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When computing de Rham cohomology, it is often better to work with spaces with no boundary
rather than affinoid spaces. A typical example is that of the trivial equation on the unit disk: the
first de Rham cohomology group is 0 on the open disk whereas it is infinite-dimensional on the
closed one.

As a consequence, we are led to replace Banach algebras by Fréchet algebras. For our purpose,
it is very important to be able to carry out extensions of scalars. For instance, if we want want to
apply Christol and Mebkhout’s results from [CM00] and [CM01], as in Section ??, we need the base
field to be algebraically closed and maximally complete. More generally, we would like to define
tensor products and show that they behave as expected. For Banach spaces, this has been carried
out by Gruson in [Gru66] and we will follow his arguments closely.

In what follows, we will not deal with arbitrary Fréchet spaces but with a more restrictive
class of spaces where norms are part of the data. We believe that this is in accordance with the
overall philosophy of Berkovich spaces where norms plays a prominent role and not only the induced
topology.
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Jérôme Poineau and Andrea Pulita

We denote by N the set of non-negative integers. We denote by R the field of real numbers and
by R+ the subset of real numbers that are greater than or equal to zero.

In all the text, K will be denote a fixed field endowed with a non-archimedean (possibly trivial)
absolute value | · | : K → R+ , with respect to which it is complete.

We set K◦ := {x ∈ K, |x| 6 1}. It is a local ring with maximal ideal K◦◦ := {x ∈ K, |x| < 1}.
In all the text, we will considerK-analytic space in the sense of Berkovich (see [Ber90] and [Ber93]),

although choosing another another theory would lead to the same results and proofs.

1. Definitions

1.1. Normoid and Banachoid spaces

Definition 1.1. A non-archimedean seminorm on a K-vector space U is a map ‖·‖ : U → R+ such
that

i) ∀x, y ∈ U, ‖x+ y‖ 6 max(‖x‖, ‖y‖);
ii) ∀λ ∈ K,∀x ∈ U, ‖λx‖ = |λ| ‖x‖.

In the sequel of this paper, every seminorm will be non-archimedean and we simply speak about
seminorms, without further mention of the terminology ultrametric.

Here, we will use the setting of uniform spaces from [Bou71, Chapitre II]. Recall that a family
of pseudometrics on a space induces a uniform structure on it (see [Bou74, Chapitre IX,§ 1]).

Definition 1.2. Let M be a non-empty set. An M -normoid space (over K) is a K-vector space U
together with a family of seminorms u = (um)m∈M . We endow it with the uniform structure (and
the topology) induced by u.

A normoid space is a K-vector space that is M -normoid for some non-empty set M .

Definition 1.3. Let U be a K-vector space. Let M and N be non-empty sets. Let u = (um)m∈M and
u′ = (u′n)n∈N be two families of seminorms on U . We say that u′ is finer than u if, for every m ∈M ,
there exists a finite subset Im of N and Cm ∈ R+ such that

∀x ∈ U, um(x) 6 Cm · max
n′∈In

(u′n′(x)). (1.1)

We say that u and u′ are equivalent if u is finer than u′ and u′ is finer than u. This is an equivalence
relation.

Notation 1.4. When (um)m∈M is a family of seminorms and I a finite subset of M , we set

uI := max
m∈I

(um). (1.2)

Remark that equivalent families of seminorms define the same uniform structure and topology.

Example 1.5. Let (um)m∈M be a family of seminorms on U .

i) Let N ⊆M be a subset such that for all m ∈M−N there exists a finite subset I ⊂ N such that
the norm uI is finer than um. Then the family (un)n∈N is equivalent to the family (um)m∈M
and also to the family (u′m)m∈M given by

u′m =

{
um if m ∈ N
0 if m ∈M −N. (1.3)
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ii) In particular, if I ⊂M is a finite subset and if m ∈ I, we may replace the seminorm um by uI
without changing the equivalence class of the family (um)m∈M .

iii) More generally, if A ⊆ M is a subset, and B is a collection of finite subsets of M such
that, for all m ∈ A, there is Im ∈ B such that m ∈ Im, then (um)m∈M is equivalent to
(um)m∈M−A ∪ (uI)I∈B. In particular, the family (um)m∈M is always equivalent to the family
(uI)I , where I runs throught the set of all finite subsets of M .

iv) If for some m ∈M there exists a finite subset I ⊂M and a constant C ∈ R+ such that m /∈ I
and um 6 C · uI , then we can remove um from the family without changing the equivalence
class.

v) More generally, if A ⊆M is a subset and if, for all m ∈ A, there exists a finite subset Im ⊆M
and a constant Cm ∈ R+ such that Im ∩A = ∅ and um 6 Cm · uIm, then the family (um)m∈M
is equivalent to the family (um)m∈M−A.

Definition 1.6. Let M and N be non-empty sets. We say that an M -normoid space (U, u) is
equivalent to an N -normoid space (V, v) if there exists a K-linear isomorphism f : U → V such that
the family of seminorms f∗(v) that is induced by v on U by transport of structure is equivalent to u.
This is an equivalence relation.

Remark that equivalent normoid spaces define isomorphic uniform and topological spaces.

Lemma 1.7. Let M and N be non-empty sets. Let u = (um)m∈M and u′ = (u′n)n∈N be two families
of seminorms on U . Consider the following assertions:

(1) the identity map Id : (U, u′)→ (U, u) is continuous;

(2) the uniform structure defined by u′ is finer than that defined by u;

(3) the topology defined by u′ is finer than that defined by u;

(4) u′ is finer than u.

Then (1), (2), (3) are equivalent and (4) implies them. If K is not trivially valued, then all the
conditions are equivalent.

Let (V, v) be an N -normoid space. Consider the following assertions:

(i) there exists a K-linear homeomorphism (U, u)
∼−→ (V, v);

(ii) (U, u) and (V, v) are equivalent normoid spaces.

Then (ii) always implies (i) and, if K is not trivially valued, then (i) implies (ii).

In particular, if (U, u) and (V, v) are equivalent normoid spaces, then (U, u) is Hausdorff (resp.
complete) if, and only if, (V, v) is. 2

Definition 1.8. Let M be a non-empty set. An M -Banachoid space is a Hausdorff complete M -
normoid space.

A Banachoid space is a K-vector space that is M -Banachoid for some non-empty set M .

Remark 1.9. Let (U, u = (um)m∈M ) be an M -normoid space. It is Hausdorff if, and only if, for
each x ∈ U − {0}, there exists m ∈M such that um(x) 6= 0.

A net (xα)α∈D (for some directed set D) is Cauchy if, and only if, it is Cauchy with respect to
each seminorm um. It converges to an element x of U if, and only if, for each m ∈ M , the net
(um(xα − x))α∈D converges to 0.

The space (U, u) is complete if, and only if, every Cauchy net converges.
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Lemma 1.10. Let U be a finite-dimensional K-vector space. Let u be a family of seminorms on U
such that (U, u) is a Hausdorff normoid space. Let ‖·‖ be a norm on U . Then, u is equivalent to ‖·‖,
(U, u) is a Banachoid space and (U, ‖·‖) is a Banach space.

Proof. For every seminorm v0 on U , we define the kernel of v0 as

Ker(v0) = {x ∈ U | v0(x) = 0}. (1.4)

It is a subspace of U . For every family of seminorms v = (vm)m∈M on U , we set

dv = min({dimK(Ker(vm)),m ∈M}). (1.5)

Among the family of seminorms on U that are equivalent to u, let us now choose a family
u′ = (u′n)n∈N such that du′ is minimal. There exists n0 ∈ N such that dimK(Ker(u′n0

)) = du′ . Let
us assume by contradiction that du′ > 0. Pick x ∈ U \ {0} such that u′n0

(x) = 0. Since (U, u′)
is Hausdorff, there exists n1 ∈ N such that u′n1

(x) 6= 0. Replace in u′ the seminorm u′n0
by the

seminorm max(u′n0
, u′n1

), we find an equivalent family u′′ with du′′ < du′ , which contradicts the
definition of u′.

We have just proven that du′ = 0. In other terms, u′n0
is a norm. We now construct a new family

of seminorms u′′ = (u′′n)n∈N on U by setting, for every n ∈ N , u′′n = max(u′n, u
′
n0

). It is equivalent
to u′ and it is a family of norms. Since all the norms on a finite-dimensional space over a complete
valued field are equivalent1, the family u′′ is equivalent to the family with one element (‖·‖).

Using the equivalence of norms again, it is easy to show that (U, ‖·‖) is a Banach space and to
deduce that (U, u) is a Banachoid space.

Definition 1.11. Let X be a K-analytic space. Let V be an affinoid covering of X for the G-
topology.

i) For every V ∈ V , denote by uV the norm on the K-affinoid algebra O(V ) and by u′V the
composition of uV with the restriction map O(X) → O(V ). We call (u′V )V ∈V the normoid
structure on O(X) associated to V .

ii) Let F be a coherent sheaf on X. For every V ∈ V , there exists a surjection O(V )nV →
F (V ). Denote by vV the residue seminorm on F (V ) (which is actually a norm, see [Ber90,
Proposition 2.1.9 and its proof]) and by v′V the composition of vV with the restriction map
F (X) → F (V ). We call such a normoid structure a basic admissible structure on F (X)
associated to V . A normoid structure on F (X) is called admissible if it is equivalent to a
basic admissible normoid structure (for some choices of covering and surjections).

iii) Let U be an analytic domain of X such that VU := {V ∈ V | V ⊆ U} is a covering of U for
the G-topology.
The previous construction endows F (U) with a VU -normoid structure. We turn it into a V -
normoid structure by adding, for all V ∈ V not contained in U , the zero seminorm on F (U).
We say that this normoid structure on F (U) is induced by that on F (X).

iv) Let L be a complete non-trivially valued extension of K. Then VL := {VL | V ∈ V } is a covering
of XL for the G-topology. Moreover, for every V ∈ V , vV induces a norm on FL(VL) '
F (V )⊗̂KL.2 The previous construction endows FL(XL) with a V -normoid structure. We say
that this normoid structure on FL(XL) is induced by that on F (X).

1This classical result remains true when K is trivially valued, see for instance [Ked10, Theorem 1.3.6].
2The isomorphism FL(VL) ' F (V )⊗̂KL is classical in the affinoid case, it may be proved by choosing a presentation
and using the right exactness of the completed tensor product by L (see [Gru66]). We will prove a generalization of
this fact in Corollary 3.22.
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Lemma 1.12. Retain the notations of Definition 1.11. The space O(X) endowed with the normoid
structure associated to some covering is a Banachoid space. The normoid structures on O(X) as-
sociated to two affinoid coverings of X are equivalent. If X is reduced, they induce the topology of
compact convergence.

The space F (X) endowed with an admissible normoid structure is a Banachoid space. All the
admissible normoid structures on F (X) are equivalent.

The induced normoid structures on the spaces F (U) and F (X)L are admissible. In particular,
endowed with the latter, the spaces F (U) and F (X)L are Banachoid spaces.

Proof. The proofs of those results are similar to the proofs of analogous results in Berkovich theory
(in a Banach setting) and use classical arguments. The first one essentially follows from Tate’s
acyclicity theorem (see [Ber93, Lemma 1.2.12 and the discussion following it]). If X is reduced,
then each affinoid domain V of X is reduced, hence the given norm on O(V ) is equivalent to the
sup-norm on V by [Ber90, Proposition 2.1.4]. It follows that the induced topology is that of compact
convergence.

For the second result, we refer to the proof of [Ber90, Proposition 2.1.9] for some details. The
last result is a consequence of the definitions.

1.2. Bounded morphisms

We now define bounded morphisms. Recall Notation 1.4.

Definition 1.13. Let (U1, u
1), . . . , (Ur, u

r), (V, v) be normoid spaces whose families of seminorms
are indexed by sets M1, . . . ,Mr, N respectively. An r-linear map f : (U1, u

1)×· · ·× (Ur, u
r)→ (V, v)

is said to be bounded if, for every finite subset J of N , there exists CJ ∈ R+ and finite subsets
J1, . . . , Jr of M1, . . . ,Mr respectively such that

∀(x1, . . . , xr) ∈ U1 × · · · × Ur , vJ(f(x1, . . . , xr)) 6 CJ

r∏
i=1

uiJi(xi) . (1.6)

Let f : (U1, u
1) × · · · × (Ur, u

r) → (V, v) be a bounded r-linear map. For every finite subsets
J, I1, . . . , Ir of N,M1, . . . ,Mr, we set

N ′J,I1,...,Ir(f) = inf({D > 0 | ∀(x1, . . . , xr) ∈ U1×· · ·×Ur, vJ(f(x1, . . . , xr)) 6 D
r∏
i=1

uiIi(xi)}) (1.7)

and

NJ,I1,...,Ir(f) =

{
N ′J,I1,...,Ir(f) if N ′J,I1,...,Ir(f) < +∞;

0 otherwise.
(1.8)

Remark 1.14. We get an equivalent definition if we require that the property holds for all single-
tons of N instead of all finite subsets. Similarly, the family of seminorms (N{n},I1,...,Ir)n,I1,...,Ir and
(NJ,I1,...,Ir)J,I1,...,Ir are equivalent since NJ,I1,...,Ir = maxn∈J(N{n},I1,...,Ir).

We also introduce a more restrictive notion of contraction.

Definition 1.15. Let (U1, u
1), . . . , (Ur, u

r), (V, v) be normoid spaces whose families of seminorms
are all indexed by the same set M . An r-linear map f : (U1, u

1)× · · · × (Ur, u
r)→ (V, v) is said to

5
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be a contraction if, for every m ∈M , we have

∀(x1, . . . , xr) ∈ U1 × · · · × Ur , vm(f(x1, . . . , xr)) 6
n∏
i=1

uim(xi) . (1.9)

For every m ∈M , we set

Nm(f) = inf({D > 0 | ∀(x1, . . . , xr) ∈ U1 × · · · × Ur, vm(f(x1, . . . , xr)) 6 D
n∏
i=1

uim(xi)}). (1.10)

Given normoid spaces (U1, u
1), . . . , (Ur, u

r), (V, v), we denote by Multb((U1, u
1)×· · ·×(Ur, u

r), (V, v))
(resp. Multb,1((U1, u

1)× · · · × (Ur, u
r), (V, v))) the set of bounded r-linear maps (resp. r-linear con-

tractions) between them. When r = 1, we simply write Lb((U1, u
1), (V, v)) (resp. Lb,1((U1, u

1), (V, v))).
Each NJ,I1,...,Ir (resp. Nm) is a seminorm on this space.

Lemma 1.16. If (V, v) is Hausdorff (resp. complete), then the space Multb((U1, u
1)×· · ·×(Ur, u

r), (V, v))
(resp. Multb,1((U1, u

1)×· · ·×(Ur, u
r), (V, v))) together with the family (NJ,I1,...,Ir)J,I1,...,Ir (resp. (Nm))

is a Hausdorff (resp. complete) normoid space. 2

Lemma 1.17. Let (U1, u
1), . . . , (Ur, u

r), (V, v) be normoid spaces. The families of seminorms that
we have defined on Multb(U1 × · · · × Ur, V ) and Multb(U1 × · · · × Ur−1,Lb(Ur, V )) are compatible
with the natural isomorphism

Multb(U1 × · · · × Ur, V )
∼−→ Multb(U1 × · · · × Ur−1,Lb(Ur, V )). (1.11)

The analogous result holds for

Multb,1(U1 × · · · × Ur, V )
∼−→ Multb,1(U1 × · · · × Ur−1,Lb,1(Ur, V )). (1.12)

Proof. It follows from a direct computation with the help of Remark 1.14.

Lemma 1.18. Let U be a K-vector space. Let u and u′ be two normoid structures on U (possibly
indexed by different sets). Then the map Id : (U, u′) → (U, u) is bounded (resp. bi-bounded) if, and
only if, u′ is finer than u (resp. u′ is equivalent to u).

Lemma 1.19. Let (U1, u
1), . . . , (Ur, u

r), (V, v) be normoid spaces and let f : U1 × · · · × Ur → V be
an r-linear map. If f is bounded, then it is a continuous map. If K is not trivially valued, then the
converse also holds. 2

Lemma 1.20. Let M1, . . . ,Mr, N be non-empty sets. Let (U1, u
1 = (u1m)m∈M1), . . . , (Ur, u

r =
(urm)m∈Mr) and (V, v = (vn)n∈N ) be normoid spaces. Let f : (U1, u

1) × · · · × (Ur, u
r) → (V, v) be a

bounded r-linear map. Then, there exist a non-empty set M and families of seminorms a1, . . . , ar, b
on U1, . . . , Ur, V , all indexed by M , that are equivalent to u1, . . . , ur, v respectively and such that the
morphism (U1, a

1)× · · · × (Ur, a
r)→ (V, b) induced by f is a contraction.

Proof. Let n ∈ N . Consider subsets J1, . . . , Jr of M1, . . . ,Mr and a constant Cn as in (1.6).

Denote by M the disjoint union of the Mi’s and N . For all m ∈M , we set

bm :=

{
vm if m ∈ N
0 if m /∈ N aim :=


uim if m ∈Mi

0 if m ∈Mj and j 6= i

C
1/r
m uiJi if m ∈ N

(1.13)

By construction, f is a contraction with respect to the M -normoid structures given by a1, . . . , ar, b.
Moreover, proceeding as in Example 1.5, it is not hard to show that the families of seminorms
a1, . . . , ar, b are equivalent to u1, . . . , ur, v.
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Let us now give the basic examples of bounded maps.

Lemma 1.21. Let X be a K-analytic space, let U be an analytic domain of X and let F and G be
coherent sheaves on X. Endow F (X), F (U) and G (X) with admissible normoid structures. Then,
the following results hold.

i) The restriction map F (X)→ F (U) is bounded.

ii) For each morphism of coherent sheaves ϕ : F → G that is OX-linear, the associated map
ϕ(X) : F (X)→ G (X) is bounded.

Proof. Point i) follows from the definitions. For point ii), we may assume that F (X) and G (X) are
endowed with basic admissible normoid structures associated to an affinoid covering V of X for the
G-topology. We then argue as in the proof of [Ber90, Proposition 2.1.9].

In Proposition 4.13, we will show that connections on locally free sheaves over curves give rise
to bounded maps too.

Definition 1.22. The category Normb
K is the category whose objects are normoid spaces and whose

morphisms are bounded K-linear maps. The category BanbK is the full subcategory of Normb
K whose

objects are Banachoid.

Let M be a non-empty set. The category NormM,K is the category whose objects are M -normoid
spaces and whose morphisms are K-linear contractions. The category BanM,K is the full subcategory
of NormM,K whose objects are M -Banachoid.

1.3. Strict morphisms

Let us now describe explicitly strict morphisms in the category NormM,K .

Definition 1.23. Let (U, u = (um)m∈M ) and (V, v = (vm)m∈M ) be normoid spaces.

A linear contraction f : (U, u)→ (V, v) is said to be strict if the canonical map from its coimage
to its image is an isomorphism in NormM,K , i.e.

∀m ∈M, ∀y ∈ Im(f), vm(y) = inf
x∈f−1(y)

(um(x)) . (1.14)

A strict injection will be called an isometry.

In this paper, we will not consider strict morphisms in Normb
K , hence the phrase “strict mor-

phism” will always refer to the previous definition (and similarly for “isometry”). On the other
hand, the topological version of the notion will be useful.

Definition 1.24. A continuous map f : (U, u)→ (V, v) between normoid spaces is said to be topo-
logically strict if the canonical map

U/Ker(f)
∼−−→ Im(f) (1.15)

is a homeomorphism.

Under some conditions, topologically strict maps give rise to strict maps.

Lemma 1.25. Let (U, u) and (V, v) be normoid spaces and let f : U → V be a topologically strict
K-linear map. Assume, moreover, that Im(f) is topologically complemented in V . Then, there exist

7
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a non-empty set M and families of seminorms u′ and v′ indexed by M on U and V that induce the
same topologies as u and v respectively such that the map f : (U, u′)→ (V, v′) is strict.

Proof. Denote u = (um)m∈M and v = (vn)n∈N . By assumption, the induced map U/Ker(f) →
Im(f) is a homeomorphism. For every m ∈ M , denote by wm the seminorm on Im(f) induced
by um via the previous homeomorphism. The family w = (wm)m∈M induces the topology of Im(f).

Let W be a topological complement of Im(f) in V . For every (m,n) ∈ M × N , define a semi-
norm v′m,n on V by

v′m,n :
V = Im(f)⊕W → R

y ⊕ z 7→ max(wm(y), vn(z))
. (1.16)

For every (m,n) ∈M×N , set u′m,n = um. The families u′ and v′ satisfy the required properties.

Lemma 1.26. Let (U, (um)m∈M ) be a normoid space. Then, there exists a Hausdorff normoid space
(UH , (uH,m)m∈M ) and a contraction h : U → UH such that, for every contraction f : U → V from U
to a Hausdorff normoid space V , there exists a unique contraction g such that f = g ◦ h.

Moreover, the morphism h is surjective and isometric in the sense that

∀x ∈ U , ∀m ∈M , uH,m(h(x)) = um(x) . (1.17)

Proof. Set

U0 := {x ∈ U | ∀m ∈M,um(x) = 0}. (1.18)

It is a subspace of U and the quotient UH := U/U0 satisfies the required properties.

Definition 1.27. The space UH of the previous lemma is called the biggest Hausdorff quotient of U .
Its equivalence class only depends on the equivalence class of U . We usually denote the seminorms
on UH by um instead of uH,m.

Lemma 1.28. Let (U, (um)m∈M ) be a normoid space. Then, there exists a Banachoid space (Û , (ûm)m∈M )
and a contraction c : U → Û such that, for every contraction f : U → V from U to a Banachoid
space V , there exists a unique contraction g such that f = g ◦ h.

Moreover, the morphism c is isometric in the sense that

∀x ∈ U , ∀m ∈M , ûm(c(x)) = um(x) (1.19)

and, if U is Hausdorff, then c is injective.

Proof. Using the notation of Lemma 1.26, we define Û as the completion of UH with respect
to the family of seminorms (uH,m)m∈M (see [Bou74, Chapitre IX,§ 1, No 3, Proposition 1]). Since

every uH,m is uniformly continuous, it extends to Û and it is easy to check that it is still a seminorm.

Definition 1.29. The space Û of the previous lemma is called the Hausdorff completion of U . Its
equivalence class only depends on the equivalence class of U . We usually denote the seminorms on Û
by um instead of ûm.

2. Properties

2.1. Products and coproducts in BanbK
The category BanbK admits small products and coproducts. The construction is described in the
following lemma whose proof is left to the reader.
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Lemma 2.1. Let E = (Ei, (u
i
mi

)mi∈Mi)i∈I be a family of Banachoid spaces. Let F :=
∏
i∈I Ei be

the product of the Ei’s in the category of K-vector spaces and, for each i ∈ I, denote by pi : F → Ei
the projection map. Set M :=

⊔
i∈IMi. For each m ∈ M , set vm = uim ◦ pi, where i is the unique

element of I such that m ∈Mi.

Then (F, (vm)m∈M ) is the product and the coproduct of the family E in BanbK . 2

Remark 2.2. If, in the setting of the previous lemmas, the family of Banachoid spaces is finite (i.e.
I is finite), there is another natural construction that is sometimes convenient to work with. Set
F :=

∏
i∈I Ei =

⊕
i∈I Ei and N :=

∏
i∈IMi. For every n = (mi)i∈I ∈ N and every x = (xi)i∈I ∈ F ,

set vn(x) := maxi∈I(u
i
mi

(xi)).

Then (F, (vn)n∈N ) is the product and the coproduct of the family E in BanbK .

Remark 2.3. The normoid structure on the product or the coproduct of a family of Banachoid
spaces is well defined only up to equivalence. Changing each element of the family by an equivalent
element turns the product and the coproduct into equivalent spaces.

2.2. Čech cohomology

We now show that the product in BanbK is well-suited for Čech cohomology.

Lemma 2.4. Let X be a K-analytic space and let V be an affinoid covering of X for the G-topology.
Let F be a coherent sheaf on X. For each V ∈ V , endow F (V ) with a norm vV as in item ii) of
Definition 1.11. Consider the product

∏
V ∈V F (V ) in BanbK . Then, the normoid structure on F (X)

induced by the injection

F (X) ↪→
∏
V ∈V

F (V ) (2.1)

coincides with the basic admissible normoid structure from Definition 1.11.

For each affinoid domain U of X that is a finite intersection of elements of V , endow F (U)
with a norm vU as in item ii) of Definition 1.11.

If X is separated, then the cohomology of F on X is the cohomology of the complex of Banachoid
spaces with bounded maps

C : 0→
∏
V ∈V

F (V )→
∏

V 6=W∈V

F (V ∩W )→ · · · , (2.2)

where the products are taken in BanbK .

Proof. The first part of the result follows directly from the definitions. The second part follows from
the fact that the complex of K-vector spaces underlying C is nothing but the Čech complex of F
associated to V and that, in the case where X is separated, finite intersections of affinoid domains
of X are either empty or affinoid domains, hence F -acyclic, by Tate’s acyclicity theorem.

2.3. Products and coproducts in BanM,K

We now turn to the category BanM,K . It admits small products and coproducts too.

Lemma 2.5. Let E = (Ei, (u
i
m)m∈M )i∈I be a family of Banachoid spaces.

Let F be the K-vector space of families (xi)i∈I ∈
∏
i∈I Ei such that, for each m ∈M , (uim(xi))i∈I

is bounded. For each m ∈M and each x = (xi)i∈I ∈ F , we set vm(x) := supi∈I(u
i
m(xi)).

Then (F, (vm)m∈M ) is the product of the family E in BanM,K . 2

Lemma 2.6. Let E = (Ei, (u
i
m)m∈M )i∈I be a family of Banachoid spaces.

9
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Let G be the K-vector space of families (xi)i∈I ∈
∏
i∈I Ei such that, for each m ∈M , (uim(xi))i∈I

tends to 0 along the filter of complements of finite subsets of I. For each m ∈ M and each x =
(xi)i∈I ∈ G, we set vm(x) := supi∈I(u

i
m(xi)).

Then (G, (vm)m∈M ) is the coproduct of the family E in BanM,K . 2

2.4. Direct limits in BanM,K

Since the category of Banachoid spaces BanM,K is additive and has kernels and cokernels3 (hence
equalizers and coequalizers), we deduce that it is complete and cocomplete (see [ML98, Theo-
rem V.2.1]). We describe direct limits (i.e. colimits of directed families of objects) explicitly.

Let (I,6) be a directed set. Let (Ui, (ui,m)m∈M )i∈I be a family of Banachoid spaces and
(fj,i : Ui → Uj)i6j be a family of linear contractions such that the family (Ui, fi,j) is a direct
system in BanM,K .

Let V0 be the coproduct of the Ui’s in the category of sets (i.e. their disjoint union). Let ∼ be
the equivalence relation on V0 defined by

(xi ∈ Ui) ∼ (xj ∈ Uj) if ∃k ∈ I , k > i , k > j , fk,i(xi) = fk,j(xj) . (2.3)

The quotient V0/ ∼ is the set-theoretic direct limit of (Ui, fi,j).

Let m ∈M and x ∈ V0. Choose i ∈ I and xi ∈ Ui such that xi belongs to the class defined by x.
We then set

vm(x) = inf
j

(uj,m(fj,i(xi))) . (2.4)

Since I is a directed set, vm is well defined and it is a seminorm on V0.

The Hausdorff completion V of V0/ ∼ with respect to the family of the vm’s is the direct limit
of (Ui, fi,j) in the category of Banachoid spaces BanM,K .

The explicit construction of direct limits allows to prove basic properties easily.

Proposition 2.7. Direct limits in BanM,K preserve strict morphisms, isometries, and exact se-
quences of strict morphisms.

Proof. The fact that direct limits preserve strict morphisms and isometries follows from a simple
computation (see the proof of [Gru66, Proposition 1]).

Let us now consider a directed family of exact sequences (Ci : Ai
fi−→ Bi

gi−→ Ci)i∈I with strict
morphisms. We want to prove that the sequence

C : lim−→
i∈I

Ai
f−→ lim−→

i∈I
Bi

g−→ lim−→
i∈I

Ci (2.5)

is exact. It is enough to prove that Ker(g) ⊆ Im(f).

Let x ∈ Ker(g). By the first point, the morphism lim−→i∈I Im(gi)→ lim−→i∈I Ci is an isometry, hence

an injection. We deduce that g sends x to the element 0 in lim−→i∈I Im(gi).

For every i ∈ I, we have a short exact sequence in BanM,K

Di : 0→ Ai/Ker(fi)→ Bi → Im(gi)→ 0. (2.6)

We deduce that, for every Banachoid space E, we have an exact sequence

0→ lim←−
i∈I

Lb,1(Im(gi), E)→ lim←−
i∈I

Lb,1(Bi, E)→ lim←−
i∈I

Lb,1(Ai/Ker(fi), E) , (2.7)

3By Lemma 1.28, the Hausdorff completion of the set-theoretical cokernel of a contraction in BanM,K is the cokernel
in BanM,K .
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which is to say an exact sequence

0→ Lb,1(lim−→
i∈I

Im(gi), E)→ Lb,1(lim−→
i∈I

Bi, E)→ Lb,1(lim−→
i∈I

Ai/Ker(fi), E) . (2.8)

We deduce by Yoneda’s Lemma that the sequence lim−→i∈I Di is right-exact and the result follows.

2.5. Decomposable spaces.

Definition 2.8. A finite-dimensional normed K-vector space (U, ‖·‖) is said to be decomposable if
there exists a basis (e1, . . . , ed) of U such that

∀λ1, . . . , λd ∈ K ,

∥∥∥∥∥
d∑
i=1

λi ei

∥∥∥∥∥ = max
16i6d

(|λi| ‖ei‖) . (2.9)

A finite-dimensional Banachoid space (U, (um)m∈M ) is said to be decomposable if, for every
m ∈M , um is a norm on U and the space (U, um) is decomposable.

Under some assumptions on the base field, we will prove that Banachoid spaces are direct limits
of decomposable spaces. We first need a few preparatory lemmas.

If (U, ‖·‖) is a seminormed vector space over K, we set

U◦ = {x ∈ U | ‖x‖ 6 1}. (2.10)

Thanks to the non-archimedean triangle inequality, it is a K◦-module.

Recall also that K◦ is either a field (if K is trivially valued) or a valuation ring (otherwise).
In any case, every finitely generated K◦-module with no torsion is free. In particular, the property
holds for K◦-submodules of K-vector spaces.

Lemma 2.9. Let (U, ‖·‖) be a finite-dimensional seminormed vector space over K. Let N be a
finitely generated K◦-submodule of U◦ such that such that the natural map N ⊗K◦ K

∼−→ U is an
isomorphism of K-vector spaces.

Set ‖0‖N = 0. For every x ∈ U − {0}, we consider the Minkowski functional

‖x‖N = inf{|λ| | λ ∈ K∗, x ∈ λN}. (2.11)

The map ‖·‖N is a norm on U .

Moreover, let (e1, . . . , ed) be a basis of N over K◦. Then, for every λ1, . . . , λd ∈ K, we have∥∥∥∥∥
d∑
i=1

λi ei

∥∥∥∥∥
N

= max
16i6d

(|λi|) >

∥∥∥∥∥
d∑
i=1

λi ei

∥∥∥∥∥ . (2.12)

In particular, the identity map (U, ‖·‖N )→ (U, ‖·‖) is a contraction.

Proof. The fact that ‖·‖N is a norm on U is a simple verification.

Let λ1, . . . , λd ∈ K. The inequality∥∥∥∥∥
d∑
i=1

λi ei

∥∥∥∥∥
N

6 max
16i6d

(|λi|) (2.13)

comes readily from the non-archimedean triangle inequality. Since e1, . . . , ed belong to U◦, the
inequality ∥∥∥∥∥

d∑
i=1

λi ei

∥∥∥∥∥ 6 max
16i6d

(|λi|) (2.14)

11
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is a consequence of the non-archimedean triangle inequality too.

It remains to prove the converse of inequality (2.13). If every λi is zero, it is obvious, so we
assume otherwise. Up to multiplying the λi’s by some scalar, we may assume that

max
16i6d

(|λi|) = 1. (2.15)

Set x :=
∑d

i=1 λi ei. Let λ ∈ K such that |λ| < 1. Since (e1, . . . , ed) is a basis of N , x cannot
belong to λN . We deduce that ‖x‖N > 1, which finishes the proof.

Lemma 2.10. Maintain the assumptions of Proposition 2.9. Let N ′ be another K◦-module with the
same properties as N . The following properties are equivalent :

i) N ⊆ N ′;
ii) ‖x‖N > ‖x‖N ′, for all x ∈ U . 2

Proof. i)⇒ii). Assume N ⊆ N ′. Let x ∈ U . We have {λ ∈ K∗, x ∈ λN} ⊆ {λ ∈ K∗, x ∈ λN ′}. This
implies that inf{|λ| | λ ∈ K∗, x ∈ λN} > inf{|λ| | λ ∈ K∗, x ∈ λN ′}.

ii)⇒i). Assume ‖.‖N > ‖.‖N ′ . Then we have an inclusion of unit balls N = {x ∈ U, ‖x‖N 6 1} ⊆
{x ∈ U, ‖x‖N ′ 6 1} = N ′.

Proposition 2.11. Assume that K is densely valued, i.e. |K| is dense in R+. Then, every Bana-
choid space is a direct limit in BanM,K of finite-dimensional decomposable Banachoid spaces.

Proof. Let (U, (um)m∈M ) be a Banachoid space. Let S be the family of finite subsets of U .

Let m ∈M . By induction on n ∈ N∗, to each couple (x, S) with x ∈ S and S ∈ S of cardinal n,
we may associate λS,x,m ∈ K such that{

1− (n+ 1)−1 6 |λS,x,m| · um(x) 6 1 if um(x) 6= 0 ;
n+ 1 6 |λS,x,m| if um(x) = 0

(2.16)

and, for every finite subset T of S containing x, |λT,x,m| 6 |λS,x,m|.
Let S ∈ S . Denote by VS the subvector-space of U generated by S. Consider theK◦-submoduleNS,m

of (U, um)◦ generated by the family (λS,x,m x)x∈S and denote by vS,m the norm associated to it on VS
by the construction of Lemma 2.9.

For every S′ ∈ F that contains S, by construction, we have a natural injection jS′,S : VS → VS′

that sends NS,m into NS′,m. We deduce that the injection jS′,S : (VS , vS,m) → (VS′ , vS′,m) is a
contraction.

Finally, remark that, for every x ∈ S, we have

um(x) 6 vS,m(x) 6 |λS,x,m|−1 6
Card(S) + 1

Card(S)
· um(x) if um(x) 6= 0 (2.17)

and

vS,m(x) 6 |λS,x,m|−1 6
1

Card(S) + 1
if um(x) = 0 . (2.18)

In particular, for all S ∈ S , the natural inclusion (VS , (vS,m)m∈M )→ (U, (um)m∈M ) is a contraction.
Moreover, the characterization of direct limits from Section 2.4 shows that the canonical map
lim−→S∈S

((VS , (vS,m)m∈M ), (jS′,S))→ (U, (um)m∈M ) is isometric and surjective. The result follows.
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3. Tensor products

3.1. Definition and first properties

Let (U, (um)m∈M ) and (V, (vn)n∈N ) be Banachoid spaces. For every m ∈M , n ∈ N and z ∈ U⊗K V ,
set

um ⊗ vn(z) := inf
{

max
16i6r

(um(xi) · vn(yi)) such that z =
r∑
i=1

xi ⊗ yi
}
. (3.1)

The map um ⊗ vn is a seminorm on U ⊗K V . We denote by U⊗̂KV the Hausdorff completion
of U ⊗K V with respect to the uniform structure induced by the um⊗ vn’s. The seminorms um⊗ vn
extend naturally to it and endow it with a structure of Banachoid space.

The following result is now easily proven from the definitions.

Proposition 3.1. The natural map π : U × V → U⊗̂KV is a bilinear contraction between M ×N -
Banachoid spaces.

Moreover, for every Banachoid space (W,w), the composition with π induces natural isomor-
phisms of Banachoid spaces

Lb(U⊗̂KV,W )
∼−−→ Multb(U × V,W ) (3.2)

and, in the case where w is indexed by M ×N ,

Lb,1(U⊗̂KV,W )
∼−−→ Multb,1(U × V,W ) . (3.3)

2

It follows that −⊗̂KV is a functor from BanbM,K to BanbM×N,K , BanbK to BanbK and BanM,K to

BanM×N,K . Thanks to Lemma 1.18, we deduce that the equivalence class of U⊗̂KV only depends
on the equivalence classes of U and V .

Moreover, using Lemma 1.17 to identify Multb,1(U × V,W ) and Lb,1(U,Lb,1(V,W )), we may
write this functor −⊗̂KV as a left-adjoint.

Corollary 3.2. The functor −⊗̂KV from the category BanbM,K (resp. BanbK , resp. BanM,K) to the

category BanbM×N,K (resp. BanbK , resp. BanM×N,K) commutes with colimits. In particular, it is
right exact. 2

Remark 3.3. By Lemma 2.1, products in BanbK coincides with coproducts, hence the functor −⊗̂KV
commutes with products in BanbK , by right-exactness.

An explicit computation proves that the functor −⊗̂KV from BanM,K to BanM×N,K also com-
mutes with products.

Remark that the tensor product with a finite-dimensional decomposable Banachoid space may
be easily described.

Lemma 3.4. Let (U, (um)m∈M ) and (V, (vn)n∈N ) be Banachoid spaces. Assume that V is finite-
dimensional. Then, we have a natural isometric isomorphism

U ⊗K V
∼−→ U⊗̂KV.

Moreover, assume that there exists n ∈ N and a basis (e1, . . . , ed) of V such that

∀λ1, . . . , λd ∈ K , vn

( d∑
i=1

λi ei

)
= max

16i6d
(|λi| ‖ei‖) . (3.4)
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Then, for every m ∈M , we have

∀x1, . . . , xd ∈ U , (um ⊗ vn)
( d∑
i=1

xi ⊗ ei
)

= max
16i6d

(um(xi) ‖ei‖) . (3.5)

Proof. The part of the statement concerning the explicit form of um⊗ vn comes from a straightfor-
ward computation.

To prove the first part, it is enough to prove that U ⊗K V is complete. For this purpose, we may
replace every norm vm by an equivalent one. As a consequence, we may assume that the norms vm
are all given as in (3.4) with the same basis for all. The result follows easily.

We now compute a particularly simple kind of tensor product. Let r ∈ R∗+ −
√
|K∗|. Follow-

ing [Ber90, after Definition 2.1.1], we set

Kr = {f =
∑
i∈Z

ai T
i | ai ∈ K , lim

i→±∞
|ai| ri = 0} (3.6)

and endow it with the norm

|f |r = max
i∈Z

(|ai| · ri) . (3.7)

The K-algebra (Kr, | · |r) is actually a valued field.

Lemma 3.5. Let (U, (um)m∈M ) be a Banachoid space over K. Let r ∈ R∗+ −
√
|K∗|.

Set

Ur = {f =
∑
i∈Z

xi T
i | xi ∈ U , ∀m ∈M , lim

i→±∞
um(xi) r

i = 0} (3.8)

and endow it with the family of seminorms

um,r(f) = max
i∈Z

(um(ai) · ri) . (3.9)

Then (Ur, (um,r)m∈M ) is a Banachoid space over Kr and it is isomorphic to the tensor product
U⊗̂KKr in BanM,K .

Proof. For every i ∈ Z, consider the Banach space (Li, vi), where Li is a one-dimensional vector
space over K with basis (ei) and

∀λ ∈ K , vi(λ · ei) = |λ| · ri. (3.10)

Then, the space Kr is the direct sum of the Li’s (cf. Lemma 2.6).

The result nows follows from Corollary 3.2 since direct sums are direct limits.

3.2. Exactness properties

We first adapt [Ber90, Proposition 2.1.2] to the setting of Banachoid spaces.

Proposition 3.6. Let r ∈ R∗+ −
√
|K∗|. Let U , V , W be M -Banachoid spaces over K.

i) The natural map x ∈ U 7→ x⊗ 1 ∈ U⊗̂KKr is an isometry.

ii) A linear bounded map f : U → V is a contraction (resp. strict) if, and only if, the map fr :=
f ⊗ 1: U⊗̂KKr → V ⊗̂KKr is.

iii) Let S : U
f−→ V

g−→W be a sequence of bounded maps. Set Sr := S⊗̂KKr. If Sr is exact, then S
is exact. If f is strict and S is exact, then Sr is exact. 2
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Remark 3.7. Assume that K is discretely but not trivially valued. Let r ∈ R∗+ −
√
|K∗|. Then the

field Kr is densely valued.

Assume that K is trivially valued. Let r ∈ R∗+ − {1}. Then Kr is discretely but not trivially
valued. We may now apply the previous argument to construct a field Kr,s that is densely valued.

Remark also that, if K is not discretely valued, then it is densely valued.

Proposition 3.8. Let U , V , W , E be M -Banachoid spaces over K.

i) If a linear map f : U → V is strict, then so is the map fE : U⊗̂KE → V ⊗̂KE.
In particular, for every complete valued extension L of K, the map x ∈ U 7→ x ⊗ 1 ∈ U⊗̂KL
is an isometry.

ii) If S : U
f−→ V

g−→ W is an exact sequence of strict linear maps, then so is the sequence

SE : U⊗̂KE
fE−→ V ⊗̂KE

gE−→W ⊗̂KE.

iii) If a linear map f : U → V is strict, then we have natural strict isomorphisms

Ker(f)⊗̂KE
∼−−→ Ker(fE) and Coker(f)⊗̂KE

∼−−→ Coker(fE) . (3.11)

Proof. By Remark 3.7 and Proposition 3.6, we may assume that K is densely valued. Then, by
Proposition 2.11, E is a direct limit in BanM,K of finite-dimensional decomposable Banachoid
spaces.

On the other hand, using Lemma 3.4, it is easy to check that tensoring by a finite-dimensional
decomposable Banachoid space preserves exactness and strictness in BanM,K . By Proposition 2.7,
those properties are also preserved by direct limits. Finally, by Corollary 3.2, the tensor product
commutes with colimits, and we conclude that assertions i) and ii) hold. Assertion iii) follows
from ii).

For future reference, we note that the strictness property descends.

Lemma 3.9. Let f : (U, u)→ (V, v) be a bounded K-linear map between Banachoid spaces over K.
Let E be a Banachoid space over K. Denote by uE and vE the families of seminorms induced by u
and v on U⊗̂KE and V ⊗̂KE respectively as in Section 3.1. Assume that there exist equivalent
families u′E and v′E such that the map fE : (U⊗̂KE, u′E)→ (V ⊗̂KE, v′E) is strict.

Denote by u′ and v′ the families of seminorms induced on U and V by u′E and v′E respectively.
Then u′ and v′ are equivalent to u and v and the map f : (U, u′)→ (V, v′) is strict. 2

We now show that kernels of bounded linear maps also commute with extension of scalars when
they are not too big.

Proposition 3.10. Let f : U → V be a bounded linear map between Banachoid spaces over K.
Let E be a Banach space over K of countable type (i.e. that has a dense subspace of dimension at
most countable over K). Then, we have a natural isomorphism in BanbK

Ker(f)⊗̂KE
∼−→ Ker(fE). (3.12)

Proof. By Proposition 3.8, the map Ker(f)⊗̂KE → U⊗̂KE is injective. Moreover, its image clearly
sits inside Ker(fE). Hence, it is enough to prove that the natural map Ker(f)⊗̂KE → Ker(fE) is
surjective.

Let x ∈ U⊗̂KE such that fE(x) = 0. If E is finite-dimensional over K, then, by Lemma 3.4, we
have U⊗̂KE = U ⊗K E and V ⊗̂KE = V ⊗K E and the result holds thanks to the usual properties
of the tensor product.
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Let us now assume that E has infinite dimension over K. We may replace the norm on E by an
equivalent one ‖·‖. Hence, by [Ked10, Lemma 1.3.8], we may assume that there exists a sequence
(ei)i>0 of elements of E such that

i) for every a ∈ E, there exists a unique sequence (ai)i>0 of elements of K such that the series∑
i>0 ai ei converges to y ;

ii) with the same notations, we have

‖a‖ = max
i>0

(|ai| ‖ei‖). (3.13)

One checks that similar properties hold for U⊗̂KE:

i) for every y ∈ U⊗̂KE, there exists a unique sequence (yi)i>0 of elements of U such that the
series

∑
i>0 yi ⊗ ei converges to y ;

ii) with the same notations, for every m ∈M , we have

(um ⊗ ‖·‖)(y) = max
i>0

(um(yi) ‖ei‖), (3.14)

where u = (um)m∈M .

Of course, we have an analogous statement for V ⊗̂KE.

Let us now write x =
∑

i>0 xi ⊗ ei, with xi ∈ U for all i. We have

0 = fE(x) =
∑
i>0

f(xi)⊗ ei, (3.15)

hence f(xi) = 0 for all i, by uniqueness. The result follows.

Definition 3.11. Let E be a K-vector space endowed with a norm w. Let α > 1.

A family (fi)i∈I of elements of E is said to be α-cartesian with respect to w if, for each family
(ai)i∈I of elements of K with finite support, we have

w
(∑
i∈I

ai fi
)
> α−1 max

i∈I
(|ai|w(fi)). (3.16)

Lemma 3.12. Let E be a K-vector space endowed with be a norm w. Let (fi)i∈I be a family of
elements of E that is α-cartesian with respect to w for some α > 1. Let (U, u = (um)m∈M ) be a
normoid K-vector space.

Then, for each m ∈M and each family (ci)i∈I of elements of U with finite support, we have

(um ⊗ w)
(∑
i∈I

ci ⊗ fi
)
> α−1 max

i∈I
(um(ci)w(fi)). (3.17)

In particular, if (U, u) is Hausdorff, then an element of U⊗KE may be written in the form
∑

i∈I ci⊗
fi, for some family (ci)i∈I of elements of U with finite support, in at most one way. 2

Proposition 3.13. Let (E, e) be a Banachoid space over K. Assume that there exists a norm w
on E that is coarser than the family of seminorms e and a family (fn)n∈N of elements of E that
generates a dense subspace of E and is α-cartesian with respect to w for some α > 1. Let (U, u) be
a Banachoid space. Then, for each x ∈ U⊗̂KE, there exists a unique family (cn)n∈N such that the
series

∑
n∈N cn ⊗ fn converges to x in U⊗̂KE.

Proof. Let x ∈ U⊗̂KE. It follows from the assumptions that there exists a net (xλ)λ∈D (for some
directed set D) of elements of U ⊗K E that converges to x in U⊗̂KE and such that, for each λ ∈ D,
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there exists a family (cλ,n)n∈N of elements of U with finite support such that

xλ =
∑
n∈N

cλ,n ⊗ fn. (3.18)

It follows from Lemma 3.12 that, for each n ∈ N, the net (cλ,n)λ∈D is Cauchy. The existence part
of the result follows. Uniqueness follows from Lemma 3.12 too.

Definition 3.14. A Banachoid space (E, e) over K is said to be of countable type if

i) E contains a dense subspace of dimension at most countable over K;

ii) there exists a norm w on E that is coarser than the family of seminorms e.

Proposition 3.15. Let f : U → V be a bounded linear map between Banachoid spaces over K.
Let (E, e) be a Banachoid space over K of countable type. Then, we have a natural isomorphism
in BanbK

Ker(f)⊗̂KE
∼−→ Ker(fE). (3.19)

Proof. By Proposition 3.8, the map Ker(f)⊗̂KE → U⊗̂KE is injective. Moreover, its image clearly
sits inside Ker(fE). Hence, it is enough to prove that the natural map Ker(f)⊗̂KE → Ker(fE) is
surjective.

Let x ∈ U⊗̂KE such that fE(x) = 0. If E is finite-dimensional over K, then, by Lemma 3.4, we
have U⊗̂KE = U ⊗K E and V ⊗̂KE = V ⊗K E and the result holds thanks to the usual properties
of the tensor product.

Let us now assume that E has infinite dimension over K. Let E0 be a dense subspace of countable
dimension. By [BGR84, Proposition 2.6.2/3]4, E0 admits a basis (fn)n∈N that is α-cartesian with
respect to w for some α > 1.

By Proposition 3.13, there exists a unique family (cn)n∈N such that the series
∑

n∈N cn ⊗ fn
converges to x in U⊗̂KE. Since f is bounded, the series

∑
n∈N f(cn)⊗ fn converges to fE(x) = 0 in

U⊗̂KE. The uniqueness statement of Proposition 3.13 ensures that we have f(cn) = 0 for all n ∈ N.
The result follows.

Corollary 3.16. Let X be a K-analytic space, let F be a coherent sheaf on X and let L be a com-
plete valued extension of K of countable type. Endow F (X) with an admissible normoid structure
and FL(XL) with the induced structure. Then, we have a canonical isomorphism in BanbK

F (X)⊗̂KL
∼−→ FL(XL). (3.20)

Proof. Let V be an affinoid covering of X for the G-topology. For each affinoid domain U of X that
is a finite intersection of elements of V , endow F (U) with a norm vU as in item ii) of Definition 1.11.

Endow F (X) with the basic admissible normoid structure induced by the family (vV )V ∈V . Since,
by Lemma 1.12, all admissible normoid structures on F (X) are equivalent, it is enough to prove
the result for this one.

Let us consider the morphism of Banachoid spaces

f :
∏
V ∈U

F (V )→
∏

V 6=W∈U

F (V ∩W ), (3.21)

4This reference only covers the non-trivially valued case. If K is trivially valued, one can apply [Ked10, Lemma 1.3.8]
to the completion of E0 with respect to w and check that the elements given by the construction actually belong
to E0.
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where the products are taken in BanbK . By Lemma 2.1, these products coincide with the set theo-
retical products together with a certain family of seminorms.

By Remark 3.3, we have a natural isomorphism(∏
V ∈V

F (V )

)
⊗̂KL

∼−−→
∏
V ∈V

F (V )⊗̂KL, (3.22)

and similarly for the other product in the target of f .

It follows that the morphism f⊗̂KL may be identified with

fL :
∏
V ∈V

FL(VL) −−→
∏

V 6=W∈V

FL(VL ∩WL). (3.23)

In particular, its kernel is FL(XL) endowed with the right Banachoid structure by Lemma 2.4.

The result now follows from Proposition 3.15.

Corollary 3.17. Let X be a K-analytic space and Y be a K-affinoid space. Denote by prX and prY
the canonical projections from X ×K Y to X and Y respectively. Let F and G be coherent sheaves
on X and Y respectively. Endow F (X) and G (Y ) with admissible normoid structures. Then, we
have a canonical isomorphism in BanbK

F (X)⊗̂KG (Y )
∼−→ (F �k G )(X ×K Y ), (3.24)

where F �K G := pr∗X F ⊗OX×KY
pr∗Y G .

Proof. First note that O(Y ) is a quotient of a Tate algebra with a finite number of variables, hence
a Banach space of countable type. The same property holds for G (Y ) since it is a quotient of some
power of O(Y ) (see item ii) of Definition 1.11).

We may then use the same strategy as in the proof of Corollary 3.16, with L replaced by G (Y ),
to reduce to the case where X is affinoid, which is well-known.

3.3. Normoid Fréchet spaces

We now adapt the definition of Fréchet space to our setting. The difference with the usual ones is
that the seminorms defining the topology are part of the data.

Definition 3.18. An M -Banachoid space (U, u) is said to be an M -normoid Fréchet space if it is
equivalent to an N -Banachoid space (V, v) where N is (at most) countable.

Note that a completed tensor product of two normoid Fréchet spaces is still a normoid Fréchet
space.

Lemma 3.19. Every M -normoid Fréchet space is metrizable.

If K is not trivially valued, then every metrizable M -Banachoid space is normoid Fréchet.

Proof. Let N be a countable set and (U, (un)n∈N ) be an N -Banachoid space. We may assume that N
is infinite by adding zero semi-norms if need be and identify N with N. The map

d :

U × U → R

(x, y) 7→
∑
n∈N

2−n
vn(y − x)

1 + vn(y − x)
(3.25)

defines a distance on U that induces the same uniform structure as the family (vn)n∈N. It follows
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that U is normoid Fréchet.

Assume that K is not trivially valued. Let (U, (um)m∈M ) be an M -Banachoid space that is
metrizable. In this case, 0 has a countable basis of neighborhoods, and we may assume that each of
them is defined using only finitely many um’s. Denote by N the set of elements m ∈M that appear
in the definition of one of the neighborhoods. It is countable and the families (um)m∈M and (un)n∈N
are equivalent by Lemma 1.7.

Remark 3.20. Let X be a K-analytic space and let F be a coherent sheaf on X. If the space X
is countable at infinity (i.e. a countable union of compact subsets), then every admissible normoid
structure on F (X) is actually a normoid Fréchet structure. Indeed, by Lemma 1.12, all such struc-
tures are equivalent and, by choosing a countable affinoid cover and carrying out the construction
of item ii) of Definition 1.11, one clearly gets a normoid Fréchet structure. The difference with the
usual Fréchet spaces is that the seminorms defining the topology are part of the data.

The case we have just described will actually be the most interesting for us. Indeed, since K-
analytic curves are paracompact (see [Duc, Théorème 4.5.10]), every K-analytic curve with count-
ably many connected components is countable at infinity.

In the normoid Fréchet setting, we can remove the countable type assumption from Proposi-
tion 3.15.

Proposition 3.21. Let U be a normoid Fréchet space over K, let V be a Banachoid space over K
and let f : U → V be a bounded linear map. Let E be a Banach space over K. Then, we have a
natural isomorphism in BanbK

Ker(f)⊗̂KE
∼−→ Ker(fE). (3.26)

Proof. Starting as in the proof of Proposition 3.15, we are reduced to proving that the natural map
Ker(f)⊗̂KE → Ker(fE) is surjective.

Let x ∈ U⊗̂KE such that fE(x) = 0. Since U⊗̂KE is normoid Fréchet, x may be obtained
as a limit of countably many elements in U ⊗K E. We deduce that there exists a sub-K-vector-
space E0 of E with countable dimension over K such that x is in the image of U⊗̂KE0 in U⊗̂KE.
By Proposition 3.8, we may assume that E = E0 and we may then apply Proposition 3.15 to
conclude.

Using Proposition 3.21 instead of Proposition 3.15, we immediately derive an analogue of Corol-
lary 3.16.

Corollary 3.22. Let X be a K-analytic space countable at infinity, let F be a coherent sheaf on X
and let L be a complete valued extension of K. Endow F (X) with an admissible normoid structure
and FL(XL) with the induced structure. Then, we have a canonical isomorphism in BanbK

F (X)⊗̂KL
∼−→ FL(XL). (3.27)

2

We recall the following criterion result to ensure that a continuous map is topologically strict.
For a reference, see for instance [Sch02, Lemma 22.2] (and note that the assumption that the kernel
is finite-dimensional is not used in the proof).

Proposition 3.23. Assume that K is not trivially valued. Let f : E → F be a continuous map
between Fréchet spaces over K that has finite-dimensional cokernel. Then, the image of f is closed
and topologically complemented and f is topologically strict. 2
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Corollary 3.24. Let f : (U, u)→ (V, v) be a bounded K-linear map between normoid Fréchet spaces.
Let L be a complete non-trivially valued extension of K such that fL has finite-dimensional cokernel.
Then, there exist families of seminorms u′ and v′ equivalent to u and v respectively such that the
map f : (U, u′)→ (V, v′) is strict. In particular, f is topologically strict.

Proof. By Proposition 3.23, fL is topologically strict and its image is topologically complemented.
By Lemmas 1.25 and 1.7, we may replace the families of seminorms on U⊗̂KL and V ⊗̂KL by
equivalent ones so that fL becomes strict. The result now follows from Lemma 3.9.

Combining this corollary with Proposition 3.8, we obtain the following descent result.

Corollary 3.25 (Descent). Let f : (U, u) → (V, v) be a bounded K-linear map between normoid
Fréchet spaces. Let E be Banachoid space over K. Assume that there exists a complete non-trivially
valued extension L of K such that fL has finite-dimensional cokernel. Then, f has finite-dimensional
cokernel and we have canonical isomorphisms in BanbK

Ker(f)⊗̂KE
∼−→ Ker(fE) (3.28)

and

Coker(f)⊗K E
∼−→ Coker(fE). (3.29)

2

Corollary 3.26 (Descent). Let

C : · · · → (Un−1, un−1)
fn−→ (Un, un)

fn+1−−−→ (Un+1, un+1)→ · · · (3.30)

be a complex of normoid Fréchet spaces with bounded K-linear maps. Let E be a Banach space
over K and consider the complex

CE : · · · → (Un−1, un−1)⊗̂KE
fn,E−−−→ (Un, un)⊗̂KE

fn+1,E−−−−→ (Un+1, un+1)⊗̂KE → · · · (3.31)

Let L be a complete non-trivially valued extension of K and consider the complex

CL : · · · → (Un−1, un−1)⊗̂KL
fn,L−−−→ (Un, un)⊗̂KL

fn+1,L−−−−→ (Un+1, un+1)⊗̂KL→ · · · (3.32)

Let n ∈ Z and assume that Hn(CL) is finite-dimensional. Then, Hn(C) is finite-dimensional and we
have a canonical isomorphism

Hn(C)⊗K E
∼−→ Hn(CE). (3.33)

Proof. Let n ∈ Z. Let F ∈ {K,L}. By Proposition 3.21, we have a canonical isomorphism

Ker(fn+1)⊗̂KF
∼−→ Ker(fn+1,F ). (3.34)

Consider the map gn : Un−1 → Ker(fn+1) induced by fn. It is a bounded map of normoid Fréchet
spaces and we have Coker(gn) = Hn(C). Applying the functor−⊗̂KF , we find a map gn,F : Un−1⊗̂KF →
Ker(fn+1)⊗̂KF . Thanks to (3.34), we have Coker(gn,F ) = Hn(CF ) and the result now follows from
Corollary 3.25.

Arguing as in the proof of Corollary 3.16, we deduce the following result.

Corollary 3.27. Let X be a K-analytic space that is countable at infinity, let F be a coherent sheaf
on X and let L be a complete valued extension of K. Endow F (X) with an admissible normoid
structure and FL(XL) with the induced structure. Then, we have a canonical isomorphism in BanbK

F (X)⊗̂KL
∼−→ FL(XL). (3.35)

20



Banachoid spaces

Let n > 1. Assume that X is separated and that there exists M ∈ {K,L} such that M is not
trivially valued and Hn(XM ,FM ) is finite-dimensional. Then, Hn(X,F ) and Hn(XL,FL) are both
finite-dimensional and we have a canonical isomorphism

Hn(X,F )⊗K L
∼−→ Hn(XL,FL). (3.36)

2

We may also generalize the result of Corollary 3.17 to higher cohomology groups.

Corollary 3.28. Let X be K-analytic space that is separated and countable at infinity and Y be
a K-affinoid space. Denote by prX and prY the canonical projections from X ×K Y to X and Y
respectively. Let F and G be coherent sheaves on X and Y respectively. Endow F (X) and G (Y )
with admissible normoid structures. Let n > 1 and assume that there exists a complete non-trivially
valued extension L of K such that Hn(XL,FL) is finite-dimensional. Then, Hn(X,F ) is finite-
dimensional and we have a canonical isomorphism

Hn(X,F )⊗K G (Y )
∼−→ Hn(X ×K Y,F �K G ). (3.37)

2

Under more restrictive conditions, we can also consider tensor products of complexes by normoid
Fréchet spaces.

Corollary 3.29. Let

C : 0
f0−→ (U0, u0)

f1−→ (U1, u1)
f2−→ · · · fn−→ (Un, un)→ 0 (3.38)

be a finite complex of normoid Fréchet spaces with bounded K-linear maps. Let E be a normoid
Fréchet space over K, let L be a complete non-trivially valued extension of K and consider the
complexes

CE : 0
f0,E−−→ (U0, u0)⊗̂KE

f1,E−−→ · · ·
fn,E−−−→ (Un, un)⊗̂KE → 0 (3.39)

and

CL : 0
f0,L−−→ (U0, u0)⊗̂KL

f1,L−−→ · · ·
fn,L−−−→ (Un, un)⊗̂KL→ 0. (3.40)

Assume that, for each m ∈ {1, . . . , n}, Hm(CL) is finite-dimensional over L. Then, for each m ∈
{0, . . . , n}, we have a canonical isomorphism in BanbK

Hm(C)⊗̂KE
∼−→ Hm(CE). (3.41)

Proof. By a decreasing induction on m ∈ {0, . . . , n}, we will prove that, for F ∈ {E,L}, we have
canonical isomorphisms

Hm(C)⊗̂KF
∼−→ Hm(CF ) (3.42)

and

Ker(fm)⊗̂KF
∼−→ Ker(fm,F ). (3.43)

Let us start with m = n. For G ∈ {K,E,L}, the map fn is a bounded map of normoid Fréchet
spaces and we have Coker(fn,G) = Hn(CG). The results then follow from Corollary 3.25.

Let us now assume that the result holds for somem ∈ {1, . . . , n}. Consider the map gm−1 : Um−1 →
Ker(fm) induced by fm−1. It is a bounded map of normoid Fréchet spaces and we have Coker(gm−1) =
Hm−1(C). Let F ∈ {E,L}. Applying the functor −⊗̂KF , we find a map gm−1,F : Um−1⊗̂KF →
Ker(fm)⊗̂KF . By induction, we have Ker(fm)⊗̂KF

∼−→ Ker(fm,F ) and the map gm−1,F identifies to
the map induced by fm−1,F . We then conclude by Corollary 3.25 again.
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We may now also remove the assumption that Y is affinoid in Corollaries 3.17 and 3.28.

Corollary 3.30. Let X and Y be K-analytic spaces that are separated and countable at infinity.
Denote by prX and prY the canonical projections from X×KY to X and Y respectively. Let F and G
be coherent sheaves on X and Y respectively. Endow F (X) and G (Y ) with admissible normoid
structures. Assume that X is of finite dimension and that there exists a complete non-trivially valued
extension L of K such that, for each m > 1, Hm(XL,FL) is finite-dimensional and Hm(YL,GL) = 0.
Then, we have a canonical isomorphism in BanbK

F (X)⊗̂KG (Y )
∼−→ (F �K G )(X ×K Y ) (3.44)

and, for each n > 1, Hn(X,F ) is finite-dimensional and we have

Hn(X,F )⊗K G (Y )
∼−→ Hn(X ×K Y,F �K G ). (3.45)

Proof. Let V be an affinoid covering of X for the G-topology and consider the Čech complex

C : 0→
∏
V ∈U

F (V )→
∏

V 6=W∈U

F (V ∩W )→ · · · (3.46)

By Corollary 3.27, the higher cohomology groups of the complex CL are finite-dimensional over L. It
then follows from Corollary 3.29 that the groups Hn(X,F )⊗̂KG (Y ) are the cohomology groups of
the complex CG (Y ). By Corollary 3.17, for each affinoid domain U of X, we have F (U)⊗̂KG (Y ) '
(F �K G )(U ×K Y ), hence CG (Y ) is a Čech complex for F �K G on X ×K Y . By Corollary 3.28,

for each affinoid domain U of X, the sheaf F �K G is acyclic on U ×K Y , hence the previous Čech
complex does computes the cohomology of F �K G on X ×K Y .

4. Cohomology of curves

4.1. Stein curves

Let us recall the definition of a quasi-Stein space (see [Kie67, Definition 2.3]).

Definition 4.1 (Quasi-Stein). We say that a K-analytic space X is quasi-Stein if there exists a
covering (Xn)n>0 of X for the G-topology such that

i) Xn ⊆ Xn+1;

ii) Xn is an affinoid domain of Xn+1;

iii) the map O(Xn+1)→ O(Xn) has dense image.

Let us now recall a result of Kiehl. Recall that a point x in a K-analytic space is said to be rigid
if the extension H (x)/K is finite.

Theorem 4.2 ([Kie67, Satz 2.4]). Let X be a K-analytic quasi-Stein space. Let F be a coherent
sheaf on X. Then the following results hold:

i) For every q > 1, we have Hq(X,F ) = 0.

ii) For every rigid point x ∈ X, the stalk Fx is generated by F (X) as an OX,x-module.

2

Remark 4.3. Kiehl actually gave the definition in the setting of rigid geometry, i.e. for strictly
K-analytic spaces with strictly K-affinoid domains and for a non-trivially valued field K. However,
Theorem 4.2 is easily seen to hold in the more general case with the same proof.
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As in the complex setting, the obstruction for a K-analytic curve to be Stein lies in the presence
of proper (or, equivalently, projective) connected components.

Theorem 4.4 ([LvdP95, Theorem 3.4]). Assume that K is not trivially valued. Let X be a quasi-
smooth strictly K-analytic curve. If no connected component of X is proper, then X is quasi-Stein.
2

Definition 4.5 (Cohomologically Stein). We say that a K-analytic space X is cohomologically
Stein if, for every coherent sheaf F on X and every q > 1, we have

Hq(X,F ) = 0. (4.1)

Thanks to the techniques developed in the previous sections, we can prove the following result.

Corollary 4.6. Let X be a quasi-smooth K-analytic curve. If no connected component of X is
proper, then X is cohomologically Stein.

Proof. We may assume that X is connected. By [Duc, Théorème 4.5.10]), X is paracompact, hence
countable at infinity.

Let F be a coherent sheaf on X. Let L be a complete non-trivially valued extension of K such
that XL is strictly L-analytic. By Theorem 4.4, XL is quasi-Stein, hence by Kiehl’s Theorem 4.2,
we have Hq(XL,FL) = 0. The result now follows from Corollary 3.27.

Remark 4.7. The converse of Corollary 4.6 also holds.

As usual, the cohomological vanishing has consequences in terms of global generation of coherent
sheaves.

Corollary 4.8. Let X be a quasi-smooth K-analytic curve with no proper connected components.
Then, every coherent sheaf F on X is generated by its global sections: for each x ∈ X, the stalk Fx

is generated by F (X) as an OX,x-module.

Proof. We may assume that X is connected. Let us first assume that X contains only type 3 points.
If k is not trivially valued, then X is reduced to a point and the result is obvious.

If k is trivially valued, then, there exists an irreducible polynomial P ∈ k[T ] and an interval
I ⊆ ]0, 1[ such that X is isomorphic to the analytic domain of the line defined by {|P | ∈ I}. Let
us write the interval I as an increasing union of closed intervals In, with n ∈ N. We may also
write X as the increasing union of the affinoid domains Xn = {|P | ∈ In}. Note that, for every
n ∈ N, the ring O(Xn) is a field isomorphic to the P -adic completion of k[T ] and the restriction
map O(Xn+1) → O(Xn) is an isomorphism. It follows that O(X) is also isomorphic to the P -adic
completion of k[T ] and that the global section functor induces an equivalence of categories between
coherent sheaves on X and finite-dimensional vector spaces over O(X).

We now assume that X does not contain only points of type 3. In this case, every non-empty
closed analytic subset of X contains a rigid point.

Let F be a coherent sheaf on X. Let z be a rigid point in X. Let Iz be the sheaf of ideals that
defines {z} with its reduced structure. Using the exact sequence

0→ IzF → F → F/IzF → 0 (4.2)

and the fact that H1(X,IzF ) = 0, one shows that the morphism

F (X)→ (F/IzF )(X) ' Fx/mxFx, (4.3)
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where mx denotes the maximal ideal of the local ring Ox, is surjective. It now follows from Nakayama’s
lemma that the stalk Fx is generated by F (X) as an Ox-module.

Let G be the sheaf of OX -modules generated by F (X). The sheaf F/G is of finite type. It
follows that its support is a closed analytic subset Z of X. The previous argument shows that Z
contains no rigid point, hence Z is empty. We deduce that F = G and the result follows.

We say that a coherent sheaf F on a K-analytic space X is of bounded rank if the family(
rankH (x)(F (x))

)
x∈X is bounded.

Corollary 4.9. Let X be a quasi-smooth K-analytic curve with no proper connected components.
Let F be a coherent sheaf of bounded rank on X. Then the module of global sections F (X) is of
finite type over O(X).

In particular, there exist an integer q and a surjective morphism Oq → F .

Proof. As in the proof of Corollary 4.8, we may assume that X is connected and contains a rigid
point z. Let F be a coherent sheaf of bounded rank on X. By Corollary 4.8, there exists an integer q0
and a morphism ϕ : Oq0 → F on X such that the induced morphism ϕz : Oq0

z → Fz is surjective.

Let us now consider the coherent sheaf G given by the cokernel of ϕ. Its support Z is a closed
analytic subset of X that does not contain z. If it is empty, then we are done. Otherwise, it is
a locally finite subset of rigid points of X. Remark that G is also of bounded rank, hence, by
Corollary 4.8, there exists an integer q1 and a surjective morphism ψ : Oq1 → G on X.

Since X is cohomologically Stein, the morphism ψ induce a surjective morphism O(X)q1 →
G (X), hence G (X) is of finite type. Similarly, we have an exact sequence O(X)q0 → F (X) →
G (X)→ 0, which shows that F (X) is of finite type.

The last statement follows from the first and from Corollary 4.8.

Corollary 4.10. Let X be a quasi-smooth K-analytic curve with no proper connected components
and let Y be an analytic domain of X such that the restriction map O(X)→ O(Y ) has dense image
(with respect to the topology of compact convergence). Let F be a coherent sheaf of bounded rank
on X and endow F (X) and F (Y ) with admissible normoid structures. Then the restriction map
F (X)→ F (Y ) has dense image.

Proof. By Corollary 4.9, there exist an integer q and a surjective morphism ϕ : Oq → F . Denote
by K the kernel of ϕ. It is a coherent sheaf. By Corollary 4.6, for each analytic domain U of X, we
have H1(U,K ) = 0, hence the map O(U)q → F (U) induced by ϕ is surjective.

Let V be an affinoid covering of X for the G-topology such that {V ∈ V | V ⊆ Y } is a covering
of Y for the G-topology. Let us endow F (X) with the basic admissible structure defined the
covering V and the surjections above and let us endow F (Y ) with the induced normoid structure.
It is now easy to check that the restriction map F (X)→ F (Y ) has dense image.

Corollary 4.11. Let X be a quasi-smooth K-analytic curve with no proper connected components.
The functor F 7→ F (X) induces an equivalence between the category of coherent sheaves of bounded
rank (resp. locally free sheaves of bounded rank) and the category of O(X)-modules of finite type
(resp. projective O(X)-modules of finite type).

Proof. The equivalence between the category of coherent sheaves of bounded rank and the category
of O(X)-modules of finite type follows from Corollaries 4.8 and 4.9.

Let F be a coherent sheaf of bounded rank. We want to prove that it is locally free if, and only
if, F (X) is projective. If F (X) is projective, then it is a direct factor of a free O(X)-module, hence,
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by Corollary 4.8, for every x ∈ X, Fx is a direct factor of a free OX,x-module, hence projective,
hence free.

Let us now assume that F is locally free. By Corollary 4.9, there exist an integer q and a
surjective morphism Oq → F . It gives rise to a morphism of coherent sheaves H om(F ,Oq) →
H om(F ,F ). This morphism is surjective because it is surjective on each stalk since F is locally
free. Since X is cohomologically Stein, passing to global sections, we find a surjective morphism

Hom(F (X),O(X)q) = H0(X,H om(F ,Oq))→ H0(X,H om(F ,F )) = Hom(F (X),F (X)).
(4.4)

It follows that the identity endomorphism on F has a preimage, hence the surjective map O(X)q →
F (X) has a section, hence F (X) is a direct factor of a free module and F (X) is projective.

4.2. de Rham cohomology

In this section, we will derive some consequences of our results for de Rham cohomology on curves.

To begin with, let us show that connections on locally free sheaves on curves give rise to bounded
maps.

Lemma 4.12. Let V be a K-affinoid quasi-smooth curve such that there exists an affinoid domain W
of the affine line and a finite Ã c©tale morphism ϕ : V → W . Let F be a free OV -module of finite
rank endowed with a connexion ∇ : F → F ⊗ Ω1

V . Then, there exist a norm ‖·‖ on F (V ) and a
norm ‖·‖′ on F (V )⊗O(V ) Ω1(V ) such that

i) the norm ‖·‖ (resp. ‖·‖′) is the sup-norm (as in (2.9)) with respect to some O(V )-basis
of F (V ) (resp. F (V )⊗O(V ) Ω1(V ));

ii) (F (V ), ‖·‖) and (F (V )⊗O(V ) Ω1(V ), ‖·‖′) are Banach spaces;

iii) the connection ∇ : (F (V ), ‖·‖)→ (F (V )⊗O(V ) Ω1(V ), ‖·‖′) is a contraction.

Proof. Let us first work on W . Let T be a coordinate on A1,an
K . Then, we may identify Ω1

W with OW

by choosing the basis dT of Ω1
W . Let us endow O(W ) with the sup-norm ‖·‖W on W . It is a

Banach ring. Denote by ‖·‖′W the norm induced by ‖·‖W on Ω1(W ). It makes it a Banach space
too. Explicit computations show that the derivation d/dT is a bounded map. This is easy to check
if W is a closed disk and, in the general case, one may use the Mittag-Leffler decomposition (see
[FvdP04, Proposition 2.2.6]). It follows that the natural map

dW : (O(W ), ‖·‖W )→ (Ω1(W ), ‖·‖′W ) (4.5)

is bounded: there exists C ∈ R+ such that, for each f ∈ O(W ), ‖dW (f)‖′W 6 C ‖f‖W .

The finite morphism ϕ induces a finite morphism O(W )→ O(V ). Let us choose a finite gener-
ating family e1, . . . , en of O(V ) over O(W ). Consider the corresponding surjection O(W )n → O(V )
and endow O(V ) with the quotient norm ‖·‖V,q induced by ‖·‖W . It gives O(V ) a structure of
Banach ring.

Since ϕ is étale, we have an isomorphism ϕ∗Ω1
W
∼−→ Ω1

V , hence an isomorphism of global sections
Ω1(W )⊗O(W ) O(V )

∼−→ Ω1(V ). Let us endow Ω1(V ) with the tensor norm ‖·‖′V,q induced by ‖·‖′W
and ‖·‖V,q. It gives Ω1(V ) a structure of Banach space.

Let us now prove that the natural map

dV : (O(V ), ‖·‖V,q)→ (Ω1(V ), ‖·‖′V,q) (4.6)

is bounded. Let f ∈ O(V ) and let ε > 0. There exist a1, . . . , an ∈ O(W ) such that f =
∑n

i=1 aiei
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and ‖f‖V,q > max16i6n(‖ai‖W )− ε. We have

‖dV (f)‖′V,q 6 max
(∥∥∥ n∑

i=1

dW (ai)ei

∥∥∥′
V,q
,
∥∥∥ n∑
i=1

ai dW (ei)
∥∥∥′
V,q

)
(4.7)

6 max
16i6n

(‖dW (ai)‖W , ‖ai‖W ‖dV (ei)‖′V,q) (4.8)

6 max
(
C, max

16j6n
‖dV (ej)‖′V,q

)
· (‖f‖V,q + ε). (4.9)

It follows that dV is bounded.

Since V is reduced, the sup-norm on O(V ) is equivalent to the norm ‖·‖V,q. To prove this, by
Proposition 3.6, one may tensor with Kr finitely many times, hence reduce to the case where K
is non-trivially valued and V is strictly K-affinoid. The result then follows from [BGR84, Theo-
rem 6.2.4/1] (see also [Ber90, Proposition 2.1.4 (ii)]).

From now on, we endow O(V ) with the sup-norm ‖·‖V on V and Ω1(V ) ' Ω1(W )⊗O(W ) O(V )
with the tensor norm ‖·‖′V induced by ‖·‖′W and ‖·‖V . The map dV : (O(V ), ‖·‖V )→ (Ω1(V ), ‖·‖′V )
is still bounded.

Remark that ‖·‖′V is a norm of O(V )-modules in the sense that

∀a ∈ O(V ),∀s ∈ Ω1(V ), ‖as‖′V 6 ‖a‖V ‖s‖′V . (4.10)

By assumption, F (V ) is a free O(V )-module. Let us choose a basis (e′1, . . . , e
′
m) of it and

endow F (V ) with the sup-norm ‖
∑
fie
′
i‖ := maxi(‖fi‖V ) associated to it. Endow F (V ) ⊗O(V )

Ω1(V ) with the tensor norm ‖·‖′ induced by ‖·‖ and ‖·‖′V . The norms ‖·‖ and ‖·‖′ are norms of
O(V )-modules.

Now remark that, for every a1, . . . , am ∈ O(V ), we have

∇
( m∑
i=1

ai e
′
i

)
=

m∑
i=1

ei ⊗ dV (ai) +
m∑
i=1

ai∇(e′i) ∈ F (V )⊗O(V ) Ω1(V ). (4.11)

It follows that the map ∇ is bounded. Multiplying the norm ‖·‖′V by a constant, we can ensure
that ∇ is a contraction.

Proposition 4.13. Let X be a quasi-smooth K-analytic curve. Let F be a locally free sheaf of finite
rank endowed with a connection ∇. Endow F (X) and F (X)⊗O(X) Ω1(X) with admissible normoid
structures. Then the map

∇(X) : F (X)→ F (X)⊗O(X) Ω1(X) (4.12)

induced by ∇ is bounded.

Proof. Since X is quasi-smooth, it admits an affinoid covering V for the G-topology such that, for
each V ∈ V , there exists a finite étale morphim from V to an affinoid domain of the affine line. Up
to refining the covering, we may assume moreover that, for each V ∈ V , FV is free.

By Lemma 4.12, for every V ∈ V , there exist a norm ‖·‖V on F (V ) and a norm ‖·‖′V on
F (V )⊗O(V ) Ω1(V ) such that the map

(F (V ), ‖·‖V )→ (F (V )⊗O(V ) Ω1(V ), ‖·‖′V ) (4.13)

induced by∇ is bounded. By composing those norms with the restriction maps, we define Banachoid
spaces (F (X), u) and (F (X)⊗O(X)Ω1(X), u′). By construction, the map induced by ∇ is bounded.
Moreover, the first property Lemma 4.12 ensures that u and u′ can be chosen basic admissible.

Corollary 4.14. Let X be a quasi-smooth K-analytic curve. Let (F ,∇) be a module with connection
on X. Let L be a complete valued extension of K. Assume that there exists M ∈ {K,L} such that M

26



Banachoid spaces

is not trivially valued and H1
dR(XM ,FM ) is finite-dimensional. Then, H1

dR(X,F ) and H1
dR(XL,FL)

are both finite-dimensional and we have natural isomorphisms

H0
dR(X,F )⊗K L

∼−→ H0
dR(XL,FL) and H1

dR(X,F )⊗K L
∼−→ H1

dR(XL,FL). (4.14)

Proof. We may assume that X is connected. If X is proper, then it is projective and we get back
to a purely algebraic situation where the result is known to hold.

Let us now assume that X is not proper. By Proposition 4.13, there exist admissible Banachoid
structures on F (X) and F (X)⊗O(X)Ω

1(X) such that the map∇(X) : F (X)→ F (X)⊗O(X)Ω
1(X)

is bounded. Moreover, by [Duc, Théorème 4.5.10], X is paracompact, hence by Remark 3.20, F (X)
and F (X)⊗O(X) Ω1(X) are normoid Fréchet spaces.

By Corollary 4.6, we have H1(X,F ) = H1(X,F ⊗O(X) Ω1(X)) = 0, hence H0
dR(X,F ) and

H1
dR(X,F ) are respectively the kernel and cokernel of the map ∇(X).

The same results hold for XL. Moreover, by Corollary 3.22, the map FL(XL)→ FL(XL)⊗O(XL)

Ω1(XL) is obtained from ∇(X) by applying −⊗̂KL. The result now follows from Corollary 3.25.

For later use, we record here some surjectivity results in de Rham cohomology.

Lemma 4.15. Assume that X has no proper connected component. Let W be an analytic domain
of X such that the restriction map O(X) → O(W ) has dense image. Assume that there exists a
complete non-trivially valued extension L of K such that H1

dR(WL, (FL)|WL
) is finite-dimensional.

Then, the map

H1
dR(X,F ) −−→ H1

dR(W,F|W ) (4.15)

is surjective.

Proof. We may assume that X is connected. It follows from the density hypothesis that W is
connected too. Set F ′ := F ⊗O Ω1. We have a commutative diagram

F (X) F ′(X) H1
dR(X,F ) 0

F (W ) F ′(W ) H1
dR(W,F|W ) 0

∇

∇

(4.16)

By Proposition 4.13, we can endow F (W ) and F ′(W ) with structures of admissible normoid Fréchet
spaces such that the map ∇ : F (W ) → F ′(W ) is bounded. Moreover, by Corollary 4.10, the map
F ′(X)→ F ′(W ) has dense image.

By Corollary 4.6, WL is cohomologically Stein, hence the cokernel of the map ∇L : FL(WL)→
F ′L(WL) coincides with H1

dR(WL, (FL)|WL
), which is finite-dimensional. By Corollary 3.24, ∇ is

topologically strict. In particular, its image is closed, hence its cokernel H1
dR(W,F|W ) is naturally

endowed with a structure of normoid Fréchet space.

By Corollary 4.6, W is cohomologically Stein, hence the bottom line is exact. It follows that the
image of the map H1

dR(X,F )→ H1
dR(W,F|W ) is dense. By Lemma 1.10, it is a closed subspace of

H1
dR(W,F|W ), hence it coincides with it.

A similar result holds for meromorphic de Rham cohomology. Before stating it, let us recall a
few definitions. We still denote by X a quasi-smooth K-analytic curve. Let Z be a locally finite
subset of rigid points of X. We denote by OX [∗Z] the sheaf of meromorphic functions on P that
are holomorphic on X − Z (hence have poles at worst on Z).

Let F be a locally free OX [∗Z]-module of finite rank on X. Following [Del70], we define a
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meromorphic connection on F with poles on Z to be a K-linear map

∇ : F → Ω1
X ⊗OX

F (4.17)

that satisfies the Leibniz rule: for every open subset U of X and every f ∈ OX [∗Z](U) and s ∈ F(U),
we have

∇(fs) = df ⊗ s+ f∇s. (4.18)

We then define, as usual, the de Rham cohomology groups of Hi
dR(X(∗Z), (F ,∇)) to be the

hypercohomology groups of the complex

· · · → 0→ F ∇−→ Ω1
X ⊗OX

F → 0→ · · · , (4.19)

where F is placed in degree 0 and Ω1
X ⊗OX

F in degree 1.

If Z is empty, we recover the usual de Rham cohomology groups of X.

Lemma 4.16. There exists a locally free OX-module G of finite rank such that we have an isomor-
phism of OX [∗Z]-modules (without connections) G⊗OX

OX [∗Z] ' F .

Proof. Every point z of Z admits a neighborhood Uz of z on which the restriction of F is isomorphic
to OX [∗{z}]d for some d. In particular, it is isomorphic to Od

X over Uz − {z}, hence extends to Od
X

over Uz.

Since Z is locally finite, the Uz’s can be chosen disjoint, and the different extensions can then
be glued together.

Lemma 4.17. Let W be an analytic domain of X−Z such that the restriction map (OX [∗Z])(X)→
O(W ) has dense image. Assume that there exists a complete non-trivially valued extension L of K
such that H1

dR(WL,FL) is finite-dimensional. Then the map

H1
dR(X(∗Z),F) −−→ H1

dR(W,F ) (4.20)

is surjective.

Proof. We may assume that X is connected. IfX is projective and Z is empty, the density hypothesis
implies that W = X and the result is obvious. We now assume that we are not in this case. It then
follows from Corollary 4.6 that W is cohomologically Stein.

Set F ′ := F⊗OX
Ω1. By Lemma 4.16, there exists a locally free OX -module of finite rank G such

that G⊗OX
OX [∗Z] ' F ′. If X is projective, then Z is not empty. Let z be a (rigid) point of Z. The

sheaf OX(z) is ample, hence there exists n ∈ N such that G(n · z) is generated by global sections.
Since X is compact, there exist a positive integer q and a surjective morphism OX(−n · z)q → G.
If X is not projective, then, by Corollary 4.6, it is cohomologically Stein, hence, by Corollary 4.9,
there exist a positive integer q and a surjective morphism Oq

X → G. In any case, we have a surjective
morphism

OX [∗Z]q → F ′. (4.21)

Using the same arguments as in the proof of Corollary 4.10, one can prove that the map F ′(X)→
F ′(W ) has dense image. One now concludes as in the proof of Lemma 4.15.

5. The Christol-Mebkhout limit formula for analytic cohomology

In this last section, we prove a statement of commutation of cohomology with projective limits. As
an application, we show that if X is a quasi-Stein curve that can be conveniently “approximated”
by a family of quasi-Stein curves {Xn}n, then the de Rham cohomology of a differential equation F
over X can be recovered as the limit of the de Rham cohomologies of its restrictions to the Xn’s.
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The fundamental assumption here is the finite-dimensionality of the cohomology of F on Xn.
Indeed, the fact that O(Xn) is Fréchet implies that H1

dR(Xn,F ) is separated, and hence that the con-
nection is a strict map, which is the crucial point (see [CM95, Theorem 4], see also Proposition 3.23).
This technique has been introduced by Christol and Mebkhout for open annuli (see [CM00, Proof
of 8.3-1]), following an original idea of Grothendieck (see [Gro61, Chap.0, 13.2.4] and even [Gro54]).

The fundamental assumption is a Mittag–Leffler property (see [Bou71, II, §3, n◦ 5, Théorème 1]).
Results of this kind already appear in the work of Grothendieck (see [Gro57, Proposition 3.10.2]
and [Gro61, 0, Proposition 13.2.3]).

Definition 5.1. Let (I,6) be a directed partially ordered set that admits a cofinal countable subset.
We say that a projective system ((Xi)i∈I , (fi,j)i6j∈I) of topological spaces satisfies the Mittag–Leffler
condition if, for each i ∈ I, there exists j > i such that, for each j′ > j, fi,j′(Uj′) is dense in fi,j(Uj).

Proposition 5.2. Let (I,6) be a directed partially ordered set that admits a cofinal countable subset.
Let ((Ui, ui)i∈I , (ai,j)i6j∈I) and ((Vi, vi)i∈I , (bi,j)i6j∈I) be inverse systems of normoid Fréchet spaces
and let (fi : Ui → Vi)i∈I be an inverse system of contractions between them. We consider the
set-theoretical inverse limits U := lim←−i∈I Ui, V := lim←−i∈I Vi and f := lim←−i∈I fi.

Assume that

i) the projective systems (Ui, ai,j) and (Ker(fi), ai,j) satisfy the Mittag–Leffler condition;

ii) for each i ∈ I, fi is topologically strict.

Then, we have a K-linear isomorphism

Coker(f)
∼−−→ lim←−

i∈I
Coker(fi). (5.1)

In particular, the K-vector space Coker(f) is finite-dimensional if, and only if, the net of di-
mensions (dimK Coker(fj))j∈J is eventually constant. In this case, we have

dimK Coker(f) = lim
j∈J

dimK Coker(fj) . (5.2)

Proof. Let i ∈ I. Denote the image of fi by Wi. By assumption, it is a closed subspace of Vi, hence
it is naturally endowed with a structure of normoid Fréchet space. The space Coker(fi) is naturally
a normoid Fréchet space too and we have an exact sequence

0→Wi → Vi → Coker(fi)→ 0. (5.3)

Since the projective system (Ui, ai,j) satisfies the Mittag–Leffler condition, for each i ∈ I, there
exists j > i such that, for every j′ > j, ai,j′(Uj′) is dense in ai,j(Uj). Since fi is topologically strict,
it follows that bi,j′(Wj′) is dense in bi,j(Wj). In other words, the projective system (Wi, bi,j) satisfies
the Mittag–Leffler condition. By [Gro61, 0, Proposition 13.2.2 and Remarque 13.2.4], we get an
exact sequence

0→ lim←−
i∈I

Wi → lim←−
i∈I

Vi → lim←−
i∈I

Coker(fi)→ 0. (5.4)

Similarly, starting with the system of exact sequences

0→ Ker(fi)→ Ui →Wi → 0, (5.5)

we get an exact sequence

0→ lim←−
i∈I

Ker(fi)→ lim←−
i∈I

Ui → lim←−
i∈I

Wi → 0, (5.6)

which shows that the image of f coincides with lim←−i∈IWi. The result follows.
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Let us now write down an explicit situation where Proposition 5.2 can be applied.

Lemma 5.3. Let X be a quasi-smooth K-analytic curve with coutably many connected components,
none of them being proper. Let F be a locally free sheaf of finite rank endowed with a connection ∇.
Set F ′ := F⊗OX

Ω1
X . Let (Xn)n∈N be a non-decreasing sequence of analytic domains of X forming a

covering of X for the G-topology such that, for each n ∈ N, the restriction map O(Xn+1)→ O(Xn)
has dense image (for the topology of compact convergence).

Then, there exist a set M and admissible M -normoid Fréchet structures on F (X), F ′(X), the
F (Xn)’s and the F ′(Xn)’s such that

i) for each n,m ∈ N with n > m, the maps F (Xn) → F (Xm) and F ′(Xn) → F ′(Xm) are
contractions with dense images;

ii) for each n ∈ N, the maps F (X)→ F (Xn) and F ′(X)→ F ′(Xn) are contractions with dense
images;

iii) for each n ∈ N, the map ∇(Xn) : F (Xn)→ F ′(Xn) is a contraction;

iv) the map ∇(X) : F (X)→ F ′(X) is a contraction;

v) the restriction maps induce the following isomorphisms both in BanM,K and in the category of
sets

F (X)
∼−→ lim←−

n∈N
F (Xn) and F ′(X)

∼−→ lim←−
n∈N

F ′(Xn) (5.7)

and we have a commutative diagram

F (X) F ′(X)

lim←−F (Xn) lim←−F ′(Xn) .

∇

lim←−∇(Xn)

(5.8)

Proof. Denote by V the set of affinoid domains V of X such that

i) there exists a finite étale morphim from V to an affinoid domain of the affine line;

ii) FV is free.

It is a covering of X for the G-topology and, for every n ∈ N, the set Vn := {V ∈ V | V ⊆ Xn} is a
covering of Xn for the G-topology.

By Lemma 4.12, there exist basic admissible V -Banachoid structures u and u′ associated to V
on F (X) and F ′(X) respectively such that the map ∇(X) is a contraction.

For every n ∈ N, endow F (Xn) and F ′(Xn) with the induced V -Banachoid structures vn and v′n
respectively (in the sense of item iii) of Definition 1.11). Then, for every n ∈ N, the restriction maps
F (X)→ F (Xn) and F ′(X)→ F ′(Xn) and the map ∇(Xn) : F (Xn)→ F ′(Xn) are contractions.
Note also that, by Lemma 1.12, the structures un and u′n are admissible.

By assumption, the space X has countably many connected components. We deduce that the
same result holds for the Xn’s. It now follows from Remark 3.20 that the structures u, u′, un and u′n,
for every n ∈ N, are normoid Fréchet structures.

The density properties follow from Corollary 4.10.

The isomorphisms in BanV ,K and in the category of sets follow from the constructions we have
just made and the results in Section 2.3.

We can now state the main result of this section.
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Theorem 5.4. Let X be a quasi-smooth K-analytic curve with finitely many connected components,
none of them being proper. Assume moreover that there exists a non-decreasing sequence of analytic
domains (Xn)n∈N of X forming a covering of X for the G-topology and an integer n0 such that, for
each n > n0,

i) the natural map π0(Xn)→ π0(X) is bijective;

ii) the restriction map O(Xn+1)→ O(Xn) has dense image;

iii) there exists a complete non-trivially valued extension L of K such that the de Rham cohomology
group H1

dR(Xn,L, (FL)|Xn,L
) is a finite-dimensional L-vector space.

Then,

(a) the natural map

H0
dR(X,F )

∼−→ lim←−
n

H0
dR(Xn,F|Xn

) (5.9)

is an isomorphism, H0
dR(X,F ) is a finite-dimensional K-vector space and there exists an inte-

ger n1 such that, for each n,m ∈ N satisfying n > m > n1, the natural map H0
dR(Xn,F|Xn

)→
H0

dR(Xm,F|Xm
) is an isomorphism;

(b) for each n,m > n0, the natural map H1
dR(Xn,F|Xn

)→ H1
dR(Xm,F|Xm

) is surjective;

(c) the natural map

H1
dR(X,F )

∼−→ lim←−
n

H1
dR(Xn,F|Xn

) (5.10)

is an isomorphism and, for each n > n0, the natural map H1
dR(X,F ) → H1

dR(Xn,F|Xn
) is

surjective.

In particular, H1
dR(X,F ) is finite-dimensional if, and only if, the sequence of dimensions (h1

dR(Xn,F|Xn
))n∈N

(or equivalently the sequence of indexes (χdR(Xn,F|Xn
))n∈N) is eventually constant. In this case,

the natural map H1
dR(X,F ) → H1

dR(Xn,F|Xn
) is an isomorphism for all n large enough and we

have

h1
dR(X,F ) = lim

n→+∞
h1
dR(Xn,F|Xn

) and χdR(X,F ) = lim
n→+∞

χdR(Xn,F|Xn
) . (5.11)

Proof. By Corollary 4.6, X is cohomologically Stein, hence the cohomology groups H0
dR(X,F ) and

H1
dR(X,F ) may be respectively identified with the kernel and cokernel of the map ∇(X) : F (X)→

Ω1(X)⊗O(X) F (X). Similar result holds for the Xn’s and after extending the scalars.

(a) The first part of the statement holds since inverse limits commute with kernels. It is also
well-known that all the H0

dR’s are finite-dimensional since the spaces have finitely many connected
components.

Moreover, since F is locally free, it follows from analytic continuation (see [Ber90, Corol-
lary 3.3.21]) that, for every n > n0, the map F (Xn+1) → F (Xn) is injective, hence the map
H0

dR(Xn+1,F|Xn+1
)→ H0

dR(Xn,F|Xn
) is injective too. We deduce that the sequence of dimensions

(h0
dR(Xn,F|Xn

))n∈N is eventually non-increasing, hence eventually constant. It follows that the maps
H0

dR(Xn,F|Xn
)→ H0

dR(Xm,F|Xm
) are isomorphisms for all n,m large enough.

For the rest of the argument, we use the notation of Lemma 5.3 and endow the F (Xn)’s and
the F ′(Xn)’s with normoid Fréchet structures satisfying the properties stated there.

(b) Let n > m > n0. The map F ′(Xn)→ F ′(Xm) has dense image, hence the image Fm,n of the
map H1

dR(Xn,F|Xn
)→ H1

dR(Xm,F|Xm
) is a dense subspace of H1

dR(Xm,F|Xm
). On the other hand,

since H1
dR(Xm,F|Xm

) is a normoid Fréchet space that is finite-dimensional over K, by Lemma 1.10,
the image Fm,n is closed. We deduce that it is equal to H1

dR(Xm,F|Xm
) itself.

31
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(c) By Corollary 3.24, for each n > n0, the map ∇(Xn) : F (Xn) → F ′(Xn) is topologically
strict. By (a), the projective system of the H0

dR(Xn,F|Xn
)’s satisfies the Mittag–Leffler condition.

Lemma 5.3 ensures that the other conditions required by Proposition 5.2 are satisfied. The isomor-
phism (5.10) follows. The surjectivity property is a consequence of (b).
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Jérôme Poineau jerome.poineau@unicaen.fr
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