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Andrea Pulita (Université de Montpellier II) Infinitesimal deformation of D.E. 2008 September 8 3 / 33



Structure of the talk

Deformation functor

{Diff.Eq.} DefΣ−−−→ {Σ−modules}

1 The family Σ has to be formed by “infinitesimal” automorphisms ;

2 If Σ is non degenerate then DefΣ is fully faithful.

{Diff .Eq.}
(Σ=ΓK ) DefΓK

uu

Defq (Σ={q})

((
{(ϕ, ΓK )−modules} {q − Diff .Eq.}

Application to Morita’s p-adic Γp function and to some values at positive
integers of Kubota-Leopoldt’s L-functons
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Notation

K := complete ultrametric field of characteristic 0

D−(c ,R),D+(c ,R) =open and closed disk

AK (c ,R) =ring of analytic functions over D−(c ,R)

X := sub-K -affinoid of A1
K defind by

X := D+(c0,R0)− ∪n
i=1D

−(ci ,Ri )

with c0, ...cn ∈ K and R0 ≥ R1, . . . ,Rn > 0

HK (X ) =analytic functions over X

‖f ‖X := supΩ/K , x∈X (Ω) |f (x)|Ω, for all f ∈ HK (X )
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Differential equations and Elementary Stratifications

d −Mod(HK (X )) := {finite free HK (X )-modules with a connection}

Consider Y ′ = G (x)Y , (define Gn by Y (n) = GnY ) then we have the
generic Taylor solution

Y (x , y) :=
∑
n≥0

Gn(y)(x − y)n/n! . (1)

This function Y (x , y) converges over

T (X ,R) := {(x , y) ∈ X × X such that |x − y | < R}= TUBE of radius R

and Y (x , y) satisfies :

Y (x , y) converges over T (X ,R) for some R > 0

Y (x , y)Y (y , z) = Y (x , z) for (x , y), (y , z), (x , z) ∈ T (X ,R)

Y (x , x) = Id .
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Differential equations and Elementary Stratifications

One has an equivalence

S : d −Mod(HK (X ))
∼−−→ Strat(HK (X )) , (2)

where an object of Strat(HK (X )) is a finite free HK (X )-module M
together with an isomorphism

χM : p∗1M|T (X ,R)

∼→ p∗2M|T (X ,R)
,

(where pi : X × X → X are the projections) satisfying

R is unspecified

χM satisfies p∗1,2(χM) ◦ p∗2,3(χM) = p∗1,3(χM) (holds where defined)

∆∗χM = IdM, where ∆ : X → X × X = diagonal immersion.

S sends Y ′ = GY into (M, χM) whose matrix is the Taylor solution Y (x , y)
S−1 sends (M, χM) with matrix Y (x , y) into Y ′ = GY where

G (x) := d/dx(Y (x , y)) · Y (x , y)−1 belongs to HK (X ).
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Generic Idea of the deformation

Example : Let R > 0 fixed (and small). Consider the (easy) case of a

σ : X
∼→ X

satisfying for all x ∈ X (Ω), and all Ω/K (uniformly on X )

|σ(x)− x | < R.

Then the map ∆σ : X → X × X sending ∆σ(x) = (σ(x), x) satisfies

∆σ(X ) ⊂ T (X ,R) .

It takes meaning to consider the pull-back of χM providing that χM

converges over T (X ,R). Then

∆∗
σp∗1M = σ∗M

∆∗
σχM−−−−→
∼

M = ∆∗
σp∗2M .

We have a σ-deformation functor Defσ := ∆∗
σ ◦ S :

Defσ : d −Mod(HK (X ))[R] −−−→ σ −Mod(HK (X ))
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Analytic functions on tubes

Note 1 : The most part of σ does not verify ∆σ(X ) ⊂ T (X ,R) !

Note 2 : Likely if Y (x , y) converges on T (X ,R) then
the convergence domain of Y (x , y) is usually not reduced to T (X ,R) !

About Note 2 : Let y0 ∈ X (Ω), Ω/K . We define

ρy0,X , := ,dist(y0, A1 − X ) .

AK (T (X ,R)) = {f (x , y) =
∑

n≥0 fn(y)(x − y)n, s.t. limn ‖fn‖XRn = 0}

It may happen that f (x , y0) converges outside X , but we define the radius
of f (x , y) as

Rad(f (x , y), y0) := min( Rad(f (x , y0)) , ρy0,X )

If h(x) ∈ HK (X ) then Rad(h(x)f (x , y), y0) = Rad(f (x , y), y0).
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Maximal Skeleton of a Berkovich space

Let X = D+(c0,R0)− ∪n
i=1D

−(ci ,Ri ).

c ∈ D+(c0,R0)
ρ ≤ R0

Ri ≤ ρ if c ∈ D−(ci ,Ri ) .

 =⇒ |f (x)|c,ρ ∈ M (X )

Proposition : The set of maximal points of M (X ) is given by

SX := ∪n
i=1{|.|ci ,ρ s.t. ρ ∈ [Ri ,R0]} .
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Critical points i
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Behavior of a function on the Maximal Skeleton

If g(x) ∈ HK (X ), consider the continuous function

|.|∗ 7→ |f |∗ : M (X ) → R≥0 .

|.|∗ ≤ |.|∗∗ ⇐⇒ |f |∗ ≤ |f |∗∗ for all f ∈ HK (X )

The restriction of this function to the branch [|.|ci ,Ri
, |.|ci ,R0 ] of SX gives :

-

6log(|f |ci ,ρ)

•
log(Ri ) •

log(ρi,1) •
log(ρi,2) •

log(ρi,ri−1) •
log(R0)· · ·
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where Ri < ρci ,1 < . . . < R0 are the “critical points” of SX .
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Behavior of the Radius on the Maximal Skeleton

Let f (x , y) ∈ AK (T (X ,R)), and |.|∗, |.|∗∗ ∈ M (X ), then

|.|∗ ≤ |.|∗∗ =⇒


ρ|.|∗,X = ρ|.|∗∗,X

Rad(f (x , y), |.|∗) ≥ Rad(f (x , y), |.|∗∗)
Then Rad(f (x , y),−) is MINIMAL on the maximal points SX .

R(ρ) := Rad(f (x , y), |.|ci ,ρ)/ρ|.|ci ,ρ,X = Rad(f (x , y), |.|ci ,ρ)/ρ .

-
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Infinitesimal automorphisms

Definition : We say that σ : X
∼→ X is infinitesimal if for all Ω/K , all

y ∈ X (Ω), one has
|σ(y)− y | < ρy ,X . (*)

Proposition : The following are equivalents

(*) holds for all points of M (X )

(*) holds for all points in the maximal Skeleton SX

(*) holds for critical points (finite set of conditions)
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σ-compatible analytic functions on tubes

Definition : We say that f (x , y) is σ-compatible if for all Ω/K and all
y0 ∈ X (Ω)

|σ(y0)− y0| < Rad(f (x , y), y0) . (**)

Proposition : The following are equivalents

(**) holds for all points of M (X )
(**) holds for all points in the maximal Skeleton SX

(**) holds for critical points (finite set of conditions)

-
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Deformation as Pull Back

Let Σ be a family of infinitesimal automorphisms.

Definition : We denote by

d −Mod(HK (X ))adm(Σ)

the full subcategory of d −Mod(HK (X )) formed by equations whose
stratification is σ-compatible for all σ ∈ Σ.

Theorem : The pull-back functor is well defined and we have a
deformation functor

DefΣ : d −Mod(HK (X ))adm(Σ) −−−−−→ Σ−Mod(HK (X ))

Definition : We call Taylor admissible Σ-modules the essential image

Σ−Mod(HK (X ))adm .
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Non degeneracy and fully faithfulness of DefΣ

Definition : A family Σ is non degenerate if

1 Σ is infinitesimal

2 There exists Ω/K and y0 ∈ X (Ω) such that
AΩ(y0,R)Σ = Ω

for all R ≤ ρy0,X for which D−(y0,R) is invariant under all σ ∈ Σ.

Criterion of non degeneracy : If there exists a |.|∗ ∈ M (X ) such
that 0 belongs to the closure of the set

{|σ(T )− T |n∗}σ∈Σ,n≥1 − {0} , (3)

then Σ is non degenerate.

Theorem : If Σ is non degenerate, then DefΣ is fully faithful and we
have an equivalence

DefΣ : d −Mod(HK (X ))adm(Σ) ∼−−→ Σ−Mod(HK (X ))adm
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Katz-Matsuda’s Canonical extension for Taylor admissible
Σ-modules

RK := {f =
∑

n∈Z anT
n | f converges for ε < |T | < 1(ε = unspecified)}

It “corresponds” to k((t)) where k=residual field of K

H†
K := {f =

∑
n∈Z anT

n | f converges for ε1 < |T | < ε2(εi = unspecified)}
Its residual ring is k[t, t−1].

Theorem : Let Σ be an non degenerate family over H†
K . Choose a

Frobenius ϕ of H†
K . Then we have a section of the scalar extension functor

M 7→ M⊗H†
K
RK : Σ−Mod(H†

K )(ϕ),adm −−−→ Σ−Mod(RK )(ϕ),adm

called canonical extension

Can : Σ−Mod(RK )(ϕ),adm −−−→ Σ−Mod(H†
K )(ϕ),adm
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Break decomposition, and quasi-unipotence of Taylor
admissible Σ-modules

Theorem : Every object in Σ−Mod(RK )(ϕ),adm admits a break
decomposition by the slopes of the radius of convergence.

Lemma : Every infinitesimal automorphism σ of H†
K extends uniquely to

étale extensions of H†
K , and RK .

Theorem : Every object of Σ−Mod(RK )(ϕ),adm is quasi unipotent.
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Recalls about p-adic Representations

K :=finite extension of Qp Kn := K (µpn) K∞ := ∪nKn

k :=residual field of K k∞ :=res.field of K∞ F ′ := Frac(W(k∞))
GK := Gal(K alg/K ), HK := Gal(K alg/K∞), ΓK := Gal(K∞/K )

Theorem (L.Berger) : There exists a functor
NdR : RepdR(GK )

∼−−→ d −Mod(RF ′)(ϕ)

Some results of Berger :

NdR(V) is quasi unipotent ⇐⇒ V is potentially semi-stable,

NdR(V) is unipotent ⇐⇒ V|GKn
is semi-stable for some n ≥ 0,

NdR(V) is trivial ⇐⇒ V|GKn
is crystalline for some n ≥ 0.

A result of Marmora :

Irr NdR(V) = sw(V|GKn
) for some n >> 0.
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Recalls

Aim

One expects to read in NdR(V) every invariant of V whose nature is
“potential”.
More precisely one expect that

Every invariant of NdR(V) corresponds to an invariant of V|GKn
for n >> 0.

Question

Is there some equivalence of categories ?
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Recalls about a recent work of L.Berger

Fontaine+(Cherbonier-Colmez) : We have equivalences

Rep(GK )
D
∼

//

D†
∼

**TTTTTTTTTTTTTTTTT (ϕ, ΓK )−Mod(EF ′)ét

(ϕ, ΓK )−Mod(E†F ′)ét

o

OO
(4)

L.Berger defined a full sub-category

(ϕ, ΓK )−Mod(RF ′)ét,LT

ϕ is étale in the sense of Kedlaya (i.e. Mat(ϕ) ∈ GLn(OE†
F ′

))

ΓK acts Locally Trivially on the (ϕ, ΓK )-module (following Berger)
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Theorem (L.Berger) : The functor NdR factorizes as follows

RepdR(GK )

NdR ,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
D†

∼
// (ϕ, ΓK )−Mod(RF ′)ét,LT

CΓK

// (ϕ,∇)−Mod(RF ′)ét

��
d −Mod(RF ′)(ϕ)

(5)
(Notation are not standard)

Motivated by the above correspondence of invariants we consider
Germ RepdR(GK ) := lim−→n

RepdR(GKn)

Germ(ϕ, ΓK )−Mod(RF ′)ét,LT := lim−→n
(ϕ, ΓKn)−Mod(RF ′)ét,LT

GermRepdR(GK )

NdR --ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
D†

∼
// Germ(ϕ, ΓK )-Mod(RF ′)ét,LT

CΓK

// (ϕ,∇)-Mod(RF ′)ét

��
d −Mod(RF ′)(ϕ)
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Berger’s functor NdR as a confluence functor

GermRep(GK )
D†
−−→
∼

Germ(ϕ, ΓK )-Mod(RF ′)ét,LT
CΓK→ (ϕ,∇)-Mod(RF ′)ét

By ΓK -deformation we have

DefΓK
: (ϕ,∇)−Mod(RF ′)ét

∼−−→ Germ(ϕ, ΓK )−Mod(RF ′)ét,adm

Theorem : We have the inclusion

Germ(ϕ, ΓK )−Mod(RF ′)ét,LT ⊆ Germ(ϕ, ΓK )−Mod(RF ′)ét,adm

and the functor CΓK
is a quasi inverse of DefΓK

(and hence coincides with
the ΓK -confluence functor ConfΓK

). In particular
Germ RepdR(GK ) ⊆ (ϕ,∇)−Mod(RF ′)ét

is quasi-isomorphic to a fully faithful subcategory.
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Reconciliating questions

Germ(ϕ, ΓK )−Mod(RF ′)ét,LT ⊆ Germ(ϕ, ΓK )−Mod(RF ′)ét,adm

Is that inclusion an equality ?

If NOT then the above theorem induces to suspect the existence of an
extension of the functor NdR to a larger category.

What about L-functions in this correspondence ?

Is there a more analytic proof of the results of L.Berger ?

Can we compute the integer “n” for which the differential invariants of
NdR(V) coincides with the Galois invariants of V|GKn

?

Is there a Taylor formula expressing the stratification directely from the
action of ΓK ?
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Finite difference equations

Finite Difference Equations σ = σq,h

σq,h(f (x)) = f (qx + h)
we have the q-derivation :

∆q,h :=
σq,h−1

σq,h(T )−T

If σq,h(Y ) = AY (⇐⇒ ∆q,h(Y ) = GY , with G = (A− I )/(σq,h(T )− T ))
is a q-difference equation one has the twisted (q, h)-Taylor formula

Y (x , y) =
∑
n≥0

G[n](y)
(x − y)

[n]
q,h

[n]!q,h

where ∆n
q,hY = G[n]Y , and [n]q := 1 + q + q2 + · · ·+ qn−1,

[n]!q := [n]q[n − 1]q · · · [1]q,

(x − y)
[n]
q,h = (x − y)(x − σq,h(y))(x − σ2

q,h(y)) · · · (x − σn−1
q,h (y)).
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Consequences of the existence of the (q, h)-Taylor formula

We have a characterization of Taylor admissible σq,h-modules.

Sketch of the results :

One defines a “Formal Radius” of conver-
gence of the above (q, h)-Taylor expansion (imitating the classical case)

One proves that the following are equivalent :

the “Formal Radius” is bigger than a certain bound on the critical
points of the Skeleton
the above (q, h)-Taylor expansion converges and gives a Stratification,

in this case the Formal Radius coincides with the classical radius of
the stratification.

One proves that the following are equivalent :

A given σq,h-module is Taylor admissible
“Its Formal Radius at critical points is big enough”
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Comparing with (ϕ, ΓK )-modules

From Berger’s talk : For (ϕ, ΓK )-modules one chose an element
t := “ log(1 + T )”

and one localizes with the maps
ιn : Rρ → Kn[[t]]

and if D = (ϕ, ΓK )-module attached to V =de Rham, then
DdR(V) := (Dρ ⊗Rρ,ιn Kn((t)))

ΓK

Heuristic interpretation : T 7→ t is a change of variable that
transforms the action of ΓK into a q-difference operator ! In fact

ΓK
∼→ Z×

p

γq := χ−1(q)
γq(T ) = (1 + T )q − 1
γq(t) = qt .

Then γq is a q-difference operator with respect to the variable t.
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Suggestion/Idea :

Taking the pull back of the q-Taylor formula for q-differences
equations by the above change of variable, can we consider a
Twisted Taylor formula adapted to the action of ΓK ?
(the change of variable presents poles)

Can we re-prove the theorem of Berger in a more ana-
lytic way just checking the convergence locus of that Taylor expansion ?

Can we generalize the domain of definition of NdR by this method ?
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A result about the roots of unity

Theorem : One has an equivalence

d −Mod(RK∞)sol
Defµp∞−−−−−−→

∼
µp∞ −Mod(RK∞)adm (6)

and

d −Mod(RK∞)(ϕ)
Defµp∞−−−−−−→

∼
µp∞ −Mod(RK∞)(ϕ),adm (7)

By composing with the result of Y.André

d −Mod(RKalg)(ϕ) ∼→ RepKalg(Ik((x))alg) (8)

we then have an equivalence

RepKalg(Ik((x))alg)
∼−−→ µp∞ −Mod(RK∞)(ϕ),adm . (9)
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Morita’s p-adic Gamma function as solution of a
differential equation

Theorem(Morita) : There exists an unique continuous function
Γp : Zp → Zp satisfying

Γp(0) = 1 , Γp(x + 1) =

{
−xΓp(x) if |x | = 1
−Γp(x) if |x | < 1

Moreover Γp is locally analytic and its expansion at zero verifies

log(Γ
(0)
p (T )) = λ0T +

∑
m≥1 Lp(1 + 2m, ω2m

p )T 2m+1

2m+1

ωp = Teichmüller Dirichelt cheracter corresponding to p 6= 2
Lp(s, ω

2m
p ) = Kubota-Leopoldt L-function corresponding to ω2m

p

λ0 = the constant coefficient of
p-adic K-L zeta function ξp(s) =

∑
n≥−1 λn(s − 1)n

Theorem (Dwork) : Γ
(0)
p (T ) converges exactly for |T | < |p|

1
p(p−1) .
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By using the family of finite difference equations
{Γp(T + pn) = Pn(T )Γ(T )}n≥1, where Pn(T ) ∈ Z[T ]

we analyze every single equation in detail,
we find “by confluence” a differential equation :

Theorem : The function Γ
(0)
p (T ) is the Taylor solution at T = 0 of a

differential equation
Y ′ = g0(T )Y

satisfying :

g0(T ) =
∑

n≥0 anT
n is analytic on D−(0, 1), g0(T ) ∈ AQp(0, 1) ;

Rad(Y0(x , y), | · |ρ) =


ω|p|1/p if 0 ≤ ρ ≤ ω

ω|p|
ρp−1 if ω ≤ ρ ≤ ω

1
p−1

ω|p|n+1

ρpn(p−1)
if ω

1
pn−1(p−1) ≤ ρ ≤ ω

1
pn(p−1) , n≥1

where ω := |p|1/(p−1) ;

The radius of convergence of this equation is intimately (directly) related
to the Newton polygon of g0(T ), so we have the following corollary
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Corollary :
The wedges of the Newton polygon of g0(T ) having horizontal coordinate
greater than p − 1 are the points {(pn(p − 1),−n − 1)}n≥0. In particular

1 vp(apn(p−1)) = −n − 1, for all n ≥ 0,

2 Moreover for all k ≥ 0 (and n ≥ 0) one has

vp(ak) ≥
{

0 if 0 ≤ k ≤ p − 2 ,
−n − 1 if pn(p − 1) ≤ k ≤ pn+1(p − 1) .

as illustrated in the following picture :

-
6

•
(p − 1)

•
p(p − 1)

•
p2(p − 1)

•
p3(p − 1)

•
•

•
•

•
•
•
•

−1
−2
−3
−4
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Values at positive integers of some K.-L.’s L-functions

Taking the log-derivative of the Morita’s formula

log(Γ
(0)
p (T )) = λ0T +

∑
m≥1 Lp(1 + 2m, ω2m

p )T 2m+1

2m+1
one has

Γ
(0)
p (T )′

Γ
(0)
p (T )

= g0(T ) = λ0 +
∑

m≥1 Lp(1 + 2m, ω2m
p )T 2m

Corollary : For all m ≥ 1 one has

vp( Lp(1 + pm(p − 1), ω
pm(p−1)
p ) ) = vp( ζp(1 + pm(p − 1)) ) = −m − 1 ,

and moreover

vp(Lp(1 + 2m, ω2m
p ))≥

{
0 if 0 ≤ 2m ≤ (p − 1)

−n − 1 if pn(p − 1) ≤ 2m ≤ pn+1(p − 1)
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By using the fact that Γ
(0)
p (T ) is simultaneously solution of the family

{Γ(0)
p (x + pn) = Pn(x)Γ

(0)
p (x)}n≥1

and at the same time of the differential equation

Γ
(0)
p (T )′ = g0(T )Γ

(0)
p (T )

one has congruences between the coefficients of the power series Γ
(0)
p

For `, k ≥ 1 we set
S`(k) :=

∑k−1
i=1,(i ,p)=1 1/i `

Corollary :

One has
log(Γp(p

n)) = pnλ0 +
∑

m≥1 pn(1+2m) Lp(1+2m,ω2m
p )

1+2m ;

for ` = 1 one has
S1(p

n) :=
∑pn−1

i=1,(i ,p)=1
1
i =

∑
m≥1 p2mn · Lp(1 + 2m, ω2m

p ) ;

for ` ≥ 2 one has
(−1)`−1

` · S`(p
n) =

∑
m≥`/2

(1+2m
`

)
pn(1+2m−`) · Lp(1+2m,ω2m

p )

1+2m .
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