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When computing de Rham cohomology, it is often better to work with spaces with no boundary
rather than affinoid spaces. A typical example is that of the trivial equation on the unit disk: the
first de Rham cohomology group is 0 on the open disk whereas it is infinite-dimensional on the
closed one.

As a consequence, we are led to replace Banach algebras by Fréchet algebras. For our purpose,
it is very important to be able to carry out extensions of scalars. For instance, if we want want to
apply Christol and Mebkhout’s results from [CMO00] and [CMO01], as in Section ??, we need the base
field to be algebraically closed and maximally complete. More generally, we would like to define
tensor products and show that they behave as expected. For Banach spaces, this has been carried
out by Gruson in [Gru66] and we will follow his arguments closely.

In what follows, we will not deal with arbitrary Fréchet spaces but with a more restrictive
class of spaces where norms are part of the data. We believe that this is in accordance with the
overall philosophy of Berkovich spaces where norms plays a prominent role and not only the induced
topology.
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We denote by N the set of non-negative integers. We denote by R the field of real numbers and
by R, the subset of real numbers that are greater than or equal to zero.

In all the text, K will be denote a fixed field endowed with a non-archimedean (possibly trivial)
absolute value |-|: K — R4 , with respect to which it is complete.

We set K°:={z € K, |z| < 1}. It is a local ring with maximal ideal K°° := {z € K, |z| < 1}.

In all the text, we will consider K-analytic space in the sense of Berkovich (see [Ber90] and [Ber93]),
although choosing another another theory would lead to the same results and proofs.

1. Definitions

1.1. Normoid and Banachoid spaces
Definition 1.1. A non-archimedean seminorm on a K -vector space U is a map ||-||: U — R4 such
that

i) Yo,y € U, [z + yll < max(||=]], lyl]);

ii) YA € K,Vx € U, || Xz| = |A|[|z].

In the sequel of this paper, every seminorm will be non-archimedean and we simply speak about
seminorms, without further mention of the terminology ultrametric.

Here, we will use the setting of uniform spaces from [Bou71, Chapitre II|. Recall that a family
of pseudometrics on a space induces a uniform structure on it (see [Bou74, Chapitre IX,§ 1]).

Definition 1.2. Let M be a non-empty set. An M-normoid space (over K ) is a K-vector space U
together with a family of seminorms u = (Um)mens- We endow it with the uniform structure (and
the topology) induced by u.

A normoid space is a K-vector space that is M -normoid for some non-empty set M.

Definition 1.3. Let U be a K-vector space. Let M and N be non-empty sets. Let u = (U )men and
u' = (u),)nen be two families of seminorms on U. We say that u' is finer than u if, for everym € M,
there exists a finite subset I, of N and C,, € Ry such that

Ve e U, wup(z) < Cp - max(u,(x)). (1.1)

n'el,

We say that u and u' are equivalent if u is finer than v’ and v’ is finer than w. This is an equivalence
relation.

Notation 1.4. When (un)men is a family of seminorms and I a finite subset of M, we set

= . 1.2
Uy rnr%g}((um) (1.2)

Remark that equivalent families of seminorms define the same uniform structure and topology.

Example 1.5. Let (um)menr be a family of seminorms on U.

i) Let N C M be a subset such that for allm € M — N there exists a finite subset I C N such that
the norm uy is finer than wuy,. Then the family (up)nen is equivalent to the family (Wpm)menm
and also to the family (ul,)mem given by

r | um if meN
10 if meM—N.

2
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it) In particular, if I C M 1is a finite subset and if m € I, we may replace the seminorm uy, by uy
without changing the equivalence class of the family (um)menrs -

i1i) More generally, if A C M is a subset, and B is a collection of finite subsets of M such
that, for all m € A, there is I, € B such that m € I, then (um)men 1S equivalent to
(Um)mem—A U (ur)rep. In particular, the family (um)men is always equivalent to the family
(ur)r, where I runs throught the set of all finite subsets of M.

i) If for some m € M there exists a finite subset I C M and a constant C' € Ry such that m ¢ 1
and uy, < C - uy, then we can remove uy, from the family without changing the equivalence
class.

v) More generally, if A C M is a subset and if, for all m € A, there ezists a finite subset I,, C M
and a constant Cy, € Ry such that I, N A =10 and uy, < Cy, - uy,, then the family (wm)menm
is equivalent to the family (Um)mem—A-

Definition 1.6. Let M and N be non-empty sets. We say that an M-normoid space (U,u) is
equivalent to an N-normoid space (V,v) if there exists a K-linear isomorphism f: U — V such that
the family of seminorms f*(v) that is induced by v on U by transport of structure is equivalent to w.
This is an equivalence relation.

Remark that equivalent normoid spaces define isomorphic uniform and topological spaces.

Lemma 1.7. Let M and N be non-empty sets. Let u = (um)menm and v’ = (ul)nen be two families
of seminorms on U. Consider the following assertions:

(1) the identity map Id: (U,u’') — (U,u) is continuous;

(2) the uniform structure defined by u’ is finer than that defined by u;

(8) the topology defined by u' is finer than that defined by wu;

(4) u' is finer than u.

Then (1), (2), (3) are equivalent and (4) implies them. If K is not trivially valued, then all the
conditions are equivalent.

Let (V,v) be an N-normoid space. Consider the following assertions:
(i) there exists a K -linear homeomorphism (U,u) — (V,v);
(ii) (U,u) and (V,v) are equivalent normoid spaces.
Then (ii) always implies (i) and, if K is not trivially valued, then (i) implies (ii).

In particular, if (U,u) and (V,v) are equivalent normoid spaces, then (U,u) is Hausdorff (resp.
complete) if, and only if, (V,v) is. |

Definition 1.8. Let M be a non-empty set. An M-Banachoid space is a Hausdorff complete M -
normoid space.

A Banachoid space is a K-vector space that is M -Banachoid for some non-empty set M.

Remark 1.9. Let (U,u = (um)menr) be an M-normoid space. It is Hausdorff if, and only if, for
each x € U — {0}, there exists m € M such that um(z) # 0.

A net (xo)aep (for some directed set D) is Cauchy if, and only if, it is Cauchy with respect to
each seminorm wu,,. It converges to an element x of U if, and only if, for each m € M, the net
(Um(To — x))aep converges to 0.

The space (U, u) is complete if, and only if, every Cauchy net converges.
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Lemma 1.10. Let U be a finite-dimensional K-vector space. Let u be a family of seminorms on U
such that (U, u) is a Hausdorff normoid space. Let || -|| be a norm on U. Then, u is equivalent to || - ||,
(U,u) is a Banachoid space and (U, |-||) is a Banach space.

Proof. For every seminorm vg on U, we define the kernel of vg as
Ker(vg) = {z € U | vo(z) = 0}. (1.4)
It is a subspace of U. For every family of seminorms v = (v, )men on U, we set

d, = min({dimg (Ker(vy,)),m € M}). (1.5)

Among the family of seminorms on U that are equivalent to u, let us now choose a family
u' = (uy,)nen such that d, is minimal. There exists ng € N such that dimg (Ker(uy,,)) = d. Let
us assume by contradiction that d,, > 0. Pick z € U \ {0} such that w], (x) = 0. Since (U, ')
is Hausdorff, there exists n; € N such that u;, () # 0. Replace in u’ the seminorm wu;, by the
seminorm max(uy,,, u;, ), we find an equivalent family " with d,» < d,, which contradicts the

n
definition of «'.

We have just proven that d,» = 0. In other terms, u’no is a norm. We now construct a new family
of seminorms u” = (uy, )nen on U by setting, for every n € N, u;, = max(uy,, uy,,). It is equivalent
to v’ and it is a family of norms. Since all the norms on a finite-dimensional space over a complete
valued field are equivalent!, the family u” is equivalent to the family with one element (||-]|).

Using the equivalence of norms again, it is easy to show that (U, ||-||) is a Banach space and to
deduce that (U, u) is a Banachoid space. O

Definition 1.11. Let X be a K-analytic space. Let ¥ be an affinoid covering of X for the G-
topology.

i) For every V. € ¥, denote by uy the norm on the K-affinoid algebra O(V) and by uy, the
composition of wy with the restriction map O(X) — O(V). We call (v}, )yey the normoid
structure on &'(X) associated to 7.

it) Let F be a coherent sheaf on X. For every V. € ¥, there exists a surjection O(V)"V —
F (V). Denote by vy the residue seminorm on % (V) (which is actually a norm, see [Ber9o,
Proposition 2.1.9 and its proof]) and by v|, the composition of vy with the restriction map
F(X) = F(V). We call such a normoid structure a basic admissible structure on .#(X)
associated to ¥. A normoid structure on % (X) is called admissible if it is equivalent to a
basic admissible normoid structure (for some choices of covering and surjections).

iii) Let U be an analytic domain of X such that ¥y :={V € ¥ |V C U} is a covering of U for
the G-topology.
The previous construction endows F(U) with a ¥ -normoid structure. We turn it into a ¥ -
normoid structure by adding, for all V € ¥ not contained in U, the zero seminorm on % (U).
We say that this normoid structure on % (U) is induced by that on Z (X).

iv) Let L be a complete non-trivially valued extension of K. Then V1, :={Vy | V € ¥} is a covering
of X1, for the G-topology. Moreover, for every V. € ¥, vy induces a norm on Fr(Vy) =~
F (V)& L.> The previous construction endows Fr,(Xr) with a ¥ -normoid structure. We say
that this normoid structure on % (Xy) is induced by that on F(X).

!This classical result remains true when K is trivially valued, see for instance [Ked10, Theorem 1.3.6].

2The isomorphism .Z1 (VL) ~ .Z (V)&x L is classical in the affinoid case, it may be proved by choosing a presentation
and using the right exactness of the completed tensor product by L (see [Gru66]). We will prove a generalization of
this fact in Corollary 3.22.
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Lemma 1.12. Retain the notations of Definition 1.11. The space O(X) endowed with the normoid
structure associated to some covering is a Banachoid space. The normoid structures on 0(X) as-
sociated to two affinoid coverings of X are equivalent. If X 1is reduced, they induce the topology of
compact convergence.

The space F(X) endowed with an admissible normoid structure is a Banachoid space. All the
admissible normoid structures on % (X) are equivalent.

The induced normoid structures on the spaces #(U) and % (X)r, are admissible. In particular,
endowed with the latter, the spaces #(U) and % (X)p are Banachoid spaces.

Proof. The proofs of those results are similar to the proofs of analogous results in Berkovich theory
(in a Banach setting) and use classical arguments. The first one essentially follows from Tate’s
acyclicity theorem (see [Ber93, Lemma 1.2.12 and the discussion following it]). If X is reduced,
then each affinoid domain V' of X is reduced, hence the given norm on &(V) is equivalent to the
sup-norm on V' by [Ber90, Proposition 2.1.4]. It follows that the induced topology is that of compact
convergence.

For the second result, we refer to the proof of [Ber90, Proposition 2.1.9] for some details. The
last result is a consequence of the definitions.

O
1.2. Bounded morphisms
We now define bounded morphisms. Recall Notation 1.4.
Definition 1.13. Let (Uy,ul),..., (U, u"),(V,v) be normoid spaces whose families of seminorms

are indexed by sets My, ..., M., N respectively. An r-linear map f: (Uy,u') x - x (U,,u") = (V,v)
is said to be bounded if, for every finite subset J of N, there exists C; € Ry and finite subsets
Ji, ..., Jr of My, ..., M, respectively such that

Wat,eooswy) €U e x Up s og(f(an,ean)) < Cy [ (@) (L6)
=1

Let f: (Up,u') x -+ x (Up,u") — (V,v) be a bounded r-linear map. For every finite subsets
JI,.... L of N, My, ..., M,, we set

NQ/I,Il,..A,IT(f) =inf({D > 0| Y(x1,...,z,) € Uy x-+-xUp, vg(f(z1,...,2,)) <D Hullz(‘rl)}) (1.7)
=1

and

Nino o (5 if Nipo 1 (f) < +oo;
0 otherwise.

Nyn,.r.(f)= { (1.8)

Remark 1.14. We get an equivalent definition if we require that the property holds for all single-
tons of N instead of all finite subsets. Similarly, the family of seminorms (Nyny 1,1, )n,1h,....1, and
(Nun,..1,)a0,....1,. are equivalent since Ny, .1, = maxpes(Nipy1,,01,)-

We also introduce a more restrictive notion of contraction.

Definition 1.15. Let (U1, ul),..., (U, u"),(V,v) be normoid spaces whose families of seminorms
are all indexed by the same set M. An r-linear map f: (Up,ul) x -+ x (Up,u") — (V,v) is said to

5
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be a contraction if, for every m € M, we have
V(y,...,xp) €Uy X - X Uy, op(f(21,...,2)) < ﬁu’m(xz) . (1.9)
For every m € M, we set
Np(f) =inf({D >0 | Y(z1,...,zp) €Uy X -+ - X Uy, vno(f(x1,...,2,)) <D ﬁuin(xl)}) (1.10)
Given normoid spaces (U, u!), ..., (U, u"), (V,v), we denote by Multy((Uy, u')x- - -x (U, u"), (V,v))
(resp. Multy, 1 ((Ur,ul) x - -+ x (Uy,u"), (V,v))) the set of bounded r-linear maps (resp. r-linear con-

tractions) between them. When 7 = 1, we simply write £,((Uy, u'), (V,v)) (resp. £ 1((U1,ul), (V,v))).
Each Nyp, .1, (resp. Ny,) is a seminorm on this space.

Lemma 1.16. If (V,v) is Hausdorff (resp. complete), then the space Multy((Uy, u')x- - -x (U, u"), (V,v))
(resp. Multy, 1 (Uy, ut)x- - -x (Uy,u"), (V,v))) together with the family (N, ,. JT)JIL e (resp (Nm))
is a Hausdorff (resp. complete) normoid space. O
Lemma 1.17. Let (Uy,ut),..., (U, u"),(V,v) be normoid spaces. The families of seminorms that

we have defined on Multy(Uy X - -+ x Uy, V') and Multy(Uy X -+ x U,—1, £(U,, V) are compatible
with the natural isomorphism

Multy (U X - -+ x Uy, V) = Multy(Uy X - -+ x Up_1, Z(Uy, V)). (1.11)

The analogous result holds for
Multbyl(Ul X oo X UT,V) 1) Multbvl(Ul X oo X Ur—bc%,l(Ur; V)) (112)
Proof. It follows from a direct computation with the help of Remark 1.14. O

Lemma 1.18. Let U be a K-vector space. Let u and u' be two normoid structures on U (possibly
indexed by different sets). Then the map 1d: (U,u’') — (U,u) is bounded (resp. bi-bounded) if, and
only if, v’ is finer than u (resp. u' is equivalent to u). ]

Lemma 1.19. Let (Uy,u'), ..., (Uy,u"),(V,v) be normoid spaces and let f: Uy x -+ x U, — V be
an r-linear map. If f is bounded, then it is a continuous map. If K is not trivially valued, then the
converse also holds. |

Lemma 1.20. Let My,...,M,, N be non-empty sets. Let (Up,u'l = (ul)menrs),---, (Up,u" =
(ul Vmenr,) and (V,v = (vp)nen) be normoid spaces. Let f: (Up,ut) x -+ x (Up,u") — (V,v) be a
bounded r-linear map. Then, there exist a non-empty set M and families of seminorms a',...,a",b
onUy,...,U.,V, all indexed by M, that are equivalent to u', ..., u",v respectively and such that the
morphism (Uy,a') x -+ x (Uy,a") — (V,b) induced by f is a contraction.

Proof. Let n € N. Consider subsets Ji,...,J, of Mj,..., M, and a constant C,, as in (1.6).
Denote by M the disjoint union of the M;’s and N. For all m € M, we set

¢ N ul, it meM;
b, = 4 Um B ME @ =10 if me Mjandj#i (1.13)
0 if mé¢N m r i .
Cm uf]Z if meN
By construction, f is a contraction with respect to the M-normoid structures given by a',...,a",b.

Moreover, proceeding as in Example 1.5, it is not hard to show that the families of seminorms

a',...,a", b are equivalent to u',...,u",v.
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Let us now give the basic examples of bounded maps.

Lemma 1.21. Let X be a K-analytic space, let U be an analytic domain of X and let F and 4 be
coherent sheaves on X. Endow F(X), #(U) and 9(X) with admissible normoid structures. Then,
the following results hold.

i) The restriction map F(X) — F(U) is bounded.

it) For each morphism of coherent sheaves ¢: F — 4 that is Ox-linear, the associated map
o(X): F(X) = 9(X) is bounded.

Proof. Point 1) follows from the definitions. For point ii), we may assume that .#(X) and 4(X) are
endowed with basic admissible normoid structures associated to an affinoid covering ¥ of X for the
G-topology. We then argue as in the proof of [Ber90, Proposition 2.1.9]. O

In Proposition 4.13, we will show that connections on locally free sheaves over curves give rise
to bounded maps too.

Definition 1.22. The category Norml[’( 1s the category whose objects are normoid spaces and whose

morphisms are bounded K -linear maps. The category BanI}( 1s the full subcategory of NormZ}( whose
objects are Banachoid.

Let M be a non-empty set. The category Normyy g is the category whose objects are M -normoid
spaces and whose morphisms are K-linear contractions. The category Banyy x is the full subcategory
of Normy g whose objects are M-Banachoid.

1.3. Strict morphisms

Let us now describe explicitly strict morphisms in the category Norms x .

Definition 1.23. Let (U,u = (tm)menr) and (V,v = (vy)menr) be normoid spaces.

A linear contraction f: (U,u) — (V,v) is said to be strict if the canonical map from its coimage
to its image is an isomorphism in Normp f, i.e.

Vme M, Vyelm(f), vn(y) = xe}icr_lg(y)(um(m)) . (1.14)

A strict injection will be called an isometry.

In this paper, we will not consider strict morphisms in Norm%, hence the phrase “strict mor-
phism” will always refer to the previous definition (and similarly for “isometry”). On the other
hand, the topological version of the notion will be useful.

Definition 1.24. A continuous map f: (U,u) — (V,v) between normoid spaces is said to be topo-
logically strict if the canonical map

U/Ker(f) — Im(f) (1.15)

1s a homeomorphism.

Under some conditions, topologically strict maps give rise to strict maps.

Lemma 1.25. Let (U,u) and (V,v) be normoid spaces and let f: U — V be a topologically strict
K -linear map. Assume, moreover, that Im(f) is topologically complemented in V. Then, there exist

7
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a non-empty set M and families of seminorms u' and v' indexed by M on U and V that induce the
same topologies as u and v respectively such that the map f: (U,u') — (V,0') is strict.

Proof. Denote u = (um)menm and v = (vy)nen. By assumption, the induced map U/ Ker(f) —
Im(f) is a homeomorphism. For every m € M, denote by w,, the seminorm on Im(f) induced
by um, via the previous homeomorphism. The family w = (wy,)menr induces the topology of Im(f).

Let W be a topological complement of Im(f) in V. For every (m,n) € M x N, define a semi-
norm vy, ,, on V' by
o V=Im(f)eWw — R
mn Yoz = max(wn(y),vn(2))

For every (m,n) € M x N, set uy, ,, = ty,. The families v’ and v' satisfy the required properties. [

(1.16)

Lemma 1.26. Let (U, (um)menm) be a normoid space. Then, there exists a Hausdorff normoid space
(Un, (W, m)mem) and a contraction h: U — Upy such that, for every contraction f: U — V' from U
to a Hausdorff normoid space V', there exists a unique contraction g such that f = g o h.

Moreover, the morphism h is surjective and isometric in the sense that

VeeU, YmeM, ugmh(z)) = un(z). (1.17)

Proof. Set
Up := {z €U |VYm e M,un(x) =0}. (1.18)
It is a subspace of U and the quotient Upy := U/Uj satisfies the required properties. O

Definition 1.27. The space Uy of the previous lemma is called the biggest Hausdorff quotient of U.
Its equivalence class only depends on the equivalence class of U. We usually denote the seminorms
on Uy by Uy, instead of up m.

A

Lemma 1.28. Let (U, (um,)menrr) be a normoid space. Then, there exists a Banachoid space (U, (Um)menr)
and a contraction c: U — U such that, for every contraction f: U — V from U to a Banachoid
space V', there exists a unique contraction g such that f = goh.

Moreover, the morphism c is isometric in the sense that
VeeU, YmeM, dy(c(r)) = un(x) (1.19)

and, if U is Hausdorff, then c is injective.

Proof. Using the notation of Lemma 1.26, we define U as the completion of Uy with respect
to the family of seminorms (ug m)menm (see [Bou74, Chapitre IX,§ 1, N° 3, Proposition 1]). Since

every uy,m, is uniformly continuous, it extends to U and it is easy to check that it is still a seminorm.
O

Definition 1.29. The space U of the previous lemma is called the Hausdorff completion of U. Its
equivalence class only depends on the equivalence class of U. We usually denote the seminorms on U
by U instead of Uy, .

2. Properties

2.1. Products and coproducts in Ban}

The category Banl}( admits small products and coproducts. The construction is described in the
following lemma whose proof is left to the reader.
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Lemma 2.1. Let & = (E;, (Uini)mieMi)ieI be a family of Banachoid spaces. Let F := [];,c; E; be
the product of the E;’s in the category of K -vector spaces and, for each i € I, denote by p; : F' — E;
the projection map. Set M := | |,.; M;. For each m € M, set v, = ul o p;, where i is the unique
element of I such that m € M;.

Then (F, (m)menr) is the product and the coproduct of the family & in Ban. O

Remark 2.2. If, in the setting of the previous lemmas, the family of Banachoid spaces is finite (i.e.
I is finite), there is another natural construction that is sometimes convenient to work with. Set
F=1lic; Bi = @Bcr Ei and N := [[,c; M;. For everyn = (m;)icr € N and every x = (x;)ier € F,
set vp () := maxer(u, (27)).

Then (F, (vn)nen) is the product and the coproduct of the family & in Bany.

Remark 2.3. The normoid structure on the product or the coproduct of a family of Banachoid
spaces is well defined only up to equivalence. Changing each element of the family by an equivalent
element turns the product and the coproduct into equivalent spaces.

2.2. Cech cohomology
We now show that the product in BanI}( is well-suited for Cech cohomology.

Lemma 2.4. Let X be a K-analytic space and let ¥ be an affinoid covering of X for the G-topology.
Let .F be a coherent sheaf on X. For each V- € ¥, endow .F (V) with a norm vy as in item ii) of
Definition 1.11. Consider the product [ [, F (V') in Banb.. Then, the normoid structure on .7 (X)
induced by the injection
F(X)= [[ #(V) (2.1)
Vey
coincides with the basic admissible normoid structure from Definition 1.11.

For each affinoid domain U of X that is a finite intersection of elements of V', endow % (U)
with a norm vy as in item i) of Definition 1.11.

If X is separated, then the cohomology of % on X is the cohomology of the complex of Banachoid
spaces with bounded maps

c:o— [z - [ #0vnw)—--, (2.2)
vey VEWey

where the products are taken in Ban®.

Proof. The first part of the result follows directly from the definitions. The second part follows from
the fact that the complex of K-vector spaces underlying C is nothing but the Cech complex of .#
associated to ¥ and that, in the case where X is separated, finite intersections of affinoid domains
of X are either empty or affinoid domains, hence .#-acyclic, by Tate’s acyclicity theorem. O

2.3. Products and coproducts in Bany, g
We now turn to the category Banj i. It admits small products and coproducts too.

Lemma 2.5. Let & = (E;, (ul,)men )icr be a family of Banachoid spaces.

Let F be the K -vector space of families (z;)icr € [1;c; Ei such that, for eachm € M, (ul,(x;))icr
is bounded. For each m € M and each x = (x;)icr € F, we set vy, (x) := sup;e;(ul,(x;)).

Then (F, (vm)men) 1s the product of the family & in Bany k. O

Lemma 2.6. Let & = (E;, (ul,)men )icr be a family of Banachoid spaces.
9
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Let G be the K -vector space of families (;)icr € [1;c; Ei such that, for eachm € M, (u,(;))ier
tends to 0 along the filter of complements of finite subsets of I. For each m € M and each x =
(z:)ic1 € G, we set vy (1) 1= sup;¢;(ul, (7).

Then (G, (vm)men) 15 the coproduct of the family & in Bany k. O

2.4. Direct limits in Banys g

Since the category of Banachoid spaces Banjy i is additive and has kernels and cokernels® (hence
equalizers and coequalizers), we deduce that it is complete and cocomplete (see [MLI8, Theo-
rem V.2.1]). We describe direct limits (i.e. colimits of directed families of objects) explicitly.

Let (I,<) be a directed set. Let (Ui, (wim)men)icr be a family of Banachoid spaces and
(fji: Ui — Uj)icj be a family of linear contractions such that the family (U;, fi ;) is a direct
system in Banps k.

Let Vj be the coproduct of the U;’s in the category of sets (i.e. their disjoint union). Let ~ be
the equivalence relation on Vj defined by

(@i €U;) ~ (xjely) if Fkel, k=i, k=j, fril) = frj(z)). (2.3)
The quotient Vp/ ~ is the set-theoretic direct limit of (U;, f; ;).
Let m € M and x € V. Choose ¢ € I and x; € U; such that x; belongs to the class defined by x.
We then set
vm () = inf(ujm(fi(2:))) - (2.4)
Since I is a directed set, vy, is well defined and it is a seminorm on Vj.

The Hausdorff completion V' of V/ ~ with respect to the family of the vy,’s is the direct limit
of (U;, fi ;) in the category of Banachoid spaces Banyy x.

The explicit construction of direct limits allows to prove basic properties easily.

Proposition 2.7. Direct limits in Banys i preserve strict morphisms, isometries, and exact se-
quences of strict morphisms.

Proof. The fact that direct limits preserve strict morphisms and isometries follows from a simple
computation (see the proof of [Gru66, Proposition 1]).

Let us now consider a directed family of exact sequences (C;: A; ib—> B; % C)ier with strict

morphisms. We want to prove that the sequence
C: lim A; 5 limy B; % lim (2.5)
il il il
is exact. It is enough to prove that Ker(g) C Im(f).
Let x € Ker(g). By the first point, the morphism lim, Im(g;) — lim, , Cj is an isometry, hence
an injection. We deduce that g sends z to the element 0 in lim, Im(g;).
For every i € I, we have a short exact sequence in Bany i

2;: 0 — A;/Ker(f;) = B; — Im(g;) — 0. (2.6)

We deduce that, for every Banachoid space E, we have an exact sequence

0— %Illghl(lm(gi), E) — %%71(37;, E) — %111%71(141/ Ker(fi), E) s (27)

3By Lemma 1.28, the Hausdorff completion of the set-theoretical cokernel of a contraction in Banys, i is the cokernel
in Bany k.

10
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which is to say an exact sequence
0 = 2,1 (lim Im(gs), E) — Z,1(lim By, E) — £, (lim A;/ Ker(f3), E) . (2.8)
icl iel iel
We deduce by Yoneda’s Lemma that the sequence %ﬂie I 9; is right-exact and the result follows.
O

2.5. Decomposable spaces.
Definition 2.8. A finite-dimensional normed K -vector space (U, ||-||) is said to be decomposable if

there exists a basis (e1,...,eq) of U such that

YAL,..., g € K, (| A [leill) - (2.9)

= Imnax
1<i<d

d
> Nie
i=1

A finite-dimensional Banachoid space (U, (Um)menr) is said to be decomposable if, for every
m € M, up, is a norm on U and the space (U, uy,) is decomposable.

Under some assumptions on the base field, we will prove that Banachoid spaces are direct limits
of decomposable spaces. We first need a few preparatory lemmas.

If (U,]|-]]) is a seminormed vector space over K, we set
U° ={zeU]||z| <1} (2.10)
Thanks to the non-archimedean triangle inequality, it is a K°-module.

Recall also that K° is either a field (if K is trivially valued) or a valuation ring (otherwise).
In any case, every finitely generated K°-module with no torsion is free. In particular, the property
holds for K°-submodules of K-vector spaces.

Lemma 2.9. Let (U,||-||) be a finite-dimensional seminormed vector space over K. Let N be a
finitely generated K°-submodule of U° such that such that the natural map N Qo K = U is an
isomorphism of K-vector spaces.

Set ||0]|ny = 0. For every x € U — {0}, we consider the Minkowski functional

lzl|lv = inf{|A\|] |\ € K",z € AN}. (2.11)
The map ||-||§ is a norm on U.
Moreover, let (e1,...,eq) be a basis of N over K°. Then, for every A1,..., g € K, we have
d d
Z/\Z- eill = 112522(“@") > Z)\ e (2.12)
=1 N =1
In particular, the identity map (U, ||-||n) — (U, ||-|l) is a contraction.
Proof. The fact that ||-||n is a norm on U is a simple verification.
Let A1,...,Ag € K. The inequality
d
ZAZ- eil| < 112%(@\) (2.13)
=1 N
comes readily from the non-archimedean triangle inequality. Since ey, ...,eq belong to U°, the
inequality
d
Z;)\z‘ eil| < max ([A;]) (2.14)
1=

11
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is a consequence of the non-archimedean triangle inequality too.
It remains to prove the converse of inequality (2.13). If every J\; is zero, it is obvious, so we
assume otherwise. Up to multiplying the \;’s by some scalar, we may assume that

max (|\) = 1. (2.15)

1<i<d

Set x := Zle Aiei. Let A € K such that |A| < 1. Since (eq,...,eq) is a basis of N, x cannot
belong to AN. We deduce that ||z|| 5 > 1, which finishes the proof.

O]

Lemma 2.10. Maintain the assumptions of Proposition 2.9. Let N’ be another K°-module with the
same properties as N. The following properties are equivalent :

i) NCN';

i) ||zlln = [lzl|lnv, for allz € U. O
Proof. 1)=ii). Assume N C N’. Let z € U. We have {\ € K*,x € AN} C {\ € K*,x € AN'}. This
implies that inf{|\| | A € K*,x € AN} > inf{|\| | A € K*,x € AN'}.

ii)=1). Assume ||.||; = ||.||n-- Then we have an inclusion of unit balls N = {x € U, ||z||y < 1} C
[e €U lz|x <1} = N O

Proposition 2.11. Assume that K is densely valued, i.e. |K| is dense in Ry. Then, every Bana-
choid space is a direct limit in Banys i of finite-dimensional decomposable Banachoid spaces.

Proof. Let (U, (um)menm) be a Banachoid space. Let . be the family of finite subsets of U.

Let m € M. By induction on n € N*, to each couple (z,S) with z € S and S € . of cardinal n,
we may associate Ag s, € K such that

{1—(714—1)1 < JAszm| um(z) < 1 if wy(2)

n+1 < |Asaml it upy(x) (2.16)

[N
o o

and, for every finite subset T" of S containing z, A7 z.m| < |Aszml-

Let S € .. Denote by Vg the subvector-space of U generated by S. Consider the K°-submodule Ng ,,
of (U, up,)° generated by the family (Agz.m ©)zes and denote by vg ,, the norm associated to it on Vg
by the construction of Lemma 2.9.

For every S’ € .# that contains S, by construction, we have a natural injection jg/ g: Vg — Vg
that sends Ng,, into Ng/,,,. We deduce that the injection jgr g: (Vs,vgm) = (Var,vg ) is a
contraction.

Finally, remark that, for every x € S, we have

Card(S) +1

and
1
< T — i =0. .
US,m(x) X |)\S,x,m‘ X Card(S) 1 if Um(.’lf) 0 (2 18)

In particular, for all §' € ., the natural inclusion (Vyg, (vs,m)menm) = (U, (Um)menr) is a contraction.
Moreover, the characterization of direct limits from Section 2.4 shows that the canonical map
@Sey((VS, (vs,m)mem)s (Js7,5)) = (U, (um)menr) is isometric and surjective. The result follows.

U
12
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3. Tensor products

3.1. Definition and first properties

Let (U, (um)men) and (V, (v, )nen) be Banachoid spaces. For every m € M,n € N and z € URkV,
set

U @ Vp(2) = inf{ max (U (2;) - vn(y;)) such that z = sz ® yz}. (3.1)

1<ir -
=1

The map u,, ® v, is a seminorm on U ®g V. We denote by U®xV the Hausdorff completion
of U ® gk V with respect to the uniform structure induced by the u,, ® v,,’s. The seminorms u,, ® v,
extend naturally to it and endow it with a structure of Banachoid space.

The following result is now easily proven from the definitions.

Proposition 3.1. The natural map 7: U x V. — URyV is a bilinear contraction between M x N-
Banachoid spaces.

Moreover, for every Banachoid space (W,w), the composition with m induces natural isomor-
phisms of Banachoid spaces

LUV, W) — Multy(U x V, W) (3.2)

and, in the case where w is indexed by M X N,
L1 (U V,W) — Multy (U x V,W) . (3.3)
O

It follows that —®xV is a functor from Banlj’\/[’K to Banl]’WXJV’K, Ban%; to Banl, and Bany i to

Banjsxn k. Thanks to Lemma 1.18, we deduce that the equivalence class of U @iV only depends
on the equivalence classes of U and V.

Moreover, using Lemma 1.17 to identify Mult, (U x V,W) and £, 1(U, % 1(V,W)), we may
write this functor —®xV as a left-adjoint.

Corollary 3.2. The functor —®xV from the category Banlj’M’K (resp. Ban%, resp. Banys i) to the

category Bany,,, Nk (Tesp. Banb, resp. Banjy N,K) commutes with colimits. In particular, it is
right exact. |

Remark 3.3. By Lemma 2.1, products in BanI}( coincides with coproducts, hence the functor —QxV
commutes with products in Banl}(, by right-exactness.

An explicit computation proves that the functor —RgV from Banys,x to Banyxn ik also com-
mutes with products.

Remark that the tensor product with a finite-dimensional decomposable Banachoid space may
be easily described.

Lemma 3.4. Let (U, (um)menm) and (V, (vn)nen) be Banachoid spaces. Assume that V is finite-
dimensional. Then, we have a natural isometric isomorphism

UV S UQKV.

Moreover, assume that there exists n € N and a basis (e1,...,eq) of V such that
d
VAL M€K, wg (z; Nei) = max (N flei]) - (3.4)
1=
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Then, for every m € M, we have

d
Vay,...,2q €U, (Um ® vn) <Z T; @ €i> = max (um(zi) [les]]) - (3.5)
i=1 SIS

Proof. The part of the statement concerning the explicit form of u,, ® v, comes from a straightfor-
ward computation.

To prove the first part, it is enough to prove that U ® g V is complete. For this purpose, we may
replace every norm v, by an equivalent one. As a consequence, we may assume that the norms vy,
are all given as in (3.4) with the same basis for all. The result follows easily. O

We now compute a particularly simple kind of tensor product. Let r € R% — /|K*|. Follow-
ing [Ber90, after Definition 2.1.1], we set

r = {fZEZZaiT’m?;EK,i_l)iinoo|ai|7”:0} (3.6)
(2
and endow it with the norm
|flr = max(|a] - 7). (3.7)
1EZ
The K-algebra (K, |-|,) is actually a valued field.

Lemma 3.5. Let (U, (um)menm) be a Banachoid space over K. Let r € RY — /| K*|.
Set

U = {f= E o T |2 €U, Yme M, lm up(z;)r' =0} (3.8)
pt i—+oo
and endow it with the family of seminorms
Uy (f) = max(upm(a;) ') - (3.9)
(S

Then (U, (Wmr)mem) is a Banachoid space over K, and it is isomorphic to the tensor product
UK, in Banps .

Proof. For every i € Z, consider the Banach space (L;,v;), where L; is a one-dimensional vector
space over K with basis (e;) and

YAe K, vi(h-e) = A7 (3.10)
Then, the space K, is the direct sum of the L;’s (cf. Lemma 2.6).
The result nows follows from Corollary 3.2 since direct sums are direct limits. O

3.2. Exactness properties
We first adapt [Ber90, Proposition 2.1.2] to the setting of Banachoid spaces.
Proposition 3.6. Let r € R% — \/|K*|. Let U, V, W be M-Banachoid spaces over K.

i) The natural map r € U —»x®1 € Uk K, is an isometry.

i1) A linear bounded map f: U — V is a contraction (resp. strict) if, and only if, the map f, =
f®l: UK, - VoK, is.

i11) Let S: U L VLW bea sequence of bounded maps. Set S, := SR K,. If S, is exact, then S
is exact. If f is strict and S is exact, then S, is exact. O

14
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Remark 3.7. Assume that K is discretely but not trivially valued. Let r € RY — \/|K*|. Then the
field K, is densely valued.

Assume that K is trivially valued. Let v € R — {1}. Then K, is discretely but not trivially
valued. We may now apply the previous argument to construct a field K, s that is densely valued.

Remark also that, if K is not discretely valued, then it is densely valued.

Proposition 3.8. Let U, V, W, E be M-Banachoid spaces over K.

i) If a linear map f: U — V is strict, then so is the map fp: Uk E — V&K E.
In particular, for every complete valued extension L of K, the map x € U — 2 ® 1 € URkL
18 an 1sometry.

i) If S: U i) V % W is an ezact sequence of strict linear maps, then so is the sequence
Sp: UdkE 5 VorE 22 WakE.
i11) If a linear map f: U — V is strict, then we have natural strict isomorphisms

Ker(f)®xE — Ker(fg) and  Coker(f)®@xgE — Coker(fg) . (3.11)

Proof. By Remark 3.7 and Proposition 3.6, we may assume that K is densely valued. Then, by
Proposition 2.11, E is a direct limit in Banjs i of finite-dimensional decomposable Banachoid
spaces.

On the other hand, using Lemma 3.4, it is easy to check that tensoring by a finite-dimensional
decomposable Banachoid space preserves exactness and strictness in Bany x. By Proposition 2.7,
those properties are also preserved by direct limits. Finally, by Corollary 3.2, the tensor product
commutes with colimits, and we conclude that assertions i) and ii) hold. Assertion iii) follows
from ii).

O

For future reference, we note that the strictness property descends.

Lemma 3.9. Let f: (U,u) — (V,v) be a bounded K -linear map between Banachoid spaces over K.
Let E be a Banachoid space over K. Denote by ug and vg the families of seminorms induced by u
and v on USKE and VR E respectively as in Section 3.1. Assume that there exist equivalent
families vy and vy such that the map fr: (URkE,uy) — (VRgE,vY) is strict.

Denote by v’ and v' the families of seminorms induced on U and V' by u’, and v}, respectively.
Then v and v’ are equivalent to u and v and the map f : (U,u') — (V,v') is strict. |

We now show that kernels of bounded linear maps also commute with extension of scalars when
they are not too big.

Proposition 3.10. Let f: U — V be a bounded linear map between Banachoid spaces over K.
Let E be a Banach space over K of countable type (i.e. that has a dense subspace of dimension at
most countable over K ). Then, we have a natural isomorphism in Ban}-

Ker(f)@x E = Ker(fg). (3.12)

Proof. By Proposition 3.8, the map Ker(f)®xE — U®kE is injective. Moreover, its image clearly
sits inside Ker(fg). Hence, it is enough to prove that the natural map Ker(f)®xE — Ker(fg) is
surjective.

Let * € URkE such that fg(z) = 0. If E is finite-dimensional over K, then, by Lemma 3.4, we
have U9 E =U @k E and VRO E =V @k E and the result holds thanks to the usual properties
of the tensor product.

15
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Let us now assume that E has infinite dimension over K. We may replace the norm on E by an
equivalent one ||-||. Hence, by [Ked10, Lemma 1.3.8], we may assume that there exists a sequence
(€;)i=0 of elements of E such that

i) for every a € E, there exists a unique sequence (a;);>o of elements of K such that the series
> i0 @i €i converges to Y ;

ii) with the same notations, we have

- el 1
lall = max(las| [le:[l) (3.13)

One checks that similar properties hold for U® g E:

i) for every y € URkE, there exists a unique sequence (y;)i>o of elements of U such that the
series ) ;- ¥i ® e; converges to y ;

ii) with the same notations, for every m € M, we have
(um ® || (y) = max(um(ys) lle:l), (3.14)
where u = (up)men-

Of course, we have an analogous statement for V&g E.

Let us now write x = Zi>0 T; ® e;, with z; € U for all . We have

0=fe(x) =) flz)®e, (3.15)
120
hence f(x;) = 0 for all ¢, by uniqueness. The result follows. O

Definition 3.11. Let E be a K-vector space endowed with a norm w. Let o > 1.

A family (fi)ier of elements of E is said to be a-cartesian with respect to w if, for each family
(ai)ier of elements of K with finite support, we have

w( _aifi) > maX(!az\w(fz)) (3.16)

el

Lemma 3.12. Let E be a K-vector space endowed with be a norm w. Let (f;)icr be a family of
elements of E that is a-cartesian with respect to w for some a = 1. Let (U,u = (Um)menr) be a
normoid K -vector space.

Then, for each m € M and each family (c;)ier of elements of U with finite support, we have
m 7 % m\Cg i)). q
(tm ® w) §c®f > o max(um(c;) w(fi)) (3.17)

In particular, if (U,w) is Hausdorff, then an element of U@y E may be written in the form Y, ; ¢;®
fi, for some family (c;)ier of elements of U with finite support, in at most one way. O

Proposition 3.13. Let (E,e) be a Banachoid space over K. Assume that there exists a norm w
on E that is coarser than the family of seminorms e and a family (fn)nen of elements of E that
generates a dense subspace of E and is a-cartesian with respect to w for some a > 1. Let (U, u) be
a Banachoid space. Then, for each x € UR i E, there exists a unique family (cp)nen such that the
series Y, oy Cn & fn converges to x in URkE.

Proof. Let x € URkE. Tt follows from the assumptions that there exists a net (z))xep (for some
directed set D) of elements of U ® i E that converges to x in U® x E and such that, for each A € D,
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there exists a family (cy,)nen of elements of U with finite support such that

A= an @ fo. (3.18)

neN

It follows from Lemma 3.12 that, for each n € N, the net (cj,)rep is Cauchy. The existence part
of the result follows. Uniqueness follows from Lemma 3.12 too. 0

Definition 3.14. A Banachoid space (E,e) over K is said to be of countable type if

i) E contains a dense subspace of dimension at most countable over K;

i1) there exists a norm w on E that is coarser than the family of seminorms e.

Proposition 3.15. Let f: U — V be a bounded linear map between Banachoid spaces over K.
Let (E,e) be a Banachoid space over K of countable type. Then, we have a natural isomorphism
in Banl,

Ker(f)oxE = Ker(fg). (3.19)

Proof. By Proposition 3.8, the map Ker(f)®xE — U®kE is injective. Moreover, its image clearly
sits inside Ker(fg). Hence, it is enough to prove that the natural map Ker(f)®xE — Ker(fg) is
surjective.

Let © € URkE such that fg(z) = 0. If E is finite-dimensional over K, then, by Lemma 3.4, we
have U9 FE = U @k E and Vg FE =V ®x E and the result holds thanks to the usual properties
of the tensor product.

Let us now assume that F has infinite dimension over K. Let Ey be a dense subspace of countable
dimension. By [BGR84, Proposition 2.6.2/3]*, Ey admits a basis (f,,)nen that is a-cartesian with
respect to w for some o > 1.

By Proposition 3.13, there exists a unique family (c,)nen such that the series ) _ycn ® fr
converges to x in Uk E. Since f is bounded, the series Y nen f(en) ® fn converges to fp(x) = 0in
U&k E. The uniqueness statement of Proposition 3.13 ensures that we have f(c,) = 0 for all n € N.
The result follows. O

Corollary 3.16. Let X be a K-analytic space, let F be a coherent sheaf on X and let L be a com-
plete valued extension of K of countable type. Endow F(X) with an admissible normoid structure
and F1(X1) with the induced structure. Then, we have a canonical isomorphism in Ban%

F(X)oxL = Fr(X1). (3.20)
Proof. Let ¥ be an affinoid covering of X for the G-topology. For each affinoid domain U of X that

is a finite intersection of elements of ¥, endow .% (U) with a norm vy as in item ii) of Definition 1.11.

Endow . (X) with the basic admissible normoid structure induced by the family (vy )y ey . Since,
by Lemma 1.12, all admissible normoid structures on .% (X) are equivalent, it is enough to prove
the result for this one.

Let us consider the morphism of Banachoid spaces

oI eon - I F#vow), (3.21)

Ve VAW ew

4This reference only covers the non-trivially valued case. If K is trivially valued, one can apply [Ked10, Lemma 1.3.8]
to the completion of Ey with respect to w and check that the elements given by the construction actually belong
to Ep.
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where the products are taken in Banl[’(. By Lemma 2.1, these products coincide with the set theo-
retical products together with a certain family of seminorms.

By Remark 3.3, we have a natural isomorphism

(H ﬁ(‘”) OrL — H F(V)®kL, (3.22)

Vey Vey
and similarly for the other product in the target of f.
It follows that the morphism f&x L may be identified with
foo 1] Zo0v) — I Zu(venwy). (3.23)
vey VAWEY
In particular, its kernel is %1 (X)) endowed with the right Banachoid structure by Lemma 2.4.

The result now follows from Proposition 3.15.
O

Corollary 3.17. Let X be a K-analytic space and Y be a K -affinoid space. Denote by pry and pry
the canomnical projections from X Xg Y to X and Y respectively. Let F and & be coherent sheaves
on X and Y respectively. Endow % (X) and 9(Y) with admissible normoid structures. Then, we
have a canonical isomorphism in Banb,

F(X)or9(Y) S (FR9)(X xkY), (3.24)
where F# Wi & = pry & OOxx v pry ¢.

Proof. First note that 0(Y") is a quotient of a Tate algebra with a finite number of variables, hence
a Banach space of countable type. The same property holds for 4(Y) since it is a quotient of some
power of O(Y) (see item ii) of Definition 1.11).

We may then use the same strategy as in the proof of Corollary 3.16, with L replaced by 4(Y),
to reduce to the case where X is affinoid, which is well-known. ]

3.3. Normoid Fréchet spaces

We now adapt the definition of Fréchet space to our setting. The difference with the usual ones is
that the seminorms defining the topology are part of the data.

Definition 3.18. An M-Banachoid space (U,u) is said to be an M-normoid Fréchet space if it is
equivalent to an N-Banachoid space (V,v) where N is (at most) countable.

Note that a completed tensor product of two normoid Fréchet spaces is still a normoid Fréchet
space.

Lemma 3.19. FEvery M-normoid Fréchet space is metrizable.

If K is not trivially valued, then every metrizable M -Banachoid space is normoid Fréchet.

Proof. Let N be a countable set and (U, (u,)nen) be an N-Banachoid space. We may assume that N
is infinite by adding zero semi-norms if need be and identify N with N. The map

UxU — R
d: . Un(y— ) 3.25
(z,y) = > 2 T lr—2 (3.25)
neN

defines a distance on U that induces the same uniform structure as the family (vy)nen. It follows

18



BANACHOID SPACES

that U is normoid Fréchet.

Assume that K is not trivially valued. Let (U, (um)men) be an M-Banachoid space that is
metrizable. In this case, 0 has a countable basis of neighborhoods, and we may assume that each of
them is defined using only finitely many w,,’s. Denote by N the set of elements m € M that appear
in the definition of one of the neighborhoods. It is countable and the families (uy, )menrr and (up)nen
are equivalent by Lemma 1.7. O

Remark 3.20. Let X be a K-analytic space and let .F be a coherent sheaf on X. If the space X
is countable at infinity (i.e. a countable union of compact subsets), then every admissible normoid
structure on F (X) is actually a normoid Fréchet structure. Indeed, by Lemma 1.12, all such struc-
tures are equivalent and, by choosing a countable affinoid cover and carrying out the construction
of item i) of Definition 1.11, one clearly gets a normoid Fréchet structure. The difference with the
usual Fréchet spaces is that the seminorms defining the topology are part of the data.

The case we have just described will actually be the most interesting for us. Indeed, since K-
analytic curves are paracompact (see [Duc, Théoréme 4.5.10]), every K-analytic curve with count-
ably many connected components is countable at infinity.

In the normoid Fréchet setting, we can remove the countable type assumption from Proposi-
tion 3.15.

Proposition 3.21. Let U be a normoid Fréchet space over K, let V' be a Banachoid space over K
and let f: U — V be a bounded linear map. Let E be a Banach space over K. Then, we have a
natural isomorphism in Banb,

Ker(f)@x E = Ker(fg). (3.26)

Proof. Starting as in the proof of Proposition 3.15, we are reduced to proving that the natural map
Ker(f)®@xE — Ker(fg) is surjective.

Let z € UQkE such that fe(z) = 0. Since U®kE is normoid Fréchet,  may be obtained
as a limit of countably many elements in U ® g E. We deduce that there exists a sub-K-vector-
space Ey of E with countable dimension over K such that z is in the image of UQx Ey in URkE.
By Proposition 3.8, we may assume that £ = Ej and we may then apply Proposition 3.15 to
conclude. O

Using Proposition 3.21 instead of Proposition 3.15, we immediately derive an analogue of Corol-
lary 3.16.

Corollary 3.22. Let X be a K-analytic space countable at infinity, let F be a coherent sheaf on X
and let L be a complete valued extension of K. Endow F (X) with an admissible normoid structure
and Z1,(X1) with the induced structure. Then, we have a canonical isomorphism in BanI}(

F(X)oxL = Fr(XL). (3.27)
O

We recall the following criterion result to ensure that a continuous map is topologically strict.
For a reference, see for instance [Sch02, Lemma 22.2] (and note that the assumption that the kernel
is finite-dimensional is not used in the proof).

Proposition 3.23. Assume that K is not trivially valued. Let f: E — F be a continuous map
between Fréchet spaces over K that has finite-dimensional cokernel. Then, the image of f is closed
and topologically complemented and f is topologically strict. O
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Corollary 3.24. Let f: (U,u) — (V,v) be a bounded K -linear map between normoid Fréchet spaces.
Let L be a complete non-trivially valued extension of K such that fr, has finite-dimensional cokernel.
Then, there exist families of seminorms u' and v' equivalent to u and v respectively such that the
map f: (U,u') — (V,v') is strict. In particular, f is topologically strict.

Proof. By Proposition 3.23, fr, is topologically strict and its image is topologically complemented.
By Lemmas 1.25 and 1.7, we may replace the families of seminorms on U®xL and V®gL by
equivalent ones so that f; becomes strict. The result now follows from Lemma 3.9. O

Combining this corollary with Proposition 3.8, we obtain the following descent result.

Corollary 3.25 (Descent). Let f: (U,u) — (V,v) be a bounded K-linear map between normoid
Fréchet spaces. Let E be Banachoid space over K. Assume that there exists a complete non-trivially
valued extension L of K such that fr, has finite-dimensional cokernel. Then, f has finite-dimensional
cokernel and we have canonical isomorphisms in Ban%

Ker(f)®oxE — Ker(fg) (3.28)
and
Coker(f) @ E = Coker(fg). (3.29)
|
Corollary 3.26 (Descent). Let
C:ooe o (UML) s (U uny s () (3.30)

be a complex of normoid Fréchet spaces with bounded K -linear maps. Let E be a Banach space
over K and consider the complex

Co: - = (U " NorE 8 (U uM) o E 1E (0 &k E < - (3.31)

Let L be a complete non-trivially valued extension of K and consider the complex

Cri o= (U u oD 5 (U um kL L (U ek L - (332)

Let n € Z and assume that H™"(Cyp) is finite-dimensional. Then, H™(C) is finite-dimensional and we
have a canonical isomorphism

H"(C) ®x E = H"(Cg). (3.33)
Proof. Let n € Z. Let F € {K, L}. By Proposition 3.21, we have a canonical isomorphism

Ker(fn11)@xF = Ker(fny1,r). (3.34)
Consider the map g,,: U""! — Ker(f,+1) induced by f,. It is a bounded map of normoid Fréchet

spaces and we have Coker(g,) = H"(C). Applying the functor —®@x F, we find amap g, p: UV '@g F —

Ker(fn41)®x F. Thanks to (3.34), we have Coker(g, r) = H"(Cr) and the result now follows from
Corollary 3.25. O

Arguing as in the proof of Corollary 3.16, we deduce the following result.

Corollary 3.27. Let X be a K-analytic space that is countable at infinity, let F be a coherent sheaf
on X and let L be a complete valued extension of K. Endow .7 (X) with an admissible normoid
structure and Fr,(X1) with the induced structure. Then, we have a canonical isomorphism in Ban®

F(X)&xL = FL(XL). (3.35)
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Let n > 1. Assume that X is separated and that there exists M € {K, L} such that M is not
trivially valued and H™( Xy, Far) is finite-dimensional. Then, H"(X, %) and H" (X, 1) are both
finite-dimensional and we have a canonical isomorphism

H"(X, 7)ok L = H" (X1, 7). (3.36)
O

We may also generalize the result of Corollary 3.17 to higher cohomology groups.

Corollary 3.28. Let X be K-analytic space that is separated and countable at infinity and Y be
a K-affinoid space. Denote by pry and pry the canonical projections from X xg Y to X and Y
respectively. Let F and & be coherent sheaves on X and Y respectively. Endow . (X) and 4(Y)
with admissible normoid structures. Let n > 1 and assume that there exists a complete non-trivially
valued extension L of K such that H"(X,.#1) is finite-dimensional. Then, H™(X, %) is finite-
dimensional and we have a canonical isomorphism

H'" (X, )@k 9(Y) = H"(X xg Y, F Kk b). (3.37)

|

Under more restrictive conditions, we can also consider tensor products of complexes by normoid
Fréchet spaces.

Corollary 3.29. Let
C: 0L @00 L W uly o Iy 0 (3.38)

be a finite complex of normoid Fréchet spaces with bounded K-linear maps. Let E be a normoid
Fréchet space over K, let L be a complete non-trivially valued extension of K and consider the

complexes
Co: 0285 (U0 )& B LhEs . I (g )& E — 0 (3.39)
and
Cr: 025 @0, 0o p L Lhbs o Ik @ &g L = 0. (3.40)
Assume that, for each m € {1,...,n}, H™(Cr) is finite-dimensional over L. Then, for each m €
{0,...,n}, we have a canonical isomorphism in Banb
H™(C)®xgE = H™(Cg). (3.41)

Proof. By a decreasing induction on m € {0,...,n}, we will prove that, for F' € {E, L}, we have
canonical isomorphisms
H™(C)@xgF = H™(Cr) (3.42)
and
Ker(fm)®xF = Ker(fm.r)- (3.43)

Let us start with m = n. For G € {K, E, L}, the map f, is a bounded map of normoid Fréchet
spaces and we have Coker(f, ¢) = H"(Cg). The results then follow from Corollary 3.25.

Let us now assume that the result holds for some m € {1,...,n}. Consider the map g,,_1: U™ ! —
Ker(fy,) induced by f,,—1. It is a bounded map of normoid Fréchet spaces and we have Coker(g,,—1) =
H™YC). Let F € {E,L}. Applying the functor —®@xF, we find a map g1, p: U" '@ F —
Ker(f,n)®k F. By induction, we have Ker(f,,)®@xF — Ker(fm r) and the map g,,—1 r identifies to
the map induced by f,,—1,r. We then conclude by Corollary 3.25 again. 0
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We may now also remove the assumption that Y is affinoid in Corollaries 3.17 and 3.28.

Corollary 3.30. Let X and Y be K-analytic spaces that are separated and countable at infinity.
Denote by pry and pry the canonical projections from X XY to X andY respectively. Let F and 9
be coherent sheaves on X and Y respectively. Endow Z(X) and 4(Y) with admissible normoid
structures. Assume that X is of finite dimension and that there exists a complete non-trivially valued
extension L of K such that, for eachm > 1, H™(X,,.Z1,) is finite-dimensional and H™ (Y7, %) = 0.
Then, we have a canonical isomorphism in Banl}(

F(X)or9(Y) S (F Rk D) (X xgY) (3.44)
and, for eachn > 1, H"(X,.%) is finite-dimensional and we have

H"X, 7))k 9(Y) = H' (X xg Y, 7 X b). (3.45)

Proof. Let ¥ be an affinoid covering of X for the G-topology and consider the Cech complex

c:o- [[zv)—» [ Zwvaw) (3.46)
Vew VAW ew

By Corollary 3.27, the higher cohomology groups of the complex Cj, are finite-dimensional over L. It
then follows from Corollary 3.29 that the groups H"(X,.#)®@k%(Y) are the cohomology groups of
the complex Cy(yy. By Corollary 3.17, for each affinoid domain U of X, we have Z(U)Qg¥(Y) ~

(F Wk 9)(U xg Y), hence Cy(y) is a Cech complex for .Z Mg & on X xx Y. By Corollary 3.28,

for each affinoid domain U of X, the sheaf .Z Ky ¢ is acyclic on U X g Y, hence the previous Cech
complex does computes the cohomology of % K 4 on X xg Y. ]

4. Cohomology of curves

4.1. Stein curves

Let us recall the definition of a quasi-Stein space (see [Kie67, Definition 2.3]).
Definition 4.1 (Quasi-Stein). We say that a K-analytic space X is quasi-Stein if there exists a
covering (Xp)n>0 of X for the G-topology such that
Z) Xn - Xn+1;'
it) X is an affinoid domain of Xny1;
i11) the map O(X,41) — O(X,,) has dense image.

Let us now recall a result of Kiehl. Recall that a point z in a K-analytic space is said to be rigid
if the extension .#(x)/K is finite.

Theorem 4.2 ([Kie67, Satz 2.4]). Let X be a K-analytic quasi-Stein space. Let F be a coherent
sheaf on X. Then the following results hold:
i) For every q > 1, we have H{(X, %) = 0.
ii) For every rigid point x € X, the stalk .#, is generated by F(X) as an Ox z-module.
O
Remark 4.3. Kiehl actually gave the definition in the setting of rigid geometry, i.e. for strictly

K-analytic spaces with strictly K -affinoid domains and for a non-trivially valued field K. However,
Theorem 4.2 is easily seen to hold in the more general case with the same proof.
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As in the complex setting, the obstruction for a K-analytic curve to be Stein lies in the presence
of proper (or, equivalently, projective) connected components.

Theorem 4.4 ([LvdP95, Theorem 3.4]). Assume that K is not trivially valued. Let X be a quasi-
smooth strictly K-analytic curve. If no connected component of X is proper, then X is quasi-Stein.
O

Definition 4.5 (Cohomologically Stein). We say that a K-analytic space X is cohomologically
Stein if, for every coherent sheaf F on X and every q > 1, we have

HY(X,7)=0. (4.1)
Thanks to the techniques developed in the previous sections, we can prove the following result.

Corollary 4.6. Let X be a quasi-smooth K-analytic curve. If no connected component of X is
proper, then X is cohomologically Stein.

Proof. We may assume that X is connected. By [Duc, Théoreme 4.5.10]), X is paracompact, hence
countable at infinity.

Let .# be a coherent sheaf on X. Let L be a complete non-trivially valued extension of K such

that Xy is strictly L-analytic. By Theorem 4.4, X, is quasi-Stein, hence by Kiehl’s Theorem 4.2,
we have HY(Xp, %) = 0. The result now follows from Corollary 3.27. O

Remark 4.7. The converse of Corollary 4.6 also holds.

As usual, the cohomological vanishing has consequences in terms of global generation of coherent
sheaves.

Corollary 4.8. Let X be a quasi-smooth K-analytic curve with mo proper connected components.
Then, every coherent sheaf # on X is generated by its global sections: for each x € X, the stalk F,
is generated by F(X) as an Ox z-module.

Proof. We may assume that X is connected. Let us first assume that X contains only type 3 points.
If k£ is not trivially valued, then X is reduced to a point and the result is obvious.

If k is trivially valued, then, there exists an irreducible polynomial P € k[T] and an interval
I C]0,1[ such that X is isomorphic to the analytic domain of the line defined by {|P| € I}. Let
us write the interval I as an increasing union of closed intervals I, with n € N. We may also
write X as the increasing union of the affinoid domains X,, = {|P| € I,,}. Note that, for every
n € N, the ring 0(X,,) is a field isomorphic to the P-adic completion of k[T] and the restriction
map O0(X,11) — O(X,) is an isomorphism. It follows that ¢'(X) is also isomorphic to the P-adic
completion of k[T] and that the global section functor induces an equivalence of categories between
coherent sheaves on X and finite-dimensional vector spaces over ' (X).

We now assume that X does not contain only points of type 3. In this case, every non-empty
closed analytic subset of X contains a rigid point.

Let .# be a coherent sheaf on X. Let z be a rigid point in X. Let .#, be the sheaf of ideals that
defines {z} with its reduced structure. Using the exact sequence

0> I.F 5 F > F|I.F% —0 (4.2)
and the fact that H'(X, .#,.%) = 0, one shows that the morphism
F(X) = (F)I,T)(X) = Fp Jmy Ty, (4.3)
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where m, denotes the maximal ideal of the local ring &, is surjective. It now follows from Nakayama’s
lemma that the stalk .7, is generated by .#(X) as an &,-module.

Let ¢4 be the sheaf of Ox-modules generated by % (X). The sheaf % /¥ is of finite type. It
follows that its support is a closed analytic subset Z of X. The previous argument shows that Z
contains no rigid point, hence Z is empty. We deduce that .# = ¢ and the result follows. O

We say that a coherent sheaf .# on a K-analytic space X is of bounded rank if the family
(rank%(z)(f(x)))xeX is bounded.

Corollary 4.9. Let X be a quasi-smooth K -analytic curve with mo proper connected components.
Let F be a coherent sheaf of bounded rank on X. Then the module of global sections .7 (X) is of
finite type over O(X).

In particular, there exist an integer q and a surjective morphism 01 — F.

Proof. As in the proof of Corollary 4.8, we may assume that X is connected and contains a rigid
point z. Let .% be a coherent sheaf of bounded rank on X. By Corollary 4.8, there exists an integer g
and a morphism ¢: 6% — % on X such that the induced morphism ¢, : 02° — .Z, is surjective.

Let us now consider the coherent sheaf & given by the cokernel of . Its support Z is a closed
analytic subset of X that does not contain z. If it is empty, then we are done. Otherwise, it is
a locally finite subset of rigid points of X. Remark that ¢ is also of bounded rank, hence, by
Corollary 4.8, there exists an integer ¢; and a surjective morphism ¢: 0% — ¢4 on X.

Since X is cohomologically Stein, the morphism % induce a surjective morphism &(X)? —
%(X), hence 4(X) is of finite type. Similarly, we have an exact sequence O(X)® — Z#(X) —
9(X) — 0, which shows that .#(X) is of finite type.

The last statement follows from the first and from Corollary 4.8. O

Corollary 4.10. Let X be a quasi-smooth K-analytic curve with no proper connected components
and let'Y be an analytic domain of X such that the restriction map O(X) — O(Y') has dense image
(with respect to the topology of compact convergence). Let F be a coherent sheaf of bounded rank
on X and endow % (X) and F(Y') with admissible normoid structures. Then the restriction map
F(X) — Z(Y) has dense image.

Proof. By Corollary 4.9, there exist an integer ¢ and a surjective morphism ¢: 09 — .%. Denote
by J£ the kernel of . It is a coherent sheaf. By Corollary 4.6, for each analytic domain U of X, we
have H'(U, %) = 0, hence the map €0(U)? — .#(U) induced by ¢ is surjective.

Let ¥ be an affinoid covering of X for the G-topology such that {V € ¥ | V C Y} is a covering
of Y for the G-topology. Let us endow .Z#(X) with the basic admissible structure defined the
covering ¥ and the surjections above and let us endow .% (Y') with the induced normoid structure.
It is now easy to check that the restriction map % (X) — % (Y) has dense image. O

Corollary 4.11. Let X be a quasi-smooth K -analytic curve with no proper connected components.
The functor & — F(X) induces an equivalence between the category of coherent sheaves of bounded
rank (resp. locally free sheaves of bounded rank) and the category of O(X)-modules of finite type
(resp. projective O(X)-modules of finite type).

Proof. The equivalence between the category of coherent sheaves of bounded rank and the category
of 0(X)-modules of finite type follows from Corollaries 4.8 and 4.9.

Let .# be a coherent sheaf of bounded rank. We want to prove that it is locally free if, and only
if, 7 (X) is projective. If .#(X) is projective, then it is a direct factor of a free (X )-module, hence,
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by Corollary 4.8, for every x € X, %, is a direct factor of a free Ox ,-module, hence projective,
hence free.

Let us now assume that .7 is locally free. By Corollary 4.9, there exist an integer ¢ and a
surjective morphism €07 — .%. It gives rise to a morphism of coherent sheaves #om(.%,0%) —
' om(F,.F). This morphism is surjective because it is surjective on each stalk since .# is locally
free. Since X is cohomologically Stein, passing to global sections, we find a surjective morphism

Hom(.Z(X), 0(X)1) = H (X, #om(F,07)) — H (X, #om(F,F)) = Hom(F (X), F(X)).
(4.4)
It follows that the identity endomorphism on .%# has a preimage, hence the surjective map 0'(X)? —
Z (X) has a section, hence .7 (X) is a direct factor of a free module and .% (X)) is projective. [
4.2. de Rham cohomology

In this section, we will derive some consequences of our results for de Rham cohomology on curves.

To begin with, let us show that connections on locally free sheaves on curves give rise to bounded
maps.

Lemma 4.12. Let V be a K -affinoid quasi-smooth curve such that there exists an affinoid domain W
of the affine line and a finite AQtale morphism p: V. — W. Let F be a free Oy -module of finite
rank endowed with a connezion V : F — F @ O3, Then, there exist a norm |-| on Z(V) and a
norm ||-||" on F (V) @gvy @ (V) such that

i) the norm ||-|| (resp. ||-||') is the sup-norm (as in (2.9)) with respect to some O(V)-basis
of F(V) (resp. F(V) @p(v) Q1(V));
i) (F(V), 1) and (F(V) @ev QL) |- I") are Banach spaces;
iii) the connection V : (F(V),||-) = (F (V) @gq) QH(V), |- ') is a contraction.

Proof. Let us first work on W. Let T be a coordinate on A}{m. Then, we may identify QF, with Oy
by choosing the basis dT" of Q. Let us endow (W) with the sup-norm ||-|ly on W. It is a
Banach ring. Denote by ||-||};; the norm induced by |- [lw on Q'(W). It makes it a Banach space
too. Explicit computations show that the derivation d/dT" is a bounded map. This is easy to check
if W is a closed disk and, in the general case, one may use the Mittag-Leffler decomposition (see
[FvdP04, Proposition 2.2.6]). It follows that the natural map

dw : (W), || lw) = (W), [|-[lw) (4.5)
is bounded: there exists C' € R4 such that, for each f € O(W), ||[dw ()|l < C | fllw-

The finite morphism ¢ induces a finite morphism &(W) — &' (V). Let us choose a finite gener-
ating family ey, ..., e, of (V) over O(W). Consider the corresponding surjection 0(W)" — O(V)
and endow (V') with the quotient norm ||- ||y, induced by ||-|lw. It gives €(V) a structure of
Banach ring.

Since ¢ is étale, we have an isomorphism cp*QIl,V = Q%/, hence an isomorphism of global sections
QY W) @gm) O(V) = QY(V). Let us endow Q(V) with the tensor norm ||- [, induced by || -[|y
and [|-[|v,q- It gives Q! (V) a structure of Banach space.

Let us now prove that the natural map
dy: (V)| vg) = Q' (V) [I-1114) (4.6)
is bounded. Let f € (V) and let € > 0. There exist ay,...,a, € O(W) such that f =>"7" | ae;
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and || f|lv,q = maxi<i<n(||aillw) — . We have

v ()l < mase (|| S dw(as)es]| e, ) (47)
=1 ’

< s (e (aa) I o (e ) (45)

< max (C, max |[dy(e;)|v,) - (|fllvig +€)- (4.9)

1<j<n
It follows that dy is bounded.

Since V is reduced, the sup-norm on €'(V) is equivalent to the norm ||-||y,4. To prove this, by
Proposition 3.6, one may tensor with K, finitely many times, hence reduce to the case where K
is non-trivially valued and V is strictly K-affinoid. The result then follows from [BGR84, Theo-
rem 6.2.4/1] (see also [Ber90, Proposition 2.1.4 (ii)]).

From now on, we endow ¢(V') with the sup-norm |- ||y on V and Q*(V) ~ QY(W) @gu O(V)
with the tensor norm |||} induced by |- ||f;; and || - ||y.. The map dv: (O(V),||-[lv) = (Q*(V), [|-]|}/)
is still bounded.

Remark that |- ||}, is a norm of ¢(V)-modules in the sense that

Va€ 0(V),¥s € Q1(V), llasly < llallv |Is]ly- (4.10)

By assumption, #(V) is a free ¢ (V)-module. Let us choose a basis (¢],...,e},) of it and
endow .7 (V) with the sup-norm ||} fiej|| := max;(|| fil|v) associated to it. Endow .7 (V) ®g¢(v)
Q1 (V) with the tensor norm |||’ induced by |[|-|| and ||-||{,. The norms ||-|| and ||-||" are norms of
O (V' )-modules.

Now remark that, for every ay,...,a, € 0(V), we have

(Zal )_Ze@dv a; +Zal e F(V) @ (V). (4.11)

=1

It follows that the map V is bounded. Multiplying the norm |- ||{, by a constant, we can ensure
that V is a contraction. O

Proposition 4.13. Let X be a quasi-smooth K -analytic curve. Let F be a locally free sheaf of finite
rank endowed with a connection V. Endow .7 (X) and .7 (X) ®4(x) U (X) with admissible normoid
structures. Then the map

V(X): Z(X) = Z(X) @gx) 2 (X) (4.12)
induced by V is bounded.
Proof. Since X is quasi-smooth, it admits an affinoid covering ¥ for the G-topology such that, for

each V € ¥, there exists a finite étale morphim from V to an affinoid domain of the affine line. Up
to refining the covering, we may assume moreover that, for each V € ¥, %y is free.

By Lemma 4.12, for every V € ¥, there exist a norm |- ||y on .#(V) and a norm |-[|{, on
F (V) @) Q(V) such that the map
(FWV) - v) = (F(V) @p0r) Q1 V), |- 1) (4.13)

induced by V is bounded. By composing those norms with the restriction maps, we define Banachoid
spaces (Z (X),u) and (F(X) ®4(x) Q2" (X),u). By construction, the map induced by V is bounded.
Moreover, the first property Lemma 4.12 ensures that u and u’ can be chosen basic admissible. []

Corollary 4.14. Let X be a quasi-smooth K -analytic curve. Let (F,V) be a module with connection
on X. Let L be a complete valued extension of K. Assume that there exists M € {K, L} such that M
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is not trivially valued and Hig (X, Zar) is finite-dimensional. Then, Hig (X, #) and Hig (X1, Z1)
are both finite-dimensional and we have natural isomorphisms

HR(X, )@ L = Hix(X1, Z1) and HR(X,F)ox L = Hij(XL, 71). (4.14)

Proof. We may assume that X is connected. If X is proper, then it is projective and we get back
to a purely algebraic situation where the result is known to hold.

Let us now assume that X is not proper. By Proposition 4.13, there exist admissible Banachoid
structures on .Z (X) and .Z (X)® o(x) Q2" (X) such that the map V(X): Z(X) = Z (X)®4(x)QH(X)
is bounded. Moreover, by [Duc, Théoreme 4.5.10], X is paracompact, hence by Remark 3.20, .%(X)
and .7 (X) ®(x) Q' (X) are normoid Fréchet spaces.

By Corollary 4.6, we have H'(X,.7) = H'(X,.Z Qg(x) Q' (X)) = 0, hence H), (X, #) and
Hlp (X, #) are respectively the kernel and cokernel of the map V(X).

The same results hold for X . Moreover, by Corollary 3.22, the map F1(X) — FL(X1)®g(x,)
QL(X1) is obtained from V(X) by applying —®x L. The result now follows from Corollary 3.25. [J

For later use, we record here some surjectivity results in de Rham cohomology.

Lemma 4.15. Assume that X has no proper connected component. Let W be an analytic domain
of X such that the restriction map O(X) — O(W) has dense image. Assume that there exists a
complete non-trivially valued extension L of K such that Hiy (WL, (FL)\w, ) is finite-dimensional.
Then, the map

Hig(X,#) — HiRr(W, Zw) (4.15)

18 surjective.

Proof. We may assume that X is connected. It follows from the density hypothesis that W is
connected too. Set .Z' := .7 ®, Q. We have a commutative diagram

F(X) Y= F'(X) —— HR(X,F) —— 0

(X)
l l l (4.16)

FW) Yo F(W) —— Hg(W, Zw) —— 0

By Proposition 4.13, we can endow .Z% (W) and %’ (W) with structures of admissible normoid Fréchet
spaces such that the map V: .Z (W) — #'(W) is bounded. Moreover, by Corollary 4.10, the map
F'(X) — F'(W) has dense image.

By Corollary 4.6, W, is cohomologically Stein, hence the cokernel of the map V: % (W) —
F1(Wp) coincides with Hip (Wi, (ZL)w, ), which is finite-dimensional. By Corollary 3.24, V is
topologically strict. In particular, its image is closed, hence its cokernel H(liR(VV, F|w) is naturally
endowed with a structure of normoid Fréchet space.

By Corollary 4.6, W is cohomologically Stein, hence the bottom line is exact. It follows that the
image of the map Hjp (X,.#) — Hig (W, #y) is dense. By Lemma 1.10, it is a closed subspace of
Hlr (W, Zw), hence it coincides with it. O

A similar result holds for meromorphic de Rham cohomology. Before stating it, let us recall a
few definitions. We still denote by X a quasi-smooth K-analytic curve. Let Z be a locally finite
subset of rigid points of X. We denote by Ox[*Z] the sheaf of meromorphic functions on P that
are holomorphic on X — Z (hence have poles at worst on 7).

Let F be a locally free Ox[*Z]-module of finite rank on X. Following [Del70], we define a
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meromorphic connection on F with poles on Z to be a K-linear map
V:F— Qe F (4.17)
that satisfies the Leibniz rule: for every open subset U of X and every f € Ox[+«Z](U) and s € F(U),
we have
V(fs)=df ® s+ fVs. (4.18)

We then define, as usual, the de Rham cohomology groups of H (X (xZ),(F,V)) to be the
hypercohomology groups of the complex

0 F Sk 0, Fo 0 (4.19)

where F is placed in degree 0 and Qﬁ( ®ey F in degree 1.
If Z is empty, we recover the usual de Rham cohomology groups of X.

Lemma 4.16. There exists a locally free Ox-module G of finite rank such that we have an isomor-
phism of Ox[xZ]-modules (without connections) G ®p, Ox[xZ] ~ F.

Proof. Every point z of Z admits a neighborhood U, of z on which the restriction of F is isomorphic
to Ox[*{z}]? for some d. In particular, it is isomorphic to &% over U, — {z}, hence extends to 6%
over U,.

Since Z is locally finite, the U,’s can be chosen disjoint, and the different extensions can then
be glued together. O

Lemma 4.17. Let W be an analytic domain of X —Z such that the restriction map (Ox[«Z])(X) —
O(W) has dense image. Assume that there exists a complete non-trivially valued extension L of K
such that Hig (WL, Z1) is finite-dimensional. Then the map

Hig(X(x2),F) — Hig(W, F) (4.20)

18 surjective.

Proof. We may assume that X is connected. If X is projective and Z is empty, the density hypothesis
implies that W = X and the result is obvious. We now assume that we are not in this case. It then
follows from Corollary 4.6 that W is cohomologically Stein.

Set ' := F®4, Q' By Lemma 4.16, there exists a locally free 0x-module of finite rank G such
that G®g, Ox[xZ] ~ F'. If X is projective, then Z is not empty. Let z be a (rigid) point of Z. The
sheaf Ox(z) is ample, hence there exists n € N such that G(n - z) is generated by global sections.
Since X is compact, there exist a positive integer ¢ and a surjective morphism Ox(—n - z)? — G.
If X is not projective, then, by Corollary 4.6, it is cohomologically Stein, hence, by Corollary 4.9,
there exist a positive integer ¢ and a surjective morphism 0% — G. In any case, we have a surjective
morphism

Ox[xZ)1 — F'. (4.21)
Using the same arguments as in the proof of Corollary 4.10, one can prove that the map F/'(X) —
F'(W) has dense image. One now concludes as in the proof of Lemma 4.15. O

5. The Christol-Mebkhout limit formula for analytic cohomology

In this last section, we prove a statement of commutation of cohomology with projective limits. As
an application, we show that if X is a quasi-Stein curve that can be conveniently “approzximated”
by a family of quasi-Stein curves {X,, },, then the de Rham cohomology of a differential equation .#
over X can be recovered as the limit of the de Rham cohomologies of its restrictions to the X, ’s.
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The fundamental assumption here is the finite-dimensionality of the cohomology of .# on X,,.
Indeed, the fact that &(X,,) is Fréchet implies that H} (X,,, %) is separated, and hence that the con-
nection is a strict map, which is the crucial point (see [CM95, Theorem 4], see also Proposition 3.23).
This technique has been introduced by Christol and Mebkhout for open annuli (see [CMO00, Proof
of 8.3-1]), following an original idea of Grothendieck (see [Gro61, Chap.0, 13.2.4] and even [Gro54]).

The fundamental assumption is a Mittag—Leffler property (see [Bou71, II, §3, n° 5, Théoréme 1]).

Results of this kind already appear in the work of Grothendieck (see [Gro57, Proposition 3.10.2]
and [Gro61, 0, Proposition 13.2.3]).

Definition 5.1. Let (I, <) be a directed partially ordered set that admits a cofinal countable subset.
We say that a projective system ((X;)ier, (fij)i<jer) of topological spaces satisfies the Mittag—Leffler
condition if, for eachi € I, there exists j > i such that, for each j' > j, f; i#(Uy) is dense in f; ;(U;).

Proposition 5.2. Let (I, <) be a directed partially ordered set that admits a cofinal countable subset.
Let (Us, wi)ier, (asj)i<jer) and ((Vi,vi)ier, (bij)i<jer) be inverse systems of normoid Fréchet spaces
and let (f; : Uy — Vi)ier be an inverse system of contractions between them. We consider the
set-theoretical inverse limits U := 1&12,6[ U,, V:= miel Vi and f := 1&1@,6[ fi-
Assume that

i) the projective systems (U;, a; ;) and (Ker(f;),a; ;) satisfy the Mittag—Leffler condition;

it) for each i € I, f; is topologically strict.
Then, we have a K-linear isomorphism

Coker(f) — @Coker(fi). (5.1)
el
In particular, the K-vector space Coker(f) is finite-dimensional if, and only if, the net of di-
mensions (dimg Coker(f;));jes is eventually constant. In this case, we have

dimg Coker(f) = lideimK Coker(f;) . (5.2)
j€

Proof. Let ¢ € I. Denote the image of f; by W;. By assumption, it is a closed subspace of V;, hence
it is naturally endowed with a structure of normoid Fréchet space. The space Coker(f;) is naturally
a normoid Fréchet space too and we have an exact sequence

0 — W; —» V; — Coker(f;) — 0. (5.3)

Since the projective system (U;, a; ;) satisfies the Mittag-LefHler condition, for each i € I, there
exists j > ¢ such that, for every j' > j, a; j(Uj) is dense in a; ;(U;). Since f; is topologically strict,
it follows that b; j/(Wj/) is dense in b; ;(W;). In other words, the projective system (W;, b; ;) satisfies
the Mittag—Leffler condition. By [Gro61, 0, Proposition 13.2.2 and Remarque 13.2.4], we get an
exact sequence

0= lmW; = limV; — yLnCoker(fi) — 0. (5.4)
el el el

Similarly, starting with the system of exact sequences

0 — Ker(f;) > U; = W; — 0, (5.5)
we get an exact sequence
O—)l'&lKer(fi)%l'&nUi—)l'ngQ%O, (5.6)
i€l i€l i€l

which shows that the image of f coincides with T&lie I W;. The result follows.
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Let us now write down an explicit situation where Proposition 5.2 can be applied.

Lemma 5.3. Let X be a quasi-smooth K-analytic curve with coutably many connected components,
none of them being proper. Let F be a locally free sheaf of finite rank endowed with a connection V.
Set F' := F R0, Q. Let (Xn)nen be a non-decreasing sequence of analytic domains of X forming a
covering of X for the G-topology such that, for each n € N, the restriction map O (Xp4+1) — O(Xy)
has dense image (for the topology of compact convergence).

Then, there exist a set M and admissible M -normoid Fréchet structures on #(X), Z'(X), the
F(Xn)’s and the F'(X,,)’s such that

i) for each n,m € N with n > m, the maps F(X,) — F(Xm) and F'(X,) — F'(X,) are
contractions with dense images;
ii) for eachn € N, the maps F(X) — Z(X,,) and F'(X) — F'(X,,) are contractions with dense
images;
iii) for each n € N, the map V(X,,): F(X,) — F'(X,) is a contraction;
iv) the map V(X): F(X) — F'(X) is a contraction;

v) the restriction maps induce the following isomorphisms both in Banys i and in the category of

sets
F(X) = @ﬁ(Xn) and F'(X Lﬂ' (5.7)
neN neN

and we have a commutative diagram

F(X) ———— F'(X)

l l (5.8)

lim
lim 7 (X,) B0 i (X,
Proof. Denote by 7 the set of affinoid domains V' of X such that

i) there exists a finite étale morphim from V to an affinoid domain of the affine line;

ii) Fy is free.
It is a covering of X for the G-topology and, for every n € N, the set ¥, :={V € ¥ |V C X, } isa
covering of X, for the G-topology.

By Lemma 4.12; there exist basic admissible #-Banachoid structures v and v’ associated to ¥
on .Z(X) and .Z'(X) respectively such that the map V(X) is a contraction.

For every n € N, endow .#(X,,) and .%'(X,,) with the induced ¥-Banachoid structures v,, and v},
respectively (in the sense of item iii) of Definition 1.11). Then, for every n € N, the restriction maps
F(X)— F(X,) and F'(X) —» F'(X,) and the map V(X,,): F(X,) — F'(X,) are contractions.
Note also that, by Lemma 1.12, the structures u,, and u], are admissible.

By assumption, the space X has countably many connected components. We deduce that the
same result holds for the X,,’s. It now follows from Remark 3.20 that the structures u, u’, u, and u,,,
for every n € N, are normoid Fréchet structures.

The density properties follow from Corollary 4.10.

The isomorphisms in Bany g and in the category of sets follow from the constructions we have
just made and the results in Section 2.3. O

We can now state the main result of this section.
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Theorem 5.4. Let X be a quasi-smooth K -analytic curve with finitely many connected components,
none of them being proper. Assume moreover that there exists a non-decreasing sequence of analytic
domains (Xp)nen of X forming a covering of X for the G-topology and an integer ng such that, for
each n = ny,

i) the natural map mo(X,) — mo(X) is bijective;
it) the restriction map O(Xn4+1) — O(X,) has dense image;

i11) there exists a complete non-trivially valued extension L of K such that the de Rham cohomology
group Hip (X1, (ZL)x,, ) is a finite-dimensional L-vector space.

Then,

(a) the natural map
HiR (X, F) = @HgR(an%Xn) (5.9)

18 an isomorphism, HgR(X, F) is a finite-dimensional K -vector space and there exists an inte-
ger ny such that, for each n,m € N satisfying n > m > nq, the natural map HgR(Xn, ZIx,) =
HgR(me%Xm) 18 an isomorphism;
(b) for each n,m > ng, the natural map Hig (Xn, Fx,) — Hlg (Xim, Fx,) 18 surjective;
(c) the natural map
Hig (X, #) = limHig(Xn, 7|x,) (5.10)
n

is an isomorphism and, for each n = ng, the natural map HéR(X, F) — HéR(Xn,gz‘Xn) is
surjective.

In particular, H}lR(X, F) is finite-dimensional if, and only if, the sequence of dimensions (h}lR(Xn, X)) JneN
(or equivalently the sequence of indexes (Xqr(Xn, Z|x,))nen) is eventually constant. In this case,
the natural map Hig (X, F) — HcllR(Xn,L%Xn) is an isomorphism for all n large enough and we
have

héR(X,éz) = lim héR(Xn, ‘%Xn) and  xqr(X,#) = lim x4r(Xn, %Xn) . (5.11)

n——+o0o n——+o0o

Proof. By Corollary 4.6, X is cohomologically Stein, hence the cohomology groups HgR(X , 7 ) and
H!: (X, %) may be respectively identified with the kernel and cokernel of the map V(X): .Z(X) —
ONX) ®¢(x) F(X). Similar result holds for the X,,’s and after extending the scalars.

(a) The first part of the statement holds since inverse limits commute with kernels. It is also
well-known that all the HgR’s are finite-dimensional since the spaces have finitely many connected
components.

Moreover, since .# is locally free, it follows from analytic continuation (see [Ber90, Corol-
lary 3.3.21]) that, for every n > ng, the map #(X,+1) — ZF(X,) is injective, hence the map
HYR (Xnt1, Zx,,,,) = HR(Xn, Z|x,) is injective too. We deduce that the sequence of dimensions
(th(Xn, Z|x,,))neN is eventually non-increasing, hence eventually constant. It follows that the maps
HIR (X, ZIx,) = HIR (Xm, Z|x,,) are isomorphisms for all n,m large enough.

For the rest of the argument, we use the notation of Lemma 5.3 and endow the .%#(X,,)’s and
the .Z'(X,,)’s with normoid Fréchet structures satisfying the properties stated there.

(b) Let n = m > ng. The map .Z#'(X,,) — %#'(X,,) has dense image, hence the image F,, ,, of the
map Hlig (X, Z1x,) = Hg (Xom, Z|x,,) is a dense subspace of Hg (X, Z|x,,)- On the other hand,
since HcllR(Xm, 7 x,,) is a normoid Fréchet space that is finite-dimensional over K, by Lemma 1.10,
the image F, ,, is closed. We deduce that it is equal to Hlg (X, F|x,,) itself.
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(c) By Corollary 3.24, for each n > ng, the map V(X,): Z#(X,) — ZF'(X,) is topologically
strict. By (a), the projective system of the HYy (X, Z|x,)’s satisfies the Mittag—Leffler condition.
Lemma 5.3 ensures that the other conditions required by Proposition 5.2 are satisfied. The isomor-
phism (5.10) follows. The surjectivity property is a consequence of (b).

O]
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