Radius of convergence function of p-adic differential equations

Andrea Pulita

Université de Montpellier II

9 November 2010

Structure of the talk

Part 1 : Berkovich space of a sub-affinoid of \mathbb{A}_{K}^{1}

- Settings
- Paths on the Berkovich space and norms of type $|\cdot|_{c, R}$
- Maximal Skeleton and log-properties
- Two examples of functions : |.| $\mapsto \rho_{|\cdot|, X}$ and $|.| \mapsto \rho_{|\cdot|, X}^{\text {gen }}$

Part 2 : Differential Equations and (Elementary) Stratifications

- Analytic functions in a neighborhood of the diagonal
- Differential equations VS (Elementary) Stratification

Part 3 : Def. and properties of the radius of convergence function of an analytic function around the diagonal (RCF)

- Lower semi-continuity of the RCF of a function around the diagonal
- A criterion of continuity
- Dwork-Robba theorem and continuity of the RCF of a stratification.

Part 1 : The Berkovich space of a K-affinoid

Settings

- $(K,||)=$. complete ultrametric field of characteristic 0 .
- $X=1$-dimensional, connected, affinoid sub-space fo \mathbb{A}_{K}^{1} of the form :

$$
X=\mathrm{D}^{+}\left(c_{0}, R_{0}\right)-\cup_{i=1}^{n} \mathrm{D}^{-}\left(c_{i}, R_{i}\right)
$$

For technical reasons we assume $c_{0}, \ldots, c_{n} \in K, R_{0}<+\infty$, and $\mathrm{D}^{-}\left(c_{i}, R_{i}\right) \subset \mathrm{D}^{+}\left(c_{0}, R_{0}\right)$ for all $i=1, \ldots, n$.
We call it a K-affinoid for simplicity.

Analytic functions over X

- Let $H_{K}^{\text {rat }}(X) \subset K(T)$ be the sub-ring of rational functions without poles over X, together with the sup-norm $\|.\|_{X}$.
- The Banach algebra of analytic functions over X is the completion

$$
\left(\mathcal{H}_{K}(X),\|\cdot\|_{X}\right)=\left(H_{K}^{r a t}(X),\|\cdot\|_{X}\right)^{-}
$$

(also called Krasner's analytic elements over X).

X as a functor

$$
X=\mathrm{D}^{+}\left(c_{0}, R_{0}\right)-\cup_{i=1}^{n} \mathrm{D}^{-}\left(c_{i}, R_{i}\right)
$$

- If Ω / K is a complete valued field extension, then

$$
X(\Omega):=\left\{x \in \Omega| | x-c_{0}\left|\leq R_{0},\left|x-c_{i}\right| \geq R_{i}, \text { for all } i=1, \ldots, n\right\}\right.
$$

- So, for $f \in \mathcal{H}_{K}(X)$, the sup-norm is given by

$$
\|f\|_{x}:=\sup _{\Omega / K x \in X(\Omega)} \sup |f(x)|_{\Omega}
$$

This has a meaning since there exists a field Ω_{*}, and a finite family of points $t_{c_{0}, R_{0}}, \ldots, t_{c_{n}, R_{n}} \in X\left(\Omega_{*}\right)$ (Shilov boundary) such that for all Ω / K one has $\sup _{x \in X(\Omega)}|f(x)| \Omega \leq \max \left(\left|f\left(t_{c_{0}, R_{0}}\right)\right|, \ldots,\left|f\left(t_{c_{n}, R_{n}}\right)\right|\right)$. So that $\|f\|_{X}=\max \left(\left|f\left(t_{c_{0}, R_{0}}\right)\right|, \ldots,\left|f\left(t_{c_{n}, R_{n}}\right)\right|\right)$. For simplicity we write

$$
\|f\|_{x}:=\sup _{x \in X}|f(x)|
$$

Berkovich space attached to X

Definition

The Berkovich Space $\mathscr{M}\left(\mathcal{H}_{K}(X)\right)=\mathscr{M}(X)$ is the set of all bounded multiplicative semi-norms

$$
\text { |.| }: \mathcal{H}_{K}(X) \rightarrow \mathbb{R}_{\geq 0}
$$

satisfying $|1|=1,|0|=0$ and

- $|f \cdot g| \leq|f| \cdot|g|$
- $|f+g| \leq \max (|f|,|g|)$
- There exists $C>0$ such that $|f| \leq C\|f\|_{X}$, for all $f \in \mathcal{H}_{K}(X)$.

Topology of $\mathscr{M}(X)$

The topology of $\mathscr{M}(X)$ is the finest one (i.e. that with less open subset) making continuous each function of the type
for all $f \in \mathcal{H}_{K}(X)$.

Semi-norms of type $|\cdot|_{t}$. Connection with Dwork's terminology

Let $(\Omega,||) /.(K,||$.$) be a complete valued field extension, and let t \in X(\Omega)$. We set

$$
|f|_{t}:=|f(t)|_{\Omega}, \quad f \in \mathcal{H}_{K}(X)
$$

This semi-norm lies in $\mathscr{M}(X)$.

- All semi-norms in $\mathscr{M}(X)$ are of type $|.|_{t}$ for a convenient Ω / K, and $t \in X(\Omega)$.
- We call such a point $t \in X(\Omega)$ a Dwork generic point for $|$.$| .$ Notice that t is not unique.

Paths in $\mathscr{M}(X)$ and semi-norms of type $\left.|\cdot|\right|_{C, R}$

- Let Ω / K be a c.v.f.e. Let $c \in \Omega, R \geq 0$.
- For a polynomial $P(T) \in K[T]$, we write P as $\sum a_{n}(T-c)^{n}$, with $a_{n} \in \Omega$, then we set

$$
|P(T)|_{c, R}:=\sup _{n}\left|a_{n}\right| R^{n}=\sup _{|x-c|=R}|P(x)|
$$

- We set $|P / Q|_{c, R}:=|P|_{c, R} /|Q|_{c, R}$, then we have a semi-norm on $K(T)$ and hence on $H_{K}^{r a t}(X)$.
- NOTE : $|P / Q|_{c, R} \neq \sup _{|x-c|=R}|P(x) / Q(x)|$.

FACT

$$
X=\mathrm{D}^{+}\left(c_{0}, R_{0}\right)-\cup_{i=1}^{n} \mathrm{D}^{-}\left(c_{i}, R_{i}\right)
$$

The semi-norm $|\cdot|_{c, R}$ extends to a semi-norm of $\mathcal{H}_{K}(X)$ in $\mathscr{M}(X)$ if and only if one of the following conditions is fulfilled

- $c \in X(\Omega)$ and $R \leq R_{0}$;
- $c \in \mathrm{D}^{-}\left(c_{i}, R_{i}\right)$ and $R_{i} \leq R \leq R_{0}$ for some $i=1, \ldots, n$.

Continuous paths

- If $c \in \mathrm{D}^{-}\left(c_{i}, R_{i}\right)$ (resp. if $\left.c \in X(\Omega)\right)$, then the path

$$
\left.\begin{array}{rl}
R & \mapsto|\cdot|_{c, R}:
\end{array}:\left[R_{i}, R_{0}\right] \rightarrow \mathscr{M}(X),\left.~(X)\right|_{c, R}:\left[0, R_{0}\right] \rightarrow \mathscr{M}(X)\right)
$$

is continuous. That is, for all $f \in \mathcal{H}_{K}(X)$, the function

$$
R \mapsto|f|_{c, R}
$$

is continuous.

- NOTE: Of course there is a Dwork generic point $t_{c, R}$ for $|\cdot|_{c, R}$ so that

$$
\begin{gathered}
|\cdot|_{c, R}=\left.|\cdot|\right|_{t_{c, R}} \\
\text { i.e. }|f|_{c, R}=\left|f\left(t_{c, R}\right)\right|, \quad \text { for all } f \in \mathcal{H}_{K}(X)
\end{gathered}
$$

$$
\left|c_{1}-c_{2}\right| \leq R \quad \Longrightarrow \quad|\cdot|_{c_{1}, R}=\left.|\cdot|\right|_{c_{2}, R}
$$

Connectedness

FACT

$$
\left|c_{1}-c_{2}\right| \leq R \quad \Longrightarrow \quad|\cdot| c_{1}, R=|\cdot| c_{2}, R
$$

$\mathscr{M}(X)$ is archwise connected
In fact for all $|.| \in \mathscr{M}(X)$ there is a path connecting $|$.$| to |.| c_{0}, R_{0}$:

- First choose a Dwork generic point t for $|$.$| so that \left|.\left|=\left|.\left|\left.\right|_{t}=|| t, 0\right.\right.\right.\right.$.
- Then consider the path $R \mapsto|\cdot|_{t, R}:$ for $R=R_{0}$ we have

$$
|\cdot|_{t, R_{0}}=\left.|\cdot|\right|_{c_{0}, R_{0}}
$$

We always have a path connecting $|$.$| to |.|_{c_{0}, R_{0}}$:

$$
|\cdot|=|\cdot|_{t, 0}^{\bullet} \quad \bullet|\cdot|_{t, R_{0}}=\left.|\cdot|\right|_{c_{0}, R_{0}}
$$

Log-properties

- We say that a given function g has logarithmically a given property if the function ($\ln \circ g \circ \exp$) has that property.

Piecewise Log-affinity

- For $c \in X(\Omega)$ and $f \in \mathcal{H}_{K}(X)$ the function $R \mapsto|f|_{c, R}$ is piecewise of the form $a R^{b}$ i.e. logarithmically affine of the form

$$
\rho \mapsto \ln (a)+\ln (b) \cdot \rho,
$$

where $\rho=\ln (R)$.

Log-properties

Let $f \in \mathcal{H}_{K}(X)$. Let $I \subseteq \mathbb{R}$ be an interval.
Let $c \in X(\Omega / K)$, (resp. c lies in a hole of $X)$.
If the path $R \mapsto|\cdot|_{c, R}, R \in I$, does not encounter any holes of X (i.e. if there is no holes of X in the annulus $|x-c| \in I$), then $R \mapsto|f|_{c, R}$ is Log-convex :

The breaks are in correspondence of the values of R equal to the distance of a zero z of f from $c: R=|z-c|$. The difference of two consecutive slopes is equal to the number of zeros of f "at that distance from c ".

Log-properties

Let $f \in \mathcal{H}_{K}(X)$. Let $I \subseteq \mathbb{R}$ be an interval.
Let $c \in X(\Omega / K)$, (resp. c lies in a hole of $X)$.
If the path $R \mapsto|\cdot|_{c, R}, R \in I$, encounters some hole of X (i.e. if there is some hole of X in the annulus $|x-c| \in I)$, then $R \mapsto|f|_{c, R}$ has the following shape :

where ρ_{i} are the distances of the holes of X from c.

Maximal skeleton

There is a natural order relation in $\mathscr{M}(X)$ (induced by the order of \mathbb{R}):

$$
|\cdot|_{1} \leq\left.\left|.\left.\right|_{2} \stackrel{\text { Def }}{\Longleftrightarrow}\right| f\right|_{1} \leq|f|_{2}, \text { for all } f \in \mathcal{H}_{K}(X)
$$

Maximal skeleton

$$
X=\mathrm{D}^{+}\left(c_{0}, R_{0}\right)-\cup_{i=1}^{n} \mathrm{D}^{-}\left(c_{i}, R_{i}\right)
$$

The set of maximal points with respect to the above order is

The function $|.| \mapsto \rho_{|.|, X}^{g e n}$

For $c \in X(\Omega)$ we possibly have

$$
|\cdot|_{c, 0}=|\cdot|_{c, R} \text { for some } R>0
$$

As an example if $X=\mathrm{D}^{+}\left(c_{0}, R_{0}\right)-\cup_{i=1}^{n} \mathrm{D}^{-}\left(c_{i}, R_{i}\right)$, and if $t_{c_{i}, R_{i}}$ is a Dwork generic point of a semi-norm $|\cdot|_{c_{i}, R_{i}}$ in the Shilov boundary, then

$$
|\cdot|_{c_{i}, R_{i}}, 0=|\cdot|_{t_{c_{i}}, R_{i}, R} \text { for all } 0 \leq R \leq R_{i}
$$

Definition of $\rho_{|\cdot|, X}^{g e n}$.

We call $\rho_{|\cdot|, X}^{\text {gen }}$ the supremum of the $R \geq 0$ such that $\left|.\left|=|\cdot|_{t, R}\right.\right.$ for some unspecified Dwork's generic point $t \in X(\Omega)$.

Equivalent definitions

Let $t \in X(\Omega)$ be a fixed Dwork generic point for |.|, then

- $\rho_{|\cdot|, X}^{g e n}=\sup (R$ s.t. $|\cdot|=|\cdot| t, R)$ (i.e.the def.is indep.on the choice of t).
- $\rho_{|\cdot|, X}^{\text {gen }}=\operatorname{dist}\left(t, K^{\text {alg }}\right)=\inf \left(|T-c|\right.$ s.t. $\left.c \in K^{\text {alg }}\right)$.
- Every point in $\mathrm{D}^{-}\left(t, \rho_{|.|, X}^{g e n}\right)$ is a Dwork generic point for $|$.$| .$

The function $\rho_{|\cdot|, X}^{g e n}$ is not continuous

Proof.

Assume that K is a algebraically closed. Let x_{1}, x_{2}, \ldots be a sequence in \mathcal{O}_{K} such that the residual classes are different $\overline{x_{i}} \neq \overline{x_{j}}$ for all $i \neq j$.
Let $X=\mathrm{D}^{+}(0,1)$ be the closed unit disk. Then
(1) $\lim _{n}|\cdot|_{x_{n}}=\left.|\cdot|\right|_{0,1}$ in $\mathscr{M}(X)$
(2) $\rho_{|\cdot| x_{n}}^{g e n}=0$ for all $n \geq 1$.
(3) $\rho_{|\cdot| 0,1}^{\text {gen }}=1$.

We now prove these three facts.
(1) Indeed each $f \in \mathcal{H}_{K}(X)$ has a finite number of zeros. If there is no zeros in the disk $\mathrm{D}^{-}\left(x_{n}, 1\right)$ then $|f|_{x_{n}}=|f|_{x_{n}, R}$ for all $R<1$ (see properties of slide 11), hence by continuity one has $|f|_{x_{n}}=|f|_{x_{n}, 1}=|f|_{0,1}$ (see FACT of slide 9). This proves that $\left.\lim _{n}|\cdot|\right|_{x_{n}}=|\cdot|_{0,1}$.

Continuation of the proof.

(2) One has $\rho_{|\cdot| x_{n}}^{g e n}=0$ because the function $f:=(T-c)$ verifies $|f|_{x_{n}}=\left|x_{n}-c\right|$ so that for all $R>0$ we choose c such that $\left|x_{n}-c\right|<R$ so

$$
|T-c|_{x_{n}, R}=\mid\left(T-x_{n}\right)+\left(x_{n}-c\right)_{x_{n}, R}=\max \left(R,\left|x_{n}-c\right|\right)=R
$$

$$
\text { so }\left|f_{c}\right|_{x_{n}} \neq\left|f_{c}\right|_{x_{n}, R} \text {. Then } \rho_{\left.|\cdot|\right|_{n}, X}^{g e n}=\max \left(R \text { s.t. }|\cdot|_{x_{n}}=\left.|\cdot|\right|_{x_{n}, R}\right)=0
$$

(3) Now let $t_{0,1}$ be a Dwork generic point for $|\cdot|_{0,1}$. The same proof does not hold for $|\cdot|_{0,1}$ because $\rho_{|\cdot|{ }_{0,1}, X}^{\text {gen }}=\operatorname{dist}\left(t_{0,1}, K\right)$, so t is transcendental over K.
-The equality $|P|_{t_{0,1}}=|P|_{0,1}$ holds for all polynomial P of degree 1 by a similar computation.

- The equality hence holds for all polynomial because the semi-norm is multiplicative.
- The equality hence holds for all for all rational fraction and by density it holds also for all $f \in \mathcal{H}_{K}(X)$.

The function $|.| \mapsto \rho_{|\cdot|, x}$

Let $t \in X(\Omega)$, then we set

$$
\rho_{t, X}:=\operatorname{dist}\left(t, \mathbb{A}^{1}-X\right)=\sup \left(\rho>0 \text { s.t. } \mathrm{D}^{-}(t, \rho) \subset X\right) .
$$

Definition of $|.| \mapsto \rho_{|\cdot|, X}$
Let $|.| \in \mathscr{M}(X)$ and let t be a Dwork generic point for $\left|.\left|:\left|.\left|=|.|_{t}\right.\right.\right.\right.$. Then

$$
\rho_{|\cdot|, X}:=\rho_{t, X}
$$

Continuity of $|.| \mapsto \rho_{|\cdot|, X}$
If $X=\mathrm{D}^{+}\left(c_{0}, R_{0}\right)-\cup_{i=1}^{n} \mathrm{D}^{-}\left(c_{i}, R_{i}\right)$, then (clearly)

$$
\rho_{t, X}=\min \left(R_{0},\left|t-c_{1}\right|_{\Omega}, \ldots,\left|t-c_{n}\right|_{\Omega}\right) .
$$

NOTE : $\left|t-c_{i}\right|_{\Omega}=\left|T-c_{i}\right|$ because t is Dwork generic point. So

- This proves that the def. of $\rho_{|\cdot|, X}$ does not depend on the choice of t.
- The function $|.| \mapsto \rho_{|\cdot|, X}$ is continuous because it is the minimum of a finite family of continuous functions
these functions are continuous by the definition of the topology of $\mathscr{M}(X)$.

continuity

- The function $\rho^{\text {gen }}$ is upper semi-continuous (because it is the infimum of an (infinite) family of continuous functions, see slides 15).
- The function ρ is continuous.

increasing

Assume that $|\cdot|_{1},|\cdot|_{2} \in \mathscr{M}(X)$, with $|\cdot|_{1} \leq|\cdot|_{2}$, then

- $\rho_{|\cdot| 1}^{g e n} \leq \rho_{|\cdot| 2}^{\text {gen }}$ (increasing function), and $\rho_{|\cdot| t}^{g e n}=0$ if $t \in \widehat{K^{\text {alg }}}$.
- $\rho_{|\cdot|_{1}}=\rho_{\left.\right|_{\mid / 2}}$: So that $|.| \mapsto \rho_{|.|}$is completely determined by its values on the maximal skeleton.

Equality on the maximal skeleton

If $|$.$| belongs to the maximal skeleton of \mathscr{M}(X)$, then

$$
\rho_{|\cdot|}^{\text {gen }}=\rho_{|\cdot|}, \quad\left(\rho_{|\cdot|_{c} ; R}=\rho_{|\cdot| c_{i}, R}^{g e n}=R\right)
$$

Part 2 : Differential equations and (Elementary) Stratifications

Analytic functions on tubes around the diagonal

- Tube around the diagonal of $X \times X$:

$$
\mathcal{T}(X, R):=\{(x, y) \in X \times X| | x-y \mid<R\}
$$

- $\mathcal{A}_{K}(\mathcal{T}(X, R)):=$ Analytic functions on the tube.

If $R>0$ is small enough then $\mathcal{T}(X, R) \cong X \times \mathrm{D}^{-}(0, R)$. The isomorphism is given by $(x, y) \mapsto(y, x-y)$.
In term of functions this gives

$$
\begin{aligned}
& \mathcal{A}_{K}(\mathcal{T}(X, R))=\left\{\sum_{n \geq 0} f_{n}(y)(x-y)^{n} \text { such that } f_{n} \in\right. \\
& \left.\mathcal{H}_{K}(X) \text { and } \lim _{n}\left\|f_{n}\right\|_{X} \cdot \rho^{n}=0, \forall \rho<R\right\}
\end{aligned}
$$

(Elementary) Stratifications

A stratification over X is the data of a finite free module M over $\mathcal{H}_{K}(X)$, together with an unspecified $R>0$, and a $\mathcal{A}_{K}(\mathcal{T}(X, R))$-linear isomorphism

$$
\chi: p_{1}^{*} \mathrm{M} \xrightarrow{\sim} p_{2}^{*} \mathrm{M}
$$

where $p_{i}: \mathcal{H}_{K}(X) \rightarrow \mathcal{A}_{K}(\mathcal{T}(X, R))$ are the projections
$p_{1}, p_{2}: \mathcal{T}(X, R) \rightrightarrows X$, and where $p_{i}^{*} \mathrm{M}:=\mathrm{M} \otimes_{\mathcal{H}_{K}(X), p_{i}} \mathcal{A}_{K}(\mathcal{T}(X, R))$.
-We ask moreover that χ satisfies :
$(\Delta) \Delta^{*}(\chi)=\operatorname{Id}_{M}$, where $\Delta: X \rightarrow \mathcal{T}(X, R)$ is the diagonal.
$(C) \chi$ satisfies a certain cocycle relation (see slide 26).
Morphisms are $\mathcal{H}_{K}(X)$-linear maps $\alpha: \mathrm{M} \rightarrow \mathrm{N}$ satisfying

$$
\begin{gathered}
p_{2}^{*}(\alpha) \circ \chi^{\mathrm{M}}=\chi^{\mathrm{N}} \circ p_{1}^{*}(\alpha) . \\
p_{2}^{*} \mathrm{M} \underset{p^{\mathrm{M}}}{\sim} p_{1}^{*} \mathrm{M} \\
p_{2}^{*}(\alpha) \mid \\
p_{2}^{*} \mathrm{~N} \underset{\chi^{\mathrm{N}}}{\sim} p_{1}^{\sim} p_{1}^{*} \mathrm{~N}
\end{gathered}
$$

Differential equations

Differential modules

A differential module over X is a finite free $\mathcal{H}_{K}(X)$-module together with a connection $\nabla: \mathrm{M} \rightarrow \mathrm{M}$, that is a linear map satisfying

$$
\nabla(f \cdot m)=f^{\prime} \cdot m+f \cdot \nabla(m), \text { for } f \in \mathcal{H}_{K}(X), m \in \mathrm{M}
$$

a morphism between differential equations is a $\mathcal{H}_{K}(X)$-linear map commuting with the $\nabla^{\prime} s$. We call $d-\operatorname{Mod}\left(\mathcal{H}_{K}(X)\right)$ the category of differential modules over $\mathcal{H}_{K}(X)$.

Once a basis of M is chosen, then the connection defines a diff. eq.

$$
Y^{\prime}=G(T) Y, \quad G(T) \in M_{n}\left(\mathcal{H}_{K}(X)\right)
$$

Indeed we have the diagram :

Differential equations VS (Elementary) Stratifications

The notion of Stratification comes back to A.Grothendieck, P.Berthelot, L.Illusie, N.M.Katz, [...]. They was trying to find a substitute to the notion of Diff. Eq. in characteristic p (see P.Berthelot's Talk).

Theorem :

The category $d-\operatorname{Mod}\left(\mathcal{H}_{K}(X)\right)$ is equivalent to $\operatorname{Strat}\left(\mathcal{H}_{K}(X)\right)$.
The basic idea of the correspondence is the following:

- To give the connection $\nabla: \mathrm{M} \rightarrow \mathrm{M}$ means to give the matrix $G(T) \in M_{n}\left(\mathcal{H}_{K}(X)\right)$ for the differential equation $Y^{\prime}=G(T) Y$.
- To give the stratification $p_{1}^{*} \mathrm{M} \xrightarrow{\sim} p_{2}^{*} \mathrm{M}$ means to give the two variable matrix $Y(x, y) \in G L_{n}\left(\mathcal{A}_{K}(\mathcal{T}(X, R))\right)$ of the stratification.

The relations between them is that $Y(x, y)$ is the solution of the equation: it verifies

$$
\frac{d}{d x} Y(x, y)=G(x) \cdot Y(x, y)
$$

From Diff. Eq. to Stratification \Longrightarrow Generic Taylor solutions

Definition of Generic Taylor solution

- Consider a diff. eq. $Y^{\prime}=G(x) Y, G(x) \in M_{n}\left(\mathcal{H}_{K}(X)\right)$.
- We have a Taylor solution at a given point $x_{0} \in X$:

$$
Y(x):=\sum_{n \geq 0} Y^{(n)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{n}}{n!}, \quad Y\left(x_{0}\right)=\mathrm{Id}
$$

- We consider it as a function of x and of x_{0}.
- We choose the Taylor solution equal to Id at $x_{0}: Y(y)=I d, \forall y \in X$.
- If $Y^{(n)}=G_{n}(x) Y$, we consider the "GENERIC" Taylor solution:

It verifies

$$
Y(x, y):=\sum_{n \geq 0} G_{n}(y) \frac{(x-y)^{n}}{n!}
$$

$$
\frac{d}{d x} Y(x, y)=G(x) \cdot Y(x, y)
$$

From Diff. Eq. to Stratification \Longrightarrow Generic Taylor solutions

$$
Y(x, y):=\sum_{n \geq 0} G_{n}(y) \frac{(x-y)^{n}}{n!}
$$

- FACT : This function converges on a certain tube $\mathcal{T}(X, R)$, for some $R>0$ and it verifies :

$$
\frac{d}{d x} Y(x, y)=G(x) Y(x, y)
$$

($\Delta) \quad Y(x, x)=\mathrm{Id}$, for all $x \in X$;
(C) $Y(x, y) Y(y, z)=Y(x, z)$ (cocycle relation), for all $(x, y),(y, z) \in \mathcal{T}(X, R)$;

- In fact a matrix $Y(x, y) \in G L_{n}\left(\mathcal{A}_{K}(\mathcal{T}(X, R))\right)$ is the matrix of a stratification χ if and only if it verifies (Δ) and (C).

From Stratifications to Diff. Eq.

- Reciprocally from a stratification χ with matrix $Y(x, y)$ one gets the differential equation by considering

$$
G(x):=\frac{d}{d x}(Y(x, y)) \cdot Y(x, y)^{-1} .
$$

It happens that $G(x) \in M_{n}\left(\mathcal{H}_{K}(X)\right)$ does not depend on y because of the cocycle relation.

- The idea is the following. Write

$$
Y(x, y)=\sum_{n \geq 0} H_{n}(y)(x-y)^{n} \in G L_{n}\left(\mathcal{A}_{K}(\mathcal{T}(X, R))\right)
$$

then :

- $H_{1}=G$,
- The cocycle relation implies that $H_{n}, n \geq 1$, are totally determined by the dominant term $H_{1}=G$.

Part 3 : Definition and properties of the radius of convergence function of an analytic function around the diagonal

Radius of convergence function (History)

Historical note

- Firstly Dwork found a p-adic proof of the rationality of the Zeta function of a variety in char. $p>0$. The proof involved a particular p-adic diff.eq. then he defined a framework for a de Rham cohomology theory (overconvergent functions, differential modules, ...) today called Dwork's cohomology.
- Christol, Dwork, Robba, [...] worked with diff. eq. on annulus $\left\{r<|x|<r^{\prime}\right\}$.
- For a diff.mod. M over the annulus they have defined the Radius of convergence of M at a Dwork generic point t_{ρ} for $|\cdot|_{\rho}=|\cdot|_{0, \rho}$, $\rho \in] r, r^{\prime}[$ as

$$
\operatorname{Rad}\left(\mathrm{M}, t_{\rho}\right):=\min \left(\rho, \operatorname{Rad}\left(Y\left(x, t_{\rho}\right)\right)\right)
$$

where $\operatorname{Rad}\left(Y\left(x, t_{\rho}\right)\right)$ is the minimum radius of the entries of the Taylor solution matrix $Y\left(x, t_{\rho}\right)$ at t_{ρ}.

- ρ was there to make the definition invariant by base changes

Radius of convergence function (History)

Historical note

- In [CD94] Christol and Dwork study the continuity of the function $\rho \mapsto \operatorname{Rad}\left(\mathrm{M}, t_{\rho}\right)$ on the segment $] r, r^{\prime}[$.
- Some years later F.Baldassarri and L.Di Vizio [BV07] defined the radius of convergence function for a differential module over a Berkovich space.
As observed by them there was a lack of definitions: even the case of a disk was missing in the literature. In this paper they prove
- the continuity of the radius function in the case of a 1-dim affinoid
- the upper semi-continuity in the general case.
- Finally F.Baldassarri proved the continuity over a curve in a recent paper (to appears in Inventiones).

Motivation

The radius of convergence function is an invariant (by isomorphisms) of the diff. module. It encodes numerical invariants like the p - adic irregularity (Christol-Mebkhout), and the formal irregularity (B.Malgrange).

Radius of convergence (definition).

- $X=K$-affinoid
- $\nabla: \mathrm{M} \rightarrow \mathrm{M}=$ connection
- $\chi: p_{1}^{*} \mathrm{M} \xrightarrow{\sim} p_{2}^{*} \mathrm{M}=$ stratification attached to ∇
- $G(T)=$ matrix of $\nabla \quad\left(Y^{\prime}=G(T) Y, G \in M_{n}\left(\mathcal{H}_{K}(X)\right)\right)$
- $Y(x, y)=$ matrix of $\chi \quad\left(Y(x, y) \in G L_{n}\left(\mathcal{A}_{K}(\mathcal{T}(X, R))\right)\right)$
- $Y^{(n)}=G_{n} Y$ iterated matrices
- Then

$$
Y(x, y)=\sum_{n>0} G_{n}(y) \frac{(x-y)^{n}}{n!}
$$

Definition of Radius

For all $|.| \in \mathscr{M}(X)$ we set

$$
\operatorname{Rad}(\mathrm{M},|\cdot|):=\min \left(\rho_{|\cdot|, X}, \operatorname{Rad}(Y(x, t))\right)
$$

where $t=$ Dwork generic point for |.|, and where

$$
\operatorname{Rad}(Y(x, t))=\liminf _{n} \frac{1}{\sqrt[n]{\left|G_{n}(t)\right| /|n!|}}
$$

clearly it does not depends on the choice of t but only on $\left|.\left|=|.|_{t}\right.\right.$.

Comments to the definition

$$
\operatorname{Rad}(\mathrm{M},|\cdot|):=\min \left(\rho_{|\cdot|, X}, \operatorname{Rad}(Y(x, t))\right)
$$

- The use of $\rho_{|\cdot|, X}$ in the definition was introduced by Baldassarri - Di Vizio.
- In the context of Christol-Dwork [CD94] over an annulus we have

$$
\rho_{|\cdot| \rho}=\rho_{|\cdot| \rho}^{g e n} .
$$

- Some authors (namely Kedlaya's recent Book) still uses the definition of radius with the $\rho_{|\cdot|, X}^{\text {gen }}$ instead of $\rho_{|\cdot|, X}$. This could be, for other reasons, a convenient choice, because in this case the definition of the radius (using $\rho^{g e n}$) results to be equal to a spectral norm of ∇ so the definition seems more intrinsic.
We now list some differences :
- The definition of $\operatorname{Rad}(\mathrm{M},|\cdot|)$ using $\rho_{|\cdot|, X}^{g e n}$ is not invariant by base field extension of K, because $\rho_{|\cdot|, X}^{g e n}$ measures the distance from $K^{\text {alg }}$ of a Dwork generic point for |.|.
- The definition of $\operatorname{Rad}(\mathrm{M},|\cdot|)$ using $\rho_{|\cdot|, X}$ is invariant by base field extension because it measures the distance of $|$.$| from the holes of X$.

Invariance by pull-back over a Berkovich point

- As an example consider the case of the annulus $\left\{r<|x|<r^{\prime}\right\}$ and the norm $\left|.\left|=|.|_{c, \rho}, c \in K\right.\right.$. Let $\mathcal{A}_{K}(] r, r^{\prime}[):=$ Tate algebra

$$
\mathscr{H}\left(|\cdot|_{c, \rho}\right):=\left(\operatorname{Frac}\left(\mathcal{A}_{K}(] r, r^{\prime}[)\right),|\cdot|_{c, \rho}\right)^{-}
$$

be the complete valued field attached to the Berkovich point $|.|_{c, \rho}$. We have a morphism of Berkovich spaces

$$
\imath: \mathscr{M}(\mathscr{H}(|\cdot| c, \rho)) \rightarrow \mathscr{M}\left(\mathcal{A}_{K}(] r, r^{\prime}[)\right)
$$

FACT: If $\rho>0$ then $d / d x$ extends to $\mathscr{H}(|\cdot| c, \rho)$.
We then can consider the pull-back over $\mathscr{H}(|\cdot| c, \rho)$ of a differential module over the annulus.
Then

- The definition of $\operatorname{Rad}(\mathrm{M},|\cdot|)$ using $\rho_{|\cdot|, X}^{g e n}$ is invariant by pull-back by \imath.
- The definition of $\operatorname{Rad}(\mathrm{M},||$.$) using \rho_{|\cdot|, x}$ is not invariant by pull-back by \imath because $\rho_{|\cdot|, X}$ is the "distance from the holes of X " and it highly depends on the base space X.

Invariance by pull-back by an inclusion of affinoids.

The same phenomena arises for an inclusion of two affinoids :

$$
X^{\prime} \subseteq X
$$

- The radius function defined using $\rho_{|\cdot|, X}^{g e n}$ is invariant by this pull-back
- The radius function defined using $\rho_{|\cdot|, X}$ is not invariant by this pull-back

The reasons are the same that in the above slide.

See the recent Inventiones paper of F.Baldassarri to see how to obtain a global intrinsic/normalized definition of the Radius function using $\rho_{|\cdot|, X}$ in a way such that it glues.

In this talk we are mainly concerned with a fixed K-affinoid X. In this case

- The radius function defined using $\rho_{|\cdot|, X}^{\text {gen }}$ is not continuous,
- The radius function defined using $\rho_{|\cdot|, X}$ is continuous,

Radius of a function around the diagonal

We consider a function $f(x, y) \in \mathcal{A}_{K}(\mathcal{T}(X, R)), R>0$:

$$
f(x, y):=\sum_{n \geq 0} f_{n}(y)(x-y)^{n}, \quad f_{n} \in \mathcal{H}_{K}(X) .
$$

Definition of Radius of $f(x, y)$:
Let $|.| \in \mathscr{M}(X)$, then

$$
\operatorname{Rad}(f(x, y),|\cdot|)=\min \left(\rho_{|\cdot|, x}, \liminf _{n} \frac{1}{\sqrt[n]{\left|f_{n}\right|}}\right)
$$

Transfer theorem

Let $|\cdot|_{1},\left.\left.\right|_{\cdot \mid}\right|_{2} \in \mathscr{M}(X)$, then the radius function is decreasing

$$
|\cdot|_{1} \leq|\cdot|_{2} \quad \Longrightarrow \quad \operatorname{Rad}\left(f(x, y),|\cdot|_{1}\right) \geq \operatorname{Rad}\left(f(x, y),|\cdot|_{1}\right) .
$$

Again this theorem is false using $\rho^{g e n}$ in the definition. Because $\rho_{|\cdot| 1, X}^{\text {gen }} \leq \rho_{|\cdot|_{2}, X}^{\text {gen }}$, while $\rho_{|\cdot| 1}, X=\rho_{|\cdot|_{2}, X}$

Convergene locus of $f(x, y)$, x-radius and y-radius

Notice that $f(x, y)$ converges on a tube $\mathcal{T}(X, R)$, but usually the convergence locus of $f(x, y)$ is larger than $\mathcal{T}(X, R)$.

NOTE : Considering the Radius means considering y-sections of the convergence locus: one specializes $y \rightarrow t$ ($t=$ Dwork generic point for $||$. and one checks the Radius of convergence of the 1 -variable function around t

$$
f(x, t)=\sum_{n \geq 0} f_{n}(t)(x-t)^{n}
$$

So we call $\operatorname{Rad}_{x}(f(x, y),|\cdot|):=\operatorname{Rad}(f(x, y),|\cdot|)$ the x-radius. One can define the y-radius by specializing x at t. In general

$$
\operatorname{Rad}_{x}(f(x, y),|\cdot|) \neq \operatorname{Rad}_{y}(f(x, y),|\cdot|)
$$

Proposition

$$
\operatorname{Rad}_{x}(f(x, y),|\cdot|) \leq \rho_{|\cdot|, X}^{g e n} \Longleftrightarrow \operatorname{Rad}_{y}(f(x, y),|\cdot|) \leq \rho_{|\cdot|, X}^{g e n}
$$

In this case they are equal.

Proposition

If $Y(x, y)$ is the generic Taylor solution of an equation $Y^{\prime}=G Y$, then (without any assumption on the radius) one always has

$$
\operatorname{Rad}_{x}(Y(x, y),|\cdot|)=\operatorname{Rad}_{y}(Y(x, y),|\cdot|)
$$

(intended as the minimum radius of the entries). This result is no longer true for its entries.

Examples of radius functions

$$
\begin{gathered}
X=\mathrm{D}^{+}(0,1) \\
\rho_{|\cdot|, x}=1, \text { for all }|\cdot| \in \mathscr{M}(X) \\
f(x, y)=\sum_{n \geq 0} f_{n}(y)(x-y)^{n}, \quad f_{n}(y)=y / p^{n} \\
\operatorname{Rad}_{x}(f(x, y),|\cdot|)=\left\{\begin{array}{ccc}
1 & \text { if } & |\cdot|=\left.|\cdot|\right|_{0} \\
|p| & \text { if } & |\cdot| \nmid \cdot| |_{0}
\end{array}\right. \\
\operatorname{Rad}_{y}(f(x, y),|\cdot|)=\left\{\begin{array}{ccc}
1 & \text { if } & |\cdot|=|\cdot|_{p} \\
|p| & \text { if } & |\cdot|| | \cdot| |_{p}
\end{array}\right.
\end{gathered}
$$

Examples of radius functions

$$
\begin{aligned}
& X=\mathrm{D}^{+}(0, r), r>1 \\
& \rho_{|\cdot|, X}=r \text {, for all }|.| \in \mathscr{M}(X) \\
& f(x, y)=\sum_{n \geq 0} f_{n}(y)(x-y)^{n}, \quad f_{n}(y)=y^{n} \\
& \operatorname{Rad}_{x}(f(x, y),|\cdot| t)=\min \left(\frac{1}{|t|}, r\right) \\
& \operatorname{Rad}_{y}(f(x, y),|\cdot| t)=\left\{\begin{array}{cc}
\min \left(\frac{1}{|t|}, 1\right) & \text { if } \\
\geq \min \left(\frac{1}{|t|}, 1\right) & \text { if } \\
|t|=1
\end{array} .\right.
\end{aligned}
$$

In particular $\operatorname{Rad}_{x} \neq \operatorname{Rad}_{y}$ on the whole $\mathrm{D}^{-}(0,1)$.

Log-concavity on the maximal skeleton

For all $f(x, y) \in \mathcal{A}_{K}(\mathcal{T}(X, R))$, we consider the radius function

Behavior on the maximal skeleton

The function $\operatorname{Rad}(f(x, y),||$.$) has the following log-shape on a branch$ $R \mapsto|\cdot|_{c_{i}, R}$ of the maximal skeleton

- $\rho_{i, j}$ corresponds to the distances of c_{i} from the holes of X.
- The function is log-concave on the annuli not intersecting the holes.

This is a general fact about concave functions :

theorem

$I=$ interval of \mathbb{R}. A concave function

$$
f: I \rightarrow \mathbb{R}
$$

is continuous on the interior of I.

- Each function $R \mapsto\left|f_{n}\right|_{c, R}$ is log-convex
- Then each $R \mapsto \frac{1}{\sqrt[n]{\left|f_{n}\right| c, R}}$ is log-concave
- inflim of (log-)concave functions is a (log-)concave function hence use the theorem

Lower semi-continuity of the radius

Theorem

For all $f(x, y) \in \mathcal{A}_{K}(\mathcal{T}(X, R))$, the radius function
is LSC on each point $|.| \in \mathscr{M}(X)$ satisfying $\rho_{|\cdot|, X}^{\text {gen }}>0$. This form an open subset of $\mathscr{M}(X)$ containing the skeleton.

Recall that $\rho_{|\cdot|, X}^{\text {gen }}=0$ if and only if a Dwork generic points for $|$.$| lies in$ $\widehat{K^{\text {alg }} \text {. }}$

One distinguishes the points of the maximal skeleton from the others.
Points in the maximal skeleton :

- Log-concavity on the skeleton implies that the restriction of Rad on it is LSC (easy). Actually we have continuity if no holes in the path.
- Transfer theorem implies the LSC on the skeleton (because the values the radius is minimal on the points of the maximal skeleton).
If $|$.$| is another point (not in the skeleton), then \left|.\left|=|\cdot|_{c, R}\right.\right.$ with $R>0$.
- Then the annulus $A:=\{R-\delta<|x-c|<R+\delta\}$ is an open neighborhood of $|$.$| ,$
- If $\delta>0$ is small, the restriction of $\operatorname{Rad}(f,|\cdot|)$ is continuous on the path $\left.\rho \mapsto|\cdot|_{c, \rho}, \rho \in\right] R-\delta, R+\delta[$ because there is "no holes of X "
- So for all $\varepsilon>0$ there is $\delta>0$ small such that

$$
\operatorname{Rad}\left(f,\left.|\cdot|\right|_{c, \rho}\right) \geq \operatorname{Rad}\left(f,|\cdot|_{c, R}\right)-\varepsilon
$$

for all $\rho \in] R-\delta, R+\delta[$. (this is the LSC on this path).

- by transfer this also holds for the other points of this annulus (the radius is minimal in this path). So the inequality is true for all $|$.$| of A$.

proposition

If $Y(x, y)$ is the Taylor solution of a diff.eq. then
is LSC on the whole $\mathscr{M}(X)$.
The reason is that the radius of a differential equation is locally constant

Example of non continuous radius

$X:=\mathrm{D}^{+}(0,1)$ be the closed unit disk. Let r_{n} be a sequence of real numbers satisfying : (a) $r_{n}<0$, (b) $\lim _{n} r_{n}=0$, (c) $r_{n} \in \frac{n \ln (|p|)}{\mathbb{N}}$. Let now $\alpha_{n}:=\frac{\ln \left(|p|^{n}\right)}{r_{n}} \in \mathbb{N}$. Then the function $f(x, y):=\sum_{n \geq 0} f_{n}(y)(x-y)^{n}$, with $f_{n}:=p^{-n}+p^{-2 n} x^{\alpha_{n}}$ verifies $\left|f_{n}\right|_{\rho}=\sup \left(|p|^{-n},|p|^{-2 n} \rho^{\alpha_{n}}\right)$, in particular $\left|f_{n}\right|_{1}=|p|^{-2 n}$ for all $n \geq 0$. Then $\sqrt[n]{\left|f_{n}\right|_{\rho}}=\sup \left(|p|^{-1},|p|^{-2} \rho^{\frac{\ln (|\rho|)}{r_{n}}}\right)$.

Hence $\operatorname{Rad}_{x}\left(f(x, y),|\cdot|_{\rho}\right):=\min \left(1, \liminf _{n} \frac{1}{\sqrt[n]{\left|f_{n}\right|_{\rho}}}\right)=\liminf _{n} \frac{1}{\sqrt[n]{\left|f_{n}\right|_{\rho}}}=$ $\left\{\begin{array}{lll}|p| & \text { if } & \rho<1 \\ |p|^{2} & \text { if } & \rho=1\end{array}\right.$

A criterion for the continuity

The above example proves that we need a sort of UNIFORM CONVERGENCE result in the sense of LSC functions.

- We have to ask to the sequence of functions
to be "superiorly uniformly convergent" to $\operatorname{Rad}(f(x, y),||$.$) .$

Criterion of continuity

If $f(x, y)=\sum_{n \geq 0} f_{n}(y)(x-y)^{n}$ verifies

- $\operatorname{Rad}(f(x, y),||$.$) is locally constant on the K^{\text {alg }}$-rational points (rigid points) (i.e. those for which $\rho^{g e n}=0$),
- There exists a sequence C_{n} such that $\lim _{n} C_{n}=1, C_{n} \geq 1$ for all large values of n such that

$$
\left|f_{n}\right| \cdot \operatorname{Rad}(f(x, y),|\cdot|)^{n}=C_{n}^{n}, \text { fro all } n \geq 0, \forall|\cdot| \in \mathscr{M}(X)
$$

then $\operatorname{Rad}(f(x, y),||$.$) is a continuous function on the whole \mathscr{M}(X)$.

Dwork-Robba's Theorem

$$
\operatorname{Rad}(\mathrm{M},|\cdot|):=\min \left(\rho_{\mid \cdot, X}, \lim _{n} \inf ^{\left.\left.\frac{1}{\sqrt[s]{\left\lvert\, \frac{G_{s} \mid}{|s!|}\right.}}\right), ~\right)}\right.
$$

where G_{s} is the matrix of $\nabla^{s}: Y^{(s)}=G_{s} Y$. Recall that the Taylor solution is

$$
Y(x, y)=\sum_{s \geq 0} G_{s}(y) \frac{(x-y)^{s}}{s!} .
$$

Dwork-Robbs's Theorem

Let $t \in X(\Omega)$, with Ω / K an arbitrary complete valued field extension. Then for all $0<\rho \leq \operatorname{Rad}\left(\mathrm{M},|\cdot|_{t, 0}\right)$ one has

$$
\frac{\left|G_{s}\right|_{t, \rho}}{|s!|} \leq \rho^{-s} \cdot\{s, n-1\}_{p} \cdot \max _{0 \leq i \leq n-1}\left(\left|G_{i}\right|_{t, \rho} \cdot \rho^{i}\right)
$$

where $\{s, n\}_{p}:=\sup _{1 \leq \lambda_{1}<\cdots<\lambda_{n} \leq s}\left|\lambda_{1} \cdots \lambda_{n}\right|^{-1}$

The Dwork-Robba's theorem in their form asserts that the asymptotic growth of the coefficients is controlled by the first n coefficients of the Taylor solution matrix.

Dwork-Robbs's Theorem revisited

There exists constants $\mu>0$ and $\kappa>1$ such that

$$
\frac{\left|G_{s}\right|}{|s!|} \cdot \operatorname{Rad}(\mathrm{M},|\cdot|)^{s} \leq s^{\mu(n-1)}
$$

for all $|.| \in \mathscr{M}(X)$.

Corollary

The radius of convergence function of a differential module is continuous:)
The above version of the Dwork-Robba's theorem is exactly the above criterion of continuity (see slide 46).

NOTE : the idea of considering the Dwork-Robba's goes back to Christol-Dwork [CD94]. The same idea have been taken up also by [BV07] who have been able to generalize the Dwork-Robba's theorem in many variables. So the upper semi-continuity holds in higher dimensional spaces, but the lower semi-continuity (that should hold for all funtions around the diagonal) is an open problem since the base space is actually much more complicated.

NOTE : The proof we have presented here is supposed to separate the obstructions to the continuity of topological nature from those coming from differential equation.

Bibliography

NOTE: All the computations of this talk can be found in the last version of [Pu10] which will be available in a few week on arxiv. The older version already present in arxiv does not contain any of these computations.

CD94] F.Baldassarri and L. Di Vizio, Continuity of the radius of convergence of p-adic differential equations on Berkovich spaces, ArXiv :07092008[math.NT],13 September 2007, (2007),1-22.

BV07] G.Christol and B.Dwork, Modules différentiels sur des couronnes, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 3, 663-701.

Pu10] A.Pulita Infinitesimal deformation of ultrametric differential equations, November 2010, 1-80.

