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2.9 Some results about morphisms and duality

Theorem 2.9.1. Let E : 0 → F ′ → F → F ′′ → 0 be an exact sequence of differential modules.
Let D be an open disk contained in the generic disk D(x). Then the sequence (cf. (2.23))

ω(D,E) : 0 → ω(D,F ′) → ω(D,F ) → ω(D,F ′′) → 0 (2.44)

is exact.

Proof. The theorem is placed here for expository reasons, see Prop. 3.6.1 for the proof.

Remark 2.9.2. Thm. 2.9.1 may fails if D(x) ⊂ D (over-solvable case). See Section 8.

Lemma 2.9.3. Let F ′ → F be an injective morphism of differential modules. Then the radii of
F ′ appears among the radii of F at least with the same multiplicity. ✷

Lemma 2.9.4. Let F ′ → F be an injective morphism of differential modules of ranks r′ and
r respectively. Assume that for some j′, j one has ωS,j′(x,F

′) = ωS,j(x,F ). Let i′ and i be the
largest indexes separating the filtrations that are smaller than or equal to j′ and j respectively. Then
r − i = r′ − i′ and for all k = 1, . . . , r − i one has

RS,i′+k(x,F
′) = RS,i+k(x,F ) , ωS,i′+k(x,F

′) = ωS,i+k(x,F ) . (2.45)

Proof. One has ωS,i′(x,F
′) = ωS,j′(x,F

′) = ωS,j(x,F ) = ωS,i(x,F ). By (2.21) they satisfy r′−i′ =
r− i. A solution in this space has a well defined radius of convergence which is independent on the
differential equation of which it is the solution. So the two filtrations of ωS,i′(x,F

′) coincide.

Proposition 2.9.5. Let E : 0 → F ′ → F → F ′′ → 0 be an exact sequence of differential equations.
Let r′, r, r′′ be their respective ranks. The following conditions are equivalent:

i) RS,r′′(x,F ) < RS,1(x,F
′);

ii) RS,1(x,F
′) = RS,r′′+1(x,F ) and RS,r′′(x,F ) < RS,r′′+1(x,F );

iii) ω(x,F ′) = ωS,r′′+1(x,F );

iv) RS,r′′(x,F
′′) < RS,1(x,F

′);

v) RS,j(x,F ) = RS,j(x,F
′′) for all j = 1, . . . , r′′, and RS,r′′(x,F ) < RS,r′′+1(x,F ).

If one of them holds, the multi-radius of F is given by:

RS(x,F ) = (RS,1(x,F
′′), . . . ,RS,r′′(x,F

′′),RS,1(x,F
′), . . . ,RS,r′(x,F

′)) . (2.46)

Moreover for all x ∈ X and all disk D ⊆ D(x, S) containing tx, the sequence ω(D,E) is exact.

Proof. i) ⇒ ii). The radii of F ′ are larger than RS,r′′+1(x,F ), so by Lemma 2.9.3 one has
RS,j(x,F

′) = RS,r′′+j(x,F ), for all j = 1, . . . , r′. Moreover r′′ + 1 separates the radii of F .

ii) ⇒ iii). The index r′′+1 separates the radii of F . So dimωS,r′′+1(x,F ) = r− (r′′+1)+1 = r′

by (2.21). Let D := DS,1(x,F
′) = DS,r′′+1(x,F ). Then ω(x,F ′) = ω(D,F ′) ⊆ ω(D,F ) =

ωS,r′′+1(x,F ). Since they have the same dimension, they coincide.

iii) ⇒ iv). One has dim ωS,r′′+1(x,F ) = r′ = r − (r′′ + 1) + 1, so the index r′′ + 1 separates
the radii of F , since the dimensions of the terms of the filtration by the radii form a scale (cf. Def.
2.5.1). So RS,r′′(x,F ) < RS,r′′+1(x,F ) = RS,1(x,F

′). Now F ′ is trivialized by D := DS,1(x,F
′),

and ω(D,F ′) = ω(D,F ). Then by Lemma 1.2.8 one has ω(D,F ′′) = 0, hence RS,r′′(x,F
′′) <

RS,1(x,F
′).

iv) ⇒ v) and i). iv) implies that the sequence ω(D,E) is exact for all D ⊆ D(x, S) containing tx.
Indeed if D strictly contains DS,r′′(x,F

′′) one has ω(D,F ′′) = 0, and hence ω(D,F ′) = ω(D,F )

22



Convergence Newton polygon III : decomposition and graphs

by left exactness. On the other hand, for all D ⊆ DS,1(x,F
′), the equation F ′ is trivialized by

O(D), hence the exactness follows in this case from point iii) of Lemma 1.2.8. This shows that iv)
implies (2.46), hence i) and v).

v) ⇒ i). Let D be an open disk such that DS,r′′(x,F ) ⊂ D ⊂ DS,r′′+1(x,F ). The sequence
0 → ω(D,F ′) → ω(D,F ) → ω(D,F ′′) verifies ω(D,F ′′) = 0, hence ω(D,F ′) = ω(D,F ). Since
r′′ + 1 separates the radii of F at x, then dimΩ ω(D,F ) = r − (r′′ + 1) + 1 = r′ because the
dimensions of the terms of the filtration by the radii form a scale (cf. Def. 2.5.1). This proves that
ω(D,F ) = ω(x,F ), so D ⊆ DS,1(x,F ) and i) holds.

Proposition 2.9.6. Let F = F ′ ⊕ F ′′. Then for all x ∈ X the set of radii RS,i(x,F ) of F

at x with multiplicities is the union with multiplicities of the radii of F ′ and F ′′ at x. In other
words if the value R appears m′-times in RS(x,F

′) and m′′-times in RS(x,F
′′), then R appears

(m′ +m′′)-times in RS(x,F ).

Proof. One may assume X = D(x, S) with empty weak triangulation. Then the proposition follows
from [Pul12, Prop. 5.5]

Recall that X is connected (cf. Setting 1.0.1).

Proposition 2.9.7. Assume that the index i separates the radii of F (at all point of X, cf. Def.
2.5.4). Let (F ′,∇) ⊆ (F ,∇) be a sub-object such that there exists a point x ∈ X satisfying

ωS,1(x,F
′) = ωS,i(x,F ) . (2.47)

Then the rank of F ′ is r − i+ 1 and

ωS,j(y,F
′) = ωS,j+i−1(y,F ) , for all y ∈ X and all j = 1, . . . , r − i+ 1, (2.48)

RS,j(y,F
′) = RS,j+i−1(y,F ) , for all y ∈ X and all j = 1, . . . , r − i+ 1. (2.49)

Proof. From (2.21) it follows that the rank of the locally free sheaf F ′ is r − i + 1. By Lemma
2.9.4 it is enough to prove that ωS,1(y,F

′) = ωS,i(y,F ) for all y ∈ X. By Proposition 2.9.5 this
is equivalent to RS,1(y,F

′) = RS,i(y,F ) for all y ∈ X. Let L ⊆ X be the locus on which the
equality holds. By assumption L is not empty since x ∈ L. By continuity of the radii it is a
closed subset of X. By Proposition 2.9.5 the condition RS,1(y,F

′) = RS,i(y,F ) is equivalent to
RS,1(y,F

′) > RS,i−1(y,F ), hence L is open. Since X is connected, we deduce that L = X.

Proposition 2.9.8. For all x ∈ X one has RS,1(x,F ) = RS,1(x,F
∗) (this holds even if RS,1(x,F )

is over-solvable). Moreover for all i = 1, . . . , isolx (spectral case) one has RS,i(x,F ) = RS,i(x,F
∗).

Proof. The assertion about RS,1 is equivalent to “F is trivial over a disk if and only if F ∗ is”,
which is clearly true. The second assertion is well known if x is of type 2, or 3, and it will follow
from Section 3 in the general case.

Remark 2.9.9. The statement of Prop. 2.9.8 may fail for over-solvable radii. In section 8 we give
an example of equation whose over-solvable radii are not stable by duality.

2.10 Notes

If i = 1, the radius RS,1(x,F ) admits the following classical description. Let D ⊆ XΩ be a maximal
disk. Let M be the restriction of F to D. Fix an isomorphism D

∼
→ D−

Ω (0, R), and consider the
empty triangulation on it. The disk D is the maximal disk of all its points, and for all x ∈ D one
has RS,i(x,F ) = R∅,i(x,M). By (2.8) the function R∅,i(−,M) is determined by the function RM

∅,i(x)
appearing in (2.6). If i = 1 this last has the following interpretation involving Taylor solutions. Since
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Ω is spherically complete, M is free over O(D). Let G ∈ Mn(O(D)) be the matrix of ∇ : M → M
with respect to some basis of M. Namely the columns of G are the images of the elements of a basis
of M by ∇. If x ∈ D, then a basis of solutions of M at tx is given by

Y (T, tx) :=
∑

n>0

Gn(tx)
(T − tx)

n

n!
. (2.50)

where G0 = Id, G1 = G, and inductively Gn+1 = G′
n + GnG. For all x ∈ D we set RY (x) :=

lim infn(|Gn|(x)/|n!|)
−1/n, then

RM
∅,1(x) = min(R,RY (x)) , R∅,1(x,M) = RS,1(x,F ) = min(1,RY (x)/R) . (2.51)

Exploiting this formula one can prove the continuity of the individual radius RS,1(−,F ). This
process is used in [BV07] for affinoid domains of the affine line, in [Bal10] (compact curves), [PP12a]
(curves without boundary).

For i > 2 such an explicit expression of RS,i(−,F ) is missing. In the practice RS,i(−,F ) behave
as a first radius only outside ΓS,1(F ) ∪ ΓS,2(F ) ∪ · · · ∪ ΓS,i−1(F ). The situation is described in
Remark 6.1.3.

3. Robba’s decomposition by the spectral radii over H (x)

In Sections 3 and 4, we generalize to curves Robba’s [Rob75a], and Dwork-Robba’s [DR77] theo-
rem of decomposition by spectral radii. Such decompositions are proved with different methods in
[Ked13]. Methods of [Ked13] and [Ked10] make a systematic use of spectral norm of the connection,
which permits to separate the radii thank to the Hensel factorization [Rob80] and [CD94, Lemme
1.4].

We show here that the original proofs of [Rob75a] and [DR77] can be generalized quite smoothly
to curves, up to minor implementations. The reason of our choice is that the point of view of Dwork’s
generic disks is more adapted to our global definition of radii. Working with spectral norms would
oblige us to a translate the terminologies, and loosing the evocative image of generic disks.

Hypothesis 3.0.1. In sections 3 and 4 we assume that K is algebraically closed.

In Lemma 5.1.2 we will descend the obtained decomposition to K. The hypothesis is due to our
use of Theorem 3.1.1 below, and it is unnecessary if x has a neighborhood which is isomorphic to
an affinoid domain of the affine line.

The statements as well as the proofs are similar to Dwork and Robba’s original ones (cf. [Dwo73],
[Rob75a], and [DR77]), as improved by Christol (cf. [Chr12, Section 5], [Chr83, Section 5.3]). For
the convenience of the reader, and to permit a complete understanding of section 4, we provide a
complete set of proofs. This makes the paper self contained.

In Sections 3 and 4, x ∈ X is a point of type 2, 3 or 4, Mx (resp. M) is a differential module
over OX,x (resp. H (x)).

3.1 Étale maps.

We will construct nice étale maps from the curve X to the affine line, at least locally. To achieve
this, in the following sections, we assume that K is algebraically closed (cf. Hypothesis 3.0.1).

Theorem 3.1.1 ([PP12b, 3.2.1], cf. also [Duc]). Let x be a point of X of type 2. Let b1, . . . , bt be
distinct branches out of x. There exists an affinoid neighbourhood Y of x in X, an affinoid domain W
of P1,an

K and a finite étale map ψ : Y → W such that
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i) the degree [H (x) : H (ψ(x))] is prime to p;

ii) ψ−1(ψ(x)) = {x};

iii) almost every connected component of Y \ {x} is an open unit disk with boundary {x};

iv) almost every connected component of W \ {ψ(x)} is an open unit disk with boundary {ψ(x)};

v) for almost every connected component C of Y \ {x}, the induced morphism C → ψ(C) is an
isomorphism;

vi) for every i = 1, . . . , t, the morphism ψ induces an isomorphism between a section of bi and a
section of ψ(bi). ✷

Let C be the set of connected components C of Y \ {x} such that ψ induces an isomorphism
C

∼
→ ψ(C). Let B be the set of branches out of x that have no representative in C. Let b ∈ B.

If there exists a section of b such that ψ induces an isomorphism between it and its image, choose
such a section Sb that is a semi-open annulus. Otherwise, set Sb = ∅. Now, define

V =
⋃

C∈C

C ∪
⋃

b∈B

Sb ∪ {x}. (3.1)

It is an affinoid domain of Y that contains almost every branch out of x.

By property vi), there exists a finite family Y1, . . . , Yn of affinoid neighborhoods of x, V1, . . . , Vn
as in (3.1), and étale maps

ψj : Yj →Wj ⊂ P1,an
K (3.2)

as above such that

a) V =
⋃n

j=1 Vj is an affinoid neighborhood of x;

b) the map ψj induces an isomorphism between every connected component of Vj \ {x} and its
image in Wj .

Lemma 3.1.2. Let x ∈ X. There exists an integer n and, for every j = 1, . . . , n, an affinoid
domain Vj of X containing x, an affinoid domain Wj of P1,an

K , and a finite étale map ψj : Vj →Wj

such that

i) V =
⋃n

j=1 Vj is a star-shaped affinoid neighborhood of x in X (cf. 1.1.7);

ii) for every y ∈ V , there exists j such that (ψj)Ω induces an isomorphism between generic disks

(ψj)Ω : D(y)
∼
−→ D(ψj(y)). (3.3)

iii) in case y = x, we have such an isomorphism for every j = 1, . . . , n.

Proof. If x is of type 1, 3 or 4, then it has a neighborhood that is isomorphic to an affinoid domain
of P1,an

K and the result is obvious.

Let us assume that x is of type 2 and proceed as we did at the beginning of the section. Property i)
holds by construction. By property b) after (3.2), property ii) holds for every y ∈ V \ {x}. For the
point x itself, use property i) of Theorem 3.1.1 and conclude (cf. also [PP12b, Lemma 3.4.1]).

Remark 3.1.3. For technical reasons in some proof we need to work with the derivation d/dT , where
T is a coordinate of the generic disk D(y). We need to choose T in order that d/dT : OΩ(D(y)) →
OΩ(D(y)) stabilizes the sub-rings OX,y, and H (y). Such a particular coordinate is given by the
pull-back by ψj of a K-rational coordinate on Wj.

More precisely fix a coordinate Tj on Wj and let dj be the derivation on OYj corresponding to
1⊗ d/dTj by the isomorphism

OYj ⊗̂OWj
Ω̂1
Wj/K

∼
−→ Ω̂1

Yj/K
. (3.4)
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In the situation of property ii) of Lemma 3.1.2, if y ∈ Vj, the rings O(D(y)), B(D(y)), OX,y,
and H (y) are stable under dj .

In the situation of property i) of Lemma 3.1.2, let Y ⊆ V be an affinoid neighborhood of x in
X. Then dj is a generator of Ω1

Y/K , for all j = 1, . . . , n. In particular the rings O(D(x)), B(D(x)),

OX,x, and H (x) are stable under all the derivations d1, . . . , dn.

Definition 3.1.4. We say that an affinoid neighborhood Y of x in X is elementary if Y ⊆ V .

3.2 Norms on differential operators.

Definition 3.2.1. Let (G, ‖.‖) be an abelian ultrametric normed group. If ϕ : G → G is a linear

map we set ‖ϕ‖op,G := supg∈G−{0}
‖ϕ(g)‖
‖g‖ .

Recall that we denote by D(x, ρ) the sub-disk of D(x) with modulus ρ−1, where ρ ∈]0, 1] (cf.
(2.11)).

Notation 3.2.2. Let P be a differential operator with coefficients in BΩ(D(x)). For all ρ ∈]0, 1] we
denote the norm of P as an operator on BΩ(D(x, ρ)) by

‖P‖op,D(x,ρ) := ‖P‖op,BΩ(D(x,ρ)) := sup
06=f∈BΩ(D(x,ρ))

‖P (f)‖D(x,ρ)

‖f‖D(x,ρ)
. (3.5)

Remark 3.2.3. By section 3.1, there exists a coordinate T on D(x) such that d/dT stabilizes
H (x) ⊂ BΩ(D(x)). Let r(x) be the radius of D(x) with respect to the coordinate T . Then the radius
of D(x, ρ) is ρ · r(x), and the norm of (d/dT )k is given by (cf. [Chr83, Prop.4.3.1])

‖(d/dT )k‖op,D(x,ρ) = |k!|(ρ · r(x))−k = |k!| · ‖d/dT‖kop,D(x,ρ) . (3.6)

More generally if P =
∑n

k=0 fk · (d/dT )
k, with fk ∈ BΩ(D(x, ρ)), then

∥∥∥
n∑

k=0

fk · (d/dT )
k
∥∥∥
op,D(x,ρ)

= max
k=0,...,n

|k!| · ‖fk‖D(x,ρ) · (ρ · r(x))
−k . (3.7)

3.3 Topologies on differential modules

Consider the topology Tρ on H (x)〈d〉 induced by ‖.‖op,D(x,ρ). For all q > 1 we consider H (x)〈d〉q as
endowed with the norm : ‖(P1, . . . , Pq)‖op,D(x,ρ) := maxi=1,...,q ‖Pi‖op,D(x,ρ). Each differential module
M over H (x) then acquires automatically a canonical topology Tρ(M) as follows. If

Ψ : H (x)〈d〉q → M → 0 (3.8)

is a presentation of M (i.e. a surjective morphism of H (x)〈d〉-modules), then we endow M with the
quotient semi-norm ‖m‖Ψ := infΨ(P1,...,Pq)=m ‖(P1, . . . , Pq)‖op,D(x,ρ). The semi-norms on M relative
to two presentations are always equivalent (cf. [Chr12, Prop. 7.7]), so that the topology Tρ(M)
induced by ‖.‖Ψ is independent on Ψ.

3.4 Decomposition over H (x) by the bounded solutions on D(x, ρ)

The topology Tρ(M) on M is not necessarily Hausdorff. Denote by M (resp. M[1]) the Hausdorff
quotient of M (resp. the closure of 0 ∈ M). The sub-module M[1] ⊆ M is a differential sub-module
because ‖P ·m‖Ψ 6 ‖P‖op,D(x,ρ) · ‖m‖Ψ, for all P ∈ H (x)〈d〉, m ∈ M. One has a exact sequence of
differential modules

0 → M[1] → M
γ
−→ M → 0 . (3.9)

26



Convergence Newton polygon III : decomposition and graphs

Remark 3.4.1. Let ‖m‖−Ψ := minγ(m)=m ‖m‖Ψ be the norm on M induced by ‖.‖Ψ. The correspond-

ing topology Tρ(M) on M is the canonical one : Tρ(M) = Tρ(M). This follows from the independence
of the presentation by choosing γ ◦ Ψ as a presentation of M. Conversely the canonical topology
Tρ(M

[1]) of M[1] is often non trivial, so it differs from the (trivial) topology induced by Tρ(M) and
M[1] can be different from (M[1])[1] (cf. section 3.5). This is a consequence of the fact that the functor
M 7→ M[1] is not exact.

Let M∗ be the dual module of M. Define

Mb := (M∗)∗ , M[1] := ((M∗)[1])∗ , (3.10)

in order to have an exact sequence

0 → Mb → M → M[1] → 0 . (3.11)

Proposition 3.4.2. The sub-module Mb of M controls the solutions of M with values in BΩ(D(x, ρ))
(bounded solutions with radius > ρ). More precisely Mb and M are trivialized by BΩ(D(x, ρ)) and

ω(M,BΩ(D(x, ρ))) = ω(Mb,BΩ(D(x, ρ))) , (3.12)

HomH (x)〈d〉(M,BΩ(D(x, ρ))) = HomH (x)〈d〉(M,BΩ(D(x, ρ))) . (3.13)

Proof. The assertions (3.12) and (3.13) are equivalent by duality (1.13). We prove (3.13). Let
e1, . . . , eq denote the canonical basis of H (x)〈d〉q . If m = Ψ(

∑
i Pi(d)ei) ∈ M[1] and if s ∈

HomH (x)〈d〉(M,BΩ(D(x, ρ))) one has

‖s(m)‖D(x,ρ) = ‖s ◦Ψ(
∑

Pi(d)ei)‖D(x,ρ) = ‖
∑

Pi(d)s ◦Ψ(ei)‖D(x,ρ) (3.14)

6 (max
i

‖Pi‖op,D(x,ρ))(max
i

‖s ◦Ψ(ei)‖D(x,ρ)).

Since 0 = ‖m‖Ψ = minΨ(
∑

i Piei)=mmaxi ‖Pi‖op,D(x,ρ) one obtains ‖s(m)‖D(x,ρ) = 0, hence s(m) = 0.
So (3.13) holds.

Now we prove that M is trivialized by BΩ(D(x, ρ)). For this choose a presentation Ψ such that
{Ψ(ei)}i=1,...,q is a basis of M as H (x)-vector space and the image m := {m1, . . . ,mr} in M of the
first r vectors {Ψ(e1), . . . ,Ψ(er)} is a basis of M. Since M is a vector space over the complete valued
field H (x), all norms on M are equivalent. So the sup-norm

‖
∑

i

fimi‖m := max
i

|fi(x)| (3.15)

satisfies

‖ · ‖m 6 C‖ · ‖−Ψ . (3.16)

Then by (3.7) one finds

∥∥∥ 1

n!
(
d

dT
)n(mi)

∥∥∥
m

6 C ·
∥∥∥ 1

n!
(
d

dT
)n(mi)

∥∥∥
−

Ψ
(3.17)

= C ·
(

min
γ(Ψ(

∑
j Pjej))=

1
n!
( d
dT

)n(mi)
max

j
‖Pj‖op,D(x,ρ)

)
(3.18)

6 C ·
∥∥∥ 1

n!
(
d

dT
)n
∥∥∥
op,D(x,ρ)

= C · (ρ · r(x))−n , (3.19)

where the last inequality follows by choosing Pi =
1
n!(

d
dT )

n and Pj = 0 for j 6= i.

Let ∇ = d/dT : M → M. Let Gn be the matrix whose columns are the images by ∇n of the basis
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m1, . . . ,mr. If Gn = (gn;i,j)i,j, then ‖Gn‖D(x,ρ) = maxi,j ‖gn;i,j‖D(x,ρ). The bound (3.19) means that

‖Gn‖D(x,ρ)

|n!|
= max

i=1,...,r
‖
∇n

n!
(mi)‖m = max

i=1,...,r
‖
1

n!
(
d

dT
)n(mi)‖m 6 C(ρ · r(x))−n . (3.20)

Since the entries gn;i,j of Gn lie in H (x) one has ‖gn;i,j‖D(x,ρ) = |gn;i,j(x)| = |gn;i,j(tx)|Ω. This
proves that the Taylor solution Y (T ) :=

∑
n>0Gn(tx)(T − tx)

n/n! ∈ Ω[[T − tx]] of the dual module

M
∗
belongs to BΩ(D(x, ρ)). Equivalently M

∗
is trivialized by BΩ(D(x, ρ)), and then so is M.

3.5 Decomposition over H (x) by the analytic solutions

As observed in Remark 3.4.1 the canonical topology of M[1] is often non-trivial, so that one can
repeat the construction and define inductively M[i+1] := (M[i])[1] and M[i+1] := (M[i])[1]. Then

M[i] = ((M∗)[i])∗. The process ends because M is finite dimensional. One obtains a finite sequence
of surjective maps

M := M[0] → M[1] → · · · → M[k−1] → M[k] , (3.21)

where M[k+1] = M[k], and M[i+1] 6= M[i] for all i = 0, . . . , k − 1. 5

Definition 3.5.1. Denote by M<ρ the module M[k], and set M>ρ := Ker(M → M[k]). We have

0 → M>ρ → M → M<ρ → 0 . (3.22)

Remark 3.5.2. Since M[k] = M[k+1], we have M
b
[k] = 0, hence ω(M[k],BΩ(D(x, ρ))) = ω(Mb

[k],BΩ(D(x, ρ))) =

0. In other words the module M<ρ has no non trivial solutions with values in BΩ(D(x, ρ)).

The following proposition shows that the module M>ρ takes into account the solutions of M
with values in OΩ(D(x, ρ)):

Proposition 3.5.3. We have

i) ω(M,OΩ(D(x, ρ))) = ω(M>ρ,OΩ(D(x, ρ)));

ii) ω(M<ρ,OΩ(D(x, ρ))) = 0;

iii) M>ρ is trivialized by OΩ(D(x, ρ)).

Proof. iii) The kernels Ki := Ker(M → M[i]) of the sequence (3.21) define a filtration 0 ⊂ K1 ⊂
K2 ⊂ · · · ⊂ Kk = M>ρ of M where every sub-quotient Ki/Ki−1 is trivialized by BΩ(D(x, ρ)), hence
also by OΩ(D(x, ρ)). Point iv) of Lemma 1.2.8 then implies that M>ρ is trivialized by OΩ(D(x, ρ)).
Indeed we can apply Lemma 1.2.8 because d is surjective on OΩ(D(x, ρ)) since d = fjdj , with fj
invertible in OX,x (cf. Remark 3.1.3).

ii) By Remark 3.5.2, M<ρ has no nontrivial solutions in BΩ(D(x, ρ)). Then ii) now follows from
Proposition 3.5.5 below.

i) now follows from ii) using also iii) together with points i) and ii) of Lemma 1.2.8.

Remark 3.5.4. The following proposition asserts that a differential module having some non trivial
analytic solutions in OΩ(D(x, ρ)) must have at least a non trivial bounded solution in BΩ(D(x, ρ)).
This is a crucial point of the theory, and it is originally due to Dwork [Dwo73].

Proposition 3.5.5. The following statements hold:

i) If M[1] = M, then ω(M,OΩ(D(x, ρ))) = 0.

5It can be shown that M[i] takes into account the solutions with logarithmic growth of order i−1, so that the solutions
of M have at most logarithmic growth of order r = dimM (cf. [Chr83]).
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ii) If M[1] = M, then HomH (x)〈d〉(M,OΩ(D(x, ρ))) = 0.

Proof. The two assertions are equivalent by duality (see (1.13)). We prove ii). Let m ∈ M, and s ∈
HomH (x)〈d〉(M,OΩ(D(x, ρ))). The assumption implies that 0 = ‖m‖Ψ = infΨ(

∑
i Piei)=mmaxi ‖Pi‖op,D(x,ρ).

Let P1, . . . , Pq be such that maxi ‖Pi‖op,D(x,ρ) < 1. Now for all ρ′ < ρ the restriction of s belongs to
HomH (x)〈d〉(M,BΩ(D(x, ρ′))), so

‖s(m)‖D(x,ρ′) = ‖
∑

i

Pis(Ψ(ei))‖D(x,ρ′) 6 max
i

‖Pi‖op,D(x,ρ′)‖s(Ψ(ei))‖D(x,ρ′) (3.23)

6 max
i

‖Pi‖op,D(x,ρ′) ·max
i

‖s(Ψ(ei))‖D(x,ρ′) (3.24)

By (3.7) each map ρ′ 7→ ‖Pi‖op,D(x,ρ′) is continuous, hence there exists ρ
′ < ρ such that maxi ‖Pi‖op,D(x,ρ′) <

1. For all i inequality (3.23) applied to m = Ψ(ei) gives

‖s(Ψ(ei))‖D(x,ρ′) < max
i

‖s(Ψ(ei))‖D(x,ρ′) . (3.25)

Hence s = 0.

3.6 Exactness, compatibility with dual, and direct sum decomposition

Proposition 3.6.1 ([Rob75a]). The functors associating to an H (x)-differential module M the Ω-
vector spaces HomH (x)〈d〉(M,OΩ(D(x, ρ))) and ω(D(x, ρ),M) respectively are exact for all ρ ∈]0, 1].

Proof. The two assertions are equivalent by duality (1.13). To prove the first one, it is enough to
show that, for all H (x)-differential modules M, one has Ext1

H (x)〈d〉(M,OΩ(D(x, ρ))) = 0. Since M>ρ

is trivialized by OΩ(D(x, ρ)) one has (cf. [Chr12, Section 6.7])

Ext1
H (x)〈d〉(M

>ρ,OΩ(D(x, ρ))) = Ext1
OΩ(D(x,ρ))〈d〉(OΩ(D(x, ρ)) ⊗H (x) M

>ρ,OΩ(D(x, ρ))) (3.26)

= Ext1
OΩ(D(x,ρ))〈d〉(OΩ(D(x, ρ)),OΩ(D(x, ρ)))dimM>ρ

= 0 , (3.27)

where the last equality follows from Lemmas 1.2.7 and 1.2.8. Writing 0 → M>ρ → M → M<ρ → 0
we are reduced to proving that

Ext1
H (x)〈d〉(M

<ρ,OΩ(D(x, ρ))) = 0 . (3.28)

So we may assume M = M<ρ. Let L ∈ H (x)〈d〉 be such that M ∼= ML (cf. section 1.2.2). By [Chr12,
Sections 6.6, 6.7], in order to prove (3.28) it is enough to prove that L is surjective as an operator
on OΩ(D(x, ρ)). This follows from Lemma 3.6.3 below.

Remark 3.6.2. For all ρ′ < ρ close enough to ρ one has M>ρ′ = M>ρ and M<ρ′ = M<ρ. Indeed
M is a finite dimensional vector space so the filtration {M>ρ}ρ has a finite number of steps, whose
dimensions equal those of the family {ω(M,OΩ(D(x, ρ)))}ρ by Prop. 3.5.3.

Lemma 3.6.3. Let L ∈ H (x)〈d〉, and let ML be the corresponding cyclic differential module over
H (x). Assume that ML = M<ρ

L or, equivalently, that L is injective on OΩ(D(x, ρ)). Then for all
ε > 0 there exists Qε ∈ OX,x〈d〉 such that

i) ‖QεL− 1‖op,BΩ(D(x,ρ)) < ε;

ii) Qε and L are bijective as endomorphisms of H (x), of BΩ(D(x, ρ)) and of OΩ(D(x, ρ)).

The same statements hold replacing ρ by a ρ′ < ρ close enough to ρ, with the same operator Qε.

Proof. Let ε > 0, we may assume that ε < 1. Consider the presentation Ψ : H (x)〈d〉 → ML → 0

with kernel H (x)〈d〉L. Since ML = M
[1]
L , there exists P̃ ∈ H (x)〈d〉 such that ‖P̃‖op,BΩ(D(x,ρ)) < ε,

and Ψ(P̃ ) = Ψ(−1), that is P̃ = −1 + Q̃εL for some Q̃ε ∈ H (x)〈d〉. Let n be the order of Q̃ε, and
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let H (x)〈d〉6n be the H (x)-vector space of differential polynomials of order 6 n. Since all norms
on H (x)〈d〉6n are equivalent, ‖.‖op,BΩ(D(x,ρ)) is equivalent to the sup-norm with respect to the basis
1, d, . . . , dn : ‖

∑n
i=0 gid

i‖H (x),d := maxi |gi|(x). We deduce that OX,x〈d〉
6n is dense in H (x)〈d〉6n

with respect to ‖.‖op,BΩ(D(x,ρ)). Hence there exists Qε ∈ OX,x〈d〉
6n such that ‖QεL−1‖op,BΩ(D(x,ρ)) <

ε. Since BΩ(D(x, ρ)) is complete, QεL = 1 + P is invertible as an endomorphism of BΩ(D(x, ρ))
with inverse U :=

∑
i>0(−1)iP i. It follows that Qε (resp. L) is surjective (resp. injective) as an

operator on BΩ(D(x, ρ)). By Lemma 3.6.4 below, Qε (and hence also L) is invertible as operators
on BΩ(D(x, ρ)).

To deduce that L is also invertible on OΩ(D(x, ρ)) one considers ρ′ < ρ such that M<ρ′

L = ML

(cf. Remark 3.6.2). Then L is bijective on BΩ(D(x, ρ′′)) for all ρ′ 6 ρ′′ < ρ, and on OΩ(D(x, ρ))
since OΩ(D(x, ρ)) =

⋃
ρ′′<ρ BΩ(D(x, ρ′′)).

Now the inclusion H (x) ⊂ BΩ(D(x, ρ)) is isometric, so ‖.‖op,H (x) 6 ‖.‖op,BΩ(D(x,ρ)). Hence, as
above, QεL is invertible as an endomorphism of H (x) with inverse U . Moreover Qε is injective on
H (x) (because it is injective on BΩ(D(x, ρ))). So L is bijective on H (x).

Now by Lemma 3.6.4 below Qε is injective as an operator on O(D(x, ρ)), so we can reproduce
the above proof replacing L with Qε to prove the bijectivity of Qε on the three rings.

Now to prove that the same holds for ρ′ < ρ close to ρ, we observe that L is then injective
in O(D(x, ρ′)) by Remark 3.6.2, and we can reproduce the proof for ρ′. Note that ρ 7→ ‖QεL −
1‖op,BΩ(D(x,ρ)) is a continuous function of ρ (cf. (3.7)), so for ρ′ < ρ close enough to ρ the inequality
i) is preserved, and the rest of the proof works identically.

Lemma 3.6.4 (cf. [Chr12, 15.4]). If Q ∈ H (x)〈d〉 is surjective as an endomorphism of BΩ(D(x, ρ)),
then it is injective as an endomorphism of OΩ(D(x, ρ)), hence also of BΩ(D(x, ρ)) and of H (x).

Proof. By contrapositive if Q is not injective on OΩ(D(x, ρ)), then, by Prop. 3.5.5 (cf. Remark
3.5.4), it is not on BΩ(D(x, ρ)) either. Let u ∈ BΩ(D(x, ρ)) be such that Q(u) = 0. The primitive
of a bounded function is often not bounded. If T is a coordinate on D(x), as in Remark 3.2.3,
then d = f ·d/dT , with f invertible. Hence d has an infinite dimensional cokernel as an operator on
BΩ(D(x, ρ)). More precisely one may find an infinite dimensional Ω-sub-vector space V ⊆ O(D(x, ρ))
such that V ∩BΩ(D(x, ρ)) = 0 and d(V ) ⊂ BΩ(D(x, ρ)), this is proven in [Chr12, 15.1] for d = d/dT ,
since d = fd/dT , the same holds for d. The vector space uV satisfies

uV ∩ BΩ(D(x, ρ)) = 0 , Q(uV ) ⊂ BΩ(D(x, ρ)) . (3.29)

Indeed if uf ∈ BΩ(D(x, ρ)), then f ∈ BΩ(D(x, ρ)) since for all ρ0 6 ρ′ < ρ one has ‖f‖D(x,ρ′) =
‖uf‖D(x,ρ′)

‖u‖D(x,ρ′)
6

‖uf‖D(x,ρ)

‖u‖D(x,ρ0)
, hence uV ∩ BΩ(D(x, ρ)) = 0. The inclusion Q(uV ) ⊂ BΩ(D(x, ρ)) follows

from the fact that dn(uf) = dn(u)f +
∑n

i=1 bid
i(f) with bi =

(n
i

)
dn−i(u), then Q(uf) = Q(u)f +

Pd(f) = Pd(f), with P ∈ BΩ(D(x, ρ))〈d〉. So if f ∈ V , then Q(uf) ∈ BΩ(D(x, ρ)). By (3.29) the
dimension of coker(Q,BΩ(D(x, ρ))) is infinite, which contradicts the fact that Q is surjective.

Corollary 3.6.5. M 7→ M>ρ is an additive exact functor.

Proof. Additivity is clear. Let F(D(x, ρ)) be the fraction field of OΩ(D(x, ρ)). Let E : 0 → N →
M → P → 0 be an exact sequence. By faithfully flatness of F(D(x, ρ))/H (x), it is enough to
prove that E>ρ ⊗H (x) F(D(x, ρ)) is exact. This now follows from the exactness of the sequence
E>ρ ⊗H (x) OΩ(D(x, ρ)). Indeed E>ρ is constituted by modules trivialized by OΩ(D(x, ρ)), so the
sequence E>ρ ⊗H (x) OΩ(D(x, ρ)) is exact as soon as the sequence

ω(E>ρ ⊗H (x) OΩ(D(x, ρ)),OΩ(D(x, ρ))) = ω(E>ρ,OΩ(D(x, ρ))) = ω(E,OΩ(D(x, ρ))) (3.30)

is exact (cf. Lemmas 1.2.8 and 1.2.10). The exactness of ω(E,OΩ(D(x, ρ))) follows from Prop.
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3.6.1.

Lemma 3.6.6. All sub-quotients S of M<ρ satisfy S = S<ρ (i.e. S>ρ = 0). All sub-quotients of M>ρ

are trivialized by OΩ(D(x, ρ)).

Proof. By exactness each sub-module N and each quotient Q of M<ρ satisfy N>ρ = Q>ρ = 0. So
N = N<ρ and Q = Q<ρ. The second assertion follows from Lemma 1.2.10.

Proposition 3.6.7 (Compatibility with duals). The composite map

c : (M∗)>ρ → M∗ → (M>ρ)∗ (3.31)

is an isomorphism.

Proof. Since M>ρ is trivialized by OΩ(D(x, ρ)) then so does its dual, hence (M>ρ)∗ = ((M>ρ)∗)>ρ.
The exact sequence E : 0 → (M<ρ)∗ → M∗ → (M>ρ)∗ → 0 then gives E>ρ : 0 → ((M<ρ)∗)>ρ →
(M∗)>ρ c

→ (M>ρ)∗ → 0. In order to prove that c is an isomorphism it is enough to prove that
((M<ρ)∗)>ρ = 0. Its dual is a quotient S of M<ρ satisfying S = S>ρ, so S = 0 by Lemma 3.6.6.

Proposition 3.6.8. For all ρ ∈]0, 1] one has M = M<ρ ⊕M>ρ.

Proof. By Proposition 3.6.7 the composite map M>ρ ⊆ M → ((M∗)>ρ)∗ is an isomorphism, and by
Lemma 3.6.6 one has ((M∗)>ρ)∗ ∩M<ρ = 0 since ((M∗)>ρ)∗ is trivialized by OΩ(D(x, ρ)).

Corollary 3.6.9 (Robba). The module M>ρ is the union of all differential sub- modules of M triv-
ialized by OΩ(D(x, ρ)). Moreover one has a unique decomposition

M :=
⊕

0<ρ61

Mρ (3.32)

with the following properties:

i) Mρ is trivialized by OΩ(D(x, ρ)),

ii) (Mρ)>ρ′ = 0, for all ρ < ρ′ 6 1.

One has moreover the following properties:

iii) For all ρ ∈]0, 1] one has

(Mρ)∗ ∼= (M∗)ρ . (3.33)

iv) The module Mρ satisfies

HomH (x)〈d〉(M
ρ,OΩ(D(x, ρ′))) ∼=

{
ω(x,Mρ)∗ if ρ′ 6 ρ

0 if ρ′ > ρ.
(3.34)

v) If M,N are differential modules over H (x), then for all ρ 6= ρ′, one has

HomH (x)〈d〉(M
ρ,Nρ′) = 0 . (3.35)

Proof. If N ⊆ M is trivialized by OΩ(D(x, ρ)), then so is N + M>ρ by Lemma 1.2.8. Hence (N +
M>ρ)∩M<ρ = 0 by Lemma 3.6.6, and N ⊆ M>ρ by a dimension’s argument. This proves that M>ρ

is the union of all differential sub-modules of M trivialized by OΩ(D(x, ρ)).

The existence of decomposition (3.32) follows from Prop. 3.6.8 by setting Mρ := M>ρ/(∪ρ′>ρM
>ρ′).

Compatibility with duals (3.33) then follows from Prop. 3.6.7.

Property (3.34) is equivalent, by (1.13), to

ω((Mρ)∗,OΩ(D(x, ρ′))) ∼=

{
ω(x,Mρ)∗ if ρ′ 6 ρ

0 if ρ′ > ρ.
(3.36)
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By (3.33) one has ω((Mρ)∗,OΩ(D(x, ρ′))) = ω((M∗)ρ,OΩ(D(x, ρ′))). So (3.36) follows from Prop.
3.5.3, since ω(x,Mρ)∗ may be identified to ω(x, (Mρ)∗), and hence to ω(x, (M∗)ρ).

We now prove (3.35). Let α : Mρ → Nρ′ . By (3.34), if ρ < ρ′, then s ◦ α = 0 for all s ∈
HomH (x)〈d〉(N

ρ′ ,OΩ(D(x, ρ′))). Since Nρ′ is trivialized by OΩ(D(x, ρ′)), then
⋂

sKer(s) = 0, where

s runs in HomH (x)〈d〉(N
ρ′ ,OΩ(D(x, ρ′))). Hence α = 0. If ρ > ρ′ the same argument proves, by

duality (3.33), that the dual of α is zero, and hence also α = 0.

Assume now that M = ⊕η61M̃
η is another decomposition satisfying i) and ii). By the fact that

this graduation has a finite number of non zero terms, and by ii), one has

Mρ =
M>ρ

∪ρ′>ρM>ρ′
=

(⊕η61M̃
η)>ρ

∪ρ′>ρ(⊕η61M̃η)>ρ′
=

⊕η∈[ρ,1] M̃
η

∪ρ′>ρ(⊕η∈[ρ′,1]M̃η)
= M̃ρ . (3.37)

4. Dwork-Robba’s decomposition by the spectral radii over OX,x

In this section we prove that, if Mx is an differential module over OX,x, then Robba’s decomposition
of Mx ⊗OX,x

H (x) by the spectral radii descends to a decomposition over the ring OX,x. Such a
decomposition was obtained by Dwork and Robba in [DR77, First Thm. of section 4] for a point
x ∈ A1,an

K of type 2.

In this section, as in section 3, K is algebraically closed (cf. Hypothesis 3.0.1).

4.1 Statement of Dwork-Robba’s decomposition

Let x ∈ X be a point of type 2, 3, or 4. Let Mx be a differential module over OX,x.

Theorem 4.1.1 ([DR77, 4.1]). There exists a unique decomposition

Mx =
⊕

0<ρ61

Mρ
x (4.1)

such that for all 0 < ρ 6 1 one has Mρ
x⊗̂OX,x

H (x) = (Mx⊗̂OX,x
H (x))ρ. Hence (3.34) holds for

Mρ
x. Moreover if M>ρ

x := ⊕ρ6ρ′M
ρ′
x then

i) The canonical composite map (M∗
x)

>ρ → M∗
x → (M>ρ

x )∗ is an isomorphism, in particular
(Mρ

x)∗ ∼= (M∗
x)

ρ.

ii) If Mx and Nx are differential modules over OX,x, and if ρ 6= ρ′, then HomOX,x〈d〉(M
ρ
x,N

ρ′
x ) = 0.

Proof. We firstly prove the uniqueness. Let Mx = ⊕η∈]0,1]M̃
η
x be another decomposition. One sees

that Mρ
x ⊗OX,x

H (x) = M̃ρ
x ⊗OX,x

H (x). Then, by (3.35), for all ρ 6= ρ′ the composite morphism

α : Mρ
x ⊆ Mx → M̃ρ′

x is zero after scalar extension to H (x). So α = 0 since OX,x is a field. This

proves that Mρ ⊆ M̃ρ, and the reverse of that argument gives the equality.

To prove the existence of (4.1) we claim that it is enough to show the existence, for all differential
module M over H (x), and all 0 < ρ 6 1, of an OX,x-lattice M>ρ

x of M>ρ such that :

The inclusion M>ρ ⊆ M is the scalar extension of an inclusion of OX,x-lattices M>ρ
x ⊆ Mx. (4.2)

Indeed, from (4.2) one shows that the scalar extension of the map (M∗
x)

>ρ → M∗
x → (M>ρ

x )∗ to
H (x) has a non zero determinant, so the map itself has a non zero determinant. This proves the
compatibility with duals, and hence also that M>ρ

x is a direct summand of Mx, as in Prop. 3.6.8. We

then define Mρ
x := M>ρ

x /(∪ρ′>ρM
>ρ′
x ), and one sees that Mx = ⊕ρ∈]0,1]M

ρ
x, and that Mρ

x is a lattice

32



Convergence Newton polygon III : decomposition and graphs

of Mρ.

Now, to prove ii), we consider a non zero map HomOX,x〈d〉(M
ρ
x,N

ρ′
x ) exists, this produces a non

zero map in HomH (x)〈d〉(M
ρ,Nρ′) which contradicts (3.35).

Claim (4.2) is proved in Theorem 4.3.1 below.

Remark 4.1.2. It is possible to derive the proof of Dwork-Robba’s decomposition 4.1.1 over X from
the knowledge of the decomposition over the affine line as follows. Let Y be an affinoid neighborhood
of x in X, and let f : Y → P1,an

K be an étale map such that [H (x) : H (f(x))] is prime to p. Let Mx

be a differential module over OX,x, and let M := Mx⊗̂OX,x
H (x). Then the radii of f∗f∗Mx can be

easily computed by Lemma 6.2.13. By Corollary 3.6.9, v), the maps Mx → f∗f∗Mx and M → f∗f∗M
preserve the radii. From this it is possible to deduce the decomposition of Mx by expressing it as
Mx = f∗f∗Mx ∩M inside f∗f∗Mx. Then one shows that the decomposition of M and of f∗f∗M are
compatible, and gives the Dwork-Robba’s decomposition of Mx.

The fact is that the original proof of Dwork-Raobba [DR77] works on both the affine line, and
on X (up to minor implementations). In order to provide a complete set of proofs, in this section
we provide the entire proof of Dwork-Robba’s theorem directly on X.

4.2 Norms on differential operators

Let x be a point of type 2, 3, or 4 of X. Let {ψj}j=1,...,n be the maps around x of Lemma 3.1.2. A
star around x is a subset U of X such that

i) Each germ of segment b out of x is represented by a segment [x, y] contained in U;

ii) There exists ε > 0 such that for all z ∈ U, and all j = 1, . . . , n, one has r(ψj(z)) > ε.

Let Y be an affinoid neighborhood of x. Let UY ⊂ Y be a star around x such that the Shilov
boundary of Y is contained in UY .

Define the product of Banach algebras P(UY , ρ) :=
∏

y∈UY
BΩ(D(y, ρ)) as the set of tuples

(fy)y∈UY
, with fy ∈ BΩ(D(y, ρ)) such that ‖(fy)y‖P(UY ,ρ) := supy∈UY

‖fy‖D(y,ρ) < +∞. Since UY

contains the Shilov boundary of Y , the natural maps

O(Y ) →
∏

y∈UY

H (y) → P(UY , ρ) (4.3)

associating to f ∈ O(Y ) the tuples (f(y))y∈UY
and (f|D(y,ρ)))y∈UY

are isometric.

A differential operator with coefficients in P(UY , ρ) is a tuple (Py)y∈UY
of differential operators

Py ∈ BΩ(D(y, ρ))〈d〉. One easily proves that

‖(Py)y∈UY
‖op,P(UY ,ρ) = sup

y∈UY

‖Py‖op,BΩ(D(y,ρ)) . (4.4)

As a consequence if P ∈ O(Y )〈d〉 then the isometric inclusions of (4.3) imply

‖P‖op,O(Y ) 6 ‖P‖op,
∏

y∈UY
H (y) 6 ‖P‖op,P(UY ,ρ) . (4.5)

Recall that each point x ∈ X admits a basis of elementary affinoids neighborhoods (cf. Def.
3.1.4).

Proposition 4.2.1. Let Y be an affinoid neighborhood of x in X such that Ω̂1
Y/K is free, and let

d : O(Y ) → O(Y ) be a derivation corresponding to a generator of Ω̂1
Y/K . For all P ∈ O(Y )〈d〉 and

ε > 0, there exists a basis of elementary affinoid neighborhoods YP,ε of x such that for all ρ ∈]0, 1]
one has

‖P‖op,O(YP,ε) 6 ‖P‖op,BΩ(D(x,ρ)) + ε . (4.6)

33
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More precisely for all ρ ∈]0, 1] there exists an elementary affinoid neighborhood YP,ε,ρ such that

‖P‖op,P(UYP,ε,ρ
,ρ) 6 ‖P‖op,BΩ(D(x,ρ)) + ε , (4.7)

where UYP,ε,ρ
⊂ YP,ε,ρ is a star around x containing the Shilov boundary of YP,ε,ρ.

Proof. The bound (4.6) follows from (4.7), with ρ = 1, since the function ρ 7→ ‖P‖op,BΩ(D(x,ρ)) is
non increasing by (3.7). Assume that Y is an elementary neighborhood of x (cf. Def. 3.1.4). Let
U′ ⊂ Y be a star around x containing the Shilov boundary of Y .

Let [x, y] ⊂ U′ be a segment. By Lemma 3.1.2, the segment [x, y] is contained in some Vj , and
the map ψj : Y → Wj gives the identification ψj : D(z)

∼
→ D(ψj(z)) for all z ∈ Y ∩ Vj . Let rj(z)

be the radius of D(ψj(z)) with respect to a coordinate Tj on Wj . The radius of ψj(D(z, ρ)) is then
ρ · rj(z). Let dj = 1⊗ d/dTj be the corresponding derivation of O(Y ) (cf. Remark 3.1.3). Then for
all z ∈ U′ ∩ Vj one has (cf. Remark 3.2.3)

‖dj‖op,BΩ(D(z,ρ)) = (ρ · rj(z))
−1 . (4.8)

As explained in Remark 3.1.3, P can be written as P =
∑
fid

i
j , with fi ∈ O(Y ). Together with

(3.7), this proves that z 7→ ‖P‖op,BΩ(D(z,ρ)) is a continuous function of z along [x, y]. Up to restrict
[x, y] we may assume that ‖P‖op,BΩ(D(z,ρ)) 6 ‖P‖op,BΩ(D(x,ρ)) + ε for all z ∈ [x, y]. This bound is
independent on the chosen maps ψj .

Now for all germ of segment b out of x chose [x, y] ∈ b with this property, and define the star U
as the union of all those segments. Then supy∈U ‖P‖op,BΩ(D(y,ρ)) 6 ‖P‖op,BΩ(D(x,ρ)) + ε. Now for all
star-shaped neighborhood YP,ε ⊆ Y of x, with Shilov boundary in U, equation (4.6) follows from
(4.4) and (4.5) with UYP,ε

:= U ∩ YP,ε.

4.2.1 Norms on A〈d〉6n. Let (A, ‖.‖A) be a normed algebra with a derivation d : A→ A. Let

‖(f0, . . . , fn)‖A := max
i

‖fi‖A (4.9)

be the sup-norm on An. Now let A〈d〉6n be the subset of differential operators
∑n

i=0 gid
i of order

at most n. We can identify A〈d〉6n to An+1 by associating to
∑n

i=0 fid
i the tuple (f0, . . . , fn). We

denote the resulting norm on A〈d〉6n by

‖
∑

fid
i‖A,d := ‖(f0, . . . , fn)‖A = max

i
‖fi‖A . (4.10)

Lemma 4.2.2. If d1, d2 are two derivations as above, then ‖.‖A,d1 and ‖.‖A,d2 are equivalent on
A〈d〉6n.

Proof. The A-module A〈d〉6n is finite and free. The subsets {1, d1, . . . , d
n
1} and {1, d2, . . . , d

n
2} are

two basis. If U ∈ GLn(A) is the base change matrix, then ‖U−1‖−1
A ·‖.‖A,d2 6 ‖.‖A,d1 6 ‖U‖A·‖.‖A,d1 ,

where ‖(ui,j)‖A := maxi,j ‖ui,j‖A.

Proposition 4.2.3. Let 0 < ρ 6 1. The following claims hold:

i) Let d : BΩ(D(x, ρ)) → BΩ(D(x, ρ)) be a derivation generating Ω̂1
BΩ(D(x,ρ))/Ω. Let A be a normed

ring, isometrically included in BΩ(D(x, ρ)) and stable under d. Then ‖.‖op,BΩ(D(x,ρ)) and ‖.‖A,d

are equivalent as norms on A〈d〉6n.

ii) Let Y be an star-shaped elementary affinoid neighborhood of x (cf. Def. 3.1.4) such that Ω̂1
Y/K

is free, and let d : O(Y ) → O(Y ) be a derivation corresponding to a generator of Ω̂1
Y/K . Let

UY ⊂ Y be a star around x containing the Shilov boundary of Y . Then ‖.‖op,P(UY ,ρ) and
‖.‖O(Y ),d are equivalent as norms on O(Y )〈d〉6n.
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Proof. In i) we can assume A = BΩ(D(x, ρ)). Let T be a coordinate on D(x, ρ). By Lemma 4.2.2
we can replace d with d/dT . The radius of D(x, ρ) with respect to T is ρ · r(x), where r(x) is the
radius of D(x) in this coordinate. By (3.7) one has

∥∥∥
n∑

k=0

fk · (d/dT )
k
∥∥∥
op,BΩ(D(x,ρ))

= max
k=0,...,n

|k!| · |fk|(x) · (ρ · r(x))
−k . (4.11)

Let C1 := mink |k!|(ρ · r(x))
−k and C2 := maxk |k!|(ρ · r(x))

−k, then

C1‖.‖A,d/dT 6 ‖.‖op,BΩ(D(x,ρ)) 6 C2‖.‖A,d/dT . (4.12)

We now prove ii). With the notations of Remark 3.1.3 one has Y ⊆
⋃

j Vj, hence

‖.‖op,P(UY ,ρ) = max
j

‖.‖op,P(UY ∩Vj ,ρ) , (4.13)

‖.‖O(Y ),d = max
j

‖.‖O(Vj∩Y ),d . (4.14)

So it is enough to prove that ‖.‖op,P(UY ∩Vj ,ρ) is equivalent to ‖.‖O(Vj∩Y ),d for all j. Now by Lemma
4.2.2 we can replace d by the derivation dj = d/dTj of Remark 3.1.3. The reason of this choice is
that the map ψj : Vj → Wj identifies D(y, ρ) with D(ψj(y), ρ) for all y ∈ Vj . So the coordinate
Tj on Wj is then simultaneously a coordinate on D(y, ρ), for all y ∈ UY ∩ Vj . We then can write
P =

∑
k fj,kd

k
j ∈ BΩ(D(y, ρ))〈dj〉

6n, with fj,k ∈ O(Vj), simultaneously for all y ∈ UY ∩ Vj . As a
consequence we have the explicit formula

‖
n∑

k=0

fk,jd
k
j ‖op,P(UY ∩Vj ,ρ) = sup

y∈UY ∩Vj

max
k=0,...,n

|k!| · |fk,j|(y) · (ρ · rj(y))
−k , (4.15)

where rj(y) is the radius of D(ψj(y)) with respect to Tj . By the definition of Vj the Shilov boundary
of Vj ∩ Y is contained in the union of {x} with that of Y (cf. section 3.1). Hence UY ∩ Vj contains
the Shilov boundary of Y ∩ Vj. Then

sup
y∈UY ∩Vj

max
k=0,...,n

|k!| · |fk,j|(y) · (ρ · rj(y))
−k

6 max
k=0,...,n

|k!| · ‖fk,j‖Vj∩Y

(
inf

y∈UY ∩Vj

ρ · rj(y)
)−k

. (4.16)

Now by definition of star (cf. point ii) at the beginning of section 4.2) one has infy∈UY ∩Vj rj(y) > 0.
If r−j := infy∈UY ∩Vj ρ · rj(y), then from (4.15) and (4.16) one gets

‖
n∑

k=0

fk,jd
k
j ‖op,P(UY ∩Vj ,ρ) 6 max

k=0,...,n
|k!| · ‖fk,j‖Vj∩Y · (r−j )

−k . (4.17)

If C2 := maxk |k!| · (r
−
j )

−k, then ‖.‖op,P(UY ∩Vj ,ρ) 6 C2‖.‖O(Y ∩Vj),dj .

On the other hand let r+j := supz∈Wj
r(z), where r(z) is the radius of the point (cf. (1.7)). Then

r+j < +∞, because Wj is an affinoid domain of A1,an
K . Since ρ 6 1, then supy∈UY ∩Vj

ρ · rj(y) 6 r+j .

If C1 := mink |k!|(r
+
j )

−k, then as above one has ‖.‖op,P(UY ∩Vj ,ρ) > C1 · ‖.‖O(Vj∩Y ),dj as required.

4.3 Lifting Robba’s decomposition to OX,x

Let x ∈ X be a point of type 2, 3, or 4. Let d : OX,x → OX,x be a derivation generating the
OX,x-module of K-linear derivations of OX,x. Since OX,x is a field, any differential module Mx is
cyclic (cf. section 1.2.2). Assertion (4.2) is then equivalent to the following

Theorem 4.3.1 (Dwork-Robba’s decomposition). Let ρ 6 1. Let P ∈ OX,x〈d〉 be a monic differen-
tial polynomials corresponding to M. Let P = P>ρ ·P<ρ be a factorization in H (x)〈d〉 corresponding
to the Robba’s decomposition (3.22)

0 → M>ρ → M → M<ρ → 0 . (4.18)
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Then P>ρ and P<ρ also belongs to OX,x〈d〉.

Proof. Let Y be an elementary affinoid neighborhood of x (cf. Def. 3.1.4) such that the coefficients
of P lies in O(Y ). Assume moreover that Ω̂1

Y/K is free, and choose a derivation d : O(Y ) → O(Y )

corresponding to a generator of Ω̂1
Y/K . Let A be one of the rings O(Y ), H (x), BΩ(D(x, ρ)). Consider

the injective maps

βn : An →֒ A〈d〉6n , β̃n : An →֒ A〈d〉6n (4.19)

defined by β̃n(g0, . . . , gn−1) :=
∑n−1

i=0 gid
i, and βn(g0, . . . , gn−1) := dn + β̃n(g0, . . . , gn−1). Let n1,

n2, n = n1 + n2 be the orders of P>ρ, P<ρ, P respectively. The multiplication in A〈d〉 provides a
diagram

A〈d〉6n1 ×A〈d〉6n2 m
//

	

A〈d〉6n

An

GA

33

γ
77
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

δ

∼
// An1 ×An2 //❴❴❴❴❴❴❴❴❴

?�

βn1×βn2

OO

An?
�

β̃n

OO

(4.20)

where

m(Q1, Q2) := Q1Q2 − P , (4.21)

δ identifies An with An1 × An2 by (v1, . . . , vn) 7→ ((v1, . . . , vn1), (vn1+1, . . . , vn1+n2)), and γ :=
(βn1 × βn2) ◦ δ. The image of m ◦ γ is contained in that of β̃n. We define GA as the map An → An

obtained in this way.

Let u ∈ H (x)n be such that γ(u) = (P>ρ, P<ρ) ∈ H (x)〈d〉6n1 × H (x)〈d〉6n2 . Then

GH (x)(u) = 0 . (4.22)

This is a non linear system of differential equations on the entries of u. We have to prove that there
exists an affinoid neighborhood Y of x in X such that u ∈ O(Y )n (i.e. the coefficients of P1 and P2

lie in O(Y )). For all v = (v1, . . . , vn) ∈ An, the vector GA(v) ∈ An is a finite sum in of the form

GA(v) =
∑

i,j=1,...,n
k=0,...,n1

Ci,j,k · vi · d
k(vj)− ℓ , (4.23)

where Ci,j,k ∈ Nn, and the vector ℓ lies in O(Y )n for some affinoid neighborhood Y of X (indeed ℓ

is associated to P ).

We linearize the problem as follows. Let {X
(k)
i }i=1,...,n; k=0,...,n1 be a family of indeterminates. For

all 0 6 k 6 n1, setX
(k) := (X

(k)
1 , . . . ,X

(k)
n ) andX = (X

(0)
1 , . . . ,X

(0)
n ,X

(1)
1 , . . . ,X

(1)
n , . . . ,X

(n1)
1 , . . . ,X

(n1)
n ).

With the notations of (4.23) let

F (X) = F (X(0), . . . ,X(n1)) :=
∑

i,j,k

Ci,j,k ·X
(0)
i ·X

(k)
j − ℓ . (4.24)

This is a polynomial with coefficients in O(Y ). Denote by ζ : An → An·n1 the Z-linear map
ζ(v) := (v, d(v), . . . , dn1(v)). Then we have

GA(v) = F (ζ(v)) = F (X(0),X(1), . . . ,X(n1))
|X

(k)
i =dk(vi)

. (4.25)

Remark 4.3.2. The above process of linearization corresponds to working on the jet-space (tangent
space if n1 = 1) as recently done by B. Malgrange [Mal05].

Since F is a polynomial expression in X, Taylor formula gives

F (X + Y ) = F (X) + dFX (Y ) +NX(Y ) . (4.26)
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where

dFX(Y (0), . . . ,Y (n1)) =
∑

i=1,...,n
k=0,...,n1

∂F

∂X
(k)
i

(X) · Y
(k)
i , (4.27)

is the linear part, and NX(Y ) is the non linear part. So

GA(v + ξ) = GA(v) + dGA,v(ξ) +Nζ(v)(ζ(ξ)) , (4.28)

where dGA,v(ξ) = dFζ(v)(ζ(ξ)). Applied to u ∈ H (x)n (cf. (4.22)) this gives

0 = GH (x)(u) = GH (x)(v) + dGH (x),v(u− v) +Nζ(v)(ζ(u− v)) . (4.29)

In the following sections 4.3.1, 4.3.2, 4.3.3, 4.3.4, we prove that if the image of v ∈ O(Y )n in H (x)n

is close to u, the map dGA,v : An → An is bijective, for A = H (x) and also A = O(Y ) for some
suitable Y . We then prove that, for both A = H (x) and A = O(Y ), the map

φv,A(ξ) := −dG−1
A,v

(
GA(v) +Nζ(v)(ζ(ξ))

)
(4.30)

is a contraction of a poly-diskD+
A(0, q) = {ξ ∈ An such that ‖ξ‖A 6 q}, with ‖v−u‖H (x) < q. Then

φv,A has a unique fixed point in D+
A(0, q). Since it is compatible with the inclusion D+

O(Y )(0, q) ⊂

D+
H (x)(0, q), the fixed point of φv,H (x) coincides with the fixed point of φv,O(Y ). If A = H (x) the

fixed point is u− v by (4.29). This proves that u− v ∈ D+
O(Y )(0, q), hence u ∈ O(Y )n.

4.3.1 Computation of dGA,v. We consider (A〈d〉6n, ‖.‖A,d) as a normed K-vector space. It is
isomorphic to (An, ‖.‖A) by (4.9). The definition of differential of a function An → Am then has a
meaning.

If A = O(Y ) (resp. A = H (x), BΩ(D(x, ρ))), the product m : A〈d〉6n1 ×A〈d〉6n2 → A〈d〉6n is a
continuous K-bilinear map with respect to ‖.‖op,P(UY ,ρ) (resp. ‖.‖op,BΩ(D(x,ρ))), where UY is a star
around x containing the Shilov boundary of Y . By Proposition 4.2.3 the same is true with respect
to the equivalent norm ‖.‖A on An. The differential dGA,v is then given by

dGA,v = dm(P1,v ,P2,v) ◦ (β̃n1 × β̃n2) ◦ δ , (4.31)

where (P1,v , P2,v) := γ(v). Notice here that β̃s = (dβs)v and dδv = δ for all v ∈ A, and all s > 1.

Now since the multiplication in A〈d〉 is a continuous K-bilinear map, the differential of m is

dm(P1,v ,P2,v)(Q1, Q2) = Q1P2,v + P1,vQ2 . (4.32)

4.3.2 Some estimations. Let

D+
A(0, r) := {x ∈ An·n1 , ‖x‖A 6 r} , (4.33)

and let ‖F‖
D

+
A(0,r) := max‖x‖A6r F (x). Let ζ : An → An·n1 be as in (4.25).

Lemma 4.3.3. For A = H (x),O(Y ),BΩ(D(x, ρ)), the following hold:

i) Let u be the zero of GH (x) (cf. (4.22)), and let v ∈ BΩ(D(x, ρ))n. If ‖v‖BΩ(D(x,ρ)), ‖u‖BΩ(D(x,ρ)) 6

r‖ζ‖−1
op,BΩ(D(x,ρ)), then

‖GBΩ(D(x,ρ))(v)‖BΩ(D(x,ρ)) 6 r−1‖F‖
D

+
BΩ(D(x,ρ))

(0,r)‖ζ‖op,BΩ(D(x,ρ))‖v − u‖BΩ(D(x,ρ)) . (4.34)

ii) If ‖v‖A 6 r‖ζ‖−1
op,A and ξ ∈ An, then ‖dGA,v(ξ)‖A 6 r−1 · ‖F‖

D
+
A(0,r) · ‖ζ‖op,A‖ξ‖A;

iii) If ‖v1‖A, ‖v2‖A 6 r‖ζ‖−1
op,A and ξ ∈ An, then

‖(dGv1 − dGv2)(ξ)‖A 6 r−2‖F‖
D

+
A(0,r)‖ζ‖

2
op,A‖v1 − v2‖A‖ξ‖A ; (4.35)
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iv) If ‖v‖A, ‖ξ‖A 6 r‖ζ‖−1
op,A, then

‖Nζ(v)(ζ(ξ))‖A 6 r−2 · ‖F‖
D

+
A(0,r) · ‖ζ‖

2
op,A · ‖ξ‖2A ; (4.36)

v) If ‖v‖A, ‖ξ1‖A, ‖ξ2‖A 6 r‖ζ‖−1
op,A, then

‖Nζ(v)(ζ(ξ1))−Nζ(v)(ζ(ξ2))‖A 6 r−2‖F‖
D

+
A(0,r)‖ζ‖

2
op,A‖ξ1−ξ2‖Amax(‖ξ1‖A, ‖ξ2‖A) . (4.37)

Proof. Write Taylor’s formula as F (X + Y ) =
∑

|α|>0Dα(F )(X)Y α with the evident meaning of

the notations. The assumptions imply that X,Y ∈ D+
A(0, r) (i.e. ‖X‖A, ‖Y ‖A 6 r). Recall that

for X ∈ D+
A(0, r) one has ‖Dα(F )(X)‖A 6 ‖F‖

D
+
A(0,r)/r

|α|.

iv) One has NX(Y ) =
∑

|α|>2Dα(F )(X)Y α. So for ‖X‖A, ‖Y ‖A 6 r one finds

‖NX(Y )‖A 6 sup
|α|>2

‖Dα(F )(X)‖A‖Y
α‖A 6 sup

|α|>2
‖F‖

D
+
A(0,r)

(‖Y ‖A
r

)|α|
= ‖F‖

D
+
A(0,r)

(‖Y ‖A
r

)2
.

(4.38)

i) Consider (4.26) with X = ζ(u), and Y = ζ(v−u). Then use the fact that F (ζ(u)) = GA(u) =
0, together with the bound (4.38), and the following inequality (cf. (4.27))

‖dFX (Y )‖
D

+
A(0,r) 6 r−1‖F‖

D
+
A(0,r)‖Y ‖A . (4.39)

ii) follows from (4.27), and ‖ ∂F

∂X
(k)
i

‖
D

+
A(0,r) 6 r−1‖F‖

D
+
A(0,r).

iii) Let H : D+
A(0, r) → An be any power series converging on D+

A(0, r). The Taylor expansion
of H(X1) around X2 gives for Z := X1 −X2

H(X1)−H(X2) = H(X2 +Z)−H(X2) =
∑

|α|>1

Dα(H)(X2)Z
α . (4.40)

So for ‖X1‖A, ‖X2‖A, ‖Z‖A 6 r one obtains

‖H(X1)−H(X2)‖A 6 sup
|α|>1

‖Dα(H)(X2)‖A·‖Z
α‖A 6 sup

|α|>1
‖H‖

D
+
A(0,r)·

(‖Z‖A
r

)|α|
= ‖H‖

D
+
A(0,r)

‖Z‖A
r

(4.41)
We apply this to H(X) := dFX(Y ), together with (4.39), to obtain ‖(dFX1 − dFX2)(Y )‖A 6

r−2 · ‖F‖
D

+
A(0,r)‖X1 −X2‖A‖Y ‖A.

v) Taylor formula gives NX(Y 1)−NX(Y 2) =
∑

|α|>2Dα(F )(X)(Y α
1 −Y α

2 ). Now v) follows as

in the above cases using the inequality ‖Y α
1 −Y α

2 ‖A 6 ‖Y 1−Y 2‖A ·max(‖Y 1‖, ‖Y 2‖)
|α|−1. Indeed

Y α
1 − Y α

2 =
∑

|β|>1

(α
β

)
Y

α−β
1 (Y 1 − Y 2)

β =

n∑

i=1

(Y1,i − Y2,i) ·Qi,α(Y 1,Y 2) . (4.42)

This is a sum of monomials of degree |α| so Qi,α is a sum of monomials of degree |α|−1 with integer
coefficients, and hence ‖Qi,α(Y 1,Y 2)‖A 6 max(‖Y 1‖, ‖Y 2‖)

|α|−1. This proves that ‖NX(Y 1) −
NX(Y 2)‖A 6 r−2‖F‖

D
+
A(0,r)‖Y 1 − Y 2‖A max(‖Y 1‖A, ‖Y 2‖A).

4.3.3 Bijectivity of dGO(Y ),v.

Notation 4.3.4. Let A be one of the rings O(Y ), OX,x, H (x), BΩ(D(x, ρ)), and let v ∈ An. The
action of dGO(Y ),v on An is represented by a n × n matrix Lv with coefficients in A〈d〉. Note that
Lv acts on each A〈d〉-module of the form Bn, where B is any A〈d〉-module.
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Proposition 4.3.5. Let u be the zero of GH (x) of (4.22). Then

dGH (x),u : Bn ∼
−−→ Bn (4.43)

is bijective, for B = H (x), BΩ(D(x, ρ)), OΩ(D(x, ρ)).

Proof. Injectivity. Consider diagram (4.20) replacing A by the ring B. The map d(βn1 × βn2)u =
β̃n1 × β̃n2 is injective, and δ is bijective, so by (4.31) we have to prove that the restriction of
dm(P>ρ,P<ρ) to the image B〈d〉6n1−1×B〈d〉6n2−1 of β̃n1×β̃n2 is injective. Let (Q1, Q2) ∈ B〈d〉6n1−1×

B〈d〉6n2−1 be such that dm(P>ρ,P<ρ)(Q1, Q2) = 0. This means that

P>ρQ2 = −Q1P
<ρ . (4.44)

Assume, by contradiction, that (Q1, Q2) 6= (0, 0). Then Q1 and Q2 are non-zero and we may assume
that they are monic. With the notations of section 1.2.2 one has two exact sequences 0 → MP>ρ →
MP>ρQ2

→ MQ2 → 0 and 0 → MQ1 → MQ1P<ρ → MP<ρ → 0. Now ω(MP<ρ ,OΩ(D(x, ρ))) = 0, so
ω(MQ1 ,OΩ((x, ρ))) ∼= ω(MQ1P<ρ ,OΩ(D(x, ρ))). Moreover MP>ρQ2

∼= MQ1P<ρ by (4.44). Applying
the functor ω(−,O(D(x, ρ))) one finds

ω(MP>ρ ,OΩ(D(x, ρ))) ⊆ ω(MP>ρQ2
,OΩ(D(x, ρ))) ∼= ω(MQ1P<ρ ,OΩ(D(x, ρ))) ∼= ω(MQ1 ,OΩ(D(x, ρ))) .

This is a contradiction because MP>ρ is trivialized by OΩ(D(x, ρ)) and hence

dimΩ ω(MP>ρ ,OΩ(D(x, ρ))) = rank MP>ρ > rank MQ1 > dimΩ ω(MQ1 ,OΩ(D(x, ρ))) . (4.45)

Surjectivity. It follows from Lemma 4.3.6 below.

The following lemma is a generalization of Lemma 3.6.3. If M = (mi,j) is a matrix with coeffi-
cients in BΩ(D(x, ρ)), we denote by ‖M‖op,BΩ(D(x,ρ)) the maximum of the norms ‖mi,j‖op,BΩ(D(x,ρ))

of the coefficients of M .

Lemma 4.3.6. Let L be a square n × n matrix with coefficients in H (x)〈d〉. Assume that L is
injective as an endomorphism of OΩ(D(x, ρ))n. Then for all ε > 0 there exists a n × n matrix Qε

with coefficients in OX,x〈d〉 such that

i) ‖QεL− 1‖op,BΩ(D(x,ρ)) < ε.

ii) Qε and L are bijective as endomorphisms of H (x), of BΩ(D(x, ρ)), and of OΩ(D(x, ρ)).

The same statements hold replacing ρ by a ρ′ < ρ close enough to ρ with the same matrix Qε.

Proof. Since H (x) is a field, the ring H (x)〈d〉 is (left and right) Euclidean. In particular it is a
(left and right) principal ideal domain. So by the theory of elementary divisors, there exist invertible
matrices U, V ∈ GLn(H (x)〈d〉) such that L̃ = ULV is diagonal L̃ = diag(L̃1, . . . , L̃n). By assump-
tion L is injective on OΩ(D(x, ρ))n, then so is L̃, and hence each L̃i is injective on OΩ(D(x, ρ)). By
Lemma 3.6.3 L̃i is bijective on B, with B = H (x), B = BΩ(D(x, ρ)), and B = OΩ(D(x, ρ)). So L̃ is
bijective on Bn, and so does L. Now by Lemma 3.6.3, for all ε′ > 0, there exists Q̃i ∈ H (x)〈d〉 such
that the matrix Q̃ := diag(Q̃1, . . . , Q̃n) verifies ‖Q̃L̃− 1‖op,BΩ(D(x,ρ)) < ε′. The matrix Q1 := V Q̃U

verifies Q1L−1 = V (Q̃L̃−1)V −1. So if ε′ < ε/(‖V ‖op,BΩ(D(x,ρ)) ·‖V
−1‖op,BΩ(D(x,ρ))), then Q1 verifies

i).

Let now Qε be a n × n matrix with coefficients in OX,x〈d〉 such that ‖Qε − Q1‖op,BΩ(D(x,ρ)) is

small this is possible because OX,x〈d〉
6d ⊂ H (x)〈d〉6d is dense for the norm ‖.‖op,BΩ(D(x,ρ)) as in

the proof of Lemma 3.6.3. Then Qε verifies i), and hence QεL is invertible as an endomorphisms of
BΩ(D(x, ρ))n. So Qε is surjective on it.

Let now A,B ∈ GLn(OX,x〈d〉) such that AQεB = diag(Qε,1, . . . , Qε,n). Each Qε,i is surjective
on BΩ(D(x, ρ)), so by Lemma 3.6.4 it is injective on OΩ(D(x, ρ)). This proves that Qε is injective
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on OΩ(D(x, ρ))n. So we can reproduce the first part of this proof replacing L by Qε, to prove that
Qε is bijective as endomorphisms of H (x), of BΩ(D(x, ρ)), and of OΩ(D(x, ρ)).

To prove the last statement we notice, in analogy with the proof of Lemma 3.6.3, that the kernel
of L on O(D(x, ρ′))n is a finite dimensional vector space over Ω (this is true if n = 1, and the case
n > 1 reduces to n = 1 by the theory of elementary divisors). The kernel has a filtration by the
radii of convergence of the entries of its vectors, and we conclude as in Lemma 3.6.3.

Recall that Lv is the matrix associated with the differential of G at v (cf. Notation 4.3.4).

Corollary 4.3.7. Let u be the zero of GH (x) of (4.22). There exists a radius w > 0 such that

i) If v ∈ BΩ(D(x, ρ))n satisfies ‖v − u‖BΩ(D(x,ρ)) < w, then Lv is invertible as endomorphism of
BΩ(D(x, ρ))n and of OΩ(D(x, ρ))n.

ii) If moreover v ∈ H (x)n, then Lv is also invertible as endomorphism of H (x)n.

iii) If v ∈ On
X,x satisfies ‖v − u‖BΩ(D(x,ρ)) < w, then there exists a basis of elementary affinoid

neighborhoods Y of x in X (cf. Def. 3.1.4), such that Lv is invertible as endomorphism of each
O(Y )n.

In the situation of i) and ii) there exists a square matrix Qε with coefficients in OX,x〈d〉 such
that, for all v verifying ‖v − u‖BΩ(D(x,ρ)) < w, one has ‖QεLv − 1‖op,BΩ(D(x,ρ)) < ε, and also

‖dG−1
BΩ(D(x,ρ)),v‖op,BΩ(D(x,ρ)) = ‖Qε‖op,BΩ(D(x,ρ)) . (4.46)

In particular this norm is independent of v.

If moreover v ∈ On
X,x, then for all ε > 0 there exists a basis of elementary neighborhoods of x

in X (cf. Def. 3.1.4) satisfying

‖dG−1
O(Y ),v‖op,O(Y ) 6 ‖Qε‖op,BΩ(D(x,ρ)) + ε . (4.47)

Proof. i) Let ε > 0, and let Qε be the matrix of Lemma 4.3.6 such that ‖QεLu−1‖op,BΩ(D(x,ρ))n < ε.
Write QεLv − 1 = QεLu − 1 + Qε(Lv − Lu). Then by (4.35), there exists w such that if ‖v −
u‖BΩ(D(x,ρ)) < w, then ‖QεLv − 1‖op,BΩ(D(x,ρ)) < ε. By (3.7), the map ρ 7→ ‖QεLv − 1‖op,BΩ(D(x,ρ))

is continuous, so this proves that QεLv is an isomorphism on BΩ(D(x, ρ′))n for all ρ′ 6 ρ close
enough to ρ. Since Qε is an isomorphism too, so is Lv. Since this holds for all ρ′ 6 ρ close enough
to ρ, we deduce that Lv is an isomorphism on O(D(x, ρ)) = ∪ρ′6ρBΩ(D(x, ρ′)).

ii) By Lemma 4.3.6, Lv is also an isomorphism on H (x)n.

iii) Assume now that v ∈ On
X,x. By Prop. 4.2.1 there is a basis of elementary neighborhoods Y

of x in X (cf. Def. 3.1.4) such that v ∈ O(Y )n, the coefficients of Qε lie in O(Y ), and ‖QεLv −
1‖op,O(Y ) < ε. Then QεLv = 1 − Pv is invertible on O(Y )n with inverse

∑
i>0 P

i
v . Hence Qε is

surjective on O(Y )n. It is also injective because it is so as an operator on H (x)n. Finally Qε is
bijective on O(Y )n, and so is Lv.

Equality (4.46) follows from LvQε = 1−Pv with ‖Pv‖op,BΩ(D(x,ρ)) < 1. Inequality (4.47) follows
from (4.6).

4.3.4 Contractiveness of φv. Let w > 0 be as in Corollary 4.3.7. Let v ∈ On
X,x be such that

‖v−u‖H (x) < w, so that dGO(Y ),v is invertible on some affinoid neighborhood Y of x in X. Assume
that Y is small enough in order to have (4.47). Then for A = O(Y ), or A = H (x), define for all
ξ ∈ An

φv,A(ξ) := −dG−1
v

(
GA(v) +Nζ(v)(ζ(ξ))

)
. (4.48)
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Proposition 4.3.8. There exist an affinoid neighborhood Y of x in X, a v ∈ O(Y )n, and a real
number q > ‖v − u‖H (x) such that

φv,A : An −→ An (4.49)

is a contractive map on the disk D+
A(0, q) for both A = H (x) and A = O(Y ).

Proof. Choose r large enough to have ζ(u) ∈ D−
H (x)(0, r), i.e. ‖u‖H (x) < r‖ζ‖−1

op,H (x). Fix a real
number 0 < C < 1, and choose q such that

0 < q < C · r · ‖ζ‖−1
op,BΩ(D(x,ρ)) ·min(κ, 1) , (4.50)

where

κ := r · ‖ζ‖−1
op,BΩ(D(x,ρ)) · ‖F‖

−1
D

+
BΩ(D(x,ρ))

(0,r)
· ‖Qε‖

−1
op,BΩ(D(x,ρ)) . (4.51)

Then choose v ∈ On
X,x such that

‖v − u‖H (x) < min
(
q, q · κ, r‖ζ‖−1

op,H (x)

)
. (4.52)

With these choices the following holds

i) φv,H (x)(D
+
H (x)(0, q)) ⊆ D+

H (x)(0, q);

ii) There exists Y such that φv,O(Y )(D
+
O(Y )(0, q)) ⊆ D+

O(Y )(0, q);

iii) There exists 0 < C ′′ < 1 such that, for all ξ1, ξ2 ∈ D+
H (x)(0, q) one has

‖φv,H (x)(ξ1)− φv,H (x)(ξ2)‖H (x) 6 C ′′ · ‖ξ1 − ξ2‖H (x) ; (4.53)

iv) There exists Y satisfying ii), and 0 < C ′ < 1, such that for all ξ1, ξ2 ∈ D+
O(Y )(0, q) one has

‖φv,O(Y )(ξ1)− φv,O(Y )(ξ2)‖O(Y ) 6 C ′ · ‖ξ1 − ξ2‖O(Y ) . (4.54)

We give the details of ii) since i) follows similarly from (4.34), (4.36) and Corollary 4.3.7. By
(4.47) we can assume, restricting Y , that ‖u‖O(Y ), ‖v −u‖O(Y ) < r‖ζ‖−1

op,O(Y ), and that ‖ζ‖op,O(Y ),

‖GO(Y )(v)‖O(Y ), and ‖dG−1
O(Y ),v‖op,O(Y ) are close enough to ‖ζ‖op,BΩ(D(x,ρ)), ‖GO(Y )(v)‖BΩ(D(x,ρ)),

and ‖Qε‖op,BΩ(D(x,ρ)) respectively. Then, by Corollary 4.3.7 and Prop. 4.2.1, for all ξ ∈ D+
O(Y )(0, q)

one has:

‖φv,O(Y )(ξ)‖O(Y ) =
∥∥∥−dG−1

O(Y ),v

(
G(v) +Nζ(v)(ζ(ξ))

)∥∥∥
O(Y )

(4.55)

6 ‖ − dG−1
O(Y ),v‖op,O(Y ) ·max

(
‖G(v)‖O(Y ), ‖Nζ(v)(ζ(ξ))‖O(Y )

)
(4.56)

6 (‖Qε‖op,BΩ(D(x,ρ)) + ε1) ·max
(
‖G(v)‖BΩ(D(x,ρ)) + ε2, ‖Nζ(v)(ζ(ξ))‖BΩ(D(x,ρ)) + ε3

)
.

Now (4.34) together with (4.52) gives ‖G(v)‖BΩ(D(x,ρ)) < q‖Qε‖
−1
op,BΩ(D(x,ρ)). Since this inequality is

strict it is possible to chose ε1, ε2 in order that (‖Qε‖op,BΩ(D(x,ρ))+ ε1) · (‖G(v)‖BΩ(D(x,ρ))+ ε2) 6 q.

Analogously, if ‖ξ‖O(Y ) 6 q, one also has ‖Nζ(v)(ζ(ξ))‖BΩ(D(x,ρ)) < q‖Qε‖
−1
op,BΩ(D(x,ρ)). This follows

directly from (4.36) together with the inequality ‖ξ‖2
O(Y ) 6 q2 < q · r · ‖ζ‖−1

op,BΩ(D(x,ρ)) ·κ (cf. (4.50)).

Now we further restrict ε1, ε3 to have (‖Qε‖op,BΩ(D(x,ρ))+ ε1) · (‖Nζ(v)(ζ(ξ))‖BΩ(D(x,ρ))+ ε3) 6 q. So
‖φv,O(Y )(ξ)‖O(Y ) 6 q, and ii) holds.

We prove in detail iv), since iii) follows similarly from (4.37) and Corollary 4.3.7. First restrict
Y further to have q < r‖ζ‖−1

op,O(Y )
(cf. (4.6), and (4.50)). This guarantee that if ‖ξi‖O(Y ) 6 q, then
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ζ(ξi) ∈ D−
O(Y )(0, r). Then

‖φv,O(Y )(ξ1)− φv,O(Y )(ξ2)‖O(Y ) = ‖ − dG−1
O(Y ),v(Nζ(v)(ζ(ξ1))−Nζ(v)(ζ(ξ2)))‖O(Y ) (4.57)

6 (‖Qε‖op,BΩ(D(x,ρ)) + ε1) · ‖Nζ(v)(ζ(ξ1))−Nζ(v)(ζ(ξ2))‖O(Y ) .

Now by (4.37) one has

‖Nζ(v)(ζ(ξ1))−Nζ(v)(ζ(ξ2))‖O(Y ) 6 r−2‖F‖
D

+
O(Y )

(0,r) · ‖ζ‖
2
op,O(Y ) · ‖ξ1 − ξ2‖O(Y ) ·max(‖ξ1‖O(Y ), ‖ξ2‖O(Y ))

6 r−2(‖F‖
D

+
BΩ(D(x,ρ))

(0,r) + ε4) · (‖ζ‖op,BΩ(D(x,ρ)) + ε5)
2 · ‖ξ1 − ξ2‖O(Y ) · q

Now by (4.50) inequality (4.54) holds with

C ′ = C ·
(‖Qε‖op,BΩ(D(x,ρ)) + ε1

‖Qε‖op,BΩ(D(x,ρ))

)(‖F‖D+
BΩ(D(x,ρ))

(0,r) + ε4

‖F‖
D

+
BΩ(D(x,ρ))

(0,r)

)(‖ζ‖op,BΩ(D(x,ρ)) + ε5

‖ζ‖op,BΩ(D(x,ρ))

)2
(4.58)

Restricting Y the last three factors can be made arbitrarily close to 1. So there exists Y such that
0 < C ′ < 1.

4.4 Lifting to OX,x solutions of non linear differential equations with solutions in H (x).

With the identical proof one proves the following result. We here do not assume that K is alge-
braically closed.

Let Y be a fixed affinoid neighborhood of x ∈ X. Let Z := (Z1, . . . , Zn·s), let m > n, and let

F : O(Y )ns → O(Y )m , F (Z) :=
∑

|α|>0

CαZ
α , (4.59)

where α = (α1, . . . , αns) ∈ Zns, |α| =
∑

i αi, Z
α := Zα1

1 · · ·Zαns
ns , Cα ∈ O(Y )m is a power series

satisfying ‖Cα‖O(Y ) · r
|α| → 0 as |α| → ∞, i.e. F converges in a disk D+

O(Y )(0, r) ⊆ O(Y )ns. For

X = (X1, . . . ,Xn) consider the non-linear differential equation

F (X, d(X), . . . , ds(X)) = 0 . (4.60)

Denote in analogy with the above sections ζ : O(Y )n → O(Y )ns, the map ζ(x) = (x, d(x), . . . , ds(x)).

Theorem 4.4.1 ([DR77, 3.1.6]). Let x ∈ H (x)n be a solution of (4.60). If the linearized map

dFζ(x) ◦ ζ : H (x)n → H (x)m (4.61)

is injective, then x ∈ On
X,x.

Proof. Assume that K is algebraically closed. As in the above sections dFζ(x) ◦ ζ acts by a matrix
Lx ∈Mm×n(O(Y )〈d〉). By the theory of elementary divisors there exists square matrices U, V with
coefficients in OX,x〈d〉 such that the unique non zeros terms of ULxV are in the diagonal. The
terms in the diagonal are either zero or differential polynomials in OX,x〈d〉 that are injective as
linear maps H (x)n → H (x)m. If m > n then we can discard m− s components and reduce to the
case m = n. The proof is then equal to that in the above sections.

Consider now the case of an general field K. To descend the theorem from Kalg to K, it is
enough to notice that if x1, . . . , xn ∈ X

K̂alg are the points with image x ∈ X, then for all xi one has
OX,x = (H (x) ∩ OX ̂

Kalg
,xi) ⊂ H (xi).

Remark 4.4.2. To prove the Theorem 4.1.1 of Dwork and Robba one can proceed as follows. The
condition q2 = q in EndOX,x

(Mx) defines a projector. This condition is described by a non-linear
differential system of the above type. Robba’s theorem 3.6.9 provides a solution of such a system
with coefficients in H (x). Dwork and Robba then relate the injectivity of (4.61) to the radii.

42



Convergence Newton polygon III : decomposition and graphs

5. Augmented Dwork-Robba filtration and global decomposition theorem.

From now on K is again an arbitrary complete ultrametric valued field as in our original setting

1.0.1. We begin by descending Dwork-Robba’s decomposition from K̂alg to K.

5.1 Descent of Dwork-Robba filtration

Let x be a point of type 2, 3, or 4. Let A be one of the fields H (x) or OX,x, and let A be one of the

étale algebras H (x)⊗̂KK̂alg =
∏n

i=1 H (xi), or OX,x⊗̂KK̂alg =
∏n

i=1 OX ̂
Kalg

,xi , where x1, . . . , xn

are the points of X
K̂alg whose image in X is x. If M is a differential module over A we denote by

M := M⊗̂AA its scalar extension to A.

We recall that a semi-linear action of G := Gal(Kalg/K) on a A-module M is a map µ : G×M →
M where g(m) := µ(g,m), such that for all g, g1, g2 ∈ G, m,m1,m2 ∈ M, a ∈ A one has

i) g1(g2(m)) = (g1g2)(m), and 1G(m) = m;

ii) g(m1 +m2) = g(m1) + g(m2);

iii) g(am) = g(a)g(m).

We say that the action of G is trivial if M is isomorphic to the representation A
r
together with its

natural action of G component by component.

Lemma 5.1.1. The category of differential modules over A is equivalent to the category of differen-

tial modules over A = A⊗̂KK̂alg together with a trivial action of G commuting with the connection,
and morphisms commuting with the connection and the action of G.

Proof. The derivation d⊗ 1 on A = A⊗̂KK̂alg commutes with the action of G, given by g(x⊗ y) :=

x⊗ g(y). We then have A
G
= A by Ax-Tate theorem. So for every vector space M over A we have

M
G
= (M⊗A A)

G = M. One sees that if M has a connection, then the corresponding connection of
M commutes with G, and can be descended.

Conversely if M has an action of G commuting with the connection, and which is trivial, then

M = M
G
⊗̂AA, because the same holds for A

r
. Moreover the Leibnitz rule guarantee that the

connection of M is determined by its restriction to M := M
G
.

Lemma 5.1.2. Robba’s and Dwork-Robba’s decompositions (cf. (3.32) or (4.1)) by the spectral radii

of M over K̂alg descend to decompositions of M by its spectral radii over K. Moreover the statements
of Corollary 3.6.9, and of Theorem 4.1.1, also descend to K.

Proof. It is enough to prove that for all g ∈ G one has g((M)>ρ) = (M)>ρ. The semi-linear bijection

g : M
∼
→ M produces a linear isomorphism Lg : g∗M

∼
→ M, where g∗M = M ⊗

K̂alg,g
K̂alg is the

scalar extension of M by the map g : K̂alg → K̂alg, and Lg = g ⊗ 1. Since Lg is an isomorphism
of differential modules, the radii of g∗M at xi coincide with those of M, and hence also the same

as those of M at x. The same holds for M
>ρ

, so the composite map g∗(M
>ρ

) ⊆ g∗M
∼
→ M → M

<ρ

is the zero map (by decomposing the modules and apply either point v) of Corollary 3.6.9, or by

point ii) of Thm. 4.1.1). Hence Lg(g
∗(M

>ρ
)) ⊆ M

>ρ
.

The other claims of the Robba and Dwork-Robba’s statements descends as follows. As we have
proved, the composite morphism c : (M∗)>ρ → M∗ → (M>ρ)∗ gives the same morphism for M which

is an isomorphism over K̂alg commuting with G. So c itself is an isomorphism. Let α : Mρ → Nρ′
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be a morphism with ρ 6= ρ′. This produces a morphism over K̂alg commuting with G which is 0. So
α itself is 0.

5.2 Augmented Dwork-Robba decomposition

We now come back to the global situation.

Proposition 5.2.1 (Augmented decomposition). Let x ∈ X. Assume that i is an index separating
the radii of F at the individual point x (cf. Def. 2.5.4). Then there exists a unique differential
sub-module (F>i)x ⊆ Fx of rank r − i+ 1 over OX,x such that

ω(x, (F>i)x) = ωS,i(x,F ) . (5.1)

Let 1 = i1 < · · · < ih be the indices separating the radii of F at x. Then, according to (2.25), we
have a corresponding decreasing sequence of differential submodules:

0 6= (F>ih)x ⊂ (F>ih−1
)x ⊂ · · · ⊂ (F>i1)x = Fx . (5.2)

Proof. By Dwork-Robba’s decomposition (cf. Thm. 4.1.1 together with Lemma 5.1.2, and Prop.
3.5.3), the result holds for spectral radii : if Mx := Fx, and if T is a coordinate of D(x, S), for
which the radii of D(x) and D(x, S) are r(x) and R(x) respectively, then the result holds with

(F>i)x := M>ρ
x for ρ = RS,i(x,F ) · R(x)

r(x) .

Let i be an over-solvable index. If K is algebraically closed then DS,i(x,F ) comes by scalar
extension from a disk in X containing x. Then ωS,i(x,F ) = ω(DS,i(x,F ),F ) is contained in
ω(Fx,OX,x), and it generates by (1.14) a trivial differential sub-module (F>i)x of Fx (this is
obviously the unique sub-module of F whose solutions at x are identified with ωS,i(x,F )). If
K is not algebraically closed this sub-module can easily be descended by Lemma 5.1.1, because

Gal(K̂alg/K) preserves the modulus of the disks, hence it preserves the radii of the solutions.

Lemma 5.2.2. Let x ∈ X. Let i be an index separating the radii at the individual point x (cf.
Definition 2.5.4). Then there exists an open neighborhood Ux of x, together with a weak triangulation
SUx of Ux such that

i) The inclusion (F>i)x ⊆ Fx comes by scalar extension from an inclusion (F>i)|Ux
⊆ F|Ux

of
differential equations over Ux;

ii) For all y ∈ Ux the following conditions hold

(a) one has ωS,i(y,F ) ⊂ ωS,i−1(y,F ) (i.e. i separates the global radii of F over Ux);
(b) the restriction to Ux induces the equalities

ωS,i(y,F ) = ωSUx ,i(y,F|Ux
) , (5.3)

ωS,i−1(y,F ) = ωSUx ,i−1(y,F|Ux
) . (5.4)

In particular one has:

iii) RSUx ,i(y,F|Ux
) > RSUx ,i−1(y,F|Ux

) for all y ∈ Ux (i.e. the index i separates the radii of F

after localization at Ux);

iv) RSUx ,1(y, (F>i)|Ux
) = RSUx ,i−1(y,F|Ux

) for all y ∈ Ux;

v) ωSUx ,1(y, (F>i)|Ux
) = ωSUx ,i(y,F|Ux

) = ωS,i(y,F ), for all y ∈ Ux.

Proof. First observe that iv) and v) are immediate consequences of i),ii),iii) by Proposition 2.9.7.
Now observe that (5.4) is a consequence of (5.3) by the rule (2.33). Moreover iii) is a consequence
of ii) by definitions (2.12) and (2.24). We now define Ux and SUx satisfying i) and ii).

Let U be a connected open neighborhood of x such that the coefficients of the matrix of the
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connection of (F>i)x lie in O(U). Then i) holds for U . By continuity of the radii (cf. Thm. 2.4.1)
up to restricting U one has RS,i(y,F ) > RS,i−1(y,F ) for all y ∈ U , hence (a) holds at each point
y ∈ U . In order to find Ux ⊂ U and a weak triangulation of Ux satisfying (b), we now proceed as
follows. By Proposition 2.8.1, it is enough to define Ux ⊆ U and SUx such that

DS,i−1(y,F ) is strictly contained in D(y, SUx), for all y ∈ Ux. (5.5)

First assume that i is over-solvable at x, DS,i(x,F ) is a virtual open disk in X containing
x. Then set Ux := DS,i(x,F ) and SUx = ∅. Since DS,i(y,F ) = DS,i(x,F ) = D(y, SUx) for all
y ∈ DS,i(x,F ), this proves (5.5). Indeed by contrapositive the function RS,i−1(−,F ) is constant
on DS,i−1(y,F ) (cf. (2.27)), so the equality DS,i−1(y,F ) = DS,i(x,F ) implies DS,i−1(x,F ) =
DS,i−1(y,F ) = DS,i(x,F ) which is absurd because the radii of F are separated at x.

Assume now that i is spectral at x. This may only happen if x is of type 2, 3, or 4. By continuity
and finiteness of the radii (cf. Thm. 2.4.1) we can choose Ux ⊆ U such that

a) Ux is a star-shaped neighborhood of x endowed with its canonical triangulation (cf. 1.1.7) ;

b) One has RS,i−1(y,F ) < RS,i(y,F ), for all y ∈ Ux (this is automatic since Ux ⊆ U);

c) The radius RS,i−1(−,F ) remains spectral and non solvable on the pointed skeleton of Ux (cf.
1.1.7);

d) either ΓS(F )∩Ux is empty, or x ∈ ΓS(F ) and ΓS(F )∩Ux is included in the pointed skeleton
of Ux.

We claim that these properties imply (5.5). By c) this is clear over the pointed skeleton of Ux by
the rule (2.35) (indeed the spectral steps of the filtration of the solution are stable by localization,
cf. also (2.42) and (2.43)). Now let y ∈ Ux be outside the pointed skeleton of Ux. By contrapositive
assume that D(y, SUx) ⊆ DS,i−1(y,F ), then i−1 is solvable at y with respect to SUx . By (2.27) the
radius RSUx ,i−1(−,F|Ux

) is constant on D(y, SUx). Hence, by continuity, RSUx ,i−1(−,F|Ux
) remains

solvable at the topological boundary z of D(y, SUx). Since z lies in the pointed skeleton of Ux this
is a contradiction.

5.3 Global decomposition theorem

Recall that X is connected (cf. Setting 1.0.1).

Theorem 5.3.1. Assume that the index i separates the radii of F over X (cf. Def. 2.5.4). Then
F admits a sub-object (F>i,∇>i) ⊂ (F ,∇) such that for all x ∈ X one has

i) rank F>i = dimΩ ωS,i(x,F ) = r − i+ 1.

ii) For all j = 1, . . . , r − i+ 1 the canonical inclusion ω(x,F>i) ⊂ ω(x,F ) identifies

ωS,j(x,F>i) = ωS,j+i−1(x,F ) . (5.6)

Define F<i by

0 → F>i → F → F<i → 0 . (5.7)

Then, for all x ∈ X, one has

RS,j(x,F ) =

{
RS,j(x,F<i) if j = 1, . . . , i− 1
RS,j−i+1(x,F>i) if j = i, . . . , r .

(5.8)

Proof. By Lemma 5.2.2, for all point x ∈ X there exists a neighborhood Ux of x, and a unique
sub-object

((F>i)|Ux
, (∇>i)|Ux

) ⊂ (F|Ux
,∇|Ux

) (5.9)

such that for all y ∈ Ux one has
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(A) rank (F>i)|Ux
= dimΩ ωS,i(y,F ) = r − i+ 1;

(B) ω(y, (F>i)|Ux
) = ωS,i(y,F ).

Now, by local uniqueness (cf. Prop. 5.2.1), the family {((F>i)|Ux
, (∇>i)|Ux

)}x glues to a global sub-
object F>i. By (2.21) this global sub-object satisfies point i). Point ii) follows from Proposition
2.9.7. The remaining claims follows from Proposition 2.9.5.

Remark 5.3.2. In Section 8 we construct an example in which F>i is not a direct summand of
F . In Section 5.4 below we provide criteria to guarantee that F>i is a direct summand.

Proposition 5.3.3 (Independence of S). Let S and S′ be two weak triangulations. Assume that the
index i separates the radii of F with respect to both S and S′ and denote by FS,>i and FS′,>i the
resulting sub-modules. Then FS,>i = FS′,>i.

Proof. Since i separates the radii in both cases one has ωS,j(x,F ) = ωS′,j(x,F ) for all j 6 i,
and all x ∈ X (this is a consequence of (2.29)). By uniqueness of the augmented Dwork-Robba
decomposition one has (FS,>i)x = (FS′,>i)x, for all x ∈ X. Hence the composite map FS′,i ⊂ F →
FS,<i is locally the zero map, so it is globally zero by Prop. 1.0.4. Then FS′,>i ⊆ FS,>i, and by a
symmetric argument FS,>i = FS′,>i.

Remark 5.3.4. Let S, S′ be two weak triangulations of X such that ΓS ⊆ ΓS′. Passing from S to S′

has the effect that over-solvable radii result truncated by the rule (2.31). So if the index i separates
the radii with respect to S′, then it also separates the radii with respect to S. This shows that, in
order to fulfill the assumptions of Thm. 5.3.1, the more convenient choice of triangulation is S.

5.4 Conditions to have a direct sum decomposition

In this section we provide criteria to test whether F>i is a direct summand.

Proposition 5.4.1. The following conditions are equivalent:

i) ΓS,i(F ) = ΓS,i(F
∗);

ii) For all x ∈ X one has RS,i(x,F ) = RS,i(x,F
∗).

Proof. Clearly ii) implies i). Assume then that i) holds. Set Γ := ΓS,i(F ) = ΓS,i(F
∗).

If Γ = ∅, then X is a virtual open disk with empty triangulation, and both RS,i(−,F ) and
RS,i(−,F

∗) are constant on X. If they are different, then one of them, say RS,i(−,F ), is strictly
less than 1. Then, for x approaching the boundary of the disk X, the radius RS,i(x,F ) is spectral
non-solvable. This contradicts Prop. 3.6.7. So ii) holds in this case.

Assume that Γ 6= ∅. Then X − Γ is a disjoint union of virtual open disks on which RS,i(x,F )
and RS,i(x,F

∗) are constant. So it is enough to prove that RS,i(x,F ) = RS,i(x,F
∗) for all x ∈ Γ.

By Remark 2.6.2, if x ∈ Γ, then RS,i(x,F ) and RS,i(x,F
∗) are spectral, so they coincide by

Proposition 2.9.8.

Proposition 5.4.2. If the index i separates the radii of F and of F ∗ (at each x ∈ X), then for all
x ∈ X one has RS,i(x,F ) = RS,i(x,F

∗) and ΓS,i(F ) = ΓS,i(F
∗).

Proof. Let x ∈ X. It is enough to prove that DS,i(x,F ) = DS,i(x,F
∗). If RS,i(x,F ) or RS,i(x,F

∗)
is spectral non solvable then they are equal by Prop. 2.9.8.

Assume then that both radii are solvable or over-solvable at x. By contradiction, assume that
DS,i(x,F ) 6= DS,i(x,F

∗), we may assumeDS,i(x,F ) ⊂ DS,i(x,F
∗) (i.e.RS,i(x,F ) < RS,i(x,F

∗)).
We prove that this is absurd, and then exchanging the roles of F and F ∗ this will be enough to
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prove the equality of these two disks.

The radius RS,i(−,F
∗) is constant over DS,i(x,F

∗), and over-solvable at each point of it. By
compatibility with duals in the spectral case (cf. Prop. 3.6.7) this implies that RS,i(z,F ) is solvable
or over-solvable for all z ∈ DS,i(x,F

∗). Moreover RS,i(−,F ) is not constant on DS,i(x,F
∗). Indeed

RS,i(x,F ) < RS,i(x,F∗), so its constancy would imply that when z approaches the boundary of
DS,i(x,F

∗) the radius RS,i(z,F ) becomes spectral non solvable. So ΓS,i(F ) ∩DS,i(x,F
∗) 6= ∅.

Now consider an end-point z0 of ΓS,i(F ) in DS,i(x,F
∗). Since RS,i(−,F ) = RS,1(−,F>i), then

RS,i(−,F ) is a super-harmonic function onDS,i(x,F
∗) (cf. [Pul12, Thm. 4.7], see also Thm. 6.2.26).

However super-harmonicity is violated at z0 because the function is constant on each open-disk with
boundary z0, and solvable along the segment I connecting z0 to the boundary of DS,i(x,F

∗). Indeed
this implies that the slope of RS,1(−,F>i) along I is 1, while the slope along each other germ of
segment out of x is zero. So the super-harmonicity of RS,1(−,F>i) is violated at z0.

Recall that X is connected.

Theorem 5.4.3. Assume, as in Proposition 5.4.2, that i separates the radii of F and of F ∗.
Assume moreover that we are in one of the following situations:

i) X is not a virtual disk with empty triangulation.

ii) X is a virtual disk with empty weak triangulation, and there exists x ∈ X such that one of the
radii R∅,i−1(x,F ) or R∅,i−1(x,F

∗) is spectral non solvable.

Then F>i and (F ∗)>i are direct summands of F and F ∗ respectively.

Proof. It is enough to prove that the canonical composite morphism

c : (F ∗)>i → F
∗ → (F>i)

∗ (5.10)

is an isomorphism. This is a local matter. By Proposition 1.0.4 it is enough to show that c is an
isomorphism at an individual point x. By Prop. 5.4.2 one has RS,i(x,F ) = RS,i(x,F

∗) for all
x ∈ X, so the two functions have the same controlling graphs Γ := ΓS,i(F ) = ΓS,i(F

∗). If we are
in the case i), then Γ 6= ∅, and if x ∈ Γ, the radii are spectral at x, so c is an isomorphism at x by
Prop. 3.6.7. The same holds in case ii) by the assumption.

Remark 5.4.4. The only pathological case which not contemplated by Thm. 5.4.3 is a virtual open
disk X, with empty triangulation, on which RS,i(−,F ) and RS,i(−,F

∗) are both the constant
function with value 1, and such that RS,i−1(−,F ) and RS,i−1(−,F

∗) are both solvable or over-
solvable at all points of X. In this case if i separates the radii we do not know if F>i is a direct
factor of F . As soon as one of RS,i(−,F ) and RS,i(−,F

∗) is not identically equal to 1, then the
index i− 1 is spectral for F , or for F ∗, at some point close to the boundary of the disk (because i
separates the radii), and the conditions of the Thm. 5.4.3 are fulfilled.

Remark 5.4.5. It is interesting to notice that Thm. 5.4.3 holds with no assumptions on X if S is
a (non weak) triangulation. Indeed the definition of triangulation of [Duc] always prescribes S 6= ∅.

Corollary 5.4.6. Assume that i separates the radii of F , and that for j = i, i−1 one has ΓS,j(F ) =
ΓS,j(F

∗). Then RS,j(−,F ) = RS,j(−,F
∗), j = i, i − 1, so that i separates the radii of F ∗, and

the sub-objects F>i and (F ∗)>i are direct summands of F and F ∗ respectively. ✷

5.4.1 A criterion not involving F ∗. We now provide a criterion to have a direct sum decom-
position involving only properties of F and not of its dual (cf. Thm. 5.4.10). The hearth of that
criterion is the following Proposition 5.4.7. Its proof is based on the Grothendieck-Ogg-Shafarevich
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(G.O.S) formula in the form expressed in (8.5). We apply the G.O.S. formula to a differential module
over an open disk having all the radii equal and constant as functions on the disk. So the G.O.S.
formula does not need any decomposition theorem in that case, and the proof of Proposition 5.4.7
is then not circular. Note moreover that Proposition 5.4.7 follows from the more general6 result

[Ked10, Thm. 12.4.1], if D is K-rational, and by a Galois descent from K̂alg to K otherwise.

Proposition 5.4.7. Let X = D be a virtual open disk with empty triangulation. Let F be a dif-
ferential equation on D such that R∅,j(−,F ) is a constant function on D for all j = 1, . . . , i. Let
j ∈ {1, . . . , i} be an index separating the radii. Then the index j separates the radii of F ∗ and all
the assumptions of Theorem 5.4.3 and Proposition 5.4.2 are fulfilled. In particular

i) (F>j ,∇>j) is a direct summand of (F ,∇);

ii) R∅,k(x,F ) = R∅,k(x,F
∗) for all k = 1, . . . , i, and all x ∈ X = D.

Proof. We proceed by induction on i. If i = 1 there is nothing to prove since F>1 = F . Let i1 > 1
be the smallest index separating the radii. It is enough to prove that i1 separates the radii of F ∗.
Indeed in this case F>i1 ⊂ F is a direct summand by point ii) of Thm. 5.4.3. The conditions of
Thm. 5.4.3 are fulfilled because i1 separates the radii of F , so the radius R∅,i1−1(−,F ) is a constant
function with value < 1. Then if x ∈ D is close enough to the boundary of D, the index i1 − 1 is
spectral non solvable at x. Finally by (5.8) the induction is evident replacing F by F>i1 .

It remains to prove that i1 separates the radii of F ∗. We start by looking to the radii of (F<i1)
∗.

By (5.8) the radii of F<i1 are constant functions on D all equal to R := R∅,1(−,F ). Now the same
is true for its dual:

Lemma 5.4.8. For all j = 1, . . . , i1 − 1 = rank(F<i1), and all x ∈ D, one has

R∅,j(x, (F<i1)
∗) = R∅,j(x,F<i1) = R < 1 . (5.11)

Proof. Let D
∼
→ D−(0, 1) be an isomorphism. Since i1 separates the radii of F , we have R =

R∅,1(−,F ) < 1. So the indexes 1, . . . , i1 − 1 are all spectral non solvable for F<i1 at each point
of the open segment ]x0,R, x0,1[. Hence compatibility with the dual holds over ]x0,R, x0,1[ by Prop.
3.6.7. Moreover (5.11) holds for j = 1 by Prop. 2.9.8, hence R∅,j(0,F

∗) > R∅,1(0,F ) = R. Since
R∅,j(−, (F<i1)

∗) is constant on [0, x0,R∅,j (0,(F<i1
)∗)[, that contains [0, x0,R[, this forcesR∅,j(−, (F<i1)

∗)

to be constant on [0, x0,1[ with value R. This is independent on the chosen isomorphism D
∼
→

D−(0, 1), so R∅,j(−, (F<i1)
∗) is constant on each segment [z, x0,R[ of D, with z a rational point. If

K is spherically complete this proves the claim. In general, the claim over K is deduced from that
over a spherically complete extension Ω/K, since the radii are insensitive to scalar extension of K.
This proves that R∅,j(−, (F<i1)

∗) is constant over D.

In addition to Lemma 5.4.8, for all x ∈ D, and all j > 1, we have

R∅,j(x,F>i1) = R∅,j+i1−1(x,F ) . (5.12)

Moreover by Prop. 2.9.8, the first radius R∅,1(−, (F>i1)
∗) is a constant function on D and equal to

R∅,1(−,F>i1).

Unfortunately this is not enough to guarantee that i1 separates the radii of F ∗ because (F>i)
∗

is a quotient of F ∗, and the radii of the latter can be different. One has to prove that one does not
have a pathology as in (8.11). For this Lemma 5.4.9 below proves that locally at each point F is
the direct sum of F>i1 and F<i, so that we have compatibility with duals by Prop. 2.9.6.

6As explained in section 5.8 the decomposition theorem [Ked10, 12.4.1] is more general because it does not assume a
priori that the radii are separated.
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Lemma 5.4.9 is based on the G.O.S. formula (8.5). Since the radii are insensitive to scalar
extension of K, we can assume that K is spherically complete. This guarantee that the G.O.S.
formula holds.

Lemma 5.4.9. For all x ∈ D there exists a spherically complete field extension Ωx/K, and a
star-shaped neighborhood Yx of x in D such that

i) Yx contains strictly D∅,i1−1(x,F ). In particular one has RSYx ,i1−1(x,F|Yx
) < RSYx ,i1(x,F|Yx

)
(the radii remains separated after localization).7 Moreover if i1 − 1 is solvable or over-solvable
at x, then we may chose Yx to be a virtual open disk Yx = Dx such that

D∅,i1−1(x,F ) ⊂ Dx ⊆ D∅,i1(x,F ) . (5.13)

ii) The restriction to Yx⊗̂KΩx of the sequence

E : 0 → F>i1 → F → F<i1 → 0 , (5.14)

splits over Yx⊗̂KΩx.

Proof. If i1 − 1 is spectral non solvable at x the statement follows from Dwork-Robba Theorem
4.1.1. Assume that i1 − 1 is solvable or over-solvable at x, so that D(x) ⊆ D∅,i1−1(x,F ). Note that
D∅,i1−1(x,F ) is not equal to D because i1 separates the radii. Now let Ωx/K be a field extension
such that the connected components of D∅,i1−1(x,F ) ⊗ Ωx are isomorphic to D′ := D−

Ωx
(0, 1). We

consider the sequence E ⊗ O†(D′), and we use the notations of section 8.2. We now prove that the
sequence splits over D′

ε for a convenient ε > 0. Since by assumption D(x) ⊆ D′, then D′
ε comes by

scalar extension from a virtual disk Dx := D′
ε,K .

By (2.33), for all ε > 0 the radii of (F<i1)|D′
ε
and (F>i1)|D′

ε
are constant over D′

ε, and the index
i1 separates the radii of F|D′

ε
. In particular (F<i1)|D′

ε
does not verify (8.1), so the Grothendieck-

Ogg-Shafarevich (8.5) formula holds. Hence there exists a virtual open disk D′
ε as above such that

h1((F<i1)|D′
ε
,O(D′

ε)) = 0 since the slope of −∂bH∅,i1−1(x0,1, (F<i1)|D′
ε
) is zero.

The same happens for the dual ((F<i1)|D′
ε
)∗ by Lemma 5.4.8. Now, since (F>i1)|D′

ε
is trivial,

then by (8.5), one has

H1(((F<i)|D′
ε
)∗ ⊗ (F>i1)|D′

ε
) = H1(((F<i)|D′

ε
)∗)r−i1+1 = 0 . (5.15)

Now the Yoneda group Ext1(M,N) of extensions 0 → N → P → M → 0 of differential modules can
be identified with H1(M∗ ⊗N) (cf. Lemma 1.2.7). So the sequence splits over D′

ε.

The behavior of the radii by localization to Yx is expressed by (2.35). To show that i1 separates
the radii of F ∗, we then prove that i1 separates the radii of (F|Yx

)∗. Since the sequence (5.14)

splits over Yx⊗̂KΩx, then so does the dual sequence 0 → (F<i1)
∗ → F ∗ → (F>i1)

∗ → 0. Now,
by Lemma 5.4.8, the radii of (F<i1)

∗ are all equal to R = R∅,i1−1(−,F ). Hence, by (5.12), they
are strictly smaller than those of (F>i1)

∗. This inequality is preserved by restriction to Yx⊗̂KΩx

by (5.13). We then apply Proposition 2.9.6 to prove that the radii of F ∗|Yx⊗̂KΩx
are the union of

these two families of radii, hence i1 separates the radii of F ∗|Yx⊗̂KΩx
. So the same holds for F ∗ by

(2.33). This concludes the proof of Proposition 5.4.7.

The assumptions of the following result only involve the properties of F . A possible criterion to
guarantee condition (5.16) is discussed in section 6.3.

7Here SYx
denotes the canonical weak triangulation of Yx (cf. section 1.1.7), which is the empty set if Yx is a virtual

open disk.
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Theorem 5.4.10. Assume that i separates the radii of F , and that

ΓS,1(F ) ∪ · · · ∪ ΓS,i−1(F ) ⊆ ΓS,i(F ) . (5.16)

Then

i) The index i separates the radii of F ∗ and all the assumptions of Theorem 5.4.3 are fulfilled.
In particular (F>i,∇>i) is a direct summand of (F ,∇).

ii) For all j = 1, . . . , i and all x ∈ X one has RS,j(x,F ) = RS,j(x,F
∗), hence

ΓS,j(F ) = ΓS,j(F
∗) . (5.17)

In particular ΓS,1(F
∗) ∪ · · · ∪ ΓS,i−1(F

∗) ⊆ ΓS,i(F
∗).

Proof. If ΓS,i(F ) = ∅, thenX is a virtual open disk with empty triangulation, and the claim reduces
to Proposition 5.4.7.

Assume now that ΓS,i(F ) 6= ∅. Then X − ΓS,i(F ) is a disjoint union of virtual open disks. We
shall prove that i separates the radii of F ∗, and apply point i) of Theorem 5.4.3.

Firstly observe that i separates the radii of F ∗ at the points of ΓS,i(F ). Indeed if x ∈ ΓS,i(F ),
then the radius RS,i(x,F ) is spectral at x (cf. Remark 2.6.2). Hence RS,1(x,F ), . . . ,RS,i−1(x,F )
are all spectral and non solvable at x, because i separates the radii. So by compatibility with duality
in the spectral case (cf. Prop. 3.6.7) one has

RS,j(x,F ) = RS,j(x,F
∗) , for all j = 1, . . . , i, and all x ∈ ΓS,i(F ) . (5.18)

Let now D be a virtual open disk in X with boundary x ∈ ΓS,i(F ). The assumption (5.16) implies
that the radii RS,1(−,F ), . . . ,RS,i(−,F ) are all constant on D. Now consider the empty weak
triangulation on D. The rule (2.36) proves that the radii R∅,1(−,F|D), . . . ,R∅,i(−,F|D) are all
constants and that R∅,i−1(−,F|D) < R∅,i(−,F|D) (i.e. the radii remains separated after localiza-
tion). Indeed if z ∈ D, we have D = Dc

S,i(z,F ), and hence DS,i(z,F ) ⊆ D by (2.27). So for all
j = 1, . . . , i− 1 one also has

DS,j(z,F ) ⊂ DS,i(z,F ) ⊆ D . (5.19)

Now by Proposition 5.4.7 the first i radii of (F|D)
∗ are constant functions onD equal to those of F|D.

Again by (2.36), this proves that for all j = 1, . . . , i − 1 one has DS,j(z,F
∗) = DS,j(z,F ) ⊂ D.

Hence the radii RS,1(−,F
∗), . . . ,RS,i−1(−,F

∗) are constant functions on D, and are equal to
RS,1(−,F ), . . . ,RS,i−1(−,F ) respectively. Together with (5.18) this givesRS,j(−,F

∗) = RS,j(−,F )
over the whole X.

Now (2.36) also proves that i separates the radii of F ∗ over D, and hence on the whole X by
(5.18). By Proposition 5.4.2 the i-th radius of F and F ∗ coincide, and ΓS,i(F ) = ΓS,i(F

∗).

By point i) of Theorem 5.4.3, we conclude.

Remark 5.4.11. Let S, S′ be two weak triangulations of X such that ΓS ⊆ ΓS′. The best choice in
order to fulfill condition (5.16) will be S′. By this we mean that ΓS′ ⊂ ΓS′,i(F ), so, as an example,
we may choose S′ in order to cover the pieces of ΓS,1(F )∪· · · ∪ΓS,i−1(F ) that are not in ΓS,i(F ).8

In this way, by (2.32), we obtain ΓS′,j(F ) ⊆ ΓS′,i(F ) for all j = 1, . . . , i− 1.

Unfortunately the increasing of S′ cuts the radii, so the S′-radii can be no more separated. In
fact, by Remark 5.3.4 we know that, in order to guarantee that i separates the radii, the best choice
of triangulation is S. The triangulation S is also convenient for Theorem 5.4.3 which is for this
reason more “ natural” than Thm. 5.4.10.

8This is possible because none of the ΓS,j(F ) contains points of type 1 or 4 by [Ked13].
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5.5 Direct sum over annuli.

In section 6 we provide criteria and methods to check conditions of Theorems 5.3.1, 5.4.3, and 5.16.
This section makes use of section 6, and is placed here for expository reasons.

Corollary 5.5.1. Let X be a virtual open annulus with empty triangulation. Let I be its skeleton,
and let i 6 r = rank(F ). Assume that (cf. Corollary 6.3.7):

i) For all x ∈ I, and all j ∈ {1, . . . , i− 1} one of the following condition holds:9

(a) there exists an open subinterval J ⊆ I containing x such that the partial height H∅,j(−,F )
(cf. (2.13)) is a log-affine map on J (cf. Section 1.1.4)

(b) R∅,j(x,F ) is solvable or over-solvable at x.

ii) R∅,i−1(x,F ) < R∅,i(x,F ) for all x ∈ I.

Then the index i separates the radii of F globally on X, and Γ∅,j(F ) = I for all j = 1, . . . , i − 1.
Hence

F = F<i ⊕ F>i . (5.20)

Proof. By Corollary 6.3.7, one has Γ′
∅,i−1(F ) = I. Then R∅,i−1(−,F ) is constant outside it. Since

the index i separates the radii over I, it separates the radii on the whole X. Indeed if D is a disk
with boundary x ∈ I, then for all z ∈ D one has

R∅,i(z,F ) > R∅,i(x,F ) > R∅,i−1(x,F ) = R∅,i−1(z,F ) . (5.21)

This follows by concavity of R∅,i(−,F ) outside Γ′
∅,i−1(F ) (cf. point iv) of Remark 6.1.3). Then the

index i separates the radii of F , and Γ′
∅,i−1(F ) = I ⊆ Γ∅,i(F ). Theorems 5.3.1 and 5.4.10 then

apply.

5.5.1 Solvable equations over the Robba ring. The so called Robba ring is the ring R :=⋃
ε>0 O(Cε), where Cε := C−

K(0; 1− ε, 1). Following a terminology of G. Christol and Z. Mebkhout,
a differential module M over R is solvable if limρ→1R∅,1(x0,ρ,M) = 1. If M is solvable, then for all
i = 1, . . . , r = rank(M), there exists ε > 0 such that RS,i(x0,ρ,M) = ρβr−i+1 , for all ρ ∈]1 − ε, 1[.
The numbers β1 6 β2 6 · · · 6 βr are called the slopes of M.10 We say that M is purely of slope β if
β1 = · · · = βr = β.

As a consequence of Corollary 5.5.1 we recover Christol-Mebkhout decomposition theorem:

Corollary 5.5.2 ([CM00]). Any solvable differential module over R admits a direct sum decompo-
sition

M :=
⊕

β>0

M(β) (5.22)

into sub-modules M(β) that are purely of slope β.

Proof. The radii RS,i(−,F ) are log-affine on the skeleton of a conveniently small annulus Cε. Then
apply Corollary 5.5.1.

5.6 Crossing points and filtration outside a locally finite set.

In this section we do not assume that the radii of F are separated globally on X. We investigate
the existence of a filtration of F over some regions of X. The problem is that the radii are not

9In particular the condition is fulfilled if the radii RS,j(−,F ), j = 1, . . . , i− 1 are all log-affine on the skeleton Γ∅.
10The original terminology of Christol and Mebkhout is p-adic slopes. We drop the term p-adic because we allow the
absolute value of K to be the extension of a trivially valued field, or to have a residual field of characteristic 0. So
everything works in a more general context.
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stable by localization, so we can not just localize and apply the above statements.

Definition 5.6.1. A separating neighborhood of x ∈ X is a open neighborhood U of x such that
for all i 6= j one has either RS,i(y,F ) = RS,j(y,F ) or RS,i(y,F ) 6= RS,j(y,F ) at every point
y ∈ U . In other words, each index i separates the radii either everywhere or nowhere on U .

Definition 5.6.2. A point x ∈ X is called crossing point for F if it has no separating neighborhoods.
We denote by CrS(F ) the subset of crossing points.

Lemma 5.6.3. The subset CrS(F ) is a locally finite subset of X contained in ΓS(F ).

Proof. This results by finiteness (cf. Thm. 2.4.1), together with the fact that along a closed segment
each radius RS,i(−,F ) has a finite number of breaks (cf. [Pul12, Thm. 4.7 iii)] and [PP12b]).

Lemma 5.6.4. Let F ⊆ X be a locally finite subset containing CrS(F ), and let Y be a connected
component of X − F. Then Y is an separating open neighborhood of all its points. In other words
if i < j one has either RS,i(y,F ) < RS,j(y,F ) for all y ∈ Y , or RS,i(y,F ) = RS,j(y,F ) for all
y ∈ Y . ✷

Definition 5.6.5. We denote by XS,i(F ) ⊂ X the open subset formed by the points x ∈ X such
that i separates the radii of F at x.

Remark 5.6.6. By definition XS,1(F ) = X.

If the open subset XS,i(F ) is not the whole X, then ΓS,i(F ) ∪ ΓS,i−1(F ) 6= ∅, and in this
case XS,i(F ) is the inverse image by the canonical retraction X → ΓS,i(F ) ∪ ΓS,i−1(F ) of a
possibly not connected open sub-graph. In particular a connected component D of XS,i(F ) such that
D ∩ ΓS,i(F ) = ∅ is necessarily a virtual open disk with boundary in ΓS,i(F ) ∪ ΓS,i−1(F ).

Moreover this proves that, if C is a connected subset of X−CrS(F ) such that C ∩XS,i(F ) 6= ∅,
then C ⊆ XS,i(F ).

5.6.1 Existence of F>i. We here study the existence of F>i over some regions of X.

Proposition 5.6.7. The restriction F|XS,i(F ) of F to XS,i(F ) admits a unique sub-object (F|XS,i(F ))>i

of rank r − i+ 1 such that, for all y ∈ XS,i(F ), one has

ω(y, (F|XS,i(F ))>i) = ωS,i(y,F ) . (5.23)

Proof. The (global) radii {RS,i(−,F )}i induce a filtration {ωS,i(x,F )}i on ω(x,F ). From that
filtration we have defined in Prop.5.2.1 the augmented Dwork-Robba filtration of Fx for all x ∈ X.
Now the connected components of XS,i(F ) are the regions on which the i-th radius stays separated
from the (i− 1)-th one. So the gluing process works over such XS,i(F ), and it gives a sub-object of
F|XS,i(F ).

Corollary 5.6.8. Let Y be a connected component of X − CrS(F ). Let 1 = i1 < i2 < . . . < ih
be the indexes separating the radii {RS,i(−,F )}i over Y . The restriction F|Y of F to Y admits a
filtration

0 6= (F|Y )>ih ⊂ (F|Y )>ih−1 ⊂ · · · ⊂ (F|Y )>i1 = F|Y (5.24)

such that for all x ∈ Y one has

ω(x, (F|Y )>ik) = ωS,ik(x,F ) . (5.25)

Proof. By Remark 5.6.6, Y is contained in XS,i1(F ) ∩ XS,i2(F ) ∩ · · · ∩ XS,ih(F ). So we apply
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Proposition 5.6.7.

Remark 5.6.9. Note that we did not endow Y with any weak triangulation, so in these propositions
we do not speak about the radii of F|Y . The proposition involves only the restriction to Y of the global
radii RS,i(−,F ). The reason is the following. It easy to see that there exists a weak triangulation
S′ of X ′ := X − CrS(F ) such that the graph ΓS′ is the minimum graph of a weak triangulation
satisfying ΓS ∩X ′ ⊆ ΓS′. However, in analogy with Remark 5.4.11, the localization to X ′ cuts the
radii, and it may happens that the radii RS′,i(−,F|X′) are no more separated (i.e. after localization
to X ′).

5.6.2 Direct sum decomposition: condition on F and F ∗. Here we gives conditions to have a
direct sum decomposition.

We firstly consider the open subset XS,i(F ,F ∗) := XS,i(F )∩XS,i(F
∗), over which i separates

the radii of both F and F ∗. Set Γ := ΓS,i(F )∪ΓS,i(F
∗)∪ΓS,i−1(F )∪ΓS,i−1(F

∗). If XS,i(F ,F ∗)
is not equal to X, then Γ 6= ∅, hence XS,i(F ,F ∗) is the inverse image by the retraction X → Γ of
a possibly not connected open sub-graph of Γ.

Proposition 5.6.10. Let F be a differential equation over X, and let C be a connected component
of XS,i(F ,F ∗). If C satisfies C∩

(
ΓS,i(F )∪ΓS,i(F

∗)
)
= ∅, then assume moreover that there exists

x ∈ C such that i− 1 is spectral for F , or for F ∗. Then (F|Y )>i is a direct summand of F|Y .

Proof. It is enough to prove that the canonical composite morphism c : (F ∗
|Y )>i ⊆ F ∗

|Y →

((F|Y )>i)
∗ is an isomorphism. For this, by Prop. 1.0.4, we only need a point x ∈ Y at which i− 1 is

spectral non solvable for F or F ∗ (as in the proof of Thm. 5.4.3). If Y ∩
(
ΓS,i(F )∪ΓS,i(F

∗)
)
6= ∅,

then we are done since, by Remark 2.6.2, i is spectral, for F and F ∗, at each point of that inter-
section (and hence i− 1 is spectral non solvable).

Corollary 5.6.11. Let Y be a connected component of X − (CrS(F ) ∪ CrS(F
∗)). Let 1 = i′1 <

i′2 < · · · < i′h′ be the indexes separating simultaneously the global radii of F and of F ∗ over Y . Let
C be the connected component of XS,i′k

(F ,F ∗) containing Y . Assume that for all i′k one of the two
situation is realized:

i) C ∩ (ΓS,i′k
(F ) ∪ ΓS,i′k

(F ∗)) 6= ∅

ii) C ∩ (ΓS,i′k
(F )∪ΓS,i′k

(F ∗)) = ∅, and the index i′k −1 is spectral for F or for F ∗ at some point
of C.

Then the terms of the filtration (5.24) of F over Y corresponding to an index of the family {i′k}k
are direct summands of F|Y . ✷

5.6.3 Direct sum decomposition: conditions on F . In analogy with Thm. 5.4.10, we now provide
conditions on the controlling graphs.

Denote by X|ΓS,i(F ) the affinoid domain of X obtained removing the connected components of
X − ΓS,i(F ) intersecting ΓS,j(F ) for some j = 1, . . . , i − 1. Such connected components form a
locally finite family of virtual open disks.

Proposition 5.6.12. Let Y := XS,i(F ) ∩X|ΓS,i(F ). Then (F|Y )>i is a direct summand of F|Y .

Proof. By definition ΓS ⊆ ΓS,i(F ) ⊆ X|ΓS,i(F ). One sees that there exists a smallest weak trian-
gulation S′ of X|ΓS,i(F ) containing S and the boundaries of the disks removed. and the bifurcation
points of ΓS,i(F ). The set S′ is a locally finite set in ΓS,i(F ). Then S′ verifies ΓS ⊆ ΓS′ ⊆ ΓS,i(F ).
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By Prop. 2.8.2, for all j = 1, . . . , i one has

ΓS′,j(F|X′) = (ΓS,j(F ) ∩X ′) ∪ ΓS′ ⊆ ΓS′,i(F|X′) = ΓS,i(F ) , (5.26)

where X ′ := X|ΓS,i(F ). Moreover the first i S-radii are all spectral along ΓS,i(F ) by Remark 2.6.2.
So by (2.37), the index i separates the radii at y ∈ X|ΓS,i(F ) with respect to S if and only if it
separates the radii with respect to S′. This proves that XS,i(F ) ∩X|ΓS,i(F ) is the inverse image by
the retraction X|ΓS,i(F ) → ΓS′,i(F|X|ΓS,i(F))

) of the subset of points on which i separates the radii.

In other words XS,i(F )∩X ′ = X ′
S′,i(F|X′), where X ′ := X|ΓS,i(F ). Hence, replacing X by X|ΓS,i(F ),

we can assume ΓS,j(F ) ⊆ ΓS,i(F ), for all j = 1, . . . , i.

Now with the same proof as Thm. 5.4.10 one shows that i separates the radii of F ∗ at each point
of XS,i(F ) (i.e. XS,i(F ) = XS,i(F ,F ∗)), and the assumptions of Prop. 5.6.10 are fulfilled.

Corollary 5.6.13. Let Y be a connected analytic domain of X −CrS(F ). Let 1 = i1 < · · · < ih be
the indexes separating the radii {RS,i(−,F )}i over Y . If

Y ⊆
(
X|ΓS,i1

(F ) ∩X|ΓS,i2
(F ) ∩ · · · ∩X|ΓS,ih

(F )

)
(5.27)

then (F|Y )>ik is a direct summand of F|Y for all k.

Proof. By Remark 5.6.6, Y ⊆ XS,ik(F ) for all k, so (F|Y )>ik exists by Corollary 5.6.8. Now (5.27)
means Y ⊆ X|ΓS,ik

(F ) for all k. We then apply Proposition 5.6.12.

5.6.4 Clean decomposition. Until now, we have restricted the module F to a subset Y but
have always computed its radii with respect to the original weak triangulation S, which is a weak
triangulation on X. Now, we will allow us to change the weak triangulation as well and compute
the radii with respect to a weak triangulation of Y . In the process, the radii may be truncated,
which would lead to a decomposition that is less precise. On the other hand, we will show that such
a decomposition always exists.

Recall that, by [Ked13, Thm. 4.5.15], every radius of convergence is constant in the neighborhood
of a point of type 4. In particular, every graph ΓS,j(F ) is the skeleton of a weak triangulation. It
is the only time in this paper where we shall use this difficult result.

Theorem 5.6.14 (Clean decomposition). Set r = rank(F ) = rank(F ∗). There exists a weak tri-
angulation Sd of X containing S such that the following holds:

i) ΓSd
= ΓS(F ) ∪ ΓS(F

∗) (cf. (2.18));

ii) for every x ∈ X and every j ∈ {1, . . . , r}, we have RSd,j(x,F ) = RSd,j(x,F
∗);

iii) every connected component of X \ Sd is a separating neighborhood of all its points for both F

and F ∗, with respect to the weak triangulation Sd.

Moreover, let C be a connected component of X \Sd (necessarily a virtual open disk or annulus)
and endow it with the empty weak triangulation. Let 1 = i1 < i2 < · · · < ih be the indexes separating
the radii of F|C . Then, we have a direct sum decomposition

F|C =
⊕

16m6h

(F|C)im (5.28)

such that, for every m ∈ {1, . . . , h}, every j ∈ {1, rank((F|C)im)} and every x ∈ C, we have

R∅,j(x, (F|C)im) = R∅,im(x,F|C) = RSd,im(x,F ) . (5.29)

The same result hold for F ∗ and, for every m ∈ {1, . . . , h}, we have (F|C)
∗
im = (F ∗

|C)im .
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Proof. Let us first choose a weak triangulation S′ such that ΓS′ = ΓS(F ) ∪ ΓS(F
∗). Such an

S′ exists by [Ked13, Thm. 4.5.15]. By Proposition 2.7.1, one has ΓS′(F ) = ΓS′(F ∗) = ΓS′ , and
RS′,i(−,F ) = RS′,i(−,F

∗) for all i. Hence CrS′(F ∗) = CrS′(F ) ⊂ ΓS′ . Define Sd := S′∪CrS′(F ).
Proposition 2.7.1 then ensures that the S′-radii coincides with the Sd-radii, hence on an edge
of ΓSd

two Sd-radii of F (resp. F ∗) are either always equal or always different. One sees that
X|ΓSd,i

(F ) = X, for all i. The statement is now a consequence of Proposition 5.6.12, and Corollary
5.6.11.

Remark 5.6.15. Without using Kedlaya’s result, it is still possible to prove a slightly weaker
statement by replacing X by X \ T , where T is the locally finite subset of X formed by the
type 4 points in ΓS(F ) ∪ ΓS(F

∗). Then Sd is a weak triangulation of X \ T whose skeleton is
ΓSd

=
(
ΓS(F ) ∪ ΓS(F

∗)
)
\ T . The other properties hold unchanged.

Remark 5.6.16. An alternative proof of the global decomposition Theorem 5.3.1 is possible by
using the principle of Thm. 5.6.14. Namely if S′

d is a weak triangulation of ΓS(F ), containing the
triangulation Sd of Thm. 5.6.14, and satisfying

i) Each connected component of X − S′
d is either an open virtual disk or annulus;

ii) The radii are all log-linear on each edge of ΓS′
d
(i.e. on the interior of each connected component

of ΓS′
d
− S′

d).

iii) Let C be an annulus which is a connected component of ΓS′
d
. Then each index i = 1, . . . , r is

either solvable at each point of ΓC , or never solvable at the points of ΓC .

One sees that in the situation of iii), if i is the smallest index which is over-solvable over ΓC, then C
is contained in the disk DS,i(x,F ). So there exists (F|C)>i ⊆ F|C generated by ωS,i(x, S), for any
point x ∈ ΓC . Then uses [Ked10, 12.4.2] to decompose F|C by the spectral radii. This together with
the augmented Dwork-Robba decomposition at the points of S′

d this glue, and one have the result of
Theorem 5.3.1.

5.7 Formal differential equations

Assume that K is trivially valued. This is a somehow degenerate situation since the punctured disk
D−

K(0, 1) − {0} coincides with the open segment ]0, x0,1[.

Remark 5.7.1. Let K((T )) be the field of formal power series with coefficients in K. If f =∑
i>n aiT

i ∈ K((T )), then |f |0,ρ = supi>n |ai|ρ
i, and |ai| is either equal to 0 or 1. Hence for all

0 < ρ < 1 one has |f |0,ρ = ρvT (f), where vT (f) = minai 6=0{i} is the T -adic valuation of f .

The Remark shows that we have equalities of rings

K((T )) =





H (x0,ρ) for all ρ ∈]0, 1[;
O(C) for all annulus C ⊆ D−

K(0, 1) centered at 0;
R :=

⋃
ε>0 O(Cε) where Cε := C−

K(0; 1 − ε, 1) (this is the Robba ring).
(5.30)

A differential module M over K((T )) then have 3 kind of decompositions:

i) If M is viewed as a module over H (x0,ρ), one has the Robba’s decomposition (3.32);

ii) If M is viewed as a module over K((T )), one has the decomposition [DMR07, p. 97-107] below
by the slopes of its formal Newton polygon of B. Malgrange and J. P. Ramis (cf. [Ram78]);

iii) If M is viewed as a module over the Robba’s ring R, one has the decomposition by the slopes
of Christol-Mebkhout of section 5.5.1 (in fact we prove that such a module is always solvable);

Definition 5.7.2 (Formal Newton polygon). Let P :=
∑n

k=0 gk(T )(
d
dT )

k ∈ K((T ))〈 d
dT 〉, with gn =
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1, be a differential operator corresponding to a cyclic basis of M. For (u, v) ∈ R2 let Q(u, v) =
{(x, y) ∈ R2 | x 6 u, y > v}. Then the formal Newton polygon is the convex hull of the family of
quadrants {Q(k, vT (gk) + n− k)}k=0,...,n. The numbers

IrrFormal(P ) := max
06k6n

{k − vT (gk)} − (n− vT (gn)) , (5.31)

µmax(P ) := max
(
0 , max

k=1,...,n

vT (gk)

k − n
− 1

)
. (5.32)

is called the Formal irregularity and the Poincaré-Katz rank of M respectively. These are height and
the largest slope of the formal Newton polygon respectively:

µmax(P )

•
(r, 0)

•

•

•

•

•

•

•

•

•

IrrFormal(P )





. (5.33)

The formal Newton polygon is independent on the chosen cyclic basis of M.

In order to be coherent with the rest of the paper, by convention we say that the formal Newton
polygon has r slopes µ1 6 · · · 6 µr defined as µi := h(i) − h(i − 1), where h : [−∞, r] → R is the
function whose epigraph is the formal Newton polygon.

The module M is said pure of formal slope µ if µ1 = · · · = µr = µ.

Theorem 5.7.3 ([DMR07, p. 97-107]). Any solvable differential module over K((T )) admits a direct
sum decomposition

M :=
⊕

µ>0

M(µ) (5.34)

into sub-modules M(µ) that are purely of slope µ. ✷

In this section we prove the following:

Proposition 5.7.4. The above 3 decompositions of M coincide. More precisely let S be a weak
triangulation of D−

K(0, 1) − {0}.11 Let µ1 6 µ2 6 · · · 6 µr be the slopes of the formal Newton
polygon of M. Then

i) For all i = 1, . . . , r = rank(M) and all ρ ∈]0, 1[ one has

RS,i(x0,ρ,M) = ρµr−i+1 . (5.35)

In particular M viewed as a differential module over R is solvable following the terminology of
Christol-Mebkhout (cf. Section 5.5.1).

ii) One has ΓS,i(M) = ΓS =]0, x0,1[= D−
K(0, 1)−{0}. The radii of M are separated over D−

K(0, 1)−
{0}, and there exists a global decomposition by the radii over K((T )) = O(D−

K(0, 1) − {0}).

iii) The formal slopes µ1 6 · · · 6 µr coincide with the slopes β1 6 · · · 6 βr of Christol-Mebkhout.

11 In this degenerate situation we automatically have ΓS =]0, x0,1[, and S is a sequence of points in ]0, x0,1[ whose
limit is 0.
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In particular one has

∂bRS,1(x0,1,M) = µr = βr = µmax(P ) , (5.36)

∂bHS,r(x0,1,M) = IrrFormal(P ) , (5.37)

where HS,r =
∏n

i=1 RS,i(x,M) is the highest partial height of F (cf. (2.13)), and b =]x0,1−ε, x0,1[
is a germ of segment oriented as out of x0,1.

We sum up these facts by saying that the formal Newton polygon equals the Christol-Mebkhout
Newton polygon, and it coincides with the derivative of the convergence Newton polygon.

Proof. Decomposing the module with respect to all decomposition results Cor. 3.6.9, Cor. 5.5.2, and
Thm. 5.7.3 we can assume that the three newton polygons of M all have an individual slope with
multiplicity rank(M). The statement then follows from (5.35) for i = 1. Now with the notations of
(2.50) one has

RS,1(x0,ρ,M) = min(1,RY (x0,ρ)/ρ) , (5.38)

where RY (x0,ρ) = lim infn(|Gn|0,ρ/|n!|)
−1/n. By Remark 5.7.1, the functions log(ρ) 7→ log(|Gn|0,ρ)

are all lines passing through the origin. Hence the same happens for the functions log(ρ) 7→
logRY (x0,ρ) and log(ρ) 7→ logRS,1(x0,ρ,M). In particular one has

lim
ρ→1−

RS,1(x0,ρ,M) = 1 . (5.39)

Now by [CM02, Thm.6.2] we obtain for all ρ ∈]0, 1[

RS,1(x0,ρ,M) = ρµmax(P ) . (5.40)

This proves the claim.

Remark 5.7.5. A posteriori, one sees that the decomposition result of [DMR07, p. 97-107], coin-
cides with that of the prior paper [Rob75b] exposed in section 3.

5.8 Notes.

The decomposition theorem 5.3.1 is not a simple consequence of Robba’s and Dwork-Robba’s de-
compositions by the spectral radii (cf. Cor. 3.6.9, and Thm. 4.1.1). Indeed the proof of Theorem
5.3.1 uses the continuity of all the radii (cf. Prop. 2.9.7), which is a consequence of the local finiteness
of ΓS(F ). The proof of the finiteness involves again Robba’s decomposition, the results of [Ked10],
and in particular another decomposition result due to Kedlaya [Ked10, 12.4.1].

The decomposition theorem [Ked10, 12.4.1] is a crucial point for both proofs of the finiteness
of the controlling graphs of [Pul12] and [Ked13]. It is a kind of analogous of Prop. 5.4.7, and a
posteriori the assumptions of [Ked10, 12.4.1] implies those of Prop. 5.4.7. The power of [Ked10,
12.4.1] is really that it does not assume that the radii are separated, but it implies the separateness
condition. In fact theorem [Ked10, 12.4.1] is actually used in [Pul12] and [Ked13] to prove that
the radii are separated and constant on certain regions (see point iii) of Remark 6.1.3, and [Ked13,
Lemma 4.3.11]), this is the heart of both proofs of the finiteness result.

6. An operative description of the controlling graphs

In this section we provide a description of the controlling graphs which is useful to control the
conditions of Theorems 5.3.1, 5.4.3, and 5.16.
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6.1 Partial heights and their behavior.

In this section we recall some results and methods of [Pul12].

Set Γ′
S,0(F ) := ΓS , and for i = 1, . . . , r, set

Γ′
S,i(F ) := ΓS,1(F ) ∪ · · · ∪ ΓS,i(F ) . (6.1)

The graph Γ′
S,i(F ) is a substitute of ΓS,i(F ). Remark that

ΓS = Γ′
S,0(F ) ⊆ Γ′

S,1(F ) ⊆ Γ′
S,2(F ) ⊆ · · · ⊆ Γ′

S,r(F ) . (6.2)

For this reason, it is more convenient to use Γ′
S,i(F ) in proofs by induction on i.

Lemma 6.1.1 ([Pul12, Thm.4.7]). Let i 6 r. Let I ⊆ ΓS be the skeleton of an annulus in X. Then
the index i is spectral on I, and HS,i(−,F ) is log-concave on I. ✷

Lemma 6.1.2 ([Ked10, 11.3.2]). Let i 6 r. Let D ⊆ X be a disk such that D ∩ S = ∅. Let ]x, y[ be
an open segment in D oriented towards the exterior of D. If the index i is spectral non solvable at
each point of ]x, y[, then HS,i(−,F ) is decreasing on it. ✷

Remark 6.1.3 (From [Pul12]). The graphs Γ′
S,i(F ) satisfy the following properties.

i) For every i = 0, . . . , r, the topological space X − Γ′
S,i(F ) is a disjoint union of virtual open

disks of the form D(y,Γ′
S,i(F )) (cf. Def. 2.2.1), where y /∈ Γ′

S,i(F ) is a rigid point.

ii) The radii RS,1(−,F ), . . . ,RS,i−1(−,F ) are constant functions on the disk D(x,Γ′
S,i−1(F )),

for all x ∈ X. In particular the ratio RS,i(−,F )/HS,i(−,F ) is constant on D(x,Γ′
S,i−1(F )).

This implies that the controlling graphs and the log-slopes of RS,i(−,F ) and HS,i(−,F ) co-
incide on D(x,Γ′

S,i−1(F )) (cf. Def. 2.4.2):

ΓS,i(F ) ∩ (X − Γ′
S,i−1(F )) = ΓS(HS,i(−,F )) ∩ (X − Γ′

S,i−1(F )) . (6.3)

Hence

Γ′
S,i(F ) =

i⋃

j=1

ΓS(HS,j(−,F )) . (6.4)

iii) Either RS,i−1(−,F ) = RS,i(−,F ) as functions over D(x,Γ′
S,i−1(F )), or they are separated

at each point of it by [Pul12, Prop. 7.5]. This follows from the fact that the restriction of F to
D := D(x,Γ′

S,i−1(F )) decomposes by [Ked10, 12.4.1] as a direct sum F|D = (F|D)>i⊕(F|D)<i.
Hence RS,i(−,F ) and HS,i(−,F ) behave as first radii of convergence outside ΓS,i−1(F ). So
they have the concavity property of point iv) below.

Point iii) is used in [Pul12, Section 7.4] to prove that the radii are separated over D(x,Γ′
S,i−1(F )).

As a consequence they have the following property:

iv) Let ]z, y[ be a segment in X such that Γ′
S,i−1(F )∩]z, y[= ∅. We consider ]z, y[ as oriented

towards the exterior of the disk D(x,Γ′
S,i−1(F )) containing it. Then the functions RS,i(−,F )

and HS,i(−,F ) are log-concave and decreasing on ]z, y[ (cf. [Pul12, sections 3.1,3.2]). We refer
to this property by saying that RS,i(−,F ) and HS,i(−,F ) have the concavity property outside
Γ′
S,i−1(F ).

In particular let D ⊂ X be a virtual disk with boundary x ∈ X, such that D ∩ Γ′
S,i−1(F ) = ∅, and

let b be the germ of segment out of x inside D. Then (cf. (1.8)):

b ∈ ΓS,i(F ) if and only if ∂bRS,i(x,F ) 6= 0 . (6.5)

Namely by iv) one has

∂bRS,i(x,F ) = 0 if and only if RS,i(−,F ) is constant on D . (6.6)
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The same is true replacing RS,i by HS,i in (6.5) and (6.6).

The following lemma studies the structure of the controlling graphs in the solvable case. It is
somehow a key lemma in what follows.

Lemma 6.1.4 ([Pul12, Lemma 7.7]). Assume that the index i ∈ {1, . . . , r} is solvable at x ∈ X, and
that x ∈ ΓS,i(F ). Then the following holds:

i) If x ∈ ΓS,i(F )− Γ′
S,i−1(F ), then x is an end point of ΓS,i(F );

ii) If x ∈ Γ′
S,i−1(F ), then ΓS,i(F ) ⊆ Γ′

S,i−1(F ) around x (i.e. if [x, y[⊆ ΓS,i(F ), then [x, y[⊆
Γ′
S,i−1(F ) if y is close enough to x).

Proof. Let D be a virtual disk in X − Γ′
S,i−1(F ) with boundary x ∈ ΓS,i(F ). With the notations

of (6.5), solvability at x implies ∂bRS,i(x,F ) 6 0, while the concavity property iv) of Remark 6.1.3
implies ∂bRS,i(x,F ) > 0. So ∂bRS,i(x,F ) = 0 and D ∩ ΓS,i(F ) = ∅.

Reasoning as in [Pul12, Remark 7.1] one proves the following characterization of Γ′
S,i(F ). It

does not follow directly from from Definition 2.4.2 as explained in Remark 2.4.3.

Proposition 6.1.5 ([Pul12, Thm.4.7 iii), iv)]). Let Γi be the union of the closed segments [x, y] ⊆ X
on which at least one of the partial heights HS,1(−,F ), . . . ,HS,i(−,F ), or equivalently one of the
radii RS,1(−,F ), . . . ,RS,i(−,F ), is never constant on [x, y]. Then

Γ′
S,i(F ) = ΓS ∪ Γi . (6.7)

Proof. The proof is an induction on i. Namely RS,1(−,F ) = HS,1(−,F ) has the concavity property
iv) of Remark 6.1.3 outside ΓS , so (6.7) holds for i = 1. Assume inductively that (6.7) holds for
i− 1. Again HS,i has the concavity property outside Γ′

S,i−1(F ), so (6.7) holds for i.

Remark 6.1.6. In section 6.3 we give another, more operative, description of Γ′
S,i(F ).

6.2 Weak super-harmonicity of partial heights

In this section, we are interested in super-harmonicity properties of the partial heights HS,i(−,F ).
Using Dwork-Robba’s Theorem 4.1.1, we give a proof of a formula that was first stated by K. Kedlaya
(see [Ked13, Thm. 5.3.6]) for spectral radii. We generalize it somewhat by taking into account
solvable and over-solvable radii too.

We begin with a few definitions.

Definition 6.2.1. Let x be a point of X and b be a branch out of x. The preimage of the branch b
on X

K̂alg is a finite number of branches and we define the degree of the branch b as

deg(b) = Card
(
π−1

K̂alg/K
(b)

)
. (6.8)

The degree of a branch may also be computed another way. Let us first recall a definition.

Definition 6.2.2 ([Duc, 3.1.1.4]). For any non-empty connected open subset U of X, we denote s(U)
the algebraic closure of K in O(U). It is a finite extension of K.

Proposition 6.2.3 ([Duc, 4.4.26]). Let x be a point of X of type 2 or 3 and b be a branch out of x.
For every open virtual annulus C that is a section of b and whose closure contains x, we have

deg(b) = [s(C) : k] . (6.9)
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Notation 6.2.4. For every point x in X, we denote by NS(x) the number of branches out of x,
counted with their degrees, that belong to ΓS.

Definition 6.2.5 (Laplacian). Let x ∈ X. Let f : X → R be a map such that ∂bf(x) = 0, for almost
every branch b out of x. Set

ddcf(x) =
∑

b

deg(b) · ∂bf(x) , (6.10)

where b runs through the family of branches out of x.

Let Γ ⊆ X be a graph containing x, or, more generally, a set of branches out of x. We set

ddc6⊆Γf(x) :=
∑

b/∈Γ

deg(b) · ∂bf(x) , ddc⊆Γf(x) :=
∑

b∈Γ

deg(b) · ∂bf(x) . (6.11)

Remark 6.2.6. It is actually possible to define a Laplacian operator for a much larger class of
maps. See [Thu05] (briefly summarized in [PP12a, Section 3.2]) for a detailed treatment of those
questions.

In [PP12b, Section 2.2], we carefully investigated the fibers of the base- change maps πL/K : XL →
X, where L is a complete valued extension of K. Thanks to those results, it is possible to compute
the behavior of the previous quantities after extension of scalars.

Lemma 6.2.7. Let L be a complete valued extension of K. Let L0 be the completion of the algebraic
closure of K in L. Let π−1

L0/K
(x) := {x1, . . . , xn}. Then for all i we have NSL0

(xi) = NS(x)/n, and

for every point y ∈ π−1
L/L0

(xi), we have

NSL
(y) =

{
0 if y 6= σL(xi)

NSL0
(xi) if y = σL(xi)

. (6.12)

Lemma 6.2.8. Let x ∈ X. Let f : X → R be a map such that, for almost every branch b out of x,
we have ∂bf(x) = 0. Let L be a complete valued extension of K. Set fL = f ◦ πL/K . Then,

i) for every point y in π−1
L/K(x) and almost every branch c out of y, we have ∂cfL(y) = 0;

ii) With the notations of Lemma 6.2.7, we have ddcfL0(xi) = ddcf(x)/n, and for all y ∈ π−1
L/L0

(xi)
we have

ddcfL(y) =

{
0 if y 6= σL(xi)

ddcfL0(xi) if y = σL(xi)
. ✷ (6.13)

We will now study the Laplacian of the partial heights. Let us begin with the points that lie on
the skeleton of the curve.

Lemma 6.2.9. Let S and S′ be two weak triangulations of X. Let x ∈ ΓS ∩ ΓS′. Then, for all
spectral non-solvable index i,12 we have

ddcRS′,i(x,F ) −NS′(x) = ddcRS,i(x,F ) −NS(x) . (6.14)

Proof. We may assume that K is algebraically closed. Let b be a branch out of x. If b belongs to
the complement of ΓS ∪ ΓS′ , or to ΓS ∩ ΓS′ , then we have ∂bRS′,i(x,F ) = ∂bRS,i(x,F ).

Assume that b belongs to ΓS′ , but not to ΓS. Remark that we are reduced to computing radii
on an annulus. By [PP12b, Lemma 3.3.3, (c)], we have ∂bRS′,i(x,F ) = ∂bRS,i(x,F ) + 1.

Analogously if b belongs to ΓS, but not to ΓS′ , then ∂bRS′,i(x,F ) = ∂bRS,i(x,F ) − 1.

12Note that i is spectral non-solvable with respect to S if and only if it is so with respect to S′.
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The result follows by summing up all the contributions.

Definition 6.2.10 (Vertex free of solvability). We say that i = 1, . . . , r is a vertex at x, of the
convergence Newton polygon, if i = r, or if i+ 1 separates the radii at x. We say that i is a vertex
free of solvability at x if i is a vertex at x, and if none of the indexes j ∈ {1, . . . , i} is solvable at x.

Proposition 6.2.11. Assume that X is an analytic domain of A1,an
K , and let S be a weak triangu-

lation of X. Let i ∈ {1, . . . , r}. For every x ∈ ΓS ∩ Int(X), we have

ddcHS,i(x,F ) 6 (NS(x)− 2) ·min(i, ispx ) . (6.15)

Moreover equality holds if i is a vertex free of solvability at x.

Proof. We may assume that K is algebraically closed. First assume that i 6 ispx . Then, for all
j 6 i, RS,j(x,F ) is spectral non-solvable. Let Y ⊆ X be an affinoid domain of A1

K which is a
neighborhood of x in X. Assume moreover that ΓS ∩ Y is the skeleton of Y corresponding to its
minimal triangulation. Then Y contains the maximal disks D(y, S) ⊆ X of all its points y ∈ Y .
Then the radii and their Laplacians are stable by localization to Y by Proposition 2.8.2. Hence we
may assume that X is an affinoid domain of the affine line.

By Lemma 6.2.9, we may endow X with any weak triangulation, as soon as it contains x. Up
to reducing X again, we may assume that x belong to its minimal triangulation S0. With the
notations of [PP12b, Section 2.4.2], and obvious generalizations, by [Pul12, Thm. 4.7], we have
ddcHemb

i (x,F ) 6 0, and equality holds if x is a vertex free of solvability.

By [PP12b, Formula (2.4.2)], for every j ∈ {1, . . . , i}, we have

RS0,j(x,F ) =
Remb

j (x,F )

ρS0(x)
. (6.16)

The map ρS0 is constant outside ΓS0 , has slope 1 on the branch of ΓS0 out of x towards infinity
(in An,an

K ) and slope -1 on every other branch of ΓS0 out of x. The result follows.

Now assume that i > ispx . Since x ∈ ΓS , then i is solvable at x by Remark 2.6.2. In this case, we
have RS,i(x,F ) = 1, hence ∂bRS,i(x,F ) 6 0 for every branch b out of x, and ddcRS,i(x,F ) 6 0.
We deduce that the result for every index i > ispx is a consequence of the result for i = ispx .

6.2.1 Generalities. We will now extend this result to arbitrary curves. To do so, we will map
the curve to the affine line by a finite étale morphism and use the previous proposition. We will need
to understand how the radii of convergence change in the process. For this we recall some notions
of [Duc].

Let f : X → Y be a finite flat morphism between quasi-smooth K-analytic curves. Recall that
if y ∈ Y the inverse image of a connected affinoid domain V containing y is an affinoid domain
U = f−1(V ) of X such that the algebra O(U) is a locally free O(V )-module of finite type (cf. [Duc,
3.1.13, 3.1.14]). The local rank of O(U) over O(V ) is independent on the choice of U and V , and is
called the degree degy(f) of f at y. It coincides with the rank of the free OY,y-module

∏
f(x)=y OX,x.

The degree y 7→ degy(f) is a locally constant function on Y , and if Y is connected it is called the
degree deg(f) of f . The rank of the free OY,y-module OX,x is called the degree degx(f) of f at x.
By [PP12b, Lemma 3.2.1], if OX,x is a field, then degx(f) = [H (x) : H (y)].

Notation 6.2.12. Let x be a point of X of type 2. If K is algebraically closed, then the residue

field H̃ (x) of H (x) is the function field of a unique projective smooth connected curve Cx over K̃.
Moreover if x ∈ Int(X), there is a canonical bijection between the set of branches out of x and the
set of rational points of Cx (cf. [Duc, 4.2.11.1]). In the sequel we identify these two sets.
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Let now f : X → Y be an étale morphism between quasi-smooth K-analytic curves. Let x ∈
Int(X) be a point of type 2, and let y := f(x). If K is algebraically closed, the following properties
hold:

i) [H (x) : H (y)] = [H̃ (x) : H̃ (y)] (cf. [Duc, 4.3.15]);

ii) The map f induces a morphism Cx → Cy of algebraic curves over K̃, associating to each branch
b out of x the branch f(b) out of y;

iii) Reciprocally if Cx → Cy is a morphism, then we may lift it into a morphism ϕ : Z → W ,
where Z and W are affinoid neighborhoods of x in X and of y in Y respectively;

iv) There exist open annuli Cb and Cf(b), that are sections of b and f(b) respectively, such that

(a) f induces an étale morphism Cb → Cf(b). We denote by db or deg(f|b) its degree;
(b) the inverse image in Cb of the skeleton If(b) of Cf(b) is the skeleton Ib of Cb, and for all

point z ∈ Ib one has [H (z) : H (f(z))] = db.

v) If Q ∈ Cx is the point corresponding to b, then the degree db coincides with the ramification
index eQ of Cx → Cy at Q (cf. [Duc, 4.3.15]).

vi) For all branch c out of y = f(x), we have

degx(f) = [H (x) : H (y)] =
∑

f(b)=c

db . (6.17)

Lemma 6.2.13 ([PP12b, Lemma 3.4.2]). Assume that K is algebraically closed. Let Y and Z be
quasi-smooth K-analytic curves with weak triangulations S and T respectively. Let f : Y → Z be a
finite étale morphism. Let y ∈ ΓS ∩ f−1(ΓT ). If dy = [H (y) : H (f(y))] is prime to p, then for all
i ∈ {1, . . . , r} and all j ∈ {1, . . . , dy}, we have RT,dy(i−1)+j(f(y), f∗F ) = RS,i(y,F ):

RT (f(y), f∗F ) =
(
RS,1(y,F ), . . . ,RS,1(y,F )︸ ︷︷ ︸

dy times

, . . . , RS,r(y,F ), . . . ,RS,r(y,F )︸ ︷︷ ︸
dy times

)
. ✷ (6.18)

Corollary 6.2.14. Assume that K is algebraically closed. Let Y and Z be quasi- smooth K-analytic
curves with weak triangulations S and T respectively. Let f : Y → Z be a finite étale morphism.
Let y ∈ ΓS ∩ f−1(ΓT ). Let b be a branch out of y such that the branches b and f(b) belong to ΓS

and ΓT respectively. There exists sections Cb and Cf(b) of b and f(b) that are open annuli such
that f induces a finite étale morphism fb : Cb → Cf(b) of degree db = deg(f|b). Endow Cf(b) with
the empty weak triangulation. For z ∈ Cf(b), denote by ∂[z,f(y)[R∅,i(−, (f|b)∗(F|Cb

)) the slope of
R∅,i(−, (f|b)∗(F|Cb

)) on [z, f(y)[. If db is prime to p, then the limit when z tends to f(y) of the
tuple of slopes {∂[z,f(y)[R∅,i(z, (f|b)∗(F|Cb

))}i=1,··· ,r·db is

( 1

db
∂bRS,1(y,F ), . . . ,

1

db
∂bRS,1(y,F )

︸ ︷︷ ︸
db times

, . . . ,
1

db
∂bRS,r(y,F ), . . . ,

1

db
∂bRS,r(y,F )

︸ ︷︷ ︸
db times

)
. (6.19)

Proof. Endow Cb with the empty weak triangulation. With obvious notations, the last tuple is the
limit when z′ ∈ Cb tends to y of the same tuple with ∂bRS,i(y,F ) replaced by σ[z′,y[R∅,i(−,F|Cb

).
The result now follows from Lemma 6.2.13 and [Duc, Thm 4.4.33] in order to take into account the
dilatation of distances induced by the finite map f .

Corollary 6.2.15. Assume that K is algebraically closed. Let Y and Z be quasi-smooth K-analytic
curves with weak triangulations S and T respectively. Let f : Y → Z be a finite étale morphism.
Let y ∈ ΓS ∩ f−1(ΓT ) such that f−1(f(y)) = {y}. Let c be a branch out of f(y) that belongs to ΓT .
Assume that every branch over b belongs to ΓS and that all the degrees db are prime to p. Then we
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have

∂bHS,r(y,F ) = ∂f(b)HS,r·deg(f)(f(y), f∗F ) . (6.20)

Proof. Let b1, . . . , bt be the branches out of y over c. There exists a section Cc of c and sections Ci’s
of the bi’s such that f induces finite étale morphisms fi : Ci → Cc of degree dbi . We may assume
that all those sections are open annuli. Let U denote the union of the Ci’s. We have f∗(F|U ) =⊕

16i6t(fi)∗(F|Ci
) and the result now follows from the previous corollary.

We need to find conditions ensuring that we can apply the previous results.

Notation 6.2.16. Let x be a point of X of type 2. If K is algebraically closed, we denote by g(x)
the genus of the curve Cx. In general, we set

g(x) :=
∑

y∈π−1
̂

Kalg/K
(x)

g(y) . (6.21)

Let x be a point of X of type 3. We set g(x) = 0.

Definition 6.2.17. Let x be a point of X of type 2. If K is algebraically closed, we say that the
point x satisfies the condition (TR) if there exists a finite morphism

f : Cx −−→ P1
K̃

(6.22)

that is tamely ramified everywhere and unramified almost everywhere, i.e. the degree of f is prime
to the characteristic of K̃ at a finite number of closed point of Cx and equal to 1 at every other.

In general, we say that the point x satisfies the condition (TR) if one of its inverse image of x
on X

K̂alg satisfies the condition (TR) (by Galois action all other inverse image of x satisfies (TR)).

We say that X satisfies the condition (TR) if, for every point x of type 2 of X, the curve Cx
satisfies the condition (TR).

Proposition 6.2.18. Let x be a point of X of type 2. If g(x) = 0 or if char(K̃) 6= 2, then x satisfies
the condition (TR).

In particular, if the curve X
K̂alg

contains no type 2 points of positive genus (for instance, if X

may be embedded in P1,an
K , a Tate curve or, more generally, a Mumford curve) or if char(K̃) 6= 2,

then X satisfies the condition (TR).

Proof. We may assume that K is algebraically closed. If g(x) = 0, then Cx is isomorphic to P1
K̃

and
the result is obvious.

If char(K̃) 6= 2, then the result follows from [Ful69, Prop. 8.1].

Proposition 6.2.19. Let x be a point in ΓS ∩ Int(X) of type 2 that satisfies the condition (TR).
Assume that all the radii are spectral non-solvable at x. Then, we have

ddcHS,r(x,F ) = (2g(x) − 2 +NS(x)) · r . (6.23)

Proof. We may assume that K is algebraically closed. By assumption, there exists a finite morphism
f : Cx → P1

K̃
that is tamely ramified everywhere, and unramified almost everywhere. We may lift

it to a morphism ϕ : Y → W , where Y is an affinoid neighborhood of x in X and W an affinoid
domain of P1,an

K . By restricting Y , we may assume that ϕ−1(ϕ(x)) = {x}. By [Duc, Thm. 4.3.15],
the degree of the restriction of ϕ to any branch of Y out of x is prime to p and it is equal to 1 for
almost all of them.
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By Lemma 6.2.9, the result does not depend on the chosen triangulation on X. We may endow Y
and W with triangulations S and T respectively such that

i) ϕ−1(ΓT ) = ΓS ,

ii) ΓS contains all the branches b out of x at which the degree of the restriction of ϕ is not 1,

iii) the radii are locally constant outside ΓS and ΓT .

By applying Corollary 6.2.15 to every branch of ΓS out of x, and by (6.17), we show that

ddcHS,r(x,F ) = ddcHT,dr(ϕ(x), ϕ∗F ), (6.24)

where d = [H (x) : H (ϕ(x))] is the degree of ϕ at x.

Moreover, by Proposition 6.2.11, we have

ddcHT,dr(ϕ(x), ϕ∗F ) = (NT (ϕ(x)) − 2) · d · r. (6.25)

Denote by ΓS(x) the set of branches of ΓS out of x. We have

NT (ϕ(x)) · d =
∑

b∈ΓS(x)

deg(ϕ|b) = NS(x) +
∑

b∈ΓS(x)

(deg(ϕ|b)− 1). (6.26)

Recall that we chose ΓS in order that it contains every branch of ΓS(x) where the degree of ϕ is
not 1. Hence, by Riemann-Hurwitz formula (cf. [Har77, Cor. 2.4]), we have

∑

b∈ΓS(x)

(deg(ϕ|b)− 1) =
∑

c∈Cx(K̃)

(ec(ϕ)− 1) = 2d+ 2g(x) − 2, (6.27)

where ec(ϕ) denotes the ramification index of ϕ at c. The result follows.

Proposition 6.2.20. Let x be a point in ΓS ∩ Int(X). If it is of type 2, assume that it satisfies the
condition (TR). Then, for every i ∈ {1, . . . , r}, we have

ddcHS,i(x,F ) 6 (2g(x) − 2 +NS(x)) ·min(i, ispx ). (6.28)

Moreover equality holds if i is a vertex free of solvability at x.

Proof. If x has type 3, then it has a neighborhood that is isomorphic to an annulus, and the result
follows from Proposition 6.2.11.

Assume that x has type 2. As in the proof of Proposition 6.2.11, the result for i > ispx follows
from that for i = ispx .

Assume that i 6 ispx , i.e. the radius RS,i(x,F ) is spectral non-solvable. As in the proof of
Proposition 6.2.11, this allows us to localize in the neighborhood of x. Recall that, by Dwork-Robba’s
Theorem 4.1.1, the differential module Fx may be written as a direct sum F1,x⊕· · ·⊕Fs,x⊕Fs+1,x

where, for every k ∈ {1, . . . , s}, the radii of Fk,x at x are spectral non-solvable and equal, and the
radii of Fs+1,x at x are all equal to 1. It is easy to see that the result for Fx follows from the
result for the Fk,x’s with k 6 s. Replacing Fx by one of those Fk,x’s, we may assume that all the
RS,i(x,F )’s are equal.

Let i 6 j ∈ {1, . . . , r}. Since RS,i(x,F ) = RS,j(x,F ), for every branch b out of x, we have
∂bRS,i(x,F ) 6 ∂bRS,j(x,F ), hence ddcRS,i(x,F ) 6 ddcRS,j(x,F ). Now, consider the polygon
whose vertices are the points (i, ddcHS,i(x,F )) with i ∈ {1, . . . , r}. The previous inequalities show
that it is convex, so we have ddcHS,i(x,F )/i 6 ddcHS,r(x,F )/r. By Proposition 6.2.19, we have
ddcHS,r(x,F )/r 6 2g(x) − 2 +NS(x) and the result follows.

We will now consider points outside the skeleton of the curve. We will be interested in super-
harmonicity properties of the partial heights. We will use a notation for the exceptional set where
this property does not hold.
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Definition 6.2.21. For every i ∈ {1, . . . , r}, set

ES,i(F ) := {x ∈ X | ddcHS,i(x,F ) > 0} . (6.29)

In the sequel, if no confusion is possible, we write ES,i := ES,i(F ) for short.

This set has been precisely investigated by the second author in the case of the affine line
(see [Pul12, Thm. 4.7, (v)]).

Definition 6.2.22. We define inductively a sequence of locally finite sets

CS,1(F ) ⊆ . . . ⊆ CS,r(F ) ⊆ X (6.30)

as follows. Let ℵ1 := ∅, and for 2 6 i 6 r let ℵi be the locally finite set of points x ∈ X − ΓS

satisfying

i) RS,i(−,F ) is solvable at x;

ii) x is an end point of ΓS,i(F );

iii) x ∈ Γ′
S,i−1(F ) ∩ ΓS,i(F ) ∩ ΓS(HS,i(−,F )).13

Define

CS,i(F ) :=
⋃

j=1,...,i

ℵj . (6.31)

In the sequel if no confusion is possible we write CS,i := CS,i(F ) for short.

Remark 6.2.23. Let i ∈ {1, . . . , r}. By definition one has

CS,i ∩ ΓS = ∅ , CS,i ⊆ Γ′
S,i−1(F ) . (6.32)

The graph ΓS,i(F ) ∩ Γ′
S,i−1(F ) contains ΓS and the points of CS,i are some of its end-points. We

deduce that the cardinal of CS,i is at most the number of end-points of Γ′
S,i−1(F ) that do not belong

to ΓS.

Lemma 6.2.24. Let i ∈ {1, . . . , r}. For every x ∈ CS,i, we have

ddcHS,i(x,F ) 6 i− 1 . (6.33)

Proof. Let x ∈ CS,i. Since x /∈ ΓS , we may assume that X is an open disk with empty weak
triangulation. By definition CS,1 = ∅, and the first radius is super-harmonic on each maximal disk
of X. So the claim holds for i = 1.

Let i > 2. By definition R∅,i(−,F ) is solvable at x. For all j 6 ispx one has ddcH∅,j(x,F ) 6 0,
so it is enough to prove that for all max(1, ispx ) < j 6 i one has ddcR∅,j(x,F ) 6 1.

If b is a branch out of x going towards the interior of the disk, then ∂bR∅,j(x,F ) 6 0. Indeed
otherwiseDS,j(x,F ) is a virtual disk inX containing x, so x /∈ ΓS,j(F ), and the indexes j, j+1, . . . , i
are over-solvable at x, which is absurd.

If b is the branch going towards the exterior of the disk, then ∂bR∅,j(x,F ) 6 1. Indeed otherwise
we would have as above over-solvability at x, hence a contradiction. The result follows.

Proposition 6.2.25. Let i ∈ {1, . . . , r}. For every x /∈ (S ∪ CS,i), we have

ddcHS,i(x,F ) 6 0. (6.34)

In other words, we have ES,i ⊆ S ∪ CS,i. In particular, the set ES,i is locally finite.

Moreover equality holds in (6.34) if i is a vertex free of solvability at x (cf. Def. 6.2.10).

13Here ΓS(HS,i(−,F )) have been defined in Def. 2.4.2.
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Proof. Let x ∈ X \ (S ∪ CS,i). Let us first assume that x ∈ ΓS. Since x /∈ S, we have g(x) =
0, which ensures that condition (TR) is satisfied, and NS(x) = 2, hence the result follows from
Proposition 6.2.20.

Let us now assume that x /∈ ΓS. We may also assume that K is algebraically closed. Let D be
the connected component of X \ΓS containing x. It is an open disk. Let us identify it with D−(0, R)
for some R > 0 and endow it with the empty triangulation. Remark that, for every j ∈ {1, . . . , r},
the maps RS,j(−,F )|D and R∅,j(−,F|D) coincide, hence CS,j(F ) ∩ X = C∅,j(F|D) (cf. defini-
tion 6.2.22). We will now consider the embedded radii in the sense of [PP12b, Section 2.4.2]. By
[PP12b, Formula (2.4.2)], for every j ∈ {1, . . . , r}, we have

R∅,j(x,F|D) =
Remb

j (x,F|D)

R
, (6.35)

hence it is enough to prove the results for the embedded partial heights.

The C∅,j(F ) now coincide with the Cj ’s of [Pul12, Thm. 4.7]. Namely, assume first thatRemb
i (x,F|D) ∈

]0, R[. Let R′ ∈ ]Remb
i (x,F ), R[ and set D′ = D+(0, R′). By continuity, there exists a neighbor-

hood V of x in D′ such that, for every j ∈ {1, . . . , i} and every z ∈ V , we have Remb
j (z,F|D) < R′,

and

Remb
j (z,F|D) = Remb

j (z,F|D′). (6.36)

When restricted to D′, the Cj’s increase by the individual point x0,R′ 6= x, and we may replace D
with D′. Since D′ is an affinoid domain of the affine line, the result now follows from [Pul12,
Thm. 4.7].

Now, assume that Remb
i (x,F|D) = R. Then the map Remb

i (x,F|D) is constant on D, hence

ddcRemb
i (x,F|D) = 0. If i = 1, then we are done. Otherwise, the result follows from the result

for i − 1 and we may proceed by descending induction until we reach a case where we have either
i = 0 or Remb

i (x,F|D) < R.

Let us now sum up the results.

Theorem 6.2.26. Let x ∈ X. If it is of type 2, assume that it satisfies the condition (TR). Let
i ∈ {1, . . . , r}.

i) If x ∈ ΓS ∩ Int(X), then

ddcHS,i(x,F ) 6 (2g(x) − 2 +NS(x)) ·min(i, ispx ). (6.37)

ii) If x /∈ (S ∪ CS,i), then

ddcHS,i(x,F ) 6 0. (6.38)

Moreover equalities hold in (6.37) and (6.38), if i is a vertex free of solvability at x (cf. Def. 6.2.10).

6.3 An operative description of Γ′
S,i(F )

Notation 6.3.1. Let Γ ⊆ X be a locally finite graph.14 Let x ∈ Γ, and let b /∈ Γ be a germ of
segment out of x. We denote by Db ⊂ X the virtual open disk with boundary x containing b.

Proposition 6.3.2. Let i 6 r, let Γ ⊆ X be a locally finite graph containing ΓS. Let x ∈ Γ. The
following conditions are equivalent:

i) One has Γ′
S,i(F )∩Db = ∅, for all direction b out of x such that b /∈ Γ (i.e. Γ′

S,i(F ) ⊆ Γ around
x).

14Recall that X − Γ is a disjoint union of virtual disks, cf. 1.1.5.
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ii) For all j = 1, . . . , i, and for all germs of segment b out of x such that b /∈ Γ, one has

∂bRS,j(x,F ) = 0 (resp. ∂bHS,j(x,F ) = 0) . (6.39)

iii) For all j = 1, . . . , i the function RS,j(−,F ) (resp. HS,j(−,F )) verifies

ddc6⊆ΓRS,j(x,F ) = 0 (resp. ddc6⊆ΓHS,j(x,F ) = 0) . (6.40)

iv) Same as iii), replacing the equalities by 6.

v) Same as ii), replacing the equalities by 6.

In particular these equivalent conditions holds at each x ∈ Γ if, and only if, one has

Γ′
S,i(F ) ⊆ Γ . (6.41)

Proof. We can assume K algebraically closed. Clearly i) ⇒ ii) ⇒ iii) ⇒ iv), and ii) ⇒ v) ⇒ iv).
We now prove that iv) imply i). We proceed by induction on i.

If i = 1, the first radius has the concavity property on each disk D′ such that D′ ∩ ΓS = ∅. So
both iv) and v) imply ii) for RS,1(x,F ). By (6.5) one has i).

Let now i > 0. Assume inductively that all conditions hold for i − 1. Firstly notice that, for
all b /∈ Γ, one has ∂bRS,i(x,F ) = ∂bHS,i(x,F ) by point ii) of Remark 6.1.3. In fact by i) one
has ΓS,i−1(F ) ∩Db = ∅. Now, since RS,i(−,F ) has the concavity property on Db (cf. point iv) of
Remark 6.1.3), then ∂bRS,i(x,F ) > 0 for all b /∈ Γ. Hence both v) and iv) imply ii), and by (6.5)
one has ΓS,i(F ) ∩Db = ∅, for all b /∈ Γ. This implies i) since Γ′

S,i(F ) = Γ′
S,i−1(F ) ∪ ΓS,i(F ).

Lemma 6.3.3. If ispx = 0 (i.e. if all the radii are solvable or over-solvable at x), the conditions of
Proposition 6.3.2 are automatically fulfilled at x ∈ Γ.

Proof. Let b /∈ Γ be a germ of segment out of x. Since the first radius satisfies the concavity property
outside ΓS (cf. point iv) of Remark 6.1.3). Then RS,1(−,F ) is constant and over-solvable at all
point of Db. This will imply the same property for RS,i(−,F ), for all i > 1.

Combining Theorem 6.2.26, Lemma 6.1.4, and Prop. 6.3.2, one finds the following result.

Definition 6.3.4. Let Γ ⊆ X be a locally finite graph containing ΓS. We denote by B(Γ) the set of
points x ∈ Γ such that either x ∈ ∂X, or x does not satisfy the (TR) condition.

Corollary 6.3.5. Let i 6 r. Let Γ ⊆ X be a locally finite graph containing ΓS. Assume that the
following conditions hold:

i) For all x ∈ B(Γ), one of the equivalent conditions of Proposition 6.3.2 holds at x;

ii) For all x ∈ Γ−B(Γ), either the conditions of Proposition 6.3.2 holds at x, or Γ 6= {x} and for
all j = 1, . . . ,min(i, ispx ), one has

ddc⊆ΓHS,j(x,F ) >

{
0 if x /∈ ΓS

(2g(x) − 2 + c(x)) · j if x ∈ ΓS .
(6.42)

Then

Γ′
S,i(F ) ⊆ Γ . (6.43)

Proof. We can assume K algebraically closed. We fix x ∈ Γ−B(Γ), and we prove that (6.42) implies
that the equivalent conditions of Proposition 6.3.2 at x.

Assume that i 6 ispx . Then the indexes j = 1, . . . , i are all spectral-non solvable, hence x /∈ CS,i.
By Theorem 6.2.26, condition (6.42) implies

∑
b/∈Γ ∂bHS,j(x,F ) 6 0, for all j = 1, . . . , i. So we are

done by iv) of Proposition 6.3.2.
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Assume now that i > ispx . If j 6 min(ispx , i), we proceed as above to prove that Γ′
S,j(F ) ⊆ Γ

around x. So we consider ispx < j 6 i, and, inductively, we assume that for all k = 1, . . . , j − 1,
and all b /∈ Γ one has ∂bRS,k(x,F ) = 0 (i.e. Γ′

S,j−1(F ) ⊆ Γ around x). If x /∈ ΓS,j(F ), then
∂bRS,j(x,F ) = 0 for all b, so we are done. Assume then that x ∈ ΓS,j(F ). In this case, since j > ispx is
solvable or over-solvable at x, Lemma 6.1.4 shows that ∂bRS,j(x,F ) = 0, for all b /∈ Γ′

S,j−1(F ) ⊆ Γ.
In particular this holds if b /∈ Γ, and Proposition 6.3.2 implies Γ′

S,j(F ) ⊆ Γ around x.

Remark 6.3.6 (Annuli in Γ). Let Γ be a locally finite graph containing ΓS. Assume that ]y, z[⊂ Γ is
the skeleton of a virtual open annulus in X, such that no bifurcation point of Γ lie in ]y, z[. Condition
(6.42) means, in this case, that the radii that are spectral non solvable at x are all log-affine over an
open interval in ]y, z[ containing x, while radii that are solvable or over-solvable at x, are allowed to
have a break at x. Indeed (6.42) implies convexity of HS,j(−,F ) along ]y, z[, and it is known that
HS,j(−,F ) is concave if j is spectral non solvable at x [Pul12, Thm. 4.7, i)].

Corollary 6.3.7 (Annuli). Let X be an open annulus with empty triangulation. Let I be the skeleton
of the annulus. Let i 6 r = rank(F ). Assume that at each point x of I, and for all j ∈ {1, . . . , i}
one of the following conditions holds:

i) there exists an open subinterval J ⊆ I containing x such that the partial height HS,j(−,F )
(cf. (2.13)) is a log-affine map on J (cf. section 1.1.4 or [PP12a, Def. 3.1.1])

ii) RS,j(x,F ) is solvable or over-solvable at x.

Then

ΓS,j(F ) = Γ′
S,j(F ) = I , for all j = 1, . . . , i . (6.44)

Proof. Apply Corollary 6.3.5 to Γ = I.

Remark 6.3.8. Let 1 6 i1 6 i2 6 r. Let Γ be a locally finite graph containing ΓS. Assume that

i) For all germ of segment b in Γ− ΓS at least one of the radii RS,j(−,F ), j ∈ {1, . . . , i2}, has
a non zero slope on b.

ii) The conditions of Corollary 6.3.5, are fulfilled for i = i1.

Then by Prop. 6.1.5 we have

Γ′
S,i1(F ) ⊆ Γ ⊆ Γ′

S,i2(F ) . (6.45)

If we replace condition i) by

i′) For each end point x of Γ such that x /∈ ΓS, one has Dc
S,i2

(x,F ) = D(x) (cf. section 2.6.1).

Then by Prop. 2.6.3 one obtains

Γ′
S,i1(F ) ⊆ Γ ⊆ ΓS,i2(F ) . (6.46)

Indeed the X − ΓS,i2(F ) is a disjoint union of virtual open disks. So if an end point x of Γ belongs
to ΓS,i2(F ), the whole segment joining x to ΓS is also included in ΓS,i2(F ).

7. Explicit bounds on the size of the controlling graphs

In this section, using techniques based on section 6, we provide explicit bounds on the size of the
controlling graphs Γ′

S,j(F ).

In this section, we assume that the curve X satisfies the condition (TR) (see Definition 6.2.17).
Recall that, by Proposition 6.2.18, this is always the case if char K̃ 6= 2 or if X is locally embeddable
into the line.
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Recall that the curve X is assumed to be connected and that r denotes the rank of the locally
free sheaf F . Let us remark that Theorem 6.2.26 gives a bound on ddcRS,1(−,F ) at every point
of X outside the topological boundary. In particular, if this boundary is empty, we find a bound
that holds everywhere. In order for a global finiteness result to be possible, we will also need the
curve to be compact. Putting this conditions together, we are led to consider smooth projective
curves (cf. [Duc, Thm. 3.2.82]). In this case, we show that the controlling graph ΓS,1(F ) may only
contain at most max(4r(g − 1), 0) more edges than the skeleton of the curve, where g is the genus
of the curve. This gives an explicit version of the finiteness result for the first radius of convergence
from [PP12b] and [PP12a].

As for the higher radii, the situation is more intricate since it is not clear whether the bounds of
Theorem 6.2.26 always hold. However, there are many interesting case where they do hold, and then
the controlling graph ΓS,j(F ) may only contain at most max(4jr(g − 1), 0) more edges than the
skeleton of the curve. Let us mention that our results apply unconditionally for elliptic curves (still
under condition (TR)). We deduce that every radius of convergence on such a curve is constant and
that differential modules split as direct sums of modules with all radii equal.

When the result of Theorem 6.2.26 fails to hold, we also manage to compute bounds, though
more complicated, on the size of the Γ′

S,j(F )’s by relying on the study of the locus where super-
harmonicity fails (see Definition 6.2.21 and the results that follow).

7.1 Local and global effective estimations

Recall that we started with a triangulation S and associated a graph ΓS to it. We did it in such a
way that the set of vertices of ΓS is S. In particular, every point of x of positive genus is a vertex
of ΓS .

Next, in Section 6.1, for every j ∈ {1, . . . , r}, we extended this graph to a graph Γ′
S,j(F ), which

is the smallest graph containing ΓS outside which the maps RS,1(−,F ), . . . , RS,j(−,F ) are locally
constant. In this section, we will work with a further refinement.

Definition 7.1.1. Let j ∈ {1, . . . , r}. Let Γ′′
S,j(F ) be the graph built from Γ′

S,j(F ) by adding a
vertex at every break-point of one of the maps RS,i(−,F ), with i ∈ {1, . . . , j}.

Remark 7.1.2. As Γ′′
S,j(F ) contains ΓS as a subgraph, it is understood that all points of S are

vertexes of Γ′′
S,j(F ).

Remark 7.1.3. The graph Γ′′
S,j(F ) may be characterized as the smallest locally finite subgraph of

X, containing ΓS, such that the maps RS,1(−,F ), . . . ,RS,j(−,F ) are all

i) locally constant outside Γ′′
S,j(F );

ii) log-affine on every edge of Γ′′
S,j(F ).

We would like to be able to count the number of vertices and edges of graphs with some degrees
taken into account.

Definition 7.1.4. Let x be a point of X. We set

deg(x) = Card(π0(π
−1

K̂alg
(x))) . (7.1)

It is also the degree over K of the algebraic closure of K inside H (x).

Definition 7.1.5. Let V be a finite subset of X. We define the weighted cardinal of V as the sum
of the degrees of its points.
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Let us now adapt these definitions in the case of segments.

Definition 7.1.6. Let J be a segment whose interior lie inside X \S. Its interior is the skeleton of
a unique open virtual annulus C. We set

deg(J) := [s(C) : K] = Card(π0(π
−1

K̂alg
(C))) = Card(π0(π

−1

K̂alg
(J))) . (7.2)

Definition 7.1.7. Let Γ be a finite graph whose open edges contain no points of S. We define the
weighted number of edges of Γ as the sum of the degrees of its edges.

These notions behave well with respect to extensions of scalars.

Lemma 7.1.8 ([PP12b]). Let Ω/K be a complete valued field extension of K, and let L be the
completion of the algebraic closure of K in Ω. Let V ⊆ X be a finite set and let Γ ⊆ X be a finite
graph, the interiors of all of whose edges lie in X \ S. Then VL := π−1

L/K(V ) is a finite set and its

weighted cardinal is that of V . Similarly, ΓL := π−1
L/K(Γ) is a finite graph, the interiors of all its

edges lie in XL \ SL, and its weighted number of edges equal to that of Γ.

Moreover the projection πΩ/L identifies VΩ := σΩ/L(VL) with VL, ΓΩ := σΩ/L(ΓL) with ΓL and
does not change the weighted number of points or edges. ✷

Let us begin with a few easy computations.

Proposition 7.1.9. Let j ∈ {1, . . . , r}. Let D be a virtual open disc inside X. Assume that D ∩
Γ′
S,j−1(F ) = ∅. Assume that there exists a segment I approaching the boundary of D such that the

map HS,j(−,F ) is linear on I. Let σ be its slope, computed towards the interior of D. Then σ > 0,
and it is zero if and only if Γ′′

S,j(F )∩D = ∅. If σ > 0, the weighted number of edges of Γ′′
S,j(F )∩D

is at most deg(I)(2rσ − 1) and its weighted number of end-points is at most rσ.

Proof. By point iii) of Remark 6.1.3, outside Γ′
S,j−1(F ), the map HS,j(−,F ) behaves like a first

radius of convergence, hence we may assume that j = 1.

By Lemmas 6.2.8 and 7.1.8, we may assume that K is algebraically closed and spherically
complete (hence deg(I) = 1). Indeed if K is algebraically closed, then ΓSΩ

(F ⊗̂KΩ) ⊆ XΩ coincides
with σΩ(ΓS(F )).

Let α be a rational point of D. The map RS,1(−,F ) is constant in the neighborhood of α and
non-increasing along the segment Iα joining α to the boundary of D. Since Iα and I coincide in the
neighbourhood of the boundary of D, we have σ > 0. The same argument proves that any slope
on D is non-negative (when computed towards the interior).

Moreover, the map RS,1(−,F ) is super-harmonic on D and its slopes are of the form m/i with
m ∈ N and 1 6 i 6 r. In particular, σ takes its values in a well-ordered set and we may argue by
induction. If σ = 0, then, by the same argument as above, the map RS,1(−,F ) is constant on every
segment inside D, hence on D and the number of edges of Γ′′

S,1(F ) ∩D is 0, as well as its number
of end-points.

Let us now assume that σ > 0 (hence σ > 1/r) and that we proved the result for every smaller
value. Let us start from the boundary of D and consider the first edge J of Γ′′

S,1(F ) ∩ D. Let y
be its endpoint. Denote by C the set of branches out of y. For every c ∈ C, denote by σc the slope
of RS,1(−,F ) out of y in the direction of c. Denote by b the direction associated to J . We have
σb = −σ.

By super-harmonicity, we have
∑

c 6=b σc 6 σ. Recall that every σc is non-negative, hence, for
every c 6= b, we have σc 6 σ. Moreover, if there exists c 6= b such that σc = σ, then every other σc′

70



Convergence Newton polygon III : decomposition and graphs

is 0 and RS,1(−,F ) is constant in the corresponding directions. This implies that J is not an edge
of Γ′′

S,1(F )∩D and we get a contradiction. We deduce that, for every c 6= b, we have σc < σ, hence
σc 6 σ − 1/r.

Let c1, . . . , cs be the branches out of y different from b such that σci > 0 (since a positive
slope is always at least 1/r, we actually have s 6 rσ). For every i ∈ {1, . . . , s}, let Di be the
connected component of X \ {y} that lies in the direction of ci. By induction, the number of edges
of Γ′′

S,1(F ) ∩Di is at most 2rσci − 1.

If s = 0, then Γ′′
S,1(F ) ∩D = J and the result holds, since 2rσ − 1 > 1 and rσ > 1.

If s = 1, the total number of edges of Γ′′
S,1(F ) ∩D is at most

1 + 2rσc1 − 1 6 2r(σ − 1/r) 6 2rσ − 1 (7.3)

and its number of end-points is 1 6 rσ.

Finally, assume that s > 2. Then the total number of edges of Γ′′
S,1(F ) ∩D is at most

1 +

s∑

i=1

(2rσci − 1) 6 1 + 2rσ − s 6 2rσ − 1 , (7.4)

since we have
∑s

i=1 rσci 6 rσ by super-harmonicity. Similarly, the total number of end-points of
Γ′′
S,1(F ) ∩D is at most

s∑

i=1

rσci 6 rσ . (7.5)

Corollary 7.1.10. Let x ∈ X. Let j ∈ {1, . . . , r}. Let D
j
x be a set of connected components of X\{x}

that are virtual open discs and do not meet Γ′
S,j−1(F ). Set Dj

x =
(⋃

D∈D
j
x
D
)
∪ {x}. Let

σdx := ddc
⊆Dj

x
HS,j(x,F ) . (7.6)

Then σdx > 0, and it is zero if and only if Γ′′
S,j(F ) ∩ Dj

x = ∅. If σdx > 0, the weighted number of

edges of Γ′′
S,j(F ) ∩Dj

x is at most 2rσdx − 1, and its weighted number of end-points is at most rσdx.✷

Recall that, in Definition 6.2.21, we introduced a subset ES,j ofX outside which the mapHS,j(−,F )
is super-harmonic. By Proposition 6.2.25, it is locally finite.

Lemma 7.1.11. Let j ∈ {1, . . . , r}. Let C be a virtual open annulus of skeleton J inside X. Assume
that C ∩ Γ′

S,j−1 ⊆ J and J ∩ ES,j = ∅. Then the map HS,j(−,F ) is log-concave on J .

Proof. Let x ∈ J . Let σ− and σ+ be the slopes of the map HS,j(−,F ) at x in the two directions that

belong to J . Let D
j
x be the set of the other directions. Every one of them corresponds to a virtual

open disk with boundary x that does not meet Γ′
S,j−1. By Corollary 7.1.10, the sum σdx of the slopes

of HS,j(−,F ) at x in those direction is non-negative. Since x /∈ ES,j, we have ddcHS,j(x,F ) 6 0
and we finally deduce that

deg(J) · (σ− + σ+) = ddcHS,j(x,F ) − σdx 6 0 . (7.7)

Proposition 7.1.12. Let j ∈ {1, . . . , r}. Let C be a virtual open annulus of skeleton J inside X.
Assume that C ∩ Γ′

S,j−1 ⊆ J and J ∩ ES,j = ∅. Assume that there exists two disjoint segments J−
and J+ inside J approaching the two boundaries of C on which the map HS,j(−,F ) is linear. Let σ−
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and σ+ be the respective associated slopes, computed towards the interior of C. Then σ− + σ+ > 0,
and it is zero if and only if Γ′′

S,j(F ) ∩ C = J . If σ− + σ+ > 0, the weighted number of edges
of Γ′′

S,j(F ) ∩ C is at most deg(J)(1 + 2r(σ− + σ+)) and its weighted number of end-points is at
most r(σ− + σ+).

Proof. By Lemmas 6.2.8 and 7.1.8, we may assume that K is algebraically closed. Consider the
map HS,j(−,F ) along J in the direction from the boundary associated to J− to the one associated
to J+. By Lemma 7.1.11, it is concave. By assumption, its first slope is σ− and its last slope is −σ+.
We deduce that σ− + σ+ > 0. As in the proof of Proposition 7.1.9, all the slopes of HS,j(−,F ) are
of the form ±m/i, with m ∈ Z, and 1 6 i 6 r, and we deduce that there are at most r(σ− + σ+)
break points on J . Let us call them x1, . . . , xs. For each i, let τi < 0 be the difference between the
slope going out and the slope going in at the point xi. We have

∑s
i=1 τi = −(σ− + σ+).

Let z ∈ J . Denote by ddc*J
HS,j(z,F ) the sum of the slopes out of z, in the directions that do

not belong to J . Since J ∩ ES,j = ∅, we have ddcHS,j(z,F ) 6 0.

If z is not a break-point, then the sum of the two slopes in the directions that belong to J is zero,
hence ddc*J

HS,j(z,F ) 6 0. By Corollary 7.1.10, we deduce that the number of edges of Γ′′
S,j(F )

out of z outside J is 0, as well as its number of end-points.

If z = xi for some i, we find ddc*J
HS,j(xi,F ) 6 −τi. By Corollary 7.1.10, the number of edges

of Γ′′
S,j(F ) out of z outside J is at most −2rτi − 1, and its number of end-points is at most −2τi.

Summing up, we find that, inside J , the number of edges of Γ′′
S,j(F ) is s + 1 and, out of J , at

most
s∑

i=1

(−2rτi − 1) = 2r(σ− + σ+)− s . (7.8)

As for the number of end-points, it is at most
s∑

i=1

−rτi = r(σ− + σ+) . (7.9)

Remark 7.1.13. From the above Lemmas it is possible to derive the following simple criterion.

Assume that the following conditions are fulfilled :

i) RS,1(s,F ) = 1 for all s ∈ S,

ii) Let C be an open virtual annulus such that

(a) C is a connected component of X − S.
(b) The topological closure I of ΓC in X is an open or semi-open interval (not a loop).

Identify ΓC with ]0, 1[. If I = ΓC is open, then assume that

lim
x→0+

RS,1(x,F ) = lim
x→1−

RS,1(x,F ) = 1 . (7.10)

If I − ΓC is a point, say {0}, then assume that

lim
x∈ΓC , x→1−

RS,1(x,F ) = 1 . (7.11)

Then

RS,i(x,F ) = 1, for all i = 1, . . . , r, and all x ∈ X . (7.12)

In alternative, consider a triangulation S′, i.e. a weak triangulation such that each connected
component of X−S′ is relatively compact in X. Then (7.12) holds if RS′,1(x,F ) = 1 for all x ∈ S′.
This is a slight generalization of [Bal10, Theorem 0.1.8].
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Let us put the results together.

Proposition 7.1.14. Assume that X is compact. Let j ∈ {1, . . . , r}. Let E′′
j−1 be the weighted

number of edges of Γ′′
S,j−1(F ). Let V ′′

j−1 be the set of vertices of Γ′′
S,j−1(F ). Set E ′′

j = ES,j \ V
′′
j−1

and, for every e ∈ E ′′
j , let de be the degree of the edge of Γ′′

S,j−1(F ) containing e. Then, if Q is any
set such that ES,j ⊆ Q ⊆ V ′′

j−1 ∪ ES,j, the weighted number of edges of Γ′′
S,j(F ) is at most

E′′
j−1 +

∑

e∈E ′′
j

de + 2r ·
∑

x∈Q

ddcHS,j(x,F ) , (7.13)

and its weighted number of end-points that are not end-points of Γ′′
S,j−1(F ) is at most

r ·
∑

x∈Q

ddcHS,j(x,F ) . (7.14)

Proof. We can assume K algebraically closed. By Proposition 6.2.25 and Definition 6.2.22, the
set E ′′

j is contained in Γ′′
S,j−1(F ). Let us first modify Γ′′

S,j−1(F ) by adding a vertex at each point
of E ′′

j . The number of edges E′′′
j−1 of the resulting graph Γ′′′

S,j−1(F ) is at most E′′
j−1 +

∑
e∈E ′′

j
de.

Let x ∈ V ′′
j−1 ∪ E ′′

j . Let σ
d
x be the sum of the slopes of HS,j(−,F ) at x in the directions that

do not belong to Γ′′′
S,j−1(F ). Let x′ ∈ (V ′′

j−1 ∪ E ′′
j ) \ {x} such that [x, x′] is an edge of Γ′′′

S,j−1(F ).
Denote by σx,x′ the slope of HS,j(−,F ) at x in the direction of x′.

By Corollary 7.1.10, for every x ∈ V ′′
j−1 ∪ E ′′

j , the number of edges of Γ′′
S,j(F ) out of x outside

Γ′′′
S,j−1(F ) is at most 2rσdx. By Proposition 7.1.12, for every x 6= x′ in V ′′

j−1 ∪ E ′′
j such that [x, x′]

is an edge of Γ′′′
S,j−1(F ), the number of edges of Γ′′

S,j(F ) inside the virtual annulus whose skeleton
is ]x, x′[ is at most 1 + 2r(σx,x′ + σx′,x). This proves (7.13) with Q = V ′′

j−1 ∪ ES,j. Now for all
x ∈ V ′′

j−1 − ES,j one has ddcHS,j(x,F ) 6 0. This proves (7.13) in the general case.

As regards, the number of end-points of Γ′′
S,j(F ) that are not end-points of Γ′′

S,j−1(F ), it is
the sum of the number of end-points of the trees that grow out of each open edge and each vertex
of Γ′′

S,j−1(F ). The result is now proved as in the previous paragraph.

Remark 7.1.15. By Proposition 6.2.25 one has ES,j ⊆ S ∪ CS,j, so

E
′′
j ⊆ CS,j , (7.15)

because S ⊆ V ′′
j−1 by definition. In particular, by Remark 6.2.23, the cardinality Card(E ′′

j ) 6

Card(CS,j) is less than the number of end-points of Γ′′
S,j−1(F ) (and the same results holds with

degrees taken into account). This number will be bounded in Corollary 7.2.8.

7.2 The case of smooth, geometrically connected, projective curves.

We will now assume that X is a smooth geometrically connected projective curve in order to get a
more concrete result. We will also assume that X satisfies the condition (TR). By Theorem 6.2.26,
for every s ∈ S and every j ∈ {1, . . . , r}, we have

ddcHS,j(s,F ) 6 max(2g(s) − 2 +NS(s), 0) · j . (7.16)

The following lemma computes the sum of the terms at the right-hand side of the inequality.

Lemma 7.2.1. Assume that K is algebraically closed. Assume that X is a smooth connected pro-
jective curve of genus g. We have

∑

s∈S

(2g(s) − 2 +NS(s)) = 2g − 2 . (7.17)
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Proof. Extending the base field K does not change any of the quantities above, hence we may
assume that K is non-trivially valued.

Let ES be the number of edges of ΓS . We have
∑

s∈S

2g(s) − 2 +NS(s) = 2
(∑

s∈S

g(s)
)
− 2Card(S) + 2ES . (7.18)

Moreover, by [Ber90, p.82, before Theorem 4.3.1], we have
∑

s∈S

g(s) + 1−Card(S) + ES = g (7.19)

and the result follows.

Remark 7.2.2. The number 2g(s)−2+NS(s) may only be negative if g(s) = 0 and NS(s) ∈ {0, 1}.

Assume that K is algebraically closed and that g(s) = 0. If NS(s) = 0, then X is isomorphic
to P1,an

K . If NS(s) = 1, then the skeleton ΓS contains a branch that ends at an interior point of
genus 0, hence is not minimal (cf. [Duc, 5.2.2.3]).

By GAGA, differential modules on the projective line are algebraic, hence trivial. We may then
concentrate on curves of positive genus.

Corollary 7.2.3. Assume that X is a smooth geometrically connected projective curve of genus g >

1 that satisfies the condition (TR). Let ES be the weighted number of edges of ΓS. Then the weighted
number of edges of Γ′′

S,1(F ) is at most

ES + 4r(g − 1) (7.20)

and its weighted number of end-points that are not end-points of ΓS is at most 2r(g − 1).

Proof. By Lemma 7.1.8, we may assume that K is algebraically closed. We may also assume that
the triangulation is minimal. Recall that ES,1 ⊆ S ⊆ V ′′

0 ∪ ES,1. By Proposition 7.1.14 applied to
Q = S, the number of edges of Γ′′

S,1(F ) is at most ES +2r ·
∑

s∈S dd
cRS,1(x,F ) and its number of

end-points that do not belong to ΓS is at most r ·
∑

s∈S dd
cRS,1(x,F ).

In order to prove the result, it is now enough to bound from above the number
∑

s∈S dd
cRS,1(s,F ).

By Theorem 6.2.26 and Remark 7.2.2, for every s ∈ S, we have ddcRS,1(s,F ) 6 2g(s)− 2+NS(s),
hence the result follows from Lemma 7.2.1.

For higher radii, we may use the same proof in order to get a similar result under additional
hypotheses. We will first handle the cases where super-harmonicity holds everywhere outside ΓS.

Corollary 7.2.4. Assume that X is a smooth geometrically connected projective curve of genus g >

1 that satisfies the condition (TR). Let j ∈ {2, . . . , r}. Assume that ES,j ⊆ S. Let E′′
j−1 be the

weighted number of edges of Γ′′
S,j−1(F ). Then the weighted number of edges of Γ′′

S,j(F ) is at most
E′′

j−1 + 4r(g − 1)j.

Proof. Using (7.16), the proof is the same as that of Corollary 7.2.3.

Corollary 7.2.5. Assume that X is a smooth geometrically connected projective curve of genus g >

1 that satisfies the condition (TR). Let j ∈ {1, . . . , r}. Assume that
⋃

16i6j ES,i ⊆ S. Let ES be
the weighted number of edges of ΓS. Then the weighted number of edges of Γ′′

S,j(F ) is at most
ES + 2r(g − 1)j(j + 1). ✷

Remark 7.2.6. In Prop. 8.2.2, we show that the condition ES,i ⊆ S is related to the presence of
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Liouville numbers in the equation at the points of CS,i.

We now give more general results by taking arbitrary exceptional sets ES,j into account.

Corollary 7.2.7. Assume that X is a smooth geometrically connected projective curve of genus g >

1 that satisfies the condition (TR). Let j ∈ {2, . . . , r}. Let E′′
j−1 be the weighted number of edges

of Γ′′
S,j−1(F ), and let L′′

j−1 be its number of end-points that are not end-points of ΓS. Then the
weighted number of edges of Γ′′

S,j(F ) is at most

E′′
j−1 + L′′

j−1 + 4r(g − 1)j + 2r(j − 1)L′′
j−1 (7.21)

and its weighted number of end-points that do not belong to Γ′′
S,j−1 is at most

2r(g − 1)j + r(j − 1)L′′
j−1 . (7.22)

In particular, if j 6 r − 1, the weighted cardinal of CS,j+1 is at most

2r(g − 1)j + (r(j − 1) + 1)L′′
j−1 . (7.23)

Proof. We may assume that K is algebraically closed. Remark 6.2.23 implies that the cardinal
of CS,j is at most L′′

j−1. Set Q = S ∪ ES,j, hence ES,j ⊆ Q ⊆ V ′′
j−1 ∪ ES,j, and E ′′

j ⊆ CS,j by Remark
7.1.15. By Lemma 6.2.24, for every x ∈ CS,j, we have ddcHS,j(x,F ) 6 j − 1, hence

∑

x∈Q

ddcHS,j(x,F ) 6
∑

x∈S

ddcHS,j(x,F ) +
∑

x∈ES,j∩CS,j

ddcHS,j(x,F ) (7.24)

6 (2g − 2)j + (j − 1)L′′
j−1. (7.25)

The result now follows from Proposition 7.1.14.

Corollary 7.2.8. Assume that X is a smooth geometrically connected projective curve of genus g >

1 that satisfies the condition (TR). Let ES be the weighted number of edges of ΓS and let LS be
its number of end-points. Define sequences (ℓn)n>0 and (en)n>0 by ℓ0 = 0, e0 = ES and, for every
n > 0,

ℓn+1 = 2r(g − 1)(n + 1) + (rn+ 1) ℓn ; (7.26)

en+1 = en + 4r(g − 1)(n + 1) + (2rn+ 1) ℓn . (7.27)

Let j ∈ {1, . . . , r}. Then the weighted number of edges of Γ′′
S,j(F ) is at most ej , its weighted number

of end-points is at most LS + ℓj and the weighted cardinal of CS,j is at most ℓj−1. ✷

Remark 7.2.9. One has

ℓn = O(rn−1(n− 1)!) , en = O(rnn!) . (7.28)

7.3 Elliptic curves.

Let X be an elliptic curve over an algebraically closed field. By [Ber90, p.82, before Thm. 4.3.1], we
have ∑

s∈S

g(s) + χ(ΓS) = 1, (7.29)

where χ(ΓS) denotes the Euler-Poincaré characteristic of the skeleton.

There are two cases.

i) If χ(ΓS) = 1, then ΓS is homotopy equivalent to a circle and X contains no points with positive
genus. In this case, X is a Tate curve and it has bad reduction.
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ii) If χ(ΓS) = 0, then there exists point x0 ∈ X such that g(x0) = 1 and every other point has
genus 0. It is easy to check that the singleton {x0} is a triangulation of X. In this case, X has
good reduction.

Corollary 7.3.1. Assume that X is an elliptic curve that satisfies the condition (TR). 15 Let
j ∈ {1, . . . , r}. Then the map RS,j(−,F ) is constant on X and ΓS,j(F ) = ΓS.

Moreover, the module with connection (F ,∇) admits a direct sum decomposition

F =
⊕

ρ∈]0,1]

F
ρ (7.30)

with the property that, for every ρ ∈]0, 1] such that F ρ 6= 0 and every i ∈ {1, . . . , rank(F ρ)}, one
has RS,i(−,F

ρ) = ρ.

Proof. As before, we may assume that K is algebraically closed and that X is endowed with a
minimal triangulation S. From Corollary 7.2.3 it follows that Γ′′

S,1(F ) = ΓS .

Moreover, by Proposition 6.2.25 and Remark 6.2.23 we have ES,2 ⊆ Γ′
S,1(F ) and ES,2 ∩ ΓS ⊆ S.

Hence ES,2 ⊆ S. We may now prove that Γ′′
S,j(F ) = ΓS for all j ∈ {1, . . . , r} by induction on j by

using the same arguments and Corollary 7.2.4 instead of Corollary 7.2.3.

Let j ∈ {1, . . . , r}. Over a non-archimedean algebraically closed field, there are two types of
elliptic curves.

a) Assume first that X has good reduction. Then its skeleton ΓS is a point. As a consequence,
the map RS,j(−,F ) is constant on ΓS, hence on X.

b) Assume now that X has bad reduction, i.e. X is a Tate curve. Then its triangulation is a
singleton S = {γ} and its skeleton is a circle. The graph ΓS has one vertex: γ and one edge:
ΓS. By the definition of Γ′′

S,j(F ), the map RS,j(−,F ) is log-affine and continuous on ΓS and
we deduce that it is constant.

The second part of the theorem now follows from Theorem 5.4.10.

Remark 7.3.2. The same proof applied to P1,an
K , with a minimal triangulation consisting on a point,

gives that any differential equation F on it satisfy RS,1(x,F ) = 1, for all x ∈ X. This confirms

the fact that all differential equation over P1,an
K is trivial, because it is algebraic by GAGA.

8. Some counterexamples.

In this section we provide the following counterexamples:

i) Non compatibility of solvable and over-solvable radii with duals (cf. section 8.4);

ii) Uncontrolled behavior of solvable and over-solvable radii by exact sequences (cf. section 8.4);

iii) An explicit example of differential module over a disk for which F>i is not a direct summand
(cf. section 8.3);

iv) Some basic relations between the Grothendieck-Ogg-Shafarevich formula and super-harmonicity
of partial heights (cf. Remark 8.2.3).

All the examples involve a differential module over an open disk with empty triangulation. Indeed
any possible counterexample to the above situations is reduced to this case by localizing to a maximal
disk D(x, S). This is because on ΓS all the radii are spectral and are compatible with duality and

15If it is a Tate curve, this is automatic. Otherwise, there is one condition to check at the only point of X that has

positive genus. Recall that it is always satisfied if char K̃ 6= 2.
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spectral sequences. Concerning iv) the potential failure of super-harmonicity at some points was
one of the crucial difficulties of [Pul12], we here relate this to the presence of Liouville numbers.

8.1 Setting.

Let D := D−(0, 1) be the unit open disk, and let T be its coordinate. In this section all differential
module will be defined over the ring O†(D) := ∪ε>0O(Dε), where Dε := D−(0, 1 + ε). Namely
O†(D) is formed by power series f(T ) =

∑
i>0 aiT

i satisfying limi |ai|ρ
i = 0, for some unspecified

ρ > 1. The data of a differential module M over O†(D) is equivalent to that of a differential module
Mε over O(Dε) for some unspecified ε > 0. The triangulation on Dε will always be the empty one.
Moreover the radii are assumed to be all solvable or over-solvable at the boundary x0,1 of D. By
Lemma 6.1.4, this implies M is trivial on all sub-disks of Dε with boundary x0,1.

All differential modules will have the property NL of non Liouville exponents. By definition this
means that the exponents, and their differences, are not Liouville numbers (cf. [CM93], [CM97],
[CM00], [CM01]). Under this condition H1(M,O†(D)) := Coker(∇ : M → M) has finite dimension.

The NL condition is quite implicit. The effective way to ensure it is to assume either that the
restriction of M to the annulus Cε = {|T (x)| ∈]1, 1 + ε[} has a Frobenius structure, or that none of
the radii R∅,i(−,M) of M verifies the Robba condition along b = [x0,1, x0,1+ε[:

R∅,i(−,M) is solvable at x0,1, and ∂bR∅,i(x0,1,M) = 1 . (8.1)

Remark 8.1.1. Condition (8.1) differs from the same condition for the radii of M|Cε
. Indeed over-

solvable radii over Dε are truncated by localization to Cε and become solvable. This corresponds
to the existence of trivial submodules of Mε that of course satisfy the condition NL. So the NL

condition really arises from the presence of a break of some R∅,i(−,M) at x0,1, as in (8.1), before
localization.

8.2 Grothendieck-Ogg-Shafarevich formula and super-harmonicity

In this section M is a differential module over O†(D) of rank r = rank(M), and b =]x0,1, x0,1+ε[ is
a germ of segment oriented as out of x0,1.

Definition 8.2.1 ([CM00],[CM01]). One defines the p-adic irregularity of M at ∞ as

Irr∞M := −∂bH∅,r(x0,1,M|Cε
) = −

r∑

i=0

∂bR∅,i(x0,1,M|Cε
) . (8.2)

Over-solvable radii of M corresponds to solutions of M on some Dε. These radii are truncated by
localization to Cε. As a result their slope remains zero, but the localization to Cε adds−1 to the slope
of each other radius (cf. Prop. 2.8.2). One finds ∂bH∅,r(x0,1,M|Cε

) = ∂bH∅,r(x0,1,M) − r + h0(M):

Irr∞(M) = rank(M) − ∂bH∅,r(x0,1,Mε)− h0(M) . (8.3)

Assume now that M has the NL property, and that K is spherically complete. Then one has the
Grothendieck-Ogg-Shafarevich formula (often called Euler-Poincaré formula):

h0(M)− h1(M) = rank(M)− Irr∞(M) . (8.4)

By (8.3) this formula can be written as :

h1(M) = −∂bH∅,r(x0,1,Mε) . (8.5)

Proposition 8.2.2. Let Mε be a differential module over a disk Dε, such that R∅,1(−,Mε) is solvable
or over-solvable at x0,1, and such that Mε has the NL property. Then for all i = 1, . . . , r = rank(Mε)
the i-th partial height H∅,i(−,Mε) is super-harmonic at x0,1: dd

cH∅,i(−,Mε) 6 0.
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Proof. Super-harmonicity is insensitive to scalar extensions of K. So we can assume that K is
spherically complete. If R∅,1(−,Mε) is over-solvable at x0,1, then Mε is trivial over Dε for some
ε, and the statement is trivial. Over-solvable radii do not contribute to super-harmonicity, so by
Prop. 2.9.5, we can assume that Mε has no trivial submodules over Dε, i.e. R∅,i(x0,1,Mε) = 1 for
all i. For small values of ε, the radii are all log-affine on [x0,1, x0,1+ε[. So Lemma 6.1.4, together
with Cor. 6.3.5, and Remark 6.3.6 prove that ΓS,i(Mε) is either equal to [x0,1, x0,1+ε[, or empty if
R∅,i(−,Mε) is constant. By (8.5), H∅,r(−,Mε) is concave at x0,1, and constant outside [x0,1, x0,1+ε[,
hence H∅,r(−,Mε) is super-harmonic on Dε. The assertion for H∅,i(−,Mε) is deduced from that
of H∅,r(−,Mε) by interpolation. Namely by convexity of the convergence Newton polygon one
has H∅,i(−,Mε) 6 i

rH∅,r(−,Mε), moreover these two functions coincide at x0,1. This proves that
H∅,i(−,Mε) is super-harmonic.

Remark 8.2.3. In [Pul12, Thm.4.7] one proves that H∅,i(−,Mε) are super-harmonic over Dε out-
side the finite set Ci of Def. 6.2.22. However H∅,1(−,Mε) is super-harmonic on the whole disk.
Proposition 8.2.2 shows that if H∅,i(−,Mε) is not super-harmonic then Mε has some Liouville ex-
ponent, or possibly some non solvable radii in order to be outside the range of validity of G.O.S.
formula.

Remark 8.2.4. Since Irr∞(M) involves spectral radii, these are stable by duality and one has
Irr∞(M) = Irr∞(M∗). Hence h0(M) − h1(M) = h0(M∗) − h1(M∗) as soon as Grothendieck-Ogg-
Shafarevich formula holds.

8.3 An example where F>i is not a direct summand.

The Yoneda group Ext1(M,N) of extensions 0 → N → P → M → 0 of differential modules can be
identified with H1(M∗ ⊗N) (cf. Lemma 1.2.7).

Lemma 8.3.1. Assume that M has the property NL. If ∂bH∅,r(x0,1,Mε) 6 −1 there exists a non
splitting exact sequence 0 → Mε → Pε → O(Dε) → 0.

Proof. h1(M) = −∂bH∅,r(x0,1,M) > 1. So Ext1(O†(D),M) = H1(M⊗ O†(D)) = H1(M) 6= 0.

Let M be a rank one differential module over O†(D) such that R∅,1(x0,1,Mε) is solvable, and
Irr∞(M) > 2 (i.e. ∂bH∅,r(x0,1,Mε) 6 −1). Such differential modules have been classified in [Pul07].
Consider the dual of the non splitting sequence of Lemma 8.3.1

0 → O(Dε) → P∗
ε → M∗

ε → 0 . (8.6)

By Prop. 2.9.5 the radii of P∗
ε are the union of those of M∗

ε and O(Dε):

•

log(1 + ε)

Radius of O(Dε)

•

log(1 + ε)

Radii of P∗
ε

•

log(1 + ε)

Radius of M∗
ε

(8.7)

The functions of the pictures are precisely

ρ̃ 7→ log(R∅,i(x0,exp(ρ̃), •)) , (8.8)

where ε is unspecified, in order to avoid complicate behavior of the radius of M∗
ε. The dotted line

denotes the region of solvability. At the left hand side of this line one has over-solvable radii (always
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constant functions), and on its right hand side one has spectral non solvable radii. By section 6 (cf.
Corollary 6.3.5) one sees that

Γ∅,1(M
∗
ε) = Γ∅,1(P

∗
ε) = [x0,1, x0,1+ε[ , Γ∅,2(P

∗
ε) = Γ∅,1(O(Dε)) = ∅ . (8.9)

The radii of P∗
ε are then separated on the whole disk Dε, if ε > 0 is small enough. In this case

O(Dε) = (P∗
ε)>2. Moreover, by construction, P∗

ε in not isomorphic to the direct sum of M∗
ε = (P∗

ε)<2

and (P∗
ε)>2 = O(Dε).

8.4 Non compatibility of solvable or over-solvable radii with duality and with exactness.

Consider now the sequence of Lemma 8.3.1

0 → Mε → Pε → O(Dε) → 0 . (8.10)

We now show that over-solvable radii of this sequence do not behave as spectral one (cf. Thm.
2.9.1). Indeed a solution on Dε of Pε generates a trivial submodule whose intersection with Mε is
zero because Mε is not trivial. This is absurd since the sequence does not split. On the other hand
spectral non solvable radii are stable by duality (cf. Prop. 2.9.8) so the pictures of the radii of (8.10)
coincides with (8.11) under the doted line. By continuity one finds:

•

log(1 + ε)

Radius of Mε

•

log(1 + ε)

Radii of Pε

•

log(1 + ε)

Radius of O(Dε)
(8.11)

This proves that over-solvable radii of Pε (nor their controlling graphs) are not preserved by duality
(cf. Remark 2.9.9 and Prop. 2.9.8). Indeed by section 6 (cf. Corollary 6.3.5) one sees that

Γ∅,1(Mε) = Γ∅,1(Pε) = Γ∅,2(Pε) = [x0,1, x0,1+ε[ . (8.12)

Remark 8.4.1. Among all the extensions of O(Dε) by M∗
ε, the unique non trivial extension P∗

ε is
also the unique one for which the radii are not separated. And its controlling graphs contradicts the
assumption of Theorem 5.4.10. Notice that that information is written in the radii of Pε and P∗

ε,
while the radii and the controlling graphs of Mε, O(Dε), and their duals, are stable by duality.

Remark 8.4.2. The differential module Pε satisfies C1 = C2 = ∅ (cf. (6.30)). Indeed H∅,2(−, Pε) is
a constant function on Dε, and Γ(H∅,2(−,Pε)) = ∅ (cf. point iii) of Def. 6.2.22).

Also P∗
ε verifies C1 = C2 = ∅, but the reason is that R∅,2(−,P

∗
ε) is constant and Γ∅,2(P

∗
ε) = ∅.

Notes.

– The global decomposition results of this paper, together with those of [Pul12] and [PP12b],
are of a pre-cohomological nature, in the sense that they do not involve any cohomological
consideration.

– The graphs ΓS,i(F ) are essentially unknown at the present state of technology. No general
algorithms are known. In rank one case there exists an algorithm due to Christol [Chr11],
based on [Pul07], that actually computes explicitly the radius of a rank one equation of the
form y′ = g(T )y, with g(T ) ∈ K[T ]. In a work in progress we extended such an algorithm to
equation over an affinoid domain Y of the affine line (i.e. g(T ) ∈ O(X)) to find the graphs on

79
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a maximal disk, but not to the whole X.

Remark 8.4.3. A result of [Ked13] proves that the controlling graphs of F do not contain any
point of type 4. The proofs of this paper work on points of type 4, so that result of Kedlaya is not
used in the present paper.

Appendix A. A note about the definition of the radius

As already observed the radii only depends on the skeleton ΓS, in the sense that if ΓS = ΓS′ then
RS,i(−,−) = RS′,i(−,−) (cf. Remark 2.3.3).

In this section we consider a more general definition of the radii based on the idea that the
datum defining the radii is a graph ΓS instead of a triangulation. So we define the radii starting
from a graph which is not necessarily the skeleton of a weak triangulation. We here show that such a
point of view is not a real generalization, in the sense that the main theorems (finiteness, continuity,
and decomposition) in this new context can be deduced from the same results in the framework of
weak triangulations. For this reason the framework of weak triangulations seems to us the optimal
one.

A.1 Definition of the radii

As a mater of fact all one needs to define the radii is the notion of maximal disks. For this we
proceed as follow. Let F be a differential equation over X, and let x ∈ X.

A graph G ⊆ X is called a weakly admissible graph if X −G is a disjoint union of virtual open
disks.16

For all x ∈ X we call maximal disk the Ω-rational disk D(x,G) (cf. Def. 2.2.1). The disk D(x,G)
is empty if and only if x ∈ G and if x is a point of type 1. In this case set RG,i(x,F ) := 1, for all
i = 1, . . . , r.

Otherwise, imitating section 2.3, choose an isomorphism D(x,G)
∼
→ D−

Ω (0, R) sending tx into

0. Consider the restriction F̃ of F to D−
Ω (0, R). And then define RF̃

G,i(x) as the radius of the

largest open disk D centered at 0, contained in D−
Ω (0, R), such that F̃ has at least r − i + 1

linearly independent solutions on D, where r = rank(F ). Now set RG,i(x,F ) := RF̃
G,i(x)/R, for all

i = 1, . . . , r.

We call G-multiradius of F the tuple (RG,1(x,F ), . . . ,RG,r(x,F )).

The following definition coincides with Def. 2.4.2 replacing ΓS with G.

Definition A.1.1 (cf. Def. 2.4.2). We call G-controlling graph, or G-skeletons, of RG,i(−,F ) the
set of points x ∈ X that do not admit as a neighborhood in X a virtual open disk D, such that
D ∩G = ∅, on which RG,i(−,F ) is constant on D. We denote it by ΓG,i(F ).

It follows by the definition that G ⊆ ΓG,i(F ).

A.2 Properties

In this section we prove that the radii RG,i(x,F ) are subjected to analogous properties of the radii
RS,i(x,F ) attached to a weak triangulation S. Indeed their restriction to a maximal disk D(x,G)

16This generalizes a terminology of Ducros [Duc, (5.1.3)], where one defines an analytically admissible graph as a
weakly admissible graph such that the disks that are connected components of X − G are relatively compact in X.
In analogy with the definition of weak triangulations, we allow the empty set of a virtual open disk to be a weakly
admissible graph.
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is determined by the functions RF̃
G,i(x) in the spirit of [Pul12]. Below, one shows how to reduce the

study of the G-radii to the case of the radii defined by a weak triangulation.

Proposition A.2.1 ([Duc, (1.3.15.2)]). A weakly admissible graph is a closed connected subset of
X, hence it is a graph (cf. Section 1.1.5).

Proposition A.2.2. Let G be a weakly admissible graph. Then there exists a weak triangulation S
of X such that ΓS ⊆ G.

Proof. Let S′ be an arbitrary triangulation. The intersection Γ := G ∩ ΓS′ is a locally finite graph
whose complement X − Γ is a disjoint union of virtual disks. Since Γ is contained in ΓS′ , then Γ is
the skeleton of a weak triangulation S by [Duc, 5.2.2.3].

Proposition A.2.3. Let ΓS ⊆ G be the skeleton of a triangulation contained in the weakly admis-
sible graph G. Then for all i = 1, . . . , r one has

RG,i(x,F ) = min
(
1 , fS,G(x) · RS,i(x,F )

)
(A.1)

where fS,G : X → [1,+∞[ is the modulus of the inclusion of disks D(x,G) ⊆ D(x, S) (cf. (1.1.2)).
✷

The following Proposition A.2.4 together with Theorem 2.4.1 shows that the G-controlling graph
ΓG,i(F ) is locally finite if and only if so G is.

Proposition A.2.4. One has ΓG,i(F ) = G ∪ ΓS,i(F ).

Proof. The proof coincides with that of Proposition 2.7.2 (replacing S′ with G).

Lemma A.2.5. The function x 7→ fS,G(x) is continuous if and only if G is a locally finite graph.✷

Theorem A.2.6. If G is a locally finite graph, the functions RG,i(−,F ) are continuous.

Proof. This follows directly from (A.1) and the continuity of both RS,i(−,F ) and fS,G.

Remark A.2.7. The trivial equation (OX , d) satisfies RG,1(x,F ) = 1 for all x ∈ X and all weakly
admissible graph G. So it is always continuous.

Remark A.2.8. If G is not locally finite, then there are differential equation with non continuous
radii. Here we provide a basic explicit example.

Let X be the the disk D−
K(0, 1) with empty weak triangulation. Denote by Fa the rank one

differential equation over X, given by y′ = a · y, with a ∈ K. A direct computation of the Taylor
expansion of its solution shows that for all x ∈ X the function R∅,1(x,Fa) is constant on X with

value Ra := min(1, |p|
1

p−1/|a|). If the valuation of K is non trivial, it is then possible to construct
differential equations having arbitrarily small and constant radii on a disk.

Let now G be a weakly admissible graph in X. By (A.1), this shows that, for all bifurcation point
x ∈ G, there exists a ∈ K, such that RG,1(y,Fa) = fS,G(y) · Ra for all y close enough to x. This
proves that ΓG,1(Fa) = G around x.

If G is not locally finite, then, by Lemma A.2.5, the function RG,1(y,Fa) is not continuous. So
locally finiteness of G is a necessary condition to have continuity.

Theorem A.2.9. If RG,i−1(x,F ) < RG,i(x,F ) for all x ∈ X, then there exists a sub-object F>i

of F satisfying analogous properties to Thm. 5.3.1, and of section 5.4, replacing everywhere the
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index S by G. Moreover F>i is independent on the choice of G.

Proof. Let S be a weak triangulation such that ΓS ⊆ G. For all x ∈ X one has D(x,G) ⊆ D(x, S).
So ωS,j(x,F ) = ωG,j(x,F ) for all j 6 i. the index i also separates the ΓS-radii. By Theorem 5.3.1
we have the existence of a submodule FS,>i separating the S-radii. As in Remark 5.3.4, and Prop.
5.3.3 one shows that FS,>i also separates the G-radii : FS,>i = FG,>i.

Remark A.2.10. According to Remark 5.4.11, to prove that F>i is a direct factor, it is convenient
to chose G as small as possible. This can be done by replacing G by a convenient weak triangulation
S such that ΓS ⊆ G.
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