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Structure of the talk

Part 1 : Berkovich space of a sub-affinoid of A}

@ Settings

o Paths on the Berkovich space and norms of type |.|c 7

o Maximal Skeleton and log-properties

gen

o Two examples of functions : |.| = p|| x and |.| — PrIx

Part 2 : Differential Equations and (Elementary) Stratifications

@ Analytic functions in a neighborhood of the diagonal

o Differential equations VS (Elementary) Stratification

Part 3 : Def. and properties of the radius of convergence function of
an analytic function around the diagonal (RCF)

o Lower semi-continuity of the RCF of a function around the diagonal
@ A criterion of continuity
@ Dwork-Robba theorem and continuity of the RCF of a stratification.
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Part 1 : The Berkovich space of a K-affinoid
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Settings

e (K,|.|) =complete ultrametric field of characteristic 0.
@ X = l-dimensional, connected, affinoid sub-space fo A}( of the form :

X = D%(co,Ro) — U"1D (i, Ri) -

For technical reasons we assume ¢p,...,¢, € K, Ry < +00, and
D~ (¢;,Ri) € D™(cp, Rp) forall i =1,... n.
We call it a K-affinoid for simplicity.

Analytic functions over X

o Let HZY(X) C K(T) be the sub-ring of rational functions without
poles over X, together with the sup-norm ||.||x.

@ The Banach algebra of analytic functions over X is the completion

(H(X), I-1x) = (H2*X). |-lx)

(also called Krasner's analytic elements over X).
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X = D+(C0, Ro) — U?:lDf(C,', R,’) .
e If Q/K is a complete valued field extension, then
X(Q) = {xeQ||x—a| <Ry, [x—ci|>Rj, foralli=1,...,n}
@ So, for f € Hy(X), the sup-norm is given by

Ifllx = sup sup [f(x)|a
Q/K xeX(Q)
This has a meaning since there exists a field ., and a finite family of
poINts te Ry - - - » te, Ry € X(€24) (Shilov boundary) such that for all
Q/K one has SUPxeX(Q) IF(x)]|a < max(|f(tey,Ry)ls - - - [f(ten.r)])- SO
that ||f||x = max(|f(tey.r,):-- -, |f(tc, R, )|). For simplicity we write

Ifllx = sup [f(x)].
xeX
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Berkovich space attached to X

Definition

The Berkovich Space .7 (H k(X)) = .4 (X) is the set of all bounded
multiplicative semi-norms
|+ Hk(X) = Rxo
satisfying |[1| =1, |0| = 0 and
o |f-g|l<|f] gl
o |f + gl < max(|f], |g])
@ There exists C > 0 such that |f| < C||f||x, for all f € Hx(X).

Topology of . (X)
The topology of .#(X) is the finest one (i.e. that with less open subset)
making continuous each function of the type

|.| = |f]: #(X) = Rxo

for all f € Hy(X).
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Semi-norms of type |.|;.

Connection with Dwork’s terminology

Let (2,[.])/(K,|.|) be a complete valued field extension, and let t € X(Q).
We set

Ifl: = 1f(t)]a, fe€Hk(X).
This semi-norm lies in .Z (X).

o All semi-norms in .#(X) are of type |.|; for a convenient /K, and
t e X(Q).

@ We call such a point t € X(£2) a Dwork generic point for |.|.
Notice that t is not unique.
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Paths in .Z(X) and semi-norms of type |.|c g

o Let Q/K beacwv.fe LetceQ, R>0.
e For a polynomial P(T) € K[T], we write P as )_ an(T — c)”, with
ap € €, then we set

[P(T)le,r == suplas|R" = sup [P(x)|
n [x—c|=R
o Weset |P/Q|c.r :=|P|c,r/|Q|c,r, then we have a semi-norm on

K(T) and hence on HZ*(X).
® NOTE : |P/Q|c,r # sup|x—_c|=r |P(x)/Q(x)|.

X = D+(Co, Ro) — U,’-’ZlD_(C,', R,') .
The semi-norm |.|c g extends to a semi-norm of Hy (X) in .#(X) if and
only if one of the following conditions is fulfilled
e ce X(Q)and R<Ry;
e ceD (¢i,R)and Ri < R< Ry forsomei=1,...,n.
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Continuous paths

o If c € D™ (¢, Ri) (resp. if c € X(2)), then the path
R |ler @ [Ri,Ro] = A4 (X)
(resp. R = |.|cr © [0, Ro] — 4 (X))
is continuous. That is, for all f € Hx(X), the function
R — |f|c,R

is continuous.
e NOTE : Of course there is a Dwork generic point t. g for |.|c g so that

|
i.e. ‘f’QR = |f(tC’R)‘ , for all f € %K(X) .

CvR = "|tc,R

a—o|<R = ||qr = |lar
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Connectedness

FACT

la—al<R = ||ar = llor

A (X) is archwise connected

In fact for all |.| € .#Z(X) there is a path connecting |.| to |.|¢ R, :

o First choose a Dwork generic point t for |.| so that |.| = .|t = |.|+0
@ Then consider the path R — |.|; g : for R = Ry we have
Ht,Ro - "‘C07Ro
We always have a path connecting |.| to |.|¢, R, :
|-l = |-]e0® * Ry = |-leo.Ro
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Log-properties

@ We say that a given function g has logarithmically a given property if
the function (Inog o exp) has that property.

R>0 R>0
eXPTl Ziln
>R

 Inogoexp

Piecewise Log-affinity

@ For c € X(Q) and f € Hk(X) the function R — |f| g is piecewise of
the form aR" i.e. logarithmically affine of the form

p = 1In(a) +In(b) - p,
where p = In(R) .
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Log-properties

Let f € Hy(X). Let I C IR be an interval.
Let ¢ € X(2/K), (resp. c lies in a hole of X).

If the path R +— |.|c g, R €/, does not encounter any holes of X (i.e. if
there is no holes of X in the annulus [x —c| € /), then R — |f|c r is
Log-convex :

log(|fl(c,r)) 4

log(inf(1)) \/ |€;g(sup(l))

The breaks are in correspondence of the values of R equal to the distance
of a zero z of f from ¢ : R = |z — c|. The difference of two consecutive
slopes is equal to the number of zeros of f “at that distance from c¢".

log(R)
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Log-properties

Let f € Hk(X). Let I C R be an interval.
Let c € X(2/K), (resp. c lies in a hole of X).

If the path R — |.|c r, R €/, encounters some hole of X (i.e. if there is
some hole of X in the annulus [x — c| € /), then R |f|c g has the
following shape :

A
log(|f|c,R)

log(inf(/)) log(p1) log(p2)  ---  log(pr) log(sup())

where p; are the distances of the holes of X from c.
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Maximal skeleton

There is a natural order relation in .#(X) (induced by the order of R) :

b < |l &5 flL < |fla, forall feHi(X).

Maximal skeleton
X = D+(C07 Ro) — U?:lD*(C,'7 R,’) .

The set of maximal points with respect to the above order is

Zx = UL { | la.r YrelRri R0l

|'|co,R0

Hcsy\cs—cs\ = Hcsy\cs—cs\ = HC:MCs—Cs =

“lcs,\cs—f-‘al = “|C4,\53—54

|'|55,R5 |'|55,R5

|-‘07,R7

|-|63,R3 |-‘64,R4

Hc;,R; |'|cz,R2
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The function |.| — pfle';(

For ¢ € X(Q2) we possibly have

l.lco = |-le,r for some R > 0.

As an example if X = D"(cp, Ro) — U™_;D~(ci, Ri), and if t¢, g, is a Dwork
generic point of a semi-norm |.|; g, in the Shilov boundary, then

|'|tc,-,R,-70 = "|t5;1R;7R forall 0<R<R;.
Definition of /)fTZ(.
We call pﬁf';( the supremum of the R > 0 such that |.| = |.|¢ g for some

unspecified Dwork’s generic point t € X ().

Equivalent definitions

Let t € X(Q2) be a fixed Dwork generic point for |.|, then
° pﬁ'}( =sup(R s.t. |.| = |.|t ) (i.e.the def.is indep.on the choice of t).

gen

° plix = dist(t, K*8) = inf(|T — | s.t. c € K?B) .

gen

@ Every point in D_(t,p|.| x) is a Dwork generic point for |.|.
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The function pf’y is not continuous

1

Assume that K is a algebraically closed. Let xq, xo, ... be a sequence in Ok
such that the residual classes are different X; # X; for all i # j.
Let X = D"(0,1) be the closed unit disk. Then

Q lim,|.|x, = |.lo1 in A(X)
Q pﬁ‘exn =0 for all n > 1.

o pgen -1

[-lo.1
We now prove these three facts.
© Indeed each f € Hy(X) has a finite number of zeros. If there is no
zeros in the disk D™ (x,, 1) then |f|,, = |f|x, g forall R <1 (see
properties of slide 11), hence by continuity one has
|flx, = |flxs1 = |flo,1 (see FACT of slide 9).
This proves that lim,|.|x, = |.[0,1-
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Continuation of the proof.

Q One has pﬁe" = 0 because the function f := (T — c) verifies

Xn

|f|x, = |xn — c| so that for all R > 0 we choose ¢ such that
|xn — ¢| < R so

| T — ¢lxn,g = I{T — X3) + (Xq — C)x,,g = Max(R, |x; — c|) = R

S0 |fe|x, # |fc|xn,r- Then pﬁTZ,,X =max(R s.t. |.|x, = |-|x,,r) =0

© Now let tg1 be a Dwork generic point for |.|o.1. The same proof does
not hold for |.|o1 because pﬁ:hx = dist(tp,1, K), so t is
transcendental over K.
—The equality |P|s , = |Plo,1 holds for all polynomial P of degree 1 by
a similar computation.
— The equality hence holds for all polynomial because the semi-norm is
multiplicative.
— The equality hence holds for all for all rational fraction and by
density it holds also for all £ € Hx(X).

—
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The function |.| = pp) x

Let t € X(Q2), then we set
pex = dist(t,A' — X) = sup(p >0 s.t. D=(t,p) C X) .

Definition of |.| — pj x

Let |.| € #(X) and let t be a Dwork generic point for |.| : |.| = |.|¢. Then

PlI,X = PrX

Continuity of |.| = pj| x

If X =D"(co, Ro) —U™_;D (cj, R;), then (clearly)
Pt.X = min(Ro, |t = C1|Q, ceey |t — Cn’Q) .
NOTE : |t — cilo = | T — ci| because t is Dwork generic point. So
— This proves that the def. of p|| x does not depend on the choice of t.
— The function |.| = p| | x is continuous because it is the minimum of a

finite family of continuous functions
ll—= Ry and [|—|T—c¢i|,i=1,...,n

these functions are continuous by the definition of the topology of .Z (X).
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psen VS p

continuity

@ The function p&°" is upper semi-continuous (because it is the infimum
of an (infinite) family of continuous functions, see slides 15).

@ The function p is continuous.

| A

Increasing
Assume that |.|1, |.|]2 € #Z(X), with |.|1 < |.|2, then
g < pﬁ? (increasing function), and pﬁftn =0ift e K¥s.

® Al
® p||, = p|J, : So that |.| = p| | is completely determined by its values
on the maximal skeleton.

Equality on the maximal skeleton
If |.| belongs to the maximal skeleton of .Z(X), then

gen o gen o
Prp =Pl (/’\Alc,-,R “Pllar T R)
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Part 2 : Differential equations and (Elementary) Stratifications
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Analytic functions on tubes around the diagonal

@ [ube around the diagonal of X x X :
T(X,R) = {(xy) €Xx X |Ix—y| <R},

y

diagonal

T(X,R)

X
o Ak (T(X,R)) := Analytic functions on the tube.
If R > 0 is small enough then T(X,R) = X xD7(0,R). The
isomorphism is given by (x,y) — (y,x — y).
In term of functions this gives
Ak (T(X,R)) = {> 50 fa(y)(x —y)" such that f, €
Hi(X) and limg||fal|x - p" =0,Vp< R }
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(Elementary) Stratifications

A stratification over X is the data of a finite free module M over H(X),
together with an unspecified R > 0, and a Ak (T (X, R))-linear

isomorphism . ~
x : ptM = pM
where p; : Hi(X) = Ax(T (X, R)) are the projections
p1,p2 : T(X,R) X X, and where piM = M @y, (x)p; Ak (T (X, R)).
—We ask moreover that y satisfies :
(A) A*(x) = Idy, where A : X — T (X, R) is the diagonal.
(C) x satisfies a certain cocycle relation (see slide 26).
Morphisms are Hx (X)-linear maps o : M — N satisfying
ps(a)ox™ = xNopi(a).
o X
poM <—— piM
p;(a)l ipf(a)

P§N<XNTP1‘N
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Differential equations

Differential modules

A differential module over X is a finite free 1, (X)-module together with a
connection V : M — M , that is a linear map satisfying

V(f-m)=Ff-m+f-V(m), for f e Hr(X), meM.

a morphism between differential equations is a Hx(X)-linear map
commuting with the V’s. We call d — Mod(H k(X)) the category of
differential modules over Hx (X).

Once a basis of M is chosen, then the connection defines a diff. eq.
Y =G(T)Y, G(T)e€ My(Hx(X)).

Indeed we have the diagram : M v M

l t

4 _G(T
Hi(X)" — S Hi (X)".

Andrea Pulita (Université de Montpellier 9 November 2010



Differential equations VS (Elementary) Stratifications

The notion of Stratification comes back to A.Grothendieck, P.Berthelot,

L.llusie, N.M.Katz, [...]. They was trying to find a substitute to the notion
of Diff. Eq. in characteristic p (see P.Berthelot's Talk).

The category d — Mod(Hk (X)) is equivalent to Strat(Hk (X))

The basic idea of the correspondence is the following :

@ To give the connection V : M — M means to give the matrix
G(T) € Mp(Hk(X)) for the differential equation Y/ = G(T)Y.

e To give the stratification pjM — p3M means to give the two variable
matrix Y(x,y) € GL,(Ak(T (X, R))) of the stratification.

The relations between them is that Y(x, y) is the solution of the equation :
it verifies

9y (y) = 60 YVlxy).
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From Diff.Eq. to Stratification = Generic Taylor solutions

Definition of Generic Taylor solution

- Consider a diff. eq. Y/ = G(x)Y, G(x) € Mp(Hk(X)).
- We have a Taylor solution at a given point xp € X :

= Y Y% X_X")  Y(xo)=1d.
n>0

- We consider it as a function of x and of xg.
- We choose the Taylor solution equal to Id at xp : Y(y) =1d, Vy € X.
- If Y(") = G,(x)Y, we consider the “ GENERIC" Taylor solution :

(x = )"
= Y Gl

o n>0
It verifies
d

aY(X,y) = G(X) ’ Y(Xa)/) :
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From Diff.Eq. to Stratification = Generic Taylor solutions

(x —y)"
n!

Y(xy) = 3 Galy)

n>0

e FACT : This function converges on a certain tube 7 (X, R), for some
R > 0 and it verifies :

S Y(xy)=6(x)Y(x,y)

(A) Y(x,x)=1d, for all x € X;

(C) Y(x,y)Y(y,z) = Y(x,z) (cocycle relation), for all
(X’)/)7()/az) € T(X,R);

e In fact a matrix Y(x,y) € GLy(Ax(T (X, R))) is the matrix of a
stratification x if and only if it verifies (A) and (C).
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From Stratifications to Diff.Eq.

e Reciprocally from a stratification x with matrix Y(x,y) one gets the
differential equation by considering

G(x) = 2

= (Yl Ylxy) ™

It happens that G(x) € Mp(Hxk (X)) does not depend on y because of the
cocycle relation.
— The idea is the following. Write

Y(x,y) =Y Haly)(x —y)" € GLy(Ax(T(X,R)))
n>0
then :
e Hi = G,
@ The cocycle relation implies that H,, n > 1, are totally determined by
the dominant term H; = G.
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Part 3 : Definition and properties of the radius of convergence function of
an analytic function around the diagonal
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Radius of convergence function (History)

Historical note

@ Firstly Dwork found a p-adic proof of the rationality of the Zeta
function of a variety in char. p > 0. The proof involved a particular
p-adic diff.eq. then he defined a framework for a de Rham cohomology
theory (overconvergent functions, differential modules, ...) today
called Dwork’s cohomology.

o Christol, Dwork, Robba, [...] worked with diff. eq. on annulus
fr<|x<r}.

@ For a diff.mod. M over the annulus they have defined the Radius of
convergence of M at a Dwork generic point t, for |.|, = |.
p €]r,r'[ as

0,p:

Rad(M, t,) := min(p, Rad(Y(x,t,)))

where Rad(Y(x,t,)) is the minimum radius of the entries of the
Taylor solution matrix Y(x, t,) at t,.

@ p was there to make the definition invariant by base changes
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Radius of convergence function (History)

Historical note

o In [CD94] Christol and Dwork study the continuity of the function
p — Rad(M, t,) on the segment ]r, r'l.

@ Some years later F.Baldassarri and L.Di Vizio [BV07] defined the
radius of convergence function for a differential module over a

Berkovich space.
As observed by them there was a lack of definitions : even the case of
a disk was missing in the literature. In this paper they prove

e the continuity of the radius function in the case of a 1-dim affinoid
e the upper semi-continuity in the general case.
@ Finally F.Baldassarri proved the continuity over a curve in a recent
paper (to appears in Inventiones).

The radius of convergence function is an invariant (by isomorphisms) of the
diff. module. It encodes numerical invariants like the p- adic irregularity
(Christol-Mebkhout), and the formal irregularity (B.Malgrange).
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Radius of convergence (definition).

e X = K-affinoid

e V:M — M = connection

@ \:piM = piM = stratification attached to V

@ G(T)=matrixof V. (Y =G(T)Y, G € My(Hk(X)))
e Y(x,y) =matrixof x (Y(x,y) € GL,(Axk(T(X,R))))
o Y(" = G,Y iterated matrices ( o

@ Then Y(x,y) = Z Gn()/)%

n>0
Definition of Radius

For all |.| € .#(X) we set
Rad(M. L) = min( p, x . Rad(¥(x.1))

where t =Dwork generic point for |.|, and where

Rad(Y(x,t)) = liminf, ———— ﬁGn(lt)l/\n!I

clearly it does not depends on the choice of ¢ but only on |.| = |.|;.
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Comments to the definition

Rad(M, |.]) := min(p| | x,Rad(Y(x,t)))
@ The use of p| | x in the definition was introduced by Baldassarri - Di

Vizio.
@ In the context of Christol-Dwork [CD94] over an annulus we have
_ gen
Pllp = pHp'
@ Some authors (namely Kedlaya's recent Book) still uses the definition

gen

of radius with the Pl x instead of p| | x. This could be, for other
reasons, a convenient choice, because in this case the definition of the
radius (using p8¢") results to be equal to a spectral norm of V so the
definition seems more intrinsic.
We now list some differences :
@ The definition of Rad(M, |.|) using pﬁ';( is not invariant by base field

extension of K, because pﬁ'}( measures the distance from K8 of a
Dwork generic point for |.|.

@ The definition of Rad(M, |.|) using p|| x is invariant by base field
extension because it measures the distance of |.| from the holes of X.
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Invariance by pull-back over a Berkovich point

@ As an example consider the case of the annulus {r < |x| < r'} and the
norm |.| = |.|c,p. ¢ € K. Let Ak(]r, r'[) :=Tate algebra

H(le) = (Frac(Ax(Ir, D), le,p)

be the complete valued field attached to the Berkovich point |.|¢ ,. We
have a morphism of Berkovich spaces

vi (A (ep)) — A (Ax(r.r']))

FACT : If p > 0 then d/dx extends to J7(].|¢,).
We then can consider the pull-back over J7(|.|c ,) of a differential
module over the annulus.
Then
o The definition of Rad(M, |.|) using pf{’y is invariant by pull-back by <.
o The definition of Rad(M, |.|) using p| | x is not invariant by pull-back
by 2 because p| | x is the “distance from the holes of X" and it highly
depends on the base space X.
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Invariance by pull-back by an inclusion of affinoids.

The same phenomena arises for an inclusion of two affinoids :

X' X

@ The radius function defined using pﬁe'}is invariant by this pull-back
@ The radius function defined using p| | xis not invariant by this pull-back

The reasons are the same that in the above slide.

See the recent Inventiones paper of F.Baldassarri to see how to obtain a
global intrinsic/normalized definition of the Radius function using p| | x in a
way such that it glues.

In this talk we are mainly concerned with a fixed K-affinoid X. In this case

@ The radius function defined using pfle';( is not continuous,

@ The radius function defined using p| | x is continuous,
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Radius of a function around the diagonal

We consider a function f(x,y) € Ax(T(X,R)), R >0:
f(x,y) = Enzo f(y)(x —y)" o€ Hk(X).

Definition of Radius of f(x,y) :
Let |.| € #(X), then

Rad(f(x.y), 1) = min( py . liminf 1) ,

Transfer theorem

Let |.|1,[.]2 € #(X), then the radius function is decreasing

<l = Rad(f(x,y),|.l1) > Rad(f(x,y),|.|1) -

Again this theorem is false using p&¢" in the definition. Because
gen

Pex < P xo while py x = ppjpx
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Convergene locus of f(x, y), x-radius and y-radius

Notice that f(x,y) converges on a tube 7 (X, R), but usually the
convergence locus of f(x,y) is larger than T(X, R).

NOTE : Considering the Radius means considering y-sections of the
convergence locus : one specializes y — t (t=Dwork generic point for |.|)
and one checks the Radius of convergence of the 1-variable function around

t
Zf )(x —t)"

n>0
So we call Rady(f(x,y),|.|) := Rad(f(x,y),|.|) the x-radius. One can
define the y-radius by specializing x at t. In general

Rady(f(x,y),|.I) # Rad,(f(x,y),].])-
Proposition

Rady(f(x,y),|1) < pff% <= Rady(f(x.y),|.)) < pf}x

In this case they are equal.
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If Y(x,y) is the generic Taylor solution of an equation Y’ = GY, then
(without any assumption on the radius) one always has

Rad(Y(x,y),|[) = Rady(Y(x,y),|-]) -

(intended as the minimum radius of the entries). This result is no longer
true for its entries. |
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Examples of radius functions

X =D*(0,1)
plx =1, forall .| € #(X)
f,y) =20 W) (x = y)" faly) =y/p"

Rads(F(x,y), 1) = { )

Rady(F(x, ), 1) = { } &
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Examples of radius functions

X =D*0,r), r>1
px =r forall || € .Z(X)
F(,y) =m0 ) (x —y)", faly) =y"

k(T2 90 ) = min(|17|, "

min(L-.1) if [¢]#1
Rady(f(x,y% ||t) = {zmin(li,l) it [t|=1

In particular Rad, # Rad, on the whole D(0,1).
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Log-concavity on the maximal skeleton

For all f(x,y) € Ax(T (X, R)), we consider the radius function
|.| = Rad(f(x,y),|.|) : #(X)— Rxo

Behavior on the maximal skeleton

The function Rad(f(x,y),]|.|) has the following log-shape on a branch
R — |.|¢;,r of the maximal skeleton

\

CloglR)  og(pra) L loglpia) i Iog(piiy) log(Ro) |

@ p;ij corresponds to the distances of ¢; from the holes of X.

@ The function is log-concave on the annuli not intersecting the holes.
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This is a general fact about concave functions :

| =interval of R. A concave function

f:l =R

is continuous on the interior of /.

e Each function R — |fy|c g is log-convex

—~L is log-concave

LV |fn|c,R

e inflim of (log-)concave functions is a (log-)concave function hence use
the theorem

@ Then each R —
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Lower semi-continuity of the radius

Theorem
For all f(x,y) € Ax(T(X,R)), the radius function

|.| — Rad(f(x,y),|.|) : #(X)— Rx>o

is LSC on each point |.| € .Z(X) satisfying pﬁ?’;( > 0. This form an open
subset of .#Z(X) containing the skeleton.

Recall that pﬁe')'( = 0 if and only if a Dwork generic points for |.| lies in

Kals,
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Idea of the Proof :

One distinguishes the points of the maximal skeleton from the others.
Points in the maximal skeleton :

@ Log-concavity on the skeleton implies that the restriction of Rad on it
is LSC (easy). Actually we have continuity if no holes in the path.

@ Transfer theorem implies the LSC on the skeleton (because the values
the radius is minimal on the points of the maximal skeleton).

If |.| is another point (not in the skeleton), then |.| = |.|c g with R > 0.

@ Then the annulus A:={R —0 < [x —c| < R+ 4} is an open
neighborhood of

e If § > 0 is small, the restriction of Rad(f,|.|) is continuous on the
path p = |.|c,, p €]R — 6, R + J[ because there is "no holes of X"

@ So for all € > 0 there is 6 > 0 small such that
Rad(f, |"C,/)) Z Rad(f7 |"C,R) - 51
for all p €]R — 0, R + ¢[. (this is the LSC on this path).

@ by transfer this also holds for the other points of this annulus (the
radius is minimal in this path). So the inequality is true for all |.| of A.
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proposition

If Y(x,y) is the Taylor solution of a diff.eq. then
| Rad(Y (x,y), 1]} + #(X) = Rsg

is LSC on the whole .Z(X).

The reason is that the radius of a differential equation is locally constant
on the K@8-rational points (i.e. those for which pﬁ?';( =0).

Andrea Pulita (Université de Montpellier 9 November 2010 44 / 50



Example of non continuous radius

X :=D7"(0,1) be the closed unit disk. Let r, be a sequence of real
numbers satisfying : (a) r, <0, (b) lim,r, =0, (c) r, € %. Let now

= |n(|p|”) € N. Then the function f(x,y) :=>_ 5 fa(y)(x — y)", with
foi=p~ +p_2” @n verifies |f,|, = sup(|p|~", |p|™ —2n5an) in particular

In(lp|)
[fals = [p| =27 for all n > 0. Then ¢/Tfu, = sup(lp| %, 1p| 20 7 ).
A In( \/’l |fn‘p)

4 el
In(p) = — In( ¢/Tfal,) /N o
P

Hence Rad(f(x,y),]|-|,) := min(1, liminf,

lp| i p<1
p? if p=1

In(p)

\/7) = liminf, \/W
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A criterion for the continuity

The above example proves that we need a sort of UNIFORM
CONVERGENCE result in the sense of LSC functions.
@ We have to ask to the sequence of functions
1

= =
Ay

to be “superiorly uniformly convergent" to Rad(f(x,y),|.|)-

Criterion of continuity

If f(x,y) = ano fa(y)(x — y)" verifies
o Rad(f(x,y),|.|) is locally constant on the K8-rational points (rigid
points) (i.e. those for which p&" = 0),
@ There exists a sequence C, such that lim, C, =1, C, > 1 for all large

values of n such that
|fa| - Rad(f(x,y),|.)"=C,, froall n>0,v|.| € .#(X)

then Rad(f(x,y),|.|) is a continuous function on the whole .# (X).
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Dwork-Robba’s Theorem

Rad(M, |.[) := min( p| x , liminf )

s/ |Gs|
Is!]

where G; is the matrix of V5 : Y() = G, Y. Recall that the Taylor

solution is ( e
X —
Y(x,y) = ZGs()/)Ty~
5>0 ’

Dwork-Robbs’s Theorem

Let t € X(Q2), with /K an arbitrary complete valued field extension. Then
for all 0 < p < Rad(M, |.|+,0) one has

|Gs|t,P —s i
‘SI‘ Sp {57’7_1}POgrlngag(_lﬂGlhyﬂp)

where {s,n}p == sup; <y, <..cn,<s | A1 An| 7t
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The Dwork-Robba’s theorem in their form asserts that the asymptotic
growth of the coefficients is controlled by the first n coefficients of the
Taylor solution matrix.

Dwork-Robbs’s Theorem revisited
There exists constants ;4 > 0 and £ > 1 such that

|Gs|

s Rad(ML LT < 07D

for all |.| € #Z(X).

The radius of convergence function of a differential module is continuous :)

The above version of the Dwork-Robba’s theorem is exactly the above
criterion of continuity (see slide 46).
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NOTE : the idea of considering the Dwork-Robba’s goes back to
Christol-Dwork [CD94]. The same idea have been taken up also by [BV07]
who have been able to generalize the Dwork-Robba’s theorem in many
variables. So the upper semi-continuity holds in higher dimensional spaces,
but the lower semi-continuity (that should hold for all funtions around the
diagonal) is an open problem since the base space is actually much more
complicated.

NOTE : The proof we have presented here is supposed to separate the
obstructions to the continuity of topological nature from those coming
from differential equation.
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