$p ext{-ADIC DIFFERENTIAL EQUATIONS}$ $p ext{-ADIC REPRESENTATIONS}$ AND $p ext{-ADIC DIFFERENCE EQUATIONS}$

Padova,
15 March, 2007

Summary:

- Introduction
- p-adic Representations
- (Abelian) p-adic differential equations
- p-adic difference equations
- Applications to p-adic Zeta function and to p-adic L functions

Introduzione

Absolute values over \mathbb{Q} :

$$\begin{cases} |\cdot|_{\infty} = \text{Archimedean absolute value} : |\frac{m}{n}|_{\infty} = \max(\frac{m}{n}, -\frac{m}{n}), \\ |\cdot|_{p} = p - \text{adic absolute value} \end{cases}$$

For all integer $k \in \mathbb{Z}$, $k = np^v$, (n, p) = 1 let

$$v_p(k) := v = N^{\circ}$$
 of times that p divides k .

Let $0 < \varepsilon_p < 1$ be an arbitrary real number, then set $|p|_p := \varepsilon_p$ and, for all $k \in \mathbb{Z}$ as above, set

$$|k|_p = |p|_p^v = \varepsilon_p^{v_p(k)} \le 1.$$

and more generally

$$\left|\frac{m}{n}\right|_p := \varepsilon_p^{v_p(m) - v_p(n)}$$
.

Introduction

$$|\cdot|_{\infty}: \mathbb{Q} \rightsquigarrow \mathbb{R} = \begin{cases} \text{complete} \\ \text{connected} \\ \dim_{\mathbb{R}} \mathbb{C} = 2 \end{cases}$$

$$|\cdot|_p: \mathbb{Q} \leadsto \mathbb{Q}_p = \begin{cases} \text{complete} \\ \text{NON connected} \\ \dim_{\mathbb{Q}_p} \mathbb{C}_p = +\infty \end{cases}$$

Disks/Balls:

$$D^{-}(a,r) := \{x \in \mathbb{Q}_p \mid |x - a|_p < r\}$$

$$D^{+}(a,r) := \{x \in \mathbb{Q}_p \mid |x - a|_p \le r\}$$

Pathologies:

- If $|x a|_p = r$, then $D^-(x, r) \subset D^+(a, r)$;
- We set $\mathbb{Z}_p := D^+(0,1)$. One has $\mathbb{Z} \subseteq \mathbb{Z}_p$, and is dense.

p-adic representations

Let k be an algebraically closed field of characteristic p.

The object of study is

$$G := Gal(k((t))^{sep}/k((t)))$$
.

• We wants to study G by classifying its representations, that is the groups homomorphisms

$$\rho: \mathbf{G} \longrightarrow \mathrm{GL}_n(K)$$
.

where K/\mathbb{Q}_p is a finite extension of fields.

• Remarkable Fact: Every finite quotient of G is solvable, more precisely

$$1 \to \mathcal{P} \to G \to G/\mathcal{P} \to 1$$
 , $G/\mathcal{P} = \prod_{\ell = \text{prime}, \ell \neq p} \mathbb{Z}_{\ell}$.

• \mathcal{P} is a pro-p-group essentially unknown.

The exemple of rank one representations of rank one of \mathcal{P}

The theory of Artin-Schreier describes the caratters of \mathcal{P} :

$$0 \to \mathbb{Z}/p^n\mathbb{Z} \to \mathbf{W}_n(k((t))) \xrightarrow{\mathrm{F}-1} \mathbf{W}_n(k((t))) \to \mathrm{Hom}(\mathcal{P}, \mathbb{Z}/p^n\mathbb{Z}) \to 0$$

• $\mathbf{W}_n(k(t))$ is the group scheme of "Witt Vectors". Its elements are vectors $(f_0(t), \dots, f_n(t))$, with $f_i(t) \in k(t)$.

Theorem 0.1 (Pulita) The group of characters

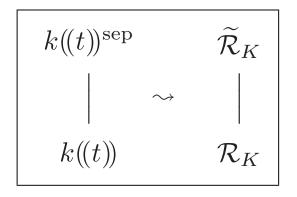
 $\mathrm{H}^1 := \mathrm{Hom}(\mathcal{P}, \mathbb{Q}/\mathbb{Z})$ is isomorphic to

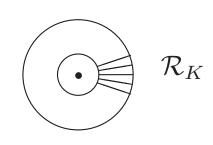
$$\mathrm{H}^1 \cong \bigoplus_{(n,p)=1} \left(\varinjlim_{m \geq 0} (\mathbf{W}_m(k) \xrightarrow{\mathrm{FV}} \mathbf{W}_{m+1}(k) \to \cdots) \right)$$

The graduated of H^1 is isomorphic to

$$\operatorname{Gr}_d(\operatorname{H}^1) := \operatorname{Fil}_d(\operatorname{H}^1)/\operatorname{Fil}_{d-1}(\operatorname{H}^1) \cong k$$
.

From Representations to Equations





- \mathcal{R}_K is the ring of (germs of) analytic functions on the wedge of the unit disk $D^-(0,1)$, that is functions converging on an annulus $\{1-\varepsilon < |x|_p < 1\}$ of \mathbb{C}_p .
- We have a functor which is fully faithful

$$\operatorname{Rep}_{K}^{\operatorname{fin}}(G) \longrightarrow \left\{ \begin{array}{l} \operatorname{Diff.Eq.}/\mathcal{R}_{K} \\ \operatorname{with\ a\ Frob.} \\ \operatorname{structure} \end{array} \right\}$$

$$V \longmapsto (V \otimes_{K} \widetilde{\mathcal{R}}_{K})^{G}$$

Obtained results:

- Computation of this functor in the Abelian case;
- Classification of all abelian Diff.Eq. over \mathcal{R}_K ;
- Criteria to say when a given differential Eq. comes From a repr.

p-adic Differential Equations

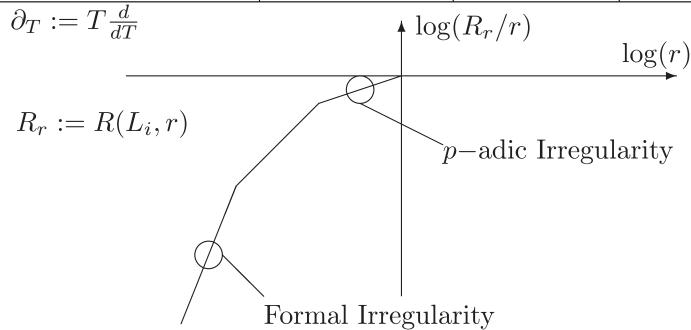
- The equations considered are *linear*, homogeneous, and in normal form : $L := y^{(n)} + f_{n-1}y^{(n-1)} + \cdots + f_1y' + f_0y = 0$.
- Example: The equation y' = y has solution $\exp(T) := \sum \frac{T^n}{n!}$.
- **Patology**: The function $\exp(T)$ does not converge everywhere, but converges only in a disk $D^-(0,\omega_0)$, with $\omega_0 < +\infty$.
- Invariant: The radius of convergence of the Taylor solution in a point $c \in K$ is an invariant of the equation.
- If the equation is defined on an annulus $\{r_1 < |T| < r_2\}$, we can consider the function :

$$r \mapsto R(L, r) := \min_{|c|_p = r} \left\{ \begin{array}{l} \text{Radius of the Taylor} \\ \text{solution of } L \text{ at } c \end{array} \right\}$$

• The log-slopes of this function are *invariants* of the equation.

DWORK'S EXAMPLE

Operator	Solution at ∞	Formal Irr.	p-adic Irr.
$L_1 := \partial_T + \pi_0 T^{-1}$	$\exp(\pi_0 T^{-1})$	1	1
$L_2 := \partial_T + p\pi_0 T^{-p}$	$\exp(\pi_0 T^{-p})$	p	1



• Since $\theta(T) := \exp(\pi_0(T^{-p} - T^{-1})) = \frac{\exp(\pi_0 T^{-p})}{\exp(\pi_0 T^{-1})}$ is overconvergent, then these two operators are isomorphic (over \mathcal{R}_K). **Theorem 0.2 (Pulita)** The rank one differential equations coming from a representation have a solution at ∞ of the type :

$$y = T^a \cdot \exp\left(\pi_m \phi_0(T) + \pi_{m-1} \frac{\phi_1(T)}{p} + \dots + \pi_0 \frac{\phi_0(T)}{p^m}\right)$$

where $\phi_j(T) = f_0(T)^{p^j} + p \cdot f_1(T)^{p^{j-1}} + \dots + p^j \cdot f_j(T)$, with $f_1, \dots, f_j \in T^{-1}K[T^{-1}]$, and where $\{\pi_0, \dots, \pi_m\}$ are p^m -torsion points of a Lubin-Tate group.

- This exponential converges for |T| > 1.
- The isomorphism class of the equation is in bijection with the pair (\bar{a}, ρ) where $\bar{a} \in \mathbb{Z}_p/\mathbb{Z}$ is the residue, and $\rho \in H^1$ is the character defined by the reduction of (f_0, \ldots, f_m) in $\mathbf{W}_m(k(t))$:

$$(f_0, \dots, f_m) \in \mathbf{W}_m(T^{-1}K[T^{-1}])$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad$$

p-adic difference Equations

• Let $q, h \in \mathbb{Q}_p$, be such that |q-1| < 1 and |h| < 1. Let

$$\sigma_{q,h}(f(T)) := f(qT+h) , \qquad \Delta_{q,h}(f) := \frac{f(qT+h) - f(T)}{(q-1)T+h} .$$

$$\bullet \quad \left\{ \begin{array}{l} q \to 1 \\ h \to 0 \end{array} \right. \implies \quad \Delta_{q,h} \longrightarrow d/dT \ .$$

• Difference equations (matrix form):

$$\sigma_{q,h}(Y) = A(T) \cdot Y , \iff \Delta_{q,h}(Y) = G(T) \cdot Y(T) ,$$

where $G(T) = \frac{A(T)-I}{(q-1)T+h}$.

Theorem 0.3 (Pulita) A function Y(T) is solution of a differential equation if and only if it is solution of a difference equation.

In particular, for all differential equation, it exists an unique difference equation having the same solutions, and reciprocally.

Applications to p-adic Zeta and L functions

Complex Zeta function : Values of the Zeta function $\zeta: (\mathbb{C}-1) \to \mathbb{C}$ at negative integers are known :

$$\zeta(1-n) = -\frac{B_n}{n} , \qquad n \ge 1 .$$

where $\{B_n\}_{n\geq 1}$ are the Bernulli numbers.

• Values of ζ at positive integers are unknown.

p-adic Zeta function: We know that $-\mathbb{N} \subseteq \mathbb{Z}_p$ is dense.

Theorem 0.4 (Kubota-Leopoldt, 1964) It exists a unique continuous function $\zeta_p : (\mathbb{Z}_p - \{1\}) \to \mathbb{Q}_p$ such that :

$$\zeta_p(1-n) = -(1-p^{n-1}) \cdot \frac{B_n}{n}, \qquad n \ge 1.$$

• We define analogously $L(s,\chi)$ (complex) and $L_p(s,\chi)$ (p-adic) associate to a Dirichlet character χ .

Theorem 0.5 (Morita 1975) It exists a unique continuous function $\Gamma_p : \mathbb{Z}_p \to \mathbb{Q}_p$, verifying the functional equation

$$\Gamma_p(x+1) = \begin{cases} -x\Gamma_p(x) & \text{if } |x|_p = 1\\ -\Gamma_p(x) & \text{if } |x|_p < 1 \end{cases}.$$

• $\Gamma_p(x+p) = A(x) \cdot \Gamma_p(x)$, with $A(x) = -(x+1)(x+2) \cdot \cdot \cdot (x+p-1)$ is a difference equation, then :

Theorem 0.6 (Pulita) The function Γ_p is solution of a p-adic differential equation with coefficients converging on $D^-(0,1)$:

$$\Gamma_p(T)' = g(T) \cdot \Gamma_p(T)$$
, $g(T)$ converges on $D^-(0,1)$.

• Interest of this: Let $\omega: \mathbb{Z} \to \mathbb{Z}_p$ be the Teichmüller char. Then

(Diamond 1979):
$$g(T) = \lambda_0 + \sum_{m \ge 1} L_p(1 + 2m, \omega^{2m}) \cdot T^{1+2m}$$

Corollary 0.1(Pulita) We obtain congruences involving values $L_p(1+2m,\omega^{2m})$, in positive integers.