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Structure of the talk

Part 1 : Berkovich space of a sub-a�noid of A1
K

Settings

Paths on the Berkovich space and norms of type |.|c,R
Maximal Skeleton and log-properties

Two examples of functions : |.| 7→ ρ|.|,X and |.| 7→ ρgen|.|,X

Part 2 : Di�erential Equations and (Elementary) Strati�cations

Analytic functions in a neighborhood of the diagonal

Di�erential equations VS (Elementary) Strati�cation

Part 3 : Def. and properties of the radius of convergence function of
an analytic function around the diagonal (RCF)

Lower semi-continuity of the RCF of a function around the diagonal

A criterion of continuity

Dwork-Robba theorem and continuity of the RCF of a strati�cation.
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Part 1 : The Berkovich space of a K -a�noid
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Settings

(K , |.|) =complete ultrametric �eld of characteristic 0.

X = 1-dimensional, connected, a�noid sub-space fo A1
K of the form :

X = D
+(c0,R0)− ∪ni=1D

−(ci ,Ri ) .

For technical reasons we assume c0, . . . , cn ∈ K , R0 < +∞, and
D−(ci ,Ri ) ⊂ D+(c0,R0) for all i = 1, . . . , n.
We call it a K -a�noid for simplicity.

Analytic functions over X

Let H rat
K (X ) ⊂ K (T ) be the sub-ring of rational functions without

poles over X , together with the sup-norm ‖.‖X .
The Banach algebra of analytic functions over X is the completion

(HK (X ), ‖.‖X ) = (H rat
K (X ), ‖.‖X )̂

(also called Krasner's analytic elements over X ).
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X as a functor

X = D
+(c0,R0)− ∪ni=1D

−(ci ,Ri ) .

If Ω/K is a complete valued �eld extension, then

X (Ω) := {x ∈ Ω | |x − c0| ≤ R0, |x − ci | ≥ Ri , for all i = 1, . . . , n }

So, for f ∈ HK (X ), the sup-norm is given by

‖f ‖X := sup
Ω/K

sup
x∈X (Ω)

|f (x)|Ω

This has a meaning since there exists a �eld Ω∗, and a �nite family of
points tc0,R0 , . . . , tcn,Rn

∈ X (Ω∗) (Shilov boundary) such that for all
Ω/K one has supx∈X (Ω) |f (x)|Ω ≤ max(|f (tc0,R0)|, . . . , |f (tcn,Rn

)|). So
that ‖f ‖X = max(|f (tc0,R0)|, . . . , |f (tcn,Rn

)|). For simplicity we write

‖f ‖X := sup
x∈X
|f (x)| .
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Berkovich space attached to X

De�nition

The Berkovich Space M (HK (X )) = M (X ) is the set of all bounded
multiplicative semi-norms

|.| : HK (X )→ R≥0
satisfying |1| = 1, |0| = 0 and

|f · g | ≤ |f | · |g |
|f + g | ≤ max(|f |, |g |)
There exists C > 0 such that |f | ≤ C‖f ‖X , for all f ∈ HK (X ).

Topology of M (X )

The topology of M (X ) is the �nest one (i.e. that with less open subset)
making continuous each function of the type

|.| 7→ |f | : M (X ) → R≥0

for all f ∈ HK (X ).
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Semi-norms of type |.|t .
Connection with Dwork's terminology

Let (Ω, |.|)/(K , |.|) be a complete valued �eld extension, and let t ∈ X (Ω).
We set

|f |t := |f (t)|Ω , f ∈ HK (X ).

This semi-norm lies in M (X ).

All semi-norms in M (X ) are of type |.|t for a convenient Ω/K , and
t ∈ X (Ω).

We call such a point t ∈ X (Ω) a Dwork generic point for |.|.
Notice that t is not unique.
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Paths in M (X ) and semi-norms of type |.|c,R
Let Ω/K be a c.v.f.e. Let c ∈ Ω, R ≥ 0.
For a polynomial P(T ) ∈ K [T ], we write P as

∑
an(T − c)n, with

an ∈ Ω, then we set

|P(T )|c,R := sup
n
|an|Rn = sup

|x−c|=R

|P(x)|

We set |P/Q|c,R := |P|c,R/|Q|c,R , then we have a semi-norm on
K (T ) and hence on H rat

K (X ).
NOTE : |P/Q|c,R 6= sup|x−c|=R |P(x)/Q(x)|.

FACT

X = D+(c0,R0)− ∪ni=1D
−(ci ,Ri ) .

The semi-norm |.|c,R extends to a semi-norm of HK (X ) in M (X ) if and
only if one of the following conditions is ful�lled

c ∈ X (Ω) and R ≤ R0 ;

c ∈ D−(ci ,Ri ) and Ri ≤ R ≤ R0 for some i = 1, . . . , n.
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Continuous paths

If c ∈ D−(ci ,Ri ) (resp. if c ∈ X (Ω)), then the path

R 7→ |.|c,R : [Ri ,R0]→M (X )
(resp. R 7→ |.|c,R : [0,R0]→M (X ))

is continuous. That is, for all f ∈ HK (X ), the function

R 7→ |f |c,R

is continuous.

NOTE : Of course there is a Dwork generic point tc,R for |.|c,R so that

|.|c,R = |.|tc,R

i .e. |f |c,R = |f (tc,R)| , for all f ∈ HK (X ) .

FACT

|c1 − c2| ≤ R =⇒ |.|c1,R = |.|c2,R
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Connectedness

FACT

|c1 − c2| ≤ R =⇒ |.|c1,R = |.|c2,R

M (X ) is archwise connected

In fact for all |.| ∈M (X ) there is a path connecting |.| to |.|c0,R0 :

First choose a Dwork generic point t for |.| so that |.| = |.|t = |.|t,0
Then consider the path R 7→ |.|t,R : for R = R0 we have

|.|t,R0 = |.|c0,R0

We always have a path connecting |.| to |.|c0,R0 :

•|.| = |.|t,0 • |.|t,R0 = |.|c0,R0
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Log-properties

We say that a given function g has logarithmically a given property if
the function (ln ◦g ◦ exp) has that property.

R>0
g // R>0

lno
��

R

exp o
OO

ln ◦g◦exp
// R

Piecewise Log-a�nity

For c ∈ X (Ω) and f ∈ HK (X ) the function R 7→ |f |c,R is piecewise of
the form aRb i.e. logarithmically a�ne of the form

ρ 7→ ln(a) + ln(b) · ρ ,

where ρ = ln(R) .
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Log-properties

Let f ∈ HK (X ). Let I ⊆ R be an interval.

Let c ∈ X (Ω/K ), (resp. c lies in a hole of X ).

If the path R 7→ |.|c,R , R ∈ I , does not encounter any holes of X (i.e. if
there is no holes of X in the annulus |x − c| ∈ I ), then R 7→ |f |c,R is
Log-convex :

6

-

@
@@

B
B
BB

   
  �

�
�
�
�
��

log(sup(I ))

log(R)

log(|f |(c,R))

log(inf(I ))

The breaks are in correspondence of the values of R equal to the distance
of a zero z of f from c : R = |z − c |. The di�erence of two consecutive
slopes is equal to the number of zeros of f �at that distance from c".
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Log-properties

Let f ∈ HK (X ). Let I ⊆ R be an interval.

Let c ∈ X (Ω/K ), (resp. c lies in a hole of X ).

If the path R 7→ |.|c,R , R ∈ I , encounters some hole of X (i.e. if there is
some hole of X in the annulus |x − c| ∈ I ), then R 7→ |f |c,R has the
following shape :

-

6log(|f |c,R )

•
log(inf(I ))

•
log(ρ1)

•
log(ρ2)

•
log(ρr )

•
log(sup(I ))· · ·

A
A
@ �

�
�
�
��@
@HH �@

@

�
�@
@HH �

�

where ρi are the distances of the holes of X from c .
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Maximal skeleton

There is a natural order relation in M (X ) (induced by the order of R) :
|.|1 ≤ |.|2

Def⇐⇒ |f |1 ≤ |f |2 , for all f ∈ HK (X ) .

Maximal skeleton

X = D+(c0,R0)− ∪ni=1D
−(ci ,Ri ) .

The set of maximal points with respect to the above order is

SX := ∪ni=1 { |.|ci ,R }R∈[Ri ,R0]

A
A
A
A
A
A

�
�
�

HH
HHH

H

�
�
�

�
A
A
A

�
�
�

�
�
�

A
A
A

�
�
�

A
A
A

|.|c0,R0

|.|c7,R7

|.|c1,R1 |.|c2,R2
|.|c3,R3 |.|c4,R4

|.|c5,R5 |.|c6,R6

• •

• •

• •

•

•

• |.|c3,|c3−c4| = |.|c4,|c3−c4|

• |.|c5,|c5−c6| = |.|c6,|c5−c6| = |.|c3,|c5−c3| = · · ·
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The function |.| 7→ ρgen|.|,X
For c ∈ X (Ω) we possibly have

|.|c,0 = |.|c,R for some R > 0.

As an example if X = D+(c0,R0)−∪ni=1D
−(ci ,Ri ), and if tci ,Ri

is a Dwork
generic point of a semi-norm |.|ci ,Ri

in the Shilov boundary, then

|.|tci ,Ri ,0 = |.|tci ,Ri ,R for all 0 ≤ R ≤ Ri .

De�nition of ρgen|.|,X .

We call ρgen|.|,X the supremum of the R ≥ 0 such that |.| = |.|t,R for some

unspeci�ed Dwork's generic point t ∈ X (Ω).

Equivalent de�nitions

Let t ∈ X (Ω) be a �xed Dwork generic point for |.|, then
ρgen|.|,X = sup(R s.t. |.| = |.|t,R) (i.e.the def.is indep.on the choice of t).

ρgen|.|,X = dist(t,K alg) = inf(|T − c| s.t. c ∈ K alg ) .

Every point in D−(t, ρgen|.|,X ) is a Dwork generic point for |.|.
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The function ρgen|.|,X is not continuous

Proof.

Assume that K is a algebraically closed. Let x1, x2, ... be a sequence in OK

such that the residual classes are di�erent xi 6= xj for all i 6= j .
Let X = D+(0, 1) be the closed unit disk. Then

1 limn |.|xn = |.|0,1 in M (X )

2 ρgen|.|xn
= 0 for all n ≥ 1.

3 ρgen|.|0,1 = 1.

We now prove these three facts.

1 Indeed each f ∈ HK (X ) has a �nite number of zeros. If there is no
zeros in the disk D−(xn, 1) then |f |xn = |f |xn,R for all R < 1 (see
properties of slide 11), hence by continuity one has
|f |xn = |f |xn,1 = |f |0,1 (see FACT of slide 9).
This proves that limn |.|xn = |.|0,1.
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Continuation of the proof.

1 .

2 One has ρgen|.|xn
= 0 because the function f := (T − c) veri�es

|f |xn = |xn − c | so that for all R > 0 we choose c such that
|xn − c | < R so

|T − c|xn,R = |(T − xn) + (xn − c)xn,R = max(R, |xn − c|) = R

so |fc |xn 6= |fc |xn,R . Then ρ
gen
|.|xn ,X

= max(R s.t. |.|xn = |.|xn,R) = 0

3 Now let t0,1 be a Dwork generic point for |.|0,1. The same proof does
not hold for |.|0,1 because ρgen|.|0,1,X = dist(t0,1,K ), so t is

transcendental over K .
�The equality |P|t0,1 = |P|0,1 holds for all polynomial P of degree 1 by
a similar computation.
� The equality hence holds for all polynomial because the semi-norm is
multiplicative.
� The equality hence holds for all for all rational fraction and by
density it holds also for all f ∈ HK (X ).
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The function |.| 7→ ρ|.|,X
Let t ∈ X (Ω), then we set

ρt,X := dist(t,A1 − X ) = sup(ρ > 0 s.t. D−(t, ρ) ⊂ X ) .

De�nition of |.| 7→ ρ|.|,X

Let |.| ∈M (X ) and let t be a Dwork generic point for |.| : |.| = |.|t . Then
ρ|.|,X := ρt,X

Continuity of |.| 7→ ρ|.|,X

If X = D+(c0,R0)− ∪ni=1D
−(ci ,Ri ), then (clearly)

ρt,X = min(R0, |t − c1|Ω, . . . , |t − cn|Ω) .

NOTE : |t − ci |Ω = |T − ci | because t is Dwork generic point. So
� This proves that the def. of ρ|.|,X does not depend on the choice of t.
� The function |.| 7→ ρ|.|,X is continuous because it is the minimum of a
�nite family of continuous functions

|.| 7→ R0 and |.| 7→ |T − ci | , i = 1, . . . , n

these functions are continuous by the de�nition of the topology of M (X ).
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ρgen VS ρ

continuity

The function ρgen is upper semi-continuous (because it is the in�mum
of an (in�nite) family of continuous functions, see slides 15).

The function ρ is continuous.

increasing

Assume that |.|1, |.|2 ∈M (X ), with |.|1 ≤ |.|2, then

ρgen|.|1 ≤ ρ
gen
|.|2 (increasing function), and ρgen|.|t = 0 if t ∈ K̂ alg .

ρ|.|1 = ρ|.|2 : So that |.| 7→ ρ|.| is completely determined by its values
on the maximal skeleton.

Equality on the maximal skeleton

If |.| belongs to the maximal skeleton of M (X ), then

ρgen|.| = ρ|.| , (ρ|.|ci ,R
= ρgen|.|ci ,R

= R)
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Part 2 : Di�erential equations and (Elementary) Strati�cations
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Analytic functions on tubes around the diagonal

Tube around the diagonal of X × X :

T (X ,R) := { (x , y) ∈ X × X | |x − y | < R } ,

6

-

X

X

�
�
�
�
�

•

•

T (X ,R)

diagonal

PPPP

PPP

.

AK (T (X ,R)) := Analytic functions on the tube.

If R > 0 is small enough then T (X ,R) ∼= X ×D−(0,R). The
isomorphism is given by (x , y) 7→ (y , x − y).
In term of functions this gives

AK (T (X ,R)) = {
∑

n≥0 fn(y)(x − y)n such that fn ∈
HK (X ) and limn ‖fn‖X · ρn = 0 , ∀ρ < R }

Andrea Pulita (Université de Montpellier II) 9 November 2010 21 / 50



(Elementary) Strati�cations

A strati�cation over X is the data of a �nite free module M over HK (X ),
together with an unspeci�ed R > 0, and a AK (T (X ,R))-linear
isomorphism

χ : p∗1M
∼→ p∗2M

where pi : HK (X )→ AK (T (X ,R)) are the projections
p1, p2 : T (X ,R)→→X , and where p∗i M := M⊗HK (X ),pi AK (T (X ,R)).

�We ask moreover that χ satis�es :

(∆) ∆∗(χ) = IdM, where ∆ : X → T (X ,R) is the diagonal.
(C ) χ satis�es a certain cocycle relation (see slide 26).

Morphisms are HK (X )-linear maps α : M→ N satisfying

p∗2(α) ◦ χM = χN ◦ p∗1(α) .

p∗2M

p∗2 (α)

��

p∗1M
χM

∼
oo

p∗1 (α)

��
p∗2N p∗1N

χN

∼oo
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Di�erential equations

Di�erential modules

A di�erential module over X is a �nite free HK (X )-module together with a
connection ∇ : M→ M , that is a linear map satisfying

∇(f ·m) = f ′ ·m + f · ∇(m), for f ∈ HK (X ), m ∈ M.

a morphism between di�erential equations is a HK (X )-linear map
commuting with the ∇′s. We call d −Mod(HK (X )) the category of
di�erential modules over HK (X ).

Once a basis of M is chosen, then the connection de�nes a di�. eq.

Y ′ = G (T )Y , G (T ) ∈ Mn(HK (X )) .

Indeed we have the diagram : M
∇ // M

HK (X )n

o

OO

d
dT
−G(T )

// HK (X )n.

o

OO
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Di�erential equations VS (Elementary) Strati�cations

The notion of Strati�cation comes back to A.Grothendieck, P.Berthelot,
L.Illusie, N.M.Katz, [...]. They was trying to �nd a substitute to the notion
of Di�. Eq. in characteristic p (see P.Berthelot's Talk).

Theorem :

The category d −Mod(HK (X )) is equivalent to Strat(HK (X )).

The basic idea of the correspondence is the following :

To give the connection ∇ : M→ M means to give the matrix
G (T ) ∈ Mn(HK (X )) for the di�erential equation Y ′ = G (T )Y .

To give the strati�cation p∗1M
∼→ p∗2M means to give the two variable

matrix Y (x , y) ∈ GLn(AK (T (X ,R))) of the strati�cation.

The relations between them is that Y (x , y) is the solution of the equation :
it veri�es

d

dx
Y (x , y) = G (x) · Y (x , y) .
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From Di�.Eq. to Strati�cation =⇒ Generic Taylor solutions

De�nition of Generic Taylor solution

- Consider a di�. eq. Y ′ = G (x)Y , G (x) ∈ Mn(HK (X )).
- We have a Taylor solution at a given point x0 ∈ X :

Y (x) :=
∑
n≥0

Y (n)(x0)
(x − x0)n

n!
, Y (x0) = Id .

- We consider it as a function of x and of x0.
- We choose the Taylor solution equal to Id at x0 : Y (y) = Id, ∀ y ∈ X .
- If Y (n) = Gn(x)Y , we consider the �GENERIC� Taylor solution :

Y (x , y) :=
∑
n≥0

Gn(y)
(x − y)n

n!

It veri�es
d

dx
Y (x , y) = G (x) · Y (x , y) .
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From Di�.Eq. to Strati�cation =⇒ Generic Taylor solutions

Y (x , y) :=
∑
n≥0

Gn(y)
(x − y)n

n!

FACT : This function converges on a certain tube T (X ,R), for some
R > 0 and it veri�es :

d
dxY (x , y) = G (x)Y (x , y)

(∆) Y (x , x) = Id, for all x ∈ X ;

(C ) Y (x , y)Y (y , z) = Y (x , z) (cocycle relation), for all
(x , y), (y , z) ∈ T (X ,R) ;

In fact a matrix Y (x , y) ∈ GLn(AK (T (X ,R))) is the matrix of a
strati�cation χ if and only if it veri�es (∆) and (C ).
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From Strati�cations to Di�.Eq.

• Reciprocally from a strati�cation χ with matrix Y (x , y) one gets the
di�erential equation by considering

G (x) :=
d

dx
(Y (x , y)) · Y (x , y)−1 .

It happens that G (x) ∈ Mn(HK (X )) does not depend on y because of the
cocycle relation.
� The idea is the following. Write

Y (x , y) =
∑
n≥0

Hn(y)(x − y)n ∈ GLn(AK (T (X ,R)))

then :

H1 = G ,

The cocycle relation implies that Hn, n ≥ 1, are totally determined by
the dominant term H1 = G .
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Part 3 : De�nition and properties of the radius of convergence function of
an analytic function around the diagonal
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Radius of convergence function (History)

Historical note

Firstly Dwork found a p-adic proof of the rationality of the Zeta
function of a variety in char. p > 0. The proof involved a particular
p-adic di�.eq. then he de�ned a framework for a de Rham cohomology
theory (overconvergent functions, di�erential modules, ...) today
called Dwork's cohomology.

Christol, Dwork, Robba, [...] worked with di�. eq. on annulus
{r < |x | < r ′}.
For a di�.mod. M over the annulus they have de�ned the Radius of
convergence of M at a Dwork generic point tρ for |.|ρ = |.|0,ρ,
ρ ∈]r , r ′[ as

Rad(M, tρ) := min(ρ,Rad(Y (x , tρ))) .

where Rad(Y (x , tρ)) is the minimum radius of the entries of the
Taylor solution matrix Y (x , tρ) at tρ.

ρ was there to make the de�nition invariant by base changes
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Radius of convergence function (History)

Historical note

In [CD94] Christol and Dwork study the continuity of the function
ρ 7→ Rad(M, tρ) on the segment ]r , r ′[.

Some years later F.Baldassarri and L.Di Vizio [BV07] de�ned the
radius of convergence function for a di�erential module over a
Berkovich space.
As observed by them there was a lack of de�nitions : even the case of
a disk was missing in the literature. In this paper they prove

the continuity of the radius function in the case of a 1-dim a�noid

the upper semi-continuity in the general case.

Finally F.Baldassarri proved the continuity over a curve in a recent
paper (to appears in Inventiones).

Motivation

The radius of convergence function is an invariant (by isomorphisms) of the
di�. module. It encodes numerical invariants like the p- adic irregularity
(Christol-Mebkhout), and the formal irregularity (B.Malgrange).
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Radius of convergence (de�nition).

X = K -a�noid
∇ : M→ M = connection
χ : p∗1M

∼→ p∗2M = strati�cation attached to ∇
G (T ) = matrix of ∇ (Y ′ = G (T )Y , G ∈ Mn(HK (X )))
Y (x , y) = matrix of χ (Y (x , y) ∈ GLn(AK (T (X ,R))))
Y (n) = GnY iterated matrices
Then Y (x , y) =

∑
n≥0

Gn(y)
(x − y)n

n!

De�nition of Radius

For all |.| ∈M (X ) we set

Rad(M, |.|) := min( ρ|.|,X , Rad(Y (x , t)) )

where t =Dwork generic point for |.|, and where

Rad(Y (x , t)) = lim infn
1

n
√
|Gn(t)|/|n!|

clearly it does not depends on the choice of t but only on |.| = |.|t .
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Comments to the de�nition

Rad(M, |.|) := min(ρ|.|,X ,Rad(Y (x , t)))

The use of ρ|.|,X in the de�nition was introduced by Baldassarri - Di
Vizio.
In the context of Christol-Dwork [CD94] over an annulus we have

ρ|.|ρ = ρgen|.|ρ .

Some authors (namely Kedlaya's recent Book) still uses the de�nition
of radius with the ρgen|.|,X instead of ρ|.|,X . This could be, for other

reasons, a convenient choice, because in this case the de�nition of the
radius (using ρgen) results to be equal to a spectral norm of ∇ so the
de�nition seems more intrinsic.

We now list some di�erences :

The de�nition of Rad(M, |.|) using ρgen|.|,X is not invariant by base �eld

extension of K , because ρgen|.|,X measures the distance from K alg of a

Dwork generic point for |.|.
The de�nition of Rad(M, |.|) using ρ|.|,X is invariant by base �eld
extension because it measures the distance of |.| from the holes of X .
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Invariance by pull-back over a Berkovich point

As an example consider the case of the annulus {r < |x | < r ′} and the
norm |.| = |.|c,ρ, c ∈ K . Let AK (]r , r ′[) :=Tate algebra

H (|.|c,ρ) := (Frac(AK (]r , r ′[)), |.|c,ρ)̂
be the complete valued �eld attached to the Berkovich point |.|c,ρ. We
have a morphism of Berkovich spaces

ı : M (H (|.|c,ρ)) → M (AK (]r , r ′[))

FACT : If ρ > 0 then d/dx extends to H (|.|c,ρ).
We then can consider the pull-back over H (|.|c,ρ) of a di�erential
module over the annulus.
Then

The de�nition of Rad(M, |.|) using ρgen|.|,X is invariant by pull-back by ı.

The de�nition of Rad(M, |.|) using ρ|.|,X is not invariant by pull-back

by ı because ρ|.|,X is the �distance from the holes of X � and it highly

depends on the base space X .
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Invariance by pull-back by an inclusion of a�noids.

The same phenomena arises for an inclusion of two a�noids :

X ′ ⊆ X

The radius function de�ned using ρgen|.|,X is invariant by this pull-back

The radius function de�ned using ρ|.|,X is not invariant by this pull-back

The reasons are the same that in the above slide.

See the recent Inventiones paper of F.Baldassarri to see how to obtain a
global intrinsic/normalized de�nition of the Radius function using ρ|.|,X in a
way such that it glues.

In this talk we are mainly concerned with a �xed K -a�noid X . In this case

The radius function de�ned using ρgen|.|,X is not continuous,

The radius function de�ned using ρ|.|,X is continuous,
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Radius of a function around the diagonal

We consider a function f (x , y) ∈ AK (T (X ,R)), R > 0 :

f (x , y) :=
∑

n≥0 fn(y)(x − y)n, fn ∈ HK (X ).

De�nition of Radius of f (x , y) :

Let |.| ∈M (X ), then

Rad(f (x , y), |.|) = min( ρ|.|,X , lim infn
1

n
√
|fn|

)

Transfer theorem

Let |.|1, |.|2 ∈M (X ), then the radius function is decreasing

|.|1 ≤ |.|2 =⇒ Rad(f (x , y), |.|1) ≥ Rad(f (x , y), |.|1) .

Again this theorem is false using ρgen in the de�nition. Because
ρgen|.|1,X ≤ ρ

gen
|.|2,X , while ρ|.|1,X = ρ|.|2,X
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Convergene locus of f (x , y), x-radius and y -radius

Notice that f (x , y) converges on a tube T (X ,R), but usually the
convergence locus of f (x , y) is larger than T (X ,R).

NOTE : Considering the Radius means considering y -sections of the
convergence locus : one specializes y → t (t=Dwork generic point for |.|)
and one checks the Radius of convergence of the 1-variable function around
t

f (x , t) =
∑
n≥0

fn(t)(x − t)n

So we call Radx(f (x , y), |.|) := Rad(f (x , y), |.|) the x-radius. One can
de�ne the y -radius by specializing x at t. In general

Radx(f (x , y), |.|) 6= Rady (f (x , y), |.|) .

Proposition

Radx(f (x , y), |.|) ≤ ρgen|.|,X ⇐⇒ Rady (f (x , y), |.|) ≤ ρgen|.|,X
In this case they are equal.
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Proposition

If Y (x , y) is the generic Taylor solution of an equation Y ′ = GY , then
(without any assumption on the radius) one always has

Radx(Y (x , y), |.|) = Rady (Y (x , y), |.|) .

(intended as the minimum radius of the entries). This result is no longer
true for its entries.
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Examples of radius functions

X = D+(0, 1)

ρ|.|,X = 1, for all |.| ∈M (X )

f (x , y) =
∑

n≥0 fn(y)(x − y)n, fn(y) = y/pn

Radx(f (x , y), |.|) =
{

1 if |.|=|.|0
|p| if |.|6=|.|0 ,

Rady (f (x , y), |.|) =
{

1 if |.|=|.|p
|p| if |.|6=|.|p .
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Examples of radius functions

X = D+(0, r), r > 1

ρ|.|,X = r , for all |.| ∈M (X )

f (x , y) =
∑

n≥0 fn(y)(x − y)n, fn(y) = yn

Radx(f (x , y), |.|t) = min(
1

|t|
, r)

Rady (f (x , y), |.|t) =

{
min( 1

|t| ,1) if |t|6=1

≥min( 1
|t| ,1) if |t|=1

.

In particular Radx 6= Rady on the whole D−(0, 1).

Andrea Pulita (Université de Montpellier II) 9 November 2010 39 / 50



Log-concavity on the maximal skeleton

For all f (x , y) ∈ AK (T (X ,R)), we consider the radius function

|.| 7→ Rad(f (x , y), |.|) : M (X )→ R≥0
Behavior on the maximal skeleton

The function Rad(f (x , y), |.|) has the following log-shape on a branch
R 7→ |.|ci ,R of the maximal skeleton

-

6

•
log(Ri ) •

log(ρi,1)
•
log(ρi,2)

•
log(ρi,ri−1)

•
log(R0)· · ·

· · ·
�
��

PPP� HH
@
@

� @� HH
@
@

i(((
log(R(ρ))

•
•

•

•

•

◦

◦
◦

◦

◦ ◦

◦

ρi ,j corresponds to the distances of ci from the holes of X .

The function is log-concave on the annuli not intersecting the holes.
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This is a general fact about concave functions :

theorem

I =interval of R. A concave function

f : I → R

is continuous on the interior of I .

Each function R 7→ |fn|c,R is log-convex

Then each R 7→ 1
n
√
|fn|c,R

is log-concave

in�im of (log-)concave functions is a (log-)concave function hence use
the theorem
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Lower semi-continuity of the radius

Theorem

For all f (x , y) ∈ AK (T (X ,R)), the radius function

|.| 7→ Rad(f (x , y), |.|) : M (X )→ R≥0

is LSC on each point |.| ∈M (X ) satisfying ρgen|.|,X > 0. This form an open

subset of M (X ) containing the skeleton.

Recall that ρgen|.|,X = 0 if and only if a Dwork generic points for |.| lies in

K̂ alg.
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Idea of the Proof :

One distinguishes the points of the maximal skeleton from the others.
Points in the maximal skeleton :

Log-concavity on the skeleton implies that the restriction of Rad on it
is LSC (easy). Actually we have continuity if no holes in the path.

Transfer theorem implies the LSC on the skeleton (because the values
the radius is minimal on the points of the maximal skeleton).

If |.| is another point (not in the skeleton), then |.| = |.|c,R with R > 0.

Then the annulus A := {R − δ < |x − c| < R + δ} is an open
neighborhood of |.|,
If δ > 0 is small, the restriction of Rad(f , |.|) is continuous on the
path ρ 7→ |.|c,ρ, ρ ∈]R − δ,R + δ[ because there is "no holes of X"

So for all ε > 0 there is δ > 0 small such that

Rad(f , |.|c,ρ) ≥ Rad(f , |.|c,R)− ε,
for all ρ ∈]R − δ,R + δ[. (this is the LSC on this path).

by transfer this also holds for the other points of this annulus (the
radius is minimal in this path). So the inequality is true for all |.| of A.
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proposition

If Y (x , y) is the Taylor solution of a di�.eq. then

|.| 7→ Rad(Y (x , y), |.|) : M (X )→ R≥0

is LSC on the whole M (X ).

The reason is that the radius of a di�erential equation is locally constant

on the K̂ alg -rational points (i.e. those for which ρgen|.|,X = 0).
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Example of non continuous radius

X := D+(0, 1) be the closed unit disk. Let rn be a sequence of real

numbers satisfying : (a) rn < 0, (b) limn rn = 0, (c) rn ∈ n ln(|p|)
N . Let now

αn := ln(|p|n)
rn
∈ N. Then the function f (x , y) :=

∑
n≥0 fn(y)(x − y)n, with

fn := p−n + p−2nxαn veri�es |fn|ρ = sup(|p|−n, |p|−2nραn), in particular

|fn|1 = |p|−2n for all n ≥ 0. Then n
√
|fn|ρ = sup(|p|−1, |p|−2ρ

ln(|p|)
rn ).

6
-ln(ρ)

ln( n
√
|fn|ρ)

• |p|

• |p|2
��1

ln(ρ) 7→ − ln( n
√
|fn|ρ)

Hence Radx(f (x , y), |.|ρ) := min(1, lim infn
1

n
√
|fn|ρ

) = lim infn
1

n
√
|fn|ρ

={
|p| if ρ < 1
|p|2 if ρ = 1

.
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A criterion for the continuity

The above example proves that we need a sort of UNIFORM
CONVERGENCE result in the sense of LSC functions.

We have to ask to the sequence of functions

|.| 7→ 1
n
√
|fn|

to be �superiorly uniformly convergent" to Rad(f (x , y), |.|).
Criterion of continuity

If f (x , y) =
∑

n≥0 fn(y)(x − y)n veri�es

Rad(f (x , y), |.|) is locally constant on the K alg -rational points (rigid
points) (i.e. those for which ρgen = 0),

There exists a sequence Cn such that limn Cn = 1, Cn ≥ 1 for all large
values of n such that

|fn| · Rad(f (x , y), |.|)n = Cn
n , fro all n ≥ 0 ,∀|.| ∈M (X )

then Rad(f (x , y), |.|) is a continuous function on the whole M (X ).
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Dwork-Robba's Theorem

Rad(M, |.|) := min( ρ|.|,X , lim inf
n

1

s

√
|Gs |
|s!|

)

where Gs is the matrix of ∇s : Y (s) = GsY . Recall that the Taylor
solution is

Y (x , y) =
∑
s≥0

Gs(y)
(x − y)s

s!
.

Dwork-Robbs's Theorem

Let t ∈ X (Ω), with Ω/K an arbitrary complete valued �eld extension. Then
for all 0 < ρ ≤ Rad(M, |.|t,0) one has

|Gs |t,ρ
|s!|

≤ ρ−s · {s, n − 1}p · max
0≤i≤n−1

(|Gi |t,ρ · ρi )

where {s, n}p := sup1≤λ1<···<λn≤s |λ1 · · ·λn|
−1
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The Dwork-Robba's theorem in their form asserts that the asymptotic
growth of the coe�cients is controlled by the �rst n coe�cients of the
Taylor solution matrix.

Dwork-Robbs's Theorem revisited

There exists constants µ > 0 and κ > 1 such that

|Gs |
|s!|
· Rad(M, |.|)s ≤ sµ(n−1)

for all |.| ∈M (X ).

Corollary

The radius of convergence function of a di�erential module is continuous :)

The above version of the Dwork-Robba's theorem is exactly the above
criterion of continuity (see slide 46).
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NOTE : the idea of considering the Dwork-Robba's goes back to
Christol-Dwork [CD94]. The same idea have been taken up also by [BV07]
who have been able to generalize the Dwork-Robba's theorem in many
variables. So the upper semi-continuity holds in higher dimensional spaces,
but the lower semi-continuity (that should hold for all funtions around the
diagonal) is an open problem since the base space is actually much more
complicated.

NOTE : The proof we have presented here is supposed to separate the
obstructions to the continuity of topological nature from those coming
from di�erential equation.
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