# Radius of convergence function of *p*-adic differential equations

Andrea Pulita

#### Université de Montpellier II

9 November 2010

9 November 2010

1 / 50

Andrea Pulita (Université de Montpellier

# Structure of the talk

### Part 1 : Berkovich space of a sub-affinoid of $\mathbb{A}^1_K$

- Settings
- Paths on the Berkovich space and norms of type  $|.|_{c,R}$
- Maximal Skeleton and log-properties
- Two examples of functions :  $|.| \mapsto \rho_{|.|,X}$  and  $|.| \mapsto \rho_{|.|,X}^{\text{gen}}$

### Part 2 : Differential Equations and (Elementary) Stratifications

- Analytic functions in a neighborhood of the diagonal
- Differential equations VS (Elementary) Stratification

Part 3 : Def. and properties of the radius of convergence function of an analytic function around the diagonal (RCF)

- Lower semi-continuity of the RCF of a function around the diagonal
- A criterion of continuity
- Dwork-Robba theorem and continuity of the RCF of a stratification.

Part 1 : The Berkovich space of a K-affinoid

æ

### Settings

- (K, |.|) = complete ultrametric field of characteristic 0.
- X = 1-dimensional, connected, affinoid sub-space fo  $\mathbb{A}^1_K$  of the form :

 $X = D^+(c_0, R_0) - \cup_{i=1}^n D^-(c_i, R_i).$ 

For technical reasons we assume  $c_0, \ldots, c_n \in K$ ,  $R_0 < +\infty$ , and  $D^-(c_i, R_i) \subset D^+(c_0, R_0)$  for all  $i = 1, \ldots, n$ . We call it a K-affinoid for simplicity.

#### Analytic functions over X

- Let H<sup>rat</sup><sub>K</sub>(X) ⊂ K(T) be the sub-ring of rational functions without poles over X, together with the sup-norm ||.||<sub>X</sub>.
- The Banach algebra of analytic functions over X is the completion

 $(\mathcal{H}_{K}(X), \|.\|_{X}) = (H_{K}^{rat}(X), \|.\|_{X})^{\frown}$ 

(also called Krasner's analytic elements over X).

# X as a functor

 $X = D^+(c_0, R_0) - \cup_{i=1}^n D^-(c_i, R_i).$ 

• If  $\Omega/K$  is a complete valued field extension, then

 $X(\Omega) := \{x \in \Omega \mid |x - c_0| \le R_0, |x - c_i| \ge R_i, \text{ for all } i = 1, ..., n \}$ 

• So, for  $f \in \mathcal{H}_{\mathcal{K}}(X)$ , the sup-norm is given by

$$||f||_X := \sup_{\Omega/K} \sup_{x \in X(\Omega)} |f(x)|_{\Omega}$$

This has a meaning since there exists a field  $\Omega_*$ , and a finite family of points  $t_{c_0,R_0}, \ldots, t_{c_n,R_n} \in X(\Omega_*)$  (Shilov boundary) such that for all  $\Omega/K$  one has  $\sup_{x \in X(\Omega)} |f(x)|_{\Omega} \leq \max(|f(t_{c_0,R_0})|, \ldots, |f(t_{c_n,R_n})|)$ . So that  $||f||_X = \max(|f(t_{c_0,R_0})|, \ldots, |f(t_{c_n,R_n})|)$ . For simplicity we write

$$||f||_X := \sup_{x \in X} |f(x)|.$$

# Berkovich space attached to X

### Definition

The Berkovich Space  $\mathscr{M}(\mathcal{H}_{\mathcal{K}}(X)) = \mathscr{M}(X)$  is the set of all bounded multiplicative semi-norms

|.| :  $\mathcal{H}_{\mathcal{K}}(X) \to \mathbb{R}_{\geq 0}$ 

satisfying |1| = 1, |0| = 0 and

• 
$$|f \cdot g| \leq |f| \cdot |g|$$

• 
$$|f+g| \leq \max(|f|,|g|)$$

• There exists C > 0 such that  $|f| \leq C ||f||_X$ , for all  $f \in \mathcal{H}_K(X)$ .

### Topology of $\mathcal{M}(X)$

The topology of  $\mathcal{M}(X)$  is the finest one (i.e. that with less open subset) making continuous each function of the type

$$|.|\mapsto |f|:\mathscr{M}(X) \to \mathbb{R}_{\geq 0}$$

for all  $f \in \mathcal{H}_{\mathcal{K}}(X)$ .

# Semi-norms of type |.|<sub>t</sub>. Connection with Dwork's terminology

Let  $(\Omega, |.|)/(K, |.|)$  be a complete valued field extension, and let  $t \in X(\Omega)$ . We set

 $|f|_t := |f(t)|_{\Omega}, \quad f \in \mathcal{H}_{\mathcal{K}}(X).$ 

This semi-norm lies in  $\mathcal{M}(X)$ .

- All semi-norms in  $\mathcal{M}(X)$  are of type  $|.|_t$  for a convenient  $\Omega/K$ , and  $t \in X(\Omega)$ .
- We call such a point t ∈ X(Ω) a Dwork generic point for |.|.
   Notice that t is not unique.

# Paths in $\mathcal{M}(X)$ and semi-norms of type $|.|_{c,R}$

- Let  $\Omega/K$  be a c.v.f.e. Let  $c \in \Omega$ ,  $R \ge 0$ .
- For a polynomial  $P(T) \in K[T]$ , we write P as  $\sum a_n(T-c)^n$ , with  $a_n \in \Omega$ , then we set

$$|P(T)|_{c,R} := \sup_{n} |a_n| R^n = \sup_{|x-c|=R} |P(x)|$$

- We set  $|P/Q|_{c,R} := |P|_{c,R}/|Q|_{c,R}$ , then we have a semi-norm on K(T) and hence on  $H_K^{rat}(X)$ .
- NOTE :  $|P/Q|_{c,R} \neq \sup_{|x-c|=R} |P(x)/Q(x)|$ .

#### FACT

### $X = D^+(c_0, R_0) - \cup_{i=1}^n D^-(c_i, R_i).$

The semi-norm  $|.|_{c,R}$  extends to a semi-norm of  $\mathcal{H}_{\mathcal{K}}(X)$  in  $\mathcal{M}(X)$  if and only if one of the following conditions is fulfilled

- $c\in X(\Omega)$  and  $R\leq R_0$ ;
- $c \in \mathrm{D}^-(c_i, R_i)$  and  $R_i \leq R \leq R_0$  for some  $i = 1, \ldots, n$ .

### Continuous paths

• If  $c \in D^{-}(c_i, R_i)$  (resp. if  $c \in X(\Omega)$ ), then the path  $R \mapsto |.|_{CR} : [R_i, R_0] \to \mathcal{M}(X)$ (resp.  $R \mapsto |.|_{c,R} : [0, R_0] \to \mathcal{M}(X)$ ) is continuous. That is, for all  $f \in \mathcal{H}_{\mathcal{K}}(X)$ , the function

 $R \mapsto |f|_{cR}$ 

is continuous.

• NOTE : Of course there is a Dwork generic point  $t_{c,R}$  for  $|.|_{c,R}$  so that

$$|.|_{c,R} = |.|_{t_{c,R}}$$
  
i.e.  $|f|_{c,R} = |f(t_{c,R})|$ , for all  $f \in \mathcal{H}_{\mathcal{K}}(X)$ .



Andrea Pulita (Université de Montpellier

#### FACT

$$|c_1-c_2| \leq R \implies |.|_{c_1,R} = |.|_{c_2,R}$$

### $\mathcal{M}(X)$ is archwise connected

In fact for all  $|.| \in \mathscr{M}(X)$  there is a path connecting |.| to  $|.|_{c_0,R_0}$  :

- First choose a Dwork generic point t for |.| so that  $|.| = |.|_t = |.|_{t,0}$
- Then consider the path  $R\mapsto |.|_{t,R}$  : for  $R=R_0$  we have

 $|.|_{t,R_0} = |.|_{c_0,R_0}$ 

We always have a path connecting |.| to  $|.|_{c_0,R_0}$  :

$$|.| = |.|_{t,0}$$
••  $|.|_{t,R_0} = |.|_{c_0,R_0}$ 

### Log-properties

 We say that a given function g has logarithmically a given property if the function (ln ∘g ∘ exp) has that property.



#### Piecewise Log-affinity

 For c ∈ X(Ω) and f ∈ H<sub>K</sub>(X) the function R → |f|<sub>c,R</sub> is piecewise of the form aR<sup>b</sup> i.e. logarithmically affine of the form

$$\rho \mapsto \ln(a) + \ln(b) \cdot \rho ,$$

where  $\rho = \ln(R)$ .

### Log-properties

Let  $f \in \mathcal{H}_{\mathcal{K}}(X)$ . Let  $I \subseteq \mathbb{R}$  be an interval.

Let  $c \in X(\Omega/K)$ , (resp. c lies in a hole of X).

If the path  $R \mapsto |.|_{c,R}$ ,  $R \in I$ , does not encounter any holes of X (i.e. if there is no holes of X in the annulus  $|x - c| \in I$ ), then  $R \mapsto |f|_{c,R}$  is Log-convex :



The breaks are in correspondence of the values of R equal to the distance of a zero z of f from c : R = |z - c|. The difference of two consecutive slopes is equal to the number of zeros of f "at that distance from c".

### Log-properties

Let  $f \in \mathcal{H}_{\mathcal{K}}(X)$ . Let  $I \subseteq \mathbb{R}$  be an interval.

Let  $c \in X(\Omega/K)$ , (resp. c lies in a hole of X).

If the path  $R \mapsto |.|_{c,R}$ ,  $R \in I$ , encounters some hole of X (i.e. if there is some hole of X in the annulus  $|x - c| \in I$ ), then  $R \mapsto |f|_{c,R}$  has the following shape :



where  $\rho_i$  are the distances of the holes of X from c.

### Maximal skeleton

There is a natural order relation in  $\mathscr{M}(X)$  (induced by the order of  $\mathbb{R}$ ):  $|.|_1 \leq |.|_2 \stackrel{Def}{\longleftrightarrow} |f|_1 \leq |f|_2$ , for all  $f \in \mathcal{H}_{\mathcal{K}}(X)$ .

Maximal skeleton

$$X = D^+(c_0, R_0) - \cup_{i=1}^n D^-(c_i, R_i).$$

The set of *maximal points* with respect to the above order is



# The function $|.| \mapsto \rho_{|.|,X}^{gen}$

For  $c \in X(\Omega)$  we possibly have

$$|.|_{c,0} = |.|_{c,R}$$
 for some  $R > 0$ .

As an example if  $X = D^+(c_0, R_0) - \bigcup_{i=1}^n D^-(c_i, R_i)$ , and if  $t_{c_i, R_i}$  is a Dwork generic point of a semi-norm  $|.|_{c_i, R_i}$  in the Shilov boundary, then

$$|.|_{t_{c_i,R_i},0} \ = \ |.|_{t_{c_i,R_i},R} \ \text{for all} \ 0 \leq R \leq R_i \ .$$

Definition of  $\rho_{|.|,X}^{gen}$ .

We call  $\rho_{|.|,X}^{gen}$  the supremum of the  $R \ge 0$  such that  $|.| = |.|_{t,R}$  for some unspecified Dwork's generic point  $t \in X(\Omega)$ .

#### Equivalent definitions

Let  $t \in X(\Omega)$  be a fixed Dwork generic point for |.|, then

•  $\rho_{|.|,X}^{gen} = \sup(R \ s.t. \ |.| = |.|_{t,R})$  (i.e.the def. is indep.on the choice of t).

• 
$$\rho_{|.|,X}^{gen} = \operatorname{dist}(t, K^{\operatorname{alg}}) = \inf(|T - c| \ s.t. \ c \in K^{alg})$$

• Every point in  $\mathrm{D}^-(t,\rho^{gen}_{|.|,X})$  is a Dwork generic point for |.|.

# The function $\rho_{|.|,X}^{gen}$ is not continuous

### Proof.

Assume that K is a algebraically closed. Let  $x_1, x_2, ...$  be a sequence in  $\mathcal{O}_K$  such that the residual classes are different  $\overline{x_i} \neq \overline{x_j}$  for all  $i \neq j$ . Let  $X = D^+(0, 1)$  be the closed unit disk. Then

lim<sub>n</sub> |.|<sub>x<sub>n</sub></sub> = |.|<sub>0,1</sub> in  $\mathcal{M}(X)$   $\rho_{|.|x_n}^{gen} = 0$  for all  $n \ge 1$ .
  $\rho_{|.|x_n}^{gen} = 1$ .

We now prove these three facts.

Indeed each f ∈ H<sub>K</sub>(X) has a finite number of zeros. If there is no zeros in the disk D<sup>-</sup>(x<sub>n</sub>, 1) then |f|<sub>x<sub>n</sub></sub> = |f|<sub>x<sub>n</sub>,R</sub> for all R < 1 (see properties of slide 11), hence by continuity one has |f|<sub>x<sub>n</sub></sub> = |f|<sub>x<sub>n</sub>,1</sub> = |f|<sub>0,1</sub> (see FACT of slide 9). This proves that lim<sub>n</sub> |.|<sub>x<sub>n</sub></sub> = |.|<sub>0,1</sub>.

#### Continuation of the proof.

2 One has  $\rho_{|.|_{x_n}}^{gen} = 0$  because the function f := (T - c) verifies  $|f|_{x_n} = |x_n - c|$  so that for all R > 0 we choose c such that  $|x_n - c| < R$  so

 $|T - c|_{x_n,R} = |(T - x_n) + (x_n - c)_{x_n,R} = \max(R, |x_n - c|) = R$ 

so 
$$|f_c|_{x_n}
eq |f_c|_{x_n,R}.$$
 Then  $ho_{|.|_{x_n},X}^{gen}=\max(R\;s.t.\;|.|_{x_n}=|.|_{x_n,R})=0$ 

Now let t<sub>0,1</sub> be a Dwork generic point for |.|<sub>0,1</sub>. The same proof does not hold for |.|<sub>0,1</sub> because \(\rho\_{|.|\_{0,1},X}^{gen} = dist(t\_{0,1}, K)\), so t is transcendental over K.

-The equality  $|P|_{t_{0,1}} = |P|_{0,1}$  holds for all polynomial P of degree 1 by a similar computation.

- The equality hence holds for all polynomial because the semi-norm is multiplicative.

- The equality hence holds for all for all rational fraction and by density it holds also for all  $f \in \mathcal{H}_{\mathcal{K}}(X)$ .

# The function $|.|\mapsto ho_{|.|,X}$

Let  $t \in X(\Omega)$ , then we set

 $\rho_{t,X} := \operatorname{dist}(t, \mathbb{A}^1 - X) = \operatorname{sup}(\rho > 0 \ s.t. \operatorname{D}^-(t, \rho) \subset X).$ 

### Definition of $|.| \mapsto \rho_{|.|,X}$

Let  $|.| \in \mathscr{M}(X)$  and let t be a Dwork generic point for  $|.|:|.|=|.|_t$ . Then

 $\rho_{|.|,X} := \rho_{t,X}$ 

### Continuity of $|.| \mapsto \rho_{|.|,X}$

If  $X = \mathrm{D}^+(c_0, R_0) - \cup_{i=1}^n \mathrm{D}^-(c_i, R_i)$ , then (clearly)

 $\rho_{t,X} = \min(R_0, |t-c_1|_{\Omega}, \ldots, |t-c_n|_{\Omega}).$ 

NOTE :  $|t - c_i|_{\Omega} = |T - c_i|$  because t is Dwork generic point. So - This proves that the def. of  $\rho_{|.|,X}$  does not depend on the choice of t. - The function  $|.| \mapsto \rho_{|.|,X}$  is continuous because it is the minimum of a finite family of continuous functions

$$|.|\mapsto R_0$$
 and  $|.|\mapsto |T-c_i|, i=1,\ldots,n$ 

these functions are continuous by the definition of the topology of  $\mathcal{M}(X)$ . Andrea Pulita (Université de Montpellier 9 November 2010 18 / 50

ρ<sup>gen</sup> VS ρ

#### continuity

- The function  $\rho^{gen}$  is upper semi-continuous (because it is the infimum of an (infinite) family of continuous functions, see slides 15).
- The function  $\rho$  is continuous.

#### increasing

Assume that  $|.|_1, |.|_2 \in \mathscr{M}(X)$ , with  $|.|_1 \leq |.|_2$ , then

- $\rho_{|.|_1}^{gen} \leq \rho_{|.|_2}^{gen}$  (increasing function), and  $\rho_{|.|_t}^{gen} = 0$  if  $t \in \overline{K^{alg}}$ .
- $\rho_{|.|_1} = \rho_{|.|_2}$ : So that  $|.| \mapsto \rho_{|.|}$  is completely determined by its values on the maximal skeleton.

#### Equality on the maximal skeleton

If |.| belongs to the maximal skeleton of  $\mathcal{M}(X)$ , then

$$\rho_{|.|}^{gen} = \rho_{|.|}, \quad (\rho_{|.|_{c_i,R}} = \rho_{|.|_{c_i,R}}^{gen} = R)$$

Andrea Pulita (Université de Montpellier

Part 2 : Differential equations and (Elementary) Stratifications

æ

# Analytic functions on tubes around the diagonal

• Tube around the diagonal of  $X \times X$  :

 $\mathcal{T}(X,R) := \{ (x,y) \in X \times X \mid |x-y| < R \},\$ 



•  $\mathcal{A}_{\mathcal{K}}(\mathcal{T}(X,R)) :=$  Analytic functions on the tube.

If R > 0 is small enough then  $\mathcal{T}(X, R) \cong X \times D^{-}(0, R)$ . The isomorphism is given by  $(x, y) \mapsto (y, x - y)$ . In term of functions this gives

 $\begin{array}{l} \mathcal{A}_{\mathcal{K}}(\mathcal{T}(X,R)) \ = \ \{\sum_{n \ge 0} f_n(y)(x-y)^n \ \text{ such that } \ f_n \in \\ \mathcal{H}_{\mathcal{K}}(X) \ \text{and } \ \lim_n \|f_n\|_X \cdot \rho^n = 0 \ , \forall \rho < R \ \} \end{array}$ 

# (Elementary) Stratifications

A stratification over X is the data of a finite free module M over  $\mathcal{H}_{K}(X)$ , together with an unspecified R > 0, and a  $\mathcal{A}_{K}(\mathcal{T}(X, R))$ -linear isomorphism

 $\chi : p_1^* \mathcal{M} \xrightarrow{\sim} p_2^* \mathcal{M}$ 

where  $p_i : \mathcal{H}_{\mathcal{K}}(X) \to \mathcal{A}_{\mathcal{K}}(\mathcal{T}(X, R))$  are the projections  $p_1, p_2 : \mathcal{T}(X, R) \rightrightarrows X$ , and where  $p_i^* M := M \otimes_{\mathcal{H}_{\mathcal{K}}(X), p_i} \mathcal{A}_{\mathcal{K}}(\mathcal{T}(X, R))$ . -We ask moreover that  $\chi$  satisfies :

( $\Delta$ )  $\Delta^*(\chi) = \mathrm{Id}_{\mathrm{M}}$ , where  $\Delta : X \to \mathcal{T}(X, R)$  is the diagonal. (*C*)  $\chi$  satisfies a certain *cocycle relation* (see slide 26).

Morphisms are  $\mathcal{H}_{\mathcal{K}}(X)$ -linear maps  $\alpha: \mathrm{M} \to \mathrm{N}$  satisfying

### Differential equations

#### Differential modules

A differential module over X is a finite free  $\mathcal{H}_{\mathcal{K}}(X)$ -module together with a connection  $\nabla : M \to M$ , that is a linear map satisfying

$$abla(f \cdot m) = f' \cdot m + f \cdot \nabla(m), \text{ for } f \in \mathcal{H}_{\mathcal{K}}(X), m \in \mathcal{M}.$$

a morphism between differential equations is a  $\mathcal{H}_{\mathcal{K}}(X)$ -linear map commuting with the  $\nabla's$ . We call  $d - \operatorname{Mod}(\mathcal{H}_{\mathcal{K}}(X))$  the category of differential modules over  $\mathcal{H}_{\mathcal{K}}(X)$ .

Once a basis of  ${\rm M}$  is chosen, then the connection defines a diff. eq.

Y' = G(T)Y,  $G(T) \in M_n(\mathcal{H}_K(X))$ .

Indeed we have the diagram :

### Differential equations VS (Elementary) Stratifications

The notion of Stratification comes back to A.Grothendieck, P.Berthelot, L.Illusie, N.M.Katz, [...]. They was trying to find a substitute to the notion of Diff. Eq. in characteristic p (see P.Berthelot's Talk).

#### Theorem :

The category  $d - \operatorname{Mod}(\mathcal{H}_{\mathcal{K}}(X))$  is equivalent to  $\operatorname{Strat}(\mathcal{H}_{\mathcal{K}}(X))$ .

The basic idea of the correspondence is the following :

- To give the connection  $\nabla : M \to M$  means to give the matrix  $G(T) \in M_n(\mathcal{H}_K(X))$  for the differential equation Y' = G(T)Y.
- To give the stratification  $p_1^* M \xrightarrow{\sim} p_2^* M$  means to give the two variable matrix  $Y(x, y) \in GL_n(\mathcal{A}_K(\mathcal{T}(X, R)))$  of the stratification.

The relations between them is that Y(x, y) is the solution of the equation : it verifies

$$\frac{d}{dx}Y(x,y) = G(x) \cdot Y(x,y) .$$

### From Diff.Eq. to Stratification $\implies$ Generic Taylor solutions

#### Definition of Generic Taylor solution

- Consider a diff. eq. Y' = G(x)Y,  $G(x) \in M_n(\mathcal{H}_{\mathcal{K}}(X))$ .
- We have a Taylor solution at a given point  $x_0 \in X$  :

$$Y(x) := \sum_{n \ge 0} Y^{(n)}(x_0) \frac{(x - x_0)^n}{n!}, \ Y(x_0) = \text{Id}.$$

- We consider it as a function of x and of  $x_0$ .
- We choose the Taylor solution equal to Id at  $x_0$  : Y(y) = Id,  $\forall y \in X$ . - If  $Y^{(n)} = G_n(x)Y$ , we consider the "*GENERIC*" Taylor solution :

$$Y(x,y) := \sum_{n\geq 0} G_n(y) \frac{(x-y)^n}{n!}$$

It verifies

$$\frac{d}{dx}Y(x,y) = G(x)\cdot Y(x,y) .$$

## From Diff.Eq. to Stratification $\implies$ Generic Taylor solutions

$$Y(x,y) := \sum_{n\geq 0} G_n(y) \frac{(x-y)^n}{n!}$$

 FACT : This function converges on a certain tube T(X, R), for some R > 0 and it verifies :

$$\frac{d}{dx}Y(x,y)=G(x)Y(x,y)$$

( $\Delta$ ) Y(x,x) = Id, for all  $x \in X$ ;

- (C) Y(x, y)Y(y, z) = Y(x, z) (cocycle relation), for all  $(x, y), (y, z) \in \mathcal{T}(X, R)$ ;
  - In fact a matrix  $Y(x, y) \in GL_n(\mathcal{A}_K(\mathcal{T}(X, R)))$  is the matrix of a stratification  $\chi$  if and only if it verifies ( $\Delta$ ) and (C).

### From Stratifications to Diff.Eq.

• Reciprocally from a stratification  $\chi$  with matrix Y(x, y) one gets the differential equation by considering

$$G(x) := \frac{d}{dx}(Y(x,y)) \cdot Y(x,y)^{-1} .$$

It happens that  $G(x) \in M_n(\mathcal{H}_K(X))$  does not depend on y because of the cocycle relation.

- The idea is the following. Write

$$Y(x,y) = \sum_{n\geq 0} H_n(y)(x-y)^n \in GL_n(\mathcal{A}_{\mathcal{K}}(\mathcal{T}(X,R)))$$

then :

- $H_1 = G$ ,
- The cocycle relation implies that  $H_n$ ,  $n \ge 1$ , are totally determined by the dominant term  $H_1 = G$ .

Part 3 : Definition and properties of the radius of convergence function of an analytic function around the diagonal

# Radius of convergence function (History)

#### Historical note

- Firstly Dwork found a *p*-adic proof of the rationality of the Zeta function of a variety in char. *p* > 0. The proof involved a particular p-adic diff.eq. then he defined a framework for a de Rham cohomology theory (overconvergent functions, differential modules, ...) today called Dwork's cohomology.
- Christol, Dwork, Robba, [...] worked with diff. eq. on annulus  $\{r < |x| < r'\}$ .
- For a diff.mod. M over the annulus they have defined the Radius of convergence of M at a Dwork generic point t<sub>ρ</sub> for |.|<sub>ρ</sub> = |.|<sub>0,ρ</sub>, ρ∈]r, r'[ as
   Rad(M, t<sub>ρ</sub>) := min(ρ, Rad(Y(x, t<sub>ρ</sub>))).

where  $Rad(Y(x, t_{\rho}))$  is the minimum radius of the entries of the Taylor solution matrix  $Y(x, t_{\rho})$  at  $t_{\rho}$ .

ullet ho was there to make the definition invariant by base changes

# Radius of convergence function (History)

### Historical note

- In [CD94] Christol and Dwork study the continuity of the function  $\rho \mapsto Rad(M, t_{\rho})$  on the segment ]r, r'[.
- Some years later F.Baldassarri and L.Di Vizio [BV07] defined the radius of convergence function for a differential module over a Berkovich space.

As observed by them there was a lack of definitions : even the case of a disk was missing in the literature. In this paper they prove

- the continuity of the radius function in the case of a 1-dim affinoid
- the upper semi-continuity in the general case.
- Finally F.Baldassarri proved the continuity over a curve in a recent paper (to appears in Inventiones).

#### Motivation

The radius of convergence function is an invariant (by isomorphisms) of the diff. module. It encodes numerical invariants like the *p*- adic irregularity (Christol-Mebkhout), and the formal irregularity (B.Malgrange).

Andrea Pulita (Université de Montpellier

# Radius of convergence (definition).

- X = K-affinoid
- $\nabla : M \to M = \text{connection}$
- $\chi: p_1^* \mathbf{M} \xrightarrow{\sim} p_2^* \mathbf{M} = \text{stratification attached to } \nabla$
- $G(T) = \text{matrix of } \nabla$   $(Y' = G(T)Y, G \in M_n(\mathcal{H}_K(X)))$
- $Y(x, y) = \text{matrix of } \chi$   $(Y(x, y) \in GL_n(\mathcal{A}_K(\mathcal{T}(X, R))))$   $Y^{(n)} = G_n Y$  iterated matrices

• Then 
$$Y(x,y) = \sum_{n\geq 0} G_n(y) \frac{(x-y)^n}{n!}$$

### Definition of Radius

For all  $|.| \in \mathcal{M}(X)$  we set

$$Rad(M, |.|) := \min(\rho_{|.|,X}, Rad(Y(x, t)))$$

where t = D work generic point for |.|, and where

$$Rad(Y(x,t)) = \liminf_{n \to \infty} \frac{1}{\sqrt[n]{|G_n(t)|/|n!|}}$$

clearly it does not depends on the choice of t but only on  $|.| = |.|_t$ .

# $Rad(M, |.|) := \min(\rho_{|.|,X}, Rad(Y(x, t)))$

- $\bullet$  The use of  $\rho_{|.|, \mathbf{X}}$  in the definition was introduced by Baldassarri Di Vizio.
- In the context of Christol-Dwork [CD94] over an annulus we have  $\rho_{|.|_{\theta}} = \rho_{|.|_{\theta}}^{gen}$ .
- Some authors (namely Kedlaya's recent Book) still uses the definition of radius with the  $\rho_{|.|,X}^{gen}$  instead of  $\rho_{|.|,X}$ . This could be, for other reasons, a convenient choice, because in this case the definition of the radius (using  $\rho^{gen}$ ) results to be equal to a spectral norm of  $\nabla$  so the definition seems more intrinsic.
- We now list some differences :
  - The definition of Rad(M, |.|) using ρ<sup>gen</sup><sub>|.|,X</sub> is not invariant by base field extension of K, because ρ<sup>gen</sup><sub>|.|,X</sub> measures the distance from K<sup>alg</sup> of a Dwork generic point for |.|.
- The definition of Rad(M, |.|) using  $\rho_{|.|,X}$  is invariant by base field extension because it measures the distance of |.| from the holes of X200 Andrea Pulita (Université de Montpellier 9 November 2010 32 / 50

### Invariance by pull-back over a Berkovich point

• As an example consider the case of the annulus  $\{r < |x| < r'\}$  and the norm  $|.| = |.|_{c,\rho}$ ,  $c \in K$ . Let  $\mathcal{A}_{K}(]r, r'[) :=$ Tate algebra

 $\mathscr{H}(|.|_{c,\rho}) := (Frac(\mathcal{A}_{\mathcal{K}}(]r,r'[)),|.|_{c,\rho})^{\frown}$ 

be the complete valued field attached to the Berkovich point  $|.|_{c,\rho}.$  We have a morphism of Berkovich spaces

 $\imath: \mathscr{M}(\mathscr{H}(|.|_{c,\rho})) \rightarrow \mathscr{M}(\mathcal{A}_{\mathcal{K}}(]r,r'[))$ 

FACT : If  $\rho > 0$  then d/dx extends to  $\mathscr{H}(|.|_{c,\rho})$ . We then can consider the pull-back over  $\mathscr{H}(|.|_{c,\rho})$  of a differential module over the annulus. Then

- The definition of Rad(M, |.|) using  $\rho_{|.|,X}^{gen}$  is invariant by pull-back by  $\imath$ .
- The definition of Rad(M, |.|) using ρ<sub>|.|,X</sub> is not invariant by pull-back by *i* because ρ<sub>|.|,X</sub> is the "distance from the holes of X" and it highly depends on the base space X.

### Invariance by pull-back by an inclusion of affinoids.

The same phenomena arises for an inclusion of two affinoids :

 $X'\subseteq X$ 

- The radius function defined using  $\rho_{|.|,X}^{gen}$  is invariant by this pull-back
- The radius function defined using  $\rho_{|.|,X}$  is not invariant by this pull-back

The reasons are the same that in the above slide.

See the recent Inventiones paper of F.Baldassarri to see how to obtain a global intrinsic/normalized definition of the Radius function using  $\rho_{|.|,X}$  in a way such that it glues.

In this talk we are mainly concerned with a fixed K-affinoid X. In this case

- The radius function defined using  $\rho_{|.|,X}^{gen}$  is not continuous,
- $\bullet$  The radius function defined using  $\rho_{|.|,{\sf X}}$  is continuous,

### Radius of a function around the diagonal

We consider a function  $f(x,y) \in \mathcal{A}_{\mathcal{K}}(\mathcal{T}(X,R)), R > 0$ :

 $f(x,y) := \sum_{n\geq 0} f_n(y)(x-y)^n, \quad f_n \in \mathcal{H}_{\mathcal{K}}(X).$ 

# Definition of Radius of f(x, y): Let $|.| \in \mathcal{M}(X)$ , then $Rad(f(x, y), |.|) = \min(\rho_{|.|,X}, \liminf_{n \to \infty} \frac{1}{\sqrt[n]{|f_n|}})$

#### Transfer theorem

Let  $|.|_1, |.|_2 \in \mathcal{M}(X)$ , then the radius function is decreasing

 $|.|_1 \leq |.|_2 \implies \operatorname{Rad}(f(x,y),|.|_1) \geq \operatorname{Rad}(f(x,y),|.|_1).$ 

Again this theorem is false using  $\rho^{gen}$  in the definition. Because  $\rho^{gen}_{|.|_1,X} \leq \rho^{gen}_{|.|_2,X}$ , while  $\rho_{|.|_1,X} = \rho_{|.|_2,X}$ 

Andrea Pulita (Université de Montpellier

# Convergene locus of f(x, y), x-radius and y-radius

Notice that f(x, y) converges on a tube  $\mathcal{T}(X, R)$ , but usually the convergence locus of f(x, y) is larger than  $\mathcal{T}(X, R)$ .

NOTE : Considering the Radius means considering *y*-sections of the convergence locus : one specializes  $y \to t$  (t=Dwork generic point for |.|) and one checks the Radius of convergence of the 1-variable function around t

$$f(x,t) = \sum_{n\geq 0} f_n(t)(x-t)^n$$

So we call  $Rad_x(f(x, y), |.|) := Rad(f(x, y), |.|)$  the x-radius. One can define the y-radius by specializing x at t. In general

 $Rad_x(f(x,y),|.|) \neq Rad_y(f(x,y),|.|)$ .

Proposition

$$\operatorname{\mathit{Rad}}_x(f(x,y),|.|) \leq \rho_{|.|,X}^{\operatorname{gen}} \iff \operatorname{\mathit{Rad}}_y(f(x,y),|.|) \leq \rho_{|.|,X}^{\operatorname{gen}}$$

In this case they are equal.

Andrea Pulita (Université de Montpellier

### Proposition

If Y(x, y) is the generic Taylor solution of an equation Y' = GY, then (without any assumption on the radius) one always has

 $Rad_{x}(Y(x,y),|.|) = Rad_{y}(Y(x,y),|.|)$ .

(intended as the minimum radius of the entries). This result is no longer true for its entries.

$$\begin{split} X &= \mathrm{D}^+(0,1) \\ \rho_{|.|,X} &= 1, \text{ for all } |.| \in \mathscr{M}(X) \\ f(x,y) &= \sum_{n \ge 0} f_n(y)(x-y)^n, \quad f_n(y) = y/p^n \\ Rad_x(f(x,y),|.|) &= \begin{cases} 1 & \text{if } |.|=|.|_0 \\ |p| & \text{if } |.|\neq|.|_0 \end{cases}, \\ Rad_y(f(x,y),|.|) &= \begin{cases} 1 & \text{if } |.|=|.|_p \\ |p| & \text{if } |.|\neq|.|_p \end{cases}. \end{split}$$

Andrea Pulita (Université de Montpellier

Image: A matrix

æ

## Examples of radius functions

$$\begin{split} X &= D^{+}(0, r), \ r > 1\\ \rho_{|.|,X} &= r, \ \text{for all } |.| \in \mathscr{M}(X)\\ f(x, y) &= \sum_{n \ge 0} f_n(y)(x - y)^n, \quad f_n(y) = y^n\\ Rad_x(f(x, y), |.|_t) &= \min(\frac{1}{|t|}, r)\\ Rad_y(f(x, y), |.|_t) &= \begin{cases} \min(\frac{1}{|t|}, 1) & \text{if } |t| \neq 1\\ \geq \min(\frac{1}{|t|}, 1) & \text{if } |t| = 1 \end{cases}.\\ \end{split}$$
In particular  $Rad_x \neq Rad_y$  on the whole  $D^{-}(0, 1).$ 

æ

# Log-concavity on the maximal skeleton

For all  $f(x, y) \in \mathcal{A}_{\mathcal{K}}(\mathcal{T}(X, R))$ , we consider the radius function  $|.| \mapsto Rad(f(x, y), |.|) : \mathcal{M}(X) \to \mathbb{R}_{>0}$ 

Behavior on the maximal skeleton

The function Rad(f(x, y), |.|) has the following log-shape on a branch  $R \mapsto |.|_{c_i,R}$  of the maximal skeleton



Andrea Pulita (Université de Montpellier

This is a general fact about concave functions :

### theorem

```
I = interval of \mathbb{R}. A concave function
```

$$f: I \to \mathbb{R}$$

is continuous on the interior of *I*.

- Each function  $R \mapsto |f_n|_{c,R}$  is log-convex
- Then each  $R\mapsto rac{1}{\sqrt[n]{|f_n|_{c,R}}}$  is log-concave
- inflim of (log-)concave functions is a (log-)concave function hence use the theorem

### Theorem

For all  $f(x, y) \in \mathcal{A}_{\mathcal{K}}(\mathcal{T}(X, R))$ , the radius function

 $|.| \mapsto Rad(f(x,y),|.|) : \mathscr{M}(X) \to \mathbb{R}_{\geq 0}$ 

is LSC on each point  $|.| \in \mathcal{M}(X)$  satisfying  $\rho_{|.|,X}^{gen} > 0$ . This form an open subset of  $\mathcal{M}(X)$  containing the skeleton.

Recall that  $\rho_{|.|,X}^{gen} = 0$  if and only if a Dwork generic points for |.| lies in  $\widehat{K^{\mathrm{alg}}}$ .

## Idea of the Proof :

One distinguishes the points of the maximal skeleton from the others. Points in the maximal skeleton :

- Log-concavity on the skeleton implies that the restriction of Rad on it is LSC (easy). Actually we have continuity if no holes in the path.
- Transfer theorem implies the LSC on the skeleton (because the values the radius is minimal on the points of the maximal skeleton).

If |.| is another point (not in the skeleton), then  $|.| = |.|_{c,R}$  with R > 0.

- Then the annulus  $A := \{R \delta < |x c| < R + \delta\}$  is an open neighborhood of |.|,
- If  $\delta > 0$  is small, the restriction of Rad(f, |.|) is continuous on the path  $\rho \mapsto |.|_{c,\rho}$ ,  $\rho \in ]R \delta, R + \delta[$  because there is "no holes of X"
- So for all arepsilon > 0 there is  $\delta > 0$  small such that

 $Rad(f, |.|_{c,\rho}) \geq Rad(f, |.|_{c,R}) - \varepsilon$ ,

for all  $\rho \in ]R - \delta, R + \delta[$ . (this is the LSC on this path).

• by transfer this also holds for the other points of this annulus (the radius is minimal in this path). So the inequality is true for all |.| of A.

43 / 50

### proposition

If Y(x, y) is the Taylor solution of a diff.eq. then

 $|.| \mapsto Rad(Y(x,y),|.|) : \mathscr{M}(X) \to \mathbb{R}_{\geq 0}$ 

is LSC on the whole  $\mathcal{M}(X)$ .

The reason is that the radius of a differential equation is locally constant on the  $\widehat{\mathcal{K}^{alg}}$ -rational points (i.e. those for which  $\rho_{|.|,X}^{gen} = 0$ ).

## Example of non continuous radius

 $\begin{aligned} X &:= \mathrm{D}^+(0,1) \text{ be the closed unit disk. Let } r_n \text{ be a sequence of real} \\ \text{numbers satisfying : (a) } r_n < 0, (b) \lim_n r_n = 0, (c) r_n \in \frac{n \ln(|p|)}{\mathbb{N}}. \text{ Let now} \\ \alpha_n &:= \frac{\ln(|p|^n)}{r_n} \in \mathbb{N}. \text{ Then the function } f(x,y) := \sum_{n \ge 0} f_n(y)(x-y)^n, \text{ with} \\ f_n &:= p^{-n} + p^{-2n} x^{\alpha_n} \text{ verifies } |f_n|_\rho = \sup(|p|^{-n}, |p|^{-2n} \rho^{\alpha_n}), \text{ in particular} \\ |f_n|_1 &= |p|^{-2n} \text{ for all } n \ge 0. \text{ Then } \sqrt[n]{|f_n|_\rho} = \sup(|p|^{-1}, |p|^{-2} \rho^{\frac{\ln(|p|)}{r_n}}). \end{aligned}$ 

 $|\mathbf{n}(\rho) \mapsto -|\mathbf{n}(\sqrt[p]{|\mathbf{f_n}|_{\rho}}) \qquad |\mathbf{n}(\rho) \mapsto -|\mathbf{n}(\sqrt[p]{|\mathbf{f_n}|_{\rho}}) \qquad |\rho|^2$ 

Hence  $Rad_{X}(f(x,y),|.|_{\rho}) := \min(1,\liminf_{n} \frac{1}{\sqrt[n]{|f_{n}|_{\rho}}}) = \liminf_{n} \frac{1}{\sqrt[n]{|f_{n}|_{\rho}}} =$ 

$$\left\{ egin{array}{ccc} |\pmb{p}| & ext{if} & 
ho < 1 \ |\pmb{p}|^2 & ext{if} & 
ho = 1 \end{array} 
ight.$$

# A criterion for the continuity

The above example proves that we need a sort of UNIFORM CONVERGENCE result in the sense of LSC functions.

• We have to ask to the sequence of functions

$$|.|\mapsto \frac{1}{\sqrt[n]{|f_n|}}$$

to be "superiorly uniformly convergent" to Rad(f(x, y), |.|).

Criterion of continuity

If 
$$f(x,y) = \sum_{n \geq 0} f_n(y)(x-y)^n$$
 verifies

- Rad(f(x, y), |.|) is locally constant on the K<sup>alg</sup>-rational points (rigid points) (i.e. those for which ρ<sup>gen</sup> = 0),
- There exists a sequence  $C_n$  such that  $\lim_n C_n = 1$ ,  $C_n \ge 1$  for all large values of n such that

 $|f_n| \cdot Rad(f(x,y),|.|)^n = C_n^n$ , fro all  $n \ge 0$ ,  $\forall |.| \in \mathscr{M}(X)$ 

then Rad(f(x, y), |.|) is a continuous function on the whole  $\mathcal{M}(X)$ .

46 / 50

$$Rad(M, |.|) := \min(\rho_{|.|,X}, \liminf_n \frac{1}{\sqrt[s]{|G_s|}})$$

where  $G_s$  is the matrix of  $\nabla^s$  :  $Y^{(s)} = G_s Y$ . Recall that the Taylor solution is

$$Y(x,y) = \sum_{s\geq 0} G_s(y) \frac{(x-y)^s}{s!} \, .$$

### Dwork-Robbs's Theorem

Let  $t \in X(\Omega)$ , with  $\Omega/K$  an arbitrary complete valued field extension. Then for all  $0 < \rho \leq Rad(M, |.|_{t,0})$  one has

$$\frac{|G_s|_{t,\rho}}{|s|!} \le \rho^{-s} \cdot \{s, n-1\}_{\rho} \cdot \max_{0 \le i \le n-1} (|G_i|_{t,\rho} \cdot \rho^i)$$

where 
$$\{s,n\}_{m{p}}:= \sup_{1\leq\lambda_1<\cdots<\lambda_n\leq s}|\lambda_1\cdots\lambda_n|^{-1}$$

The Dwork-Robba's theorem in their form asserts that the asymptotic growth of the coefficients is controlled by the first n coefficients of the Taylor solution matrix.

## Dwork-Robbs's Theorem revisited

There exists constants  $\mu > 0$  and  $\kappa > 1$  such that

$$\frac{|G_s|}{s!|} \cdot \mathsf{Rad}(\mathrm{M}, |.|)^s \leq s^{\mu(n-1)}$$

for all  $|.| \in \mathcal{M}(X)$ .

## Corollary

The radius of convergence function of a differential module is continuous :)

The above version of the Dwork-Robba's theorem is exactly the above criterion of continuity (see slide 46).

NOTE : the idea of considering the Dwork-Robba's goes back to Christol-Dwork [CD94]. The same idea have been taken up also by [BV07] who have been able to generalize the Dwork-Robba's theorem in many variables. So the upper semi-continuity holds in higher dimensional spaces, but the lower semi-continuity (that should hold for all functions around the diagonal) is an open problem since the base space is actually much more complicated.

NOTE : The proof we have presented here is supposed to separate the obstructions to the continuity of topological nature from those coming from differential equation.

# Bibliography

NOTE : All the computations of this talk can be found in the last version of [Pu10] which will be available in a few week on arxiv. The older version already present in arxiv does not contain any of these computations.

- CD94] F.Baldassarri and L. Di Vizio, Continuity of the radius of convergence of p-adic differential equations on Berkovich spaces, ArXiv :07092008[math.NT],13 September 2007, (2007),1-22.
- BV07] G.Christol and B.Dwork, Modules différentiels sur des couronnes, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 3, 663-701.
- Pu10] A.Pulita *Infinitesimal deformation of ultrametric differential equations*, November 2010, 1-80.