Arithmetic and Differential SWAN CONDUCTORS.

The Rank one case via $\boldsymbol{\pi}$-exponentials.

Andrea Pulita

(Joint work with B.Chiarellotto)

Cetraro,

SUMMARY

- Arithmetic Swan conductor
- Kato's definition in the non perfect case
- Differential Swan conductor
- Kedlaya's definition in the non perfect case
- Co-monomials and explicit description of

$$
\mathrm{H}^{1}\left(k((t)), \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)
$$

- π-exponentials as solutions of Differential equations
- Explicit computation of the monodromy functor in the rank one case
Proof : $\left\{\begin{array}{l}\bullet \text { Decomposition in pure co-monomials } \\ \bullet \\ \text { attached to a pure co-monomial }\end{array}\right.$

NOTATIONS

$K:=$ finite extension of $\mathbb{Q}_{p}, \quad \mathbb{F}_{q}:=$ residue field of K,
$k:=$ field containing \mathbb{F}_{q}, $\mathrm{E}:=$ c.d.v.f. with residue field k, $\mathcal{O}_{L_{0}}:=$ a Cohen ring of k, $\mathcal{O}_{\mathcal{E}_{L_{0}}}:=$ a Cohen ring of E
$\mathcal{O}_{L}:=\mathcal{O}_{L_{0}} \otimes_{\mathbf{W}\left(\mathbb{F}_{q}\right)} \mathcal{O}_{K}$,
$\mathcal{O}_{\mathcal{E}_{L}}:=\mathcal{O}_{L} \otimes_{\mathcal{O}_{L_{0}}} \mathcal{O}_{\mathcal{E}_{L_{0}}}$

- $\mathrm{E} \cong k((t))$ (once we have chosen an uniformizer element t)
- $\mathcal{O}_{\mathcal{E}_{L_{(0)}}} \cong\left\{\sum a_{i} T^{i}\left|\lim _{i \rightarrow-\infty} a_{i}=0, \forall i\right| a_{i} \mid \leq 1, a_{i} \in L_{(0)}\right\}$ (Amice-Fontaine ring)

NOTATIONS

- $\mathcal{A}_{L}(I)=\left\{\sum_{-\infty}^{+\infty} a_{i} T^{i}\right.$, s.t. $\left.\lim _{i \rightarrow \pm \infty}\left|a_{i}\right| \rho^{i}=0, \forall \rho \in I\right\}$
($=$ Analytic Funct. on the annulus $|T| \in I$)
- $\mathcal{R}_{L}:=\bigcup_{\varepsilon>0} \mathcal{A}_{L}(] 1-\varepsilon, 1[)$ (= Robba ring)
- $\mathcal{E}_{L, T}^{\dagger}=\mathcal{E}_{L}^{\dagger}:=\mathcal{R}_{L} \cap \mathcal{E}_{L}$ (= Bounded Robba ring).
- $\varphi:=$ Lifting of the Frobenius $x \mapsto x^{q}$
- $\mathrm{G}_{\mathrm{E}}:=\operatorname{Gal}\left(\mathrm{E}^{\mathrm{sep}} / \mathrm{E}\right), \quad \mathcal{I}_{\mathrm{E}}:=$ inertia $, \quad \mathcal{P}_{\mathrm{E}}:=$ wild inertia
- $\operatorname{Rep}_{\mathcal{O}_{K}}^{\mathrm{fin}}\left(\mathrm{G}_{\mathrm{E}}\right)=\left\{\alpha: \mathrm{G}_{\mathrm{E}} \rightarrow G L(V) \mid V=\right.$ finite free \mathcal{O}_{K}-module, such that $\alpha\left(\mathcal{I}_{\mathrm{E}}\right)$ is finite $\}$

FONTAINE's EQUIVALENCE: THE PERFECT CASE

- Assume $k=$ perfect.
- (Fontaine-Tsuzuki's) classical case (1998):

$$
\mathbf{D}^{\dagger}: \operatorname{Rep}_{\mathcal{O}_{K}}^{\mathrm{fin}}\left(\mathrm{G}_{\mathrm{E}}\right) \xrightarrow{\sim}(\varphi, \nabla)-\operatorname{Mod}\left(\mathcal{O}_{\mathcal{E}_{L}^{\dagger}} / \mathcal{O}_{L}\right)
$$

where:

- $(\varphi, \nabla)-\operatorname{Mod}\left(\mathcal{O}_{\mathcal{E}_{L}^{\dagger}} / \mathcal{O}_{L}\right):=\left\{\left(\mathrm{D}, \varphi^{\mathrm{D}}, \nabla\right) \mid \mathrm{D}:=\right.$ finite free $/ \mathcal{O}_{\mathcal{E}_{L}^{\dagger}}$,

$$
\begin{aligned}
\varphi^{\mathrm{D}} & : \mathrm{D} \rightarrow \mathrm{D} \text { is } \varphi \text {-semilinear } \\
\nabla & \left.: \mathrm{D} \rightarrow \mathrm{D} \otimes \Omega_{\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}^{1} / \mathcal{O}_{L}} \text { connection }\right\}
\end{aligned}
$$

Note: If $t=$ uniformizer of $\mathrm{E} \cong k((t)), T=$ lifting of t in $\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}$, then

$$
\Omega_{\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}^{1} / \mathcal{O}_{L}} \cong \mathcal{O}_{\mathcal{E}_{L}^{\dagger}} \cdot d T, \quad \mathrm{D} \otimes \Omega_{\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}^{1} / \mathcal{O}_{L}} \cong \mathrm{D} \cdot d T
$$

the data of $\nabla: \mathrm{D} \rightarrow \mathrm{D} \otimes \Omega_{\mathcal{O}_{\mathcal{E}_{L}^{\dagger}} / \mathcal{O}_{L}}$ is equivalent to a connection

$$
\nabla_{T}: \mathrm{D} \rightarrow \mathrm{D}
$$

FONTAINE's EQUIVALENCE REVISITED:
 THE NON PERFECT CASE

- Assume $k=$ arbitrary.
- Kedlaya's generalization (December 2006):

$$
\mathbf{D}^{\dagger}: \operatorname{Rep}_{\mathcal{O}_{K}}^{\mathrm{fin}}\left(\mathrm{G}_{\mathrm{E}}\right) \xrightarrow{\sim}(\varphi, \nabla)-\operatorname{Mod}\left(\mathcal{O}_{\mathcal{E}_{L}^{\dagger}} / \mathcal{O}_{K}\right)
$$

where:
$\bullet(\varphi, \nabla)-\operatorname{Mod}\left(\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}\right):=\left\{\left(\mathrm{D}, \varphi^{\mathrm{D}}, \nabla\right) \mid\right.$ with $\mathrm{D}:=$ finite free $/ \mathcal{O}_{\mathcal{E}_{L}^{\dagger}}$,

$$
\begin{aligned}
& \varphi^{\mathrm{D}}: \mathrm{D} \rightarrow \mathrm{D} \text { is } \varphi \text {-semilinear } \\
&\left.\nabla: \mathrm{D} \rightarrow \mathrm{D} \otimes \Omega_{\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}^{1} / \mathcal{O}_{K}} \text { integrable }\right\}
\end{aligned}
$$

- If $t=$ uniformizer of $\mathrm{E} \cong k((t))$, if $\left\{\bar{u}_{1}, \ldots, \bar{u}_{r}\right\}=p$-basis of k,
$T, u_{1}, \ldots, u_{r} \in \mathcal{O}_{\mathcal{E}_{L}^{\dagger}}$ are lifting of $t, \bar{u}_{1}, \ldots, \bar{u}_{r}$, then

$$
\Omega_{\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}^{1} / \mathcal{O}_{K}} \cong \mathcal{O}_{\mathcal{E}_{L}^{\dagger}} \cdot d T \oplus\left(\oplus_{i=1, \ldots, r} \mathcal{O}_{\mathcal{E}_{L}^{\dagger}} \cdot d u_{i}\right)
$$

The data of $\nabla: \mathrm{D} \rightarrow \mathrm{D} \otimes \Omega_{\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}}^{1} / \mathcal{O}_{K}$ is equivalent to a family of connections

$$
\begin{array}{r}
\nabla_{T}: \mathrm{D} \rightarrow \mathrm{D} \\
\nabla_{u_{1}}: \mathrm{D} \rightarrow \mathrm{D} \\
\nabla_{u_{2}}: \mathrm{D} \rightarrow \mathrm{D} \\
\ldots \cdots \cdots \\
\nabla_{u_{r}}: \mathrm{D} \rightarrow \mathrm{D}
\end{array}
$$

commuting with φ, and commuting between them.

- Note: If k is perfect, then $\Omega_{\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}^{1}} / \mathcal{O}_{L}=\Omega_{\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}} / \mathcal{O}_{K}$, hence this theory refines that of Fontaine-Tsuzuki.
- We are interested only to these differential equations. We set $\operatorname{MCF}\left(\mathcal{O}_{\mathcal{E}_{L}^{\dagger}} / \mathcal{O}_{K}\right)=\left\{(\mathrm{D}, \nabla) \mid \nabla: \mathrm{D} \rightarrow \mathrm{D} \otimes \Omega_{\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}^{1} / \mathcal{O}_{K}},+\right.$ commutations, with an (unspecified) Frobenius $\left.\varphi^{\mathrm{D}}: \varphi^{*}(\mathrm{D}) \rightarrow \mathrm{D}\right\}$

Perfect case VS non perfect case

Assume k non necessarily perfect. We notice that

$$
\begin{gathered}
\operatorname{Gal}\left(k^{\operatorname{perf}}((t))^{\operatorname{sep}} / k^{\operatorname{perf}}((t))\right) \underset{\operatorname{can}}{\stackrel{\sim}{\operatorname{can}} \operatorname{Gal}\left(k((t))^{\text {sep }} / k((t))\right)} \\
\cup \\
\mathcal{I}_{k \text { perf }((t)))} \xrightarrow{\sim} \quad \mathcal{I}_{k((t))}
\end{gathered}
$$

hence:
$\operatorname{Rep}_{\mathcal{O}_{K}}^{\mathrm{fin}}\left(\operatorname{Gal}\left(k^{\text {perf }}((t))^{\operatorname{sep}} / k^{\operatorname{perf}}((t))\right)\right) \stackrel{\text { can }}{\sim} \operatorname{Rep}_{\mathcal{O}_{K}}^{\mathrm{fin}}\left(\operatorname{Gal}\left(k((t))^{\operatorname{sep}} / k((t))\right)\right)$

$$
\begin{aligned}
& { }^{2} \downarrow \mathbf{D}^{\dagger} \quad \odot \quad{ }^{\dagger} \downarrow \mathbf{D}^{\dagger} \\
& (\varphi, \nabla)-\operatorname{Mod}\left(\mathcal{O}_{\mathcal{E}_{L^{\text {perf }}}^{\dagger}} / \mathcal{O}_{L^{\text {perf }}}\right) \underset{\sim}{\sim} \underset{\sim}{c a n}(\varphi, \nabla)-\operatorname{Mod}\left(\mathcal{O}_{\mathcal{E}_{L}^{\dagger}} / \mathcal{O}_{K}\right)
\end{aligned}
$$

where the last horizontal functor is given by

$$
\left(\mathrm{D}, \varphi^{\mathrm{D}}, \nabla_{T},\left\{\nabla_{u_{i}}\right\}_{i}\right) \longmapsto\left(\mathrm{D} \otimes_{\mathcal{O}_{\varepsilon_{L}^{\dagger}}} \mathcal{O}_{\mathcal{E}_{L \mathrm{perf}}^{\dagger}}, \varphi^{\mathrm{D}} \otimes \varphi, \nabla_{T} \otimes 1\right)
$$

List of main results

$$
\mathbf{D}^{\dagger}: \operatorname{Rep}_{\mathcal{O}_{K}}^{\mathrm{fin}}\left(\mathrm{G}_{\mathrm{E}}\right) \xrightarrow{\sim}(\varphi, \nabla)-\operatorname{Mod}\left(\mathcal{O}_{\mathcal{E}_{L}^{\dagger}} / \mathcal{O}_{K}\right)
$$

- On the left hand side: One has a complete description of

$$
\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q} / \mathbb{Z}\right)_{p-\text { tor }}=\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \quad \text { (Pulita 2006). }
$$

- On the right hand side: We obtain a complete description of the group $\operatorname{Pic}^{\text {Frob }}\left(\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}\right)=$ group, under tensor product, of isomorphism classes of rank one objects in $\operatorname{MCF}\left(\mathcal{O}_{\mathcal{E}_{L}^{\dagger}} / \mathcal{O}_{K}\right)$.
- After choosing an identification $\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \supset\left(\mathbb{Z} / p^{n} \mathbb{Z}\right) \xrightarrow{\sim} \boldsymbol{\mu}_{p \infty}\left(\mathcal{O}_{K}\right)$ we make explicit the isomorphism $\operatorname{Hom}^{\mathrm{fin}}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \supset \operatorname{Hom}^{\mathrm{fin}}\left(\mathrm{G}_{\mathrm{E}},\left(\mathcal{O}_{K}\right)^{\times}\right)_{p \text {-tor }} \xrightarrow{\sim} \operatorname{Pic}^{\mathrm{Frob}}\left(\mathcal{O}_{\mathcal{E}_{L}^{\dagger}}\right)_{p \text {-tor }}$, induced by the functor \mathbf{D}^{\dagger} (Pulita 2006).
- Understanding of the Kato's filtration on the L.H.S., and of the Kedlaya's Irregularity on the R.H.S. proof of the equality

$$
\begin{array}{|l|l|l}
\hline \text { (Kato) } & \text { Swan }_{\text {Arithm }}=\text { Swan }_{\text {Diff }} \quad \text { (Kedlaya). } \\
\hline
\end{array}
$$

Abbes-Saito's filtration in rank one case: Kato's filtration The Artin-Schreier-Witt theory describes $\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$:

$$
\downarrow \downarrow \downarrow
$$

$$
0 \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p} \longrightarrow \mathbf{C W}(\mathrm{E}) \xrightarrow{\overline{\mathrm{F}}-1} \mathbf{C W}(\mathrm{E}) \xrightarrow{\delta} \operatorname{Hom}^{\text {cont }}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \rightarrow 0
$$

where

$$
\mathbf{C W}(\mathrm{E})=\underset{m}{\lim }\left(\mathbf{W}_{m}(\mathrm{E}) \xrightarrow{\mathrm{V}} \mathbf{W}_{m+1}(\mathrm{E}) \xrightarrow{\mathrm{V}} \cdots\right),
$$

and where Hom ${ }^{\text {cont }}$ means that a character $\alpha: \mathrm{G}_{\mathrm{E}} \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p}$ factorizes by a finite quotient of G_{E}.

Note: Elements in CW(E) are $\left(\cdots, 0,0, \bar{f}_{0}, \ldots, \bar{f}_{m}\right), \bar{f}_{i} \in \mathrm{E}$.

Abbes-Saito's filtration in rank one case: Kato's filtration

- K.Kato (1989) defined a filtration on $\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q} / \mathbb{Z}\right)$ in 3 steps:

1) The setting
$v\left(\cdots, 0,0, \bar{f}_{0}, \ldots, \bar{f}_{m}\right):=\min \left(v_{t}\left(\bar{f}_{0}\right) / p^{m}, v_{t}\left(\bar{f}_{1}\right) / p^{m-1}, \cdots, v_{t}\left(\bar{f}_{m}\right)\right)$
defines a valuation on $\mathbf{C W}(\mathrm{E})$. Define a filtration on $\mathbf{C W}(\mathrm{E})$ as:

$$
\operatorname{Fil}_{d}(\mathbf{C W}(\mathrm{E}))=\left\{\boldsymbol{c}:=\left(\cdots, 0,0, \bar{f}_{0}, \ldots, \bar{f}_{m}\right) \mid v(\boldsymbol{c}) \geq-d\right\} .
$$

2) Thank to the A-S-W sequence

$$
0 \rightarrow \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow \mathbf{C W}(\mathrm{E}) \xrightarrow{\overline{\mathrm{F}}-1} \mathbf{C W}(\mathrm{E}) \xrightarrow{\delta} \mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \rightarrow 0 .
$$

we define: $\quad \operatorname{Fil}_{d}\left(\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)\right):=\delta\left(\operatorname{Fil}_{d}(\mathbf{C W}(\mathrm{E}))\right)$.
3) $\quad \operatorname{Hom}^{\text {cont }}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q} / \mathbb{Z}\right)=\oplus_{\ell=\text { prime }} \operatorname{Hom}^{\text {cont }}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}\right)$
$\Longrightarrow \operatorname{Fil}_{d}\left(\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q} / \mathbb{Z}\right)\right):=$ Inverse image of $\operatorname{Fil}_{d}\left(\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)\right)$
4)

$$
\operatorname{Swan}_{\text {Arithm }}(\alpha)=\min \left\{d \geq 0 \mid \alpha \in \operatorname{Fil}_{d}\left(\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q} / \mathbb{Z}\right)\right)\right\}
$$

Description of the Kato's filtration of $\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$

- Once chosen a uniformizer element $t \in \mathrm{E}$, one has $\mathrm{E} \cong k((t))$ and

$$
\mathbf{C W}(k((t)))=\mathbf{C W}\left(t^{-1} k\left[t^{-1}\right]\right) \oplus \mathbf{C W}(k) \oplus \mathbf{C W}(t k \llbracket t \rrbracket)
$$

- One has

$$
\begin{aligned}
\mathrm{H}^{1}\left(\mathrm{E}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) & \cong \frac{\mathbf{C W}(\mathrm{E})}{(\overline{\mathrm{F}}-1)(\mathbf{C W}(\mathrm{E}))} \\
& =\frac{\mathbf{C W}\left(t^{-1} k\left[t^{-1}\right]\right)}{(\overline{\mathrm{F}}-1)\left(\mathbf{C W}\left(t^{-1} k\left[t^{-1}\right]\right)\right)} \oplus \overbrace{\frac{\mathbf{C W}(k)}{(\overline{\mathrm{F}}-1)(\mathbf{C W}(k))}}^{\mathrm{H}^{1}\left(\mathrm{G}_{k}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)}
\end{aligned},
$$

Description of the Kato's filtration of CW(E)

 Definition (Pulita 2006): A co-monomial of degree $-d$ is a co-vector of the form$$
\boldsymbol{\lambda} t^{-d}:=\left(\cdots, 0,0, \lambda_{0} t^{-n}, \lambda_{1} t^{-n p}, \ldots, \lambda_{m} t^{-n p^{m}}\right) \in \mathbf{C W}(k((t)))
$$

where $d=n p^{m},(n, p)=1, \boldsymbol{\lambda}:=\left(\lambda_{0}, \ldots, \lambda_{m}\right) \in \mathbf{W}_{m}(k)$. We call $\mathbf{C W}^{(-d)}(k)$ the sub-group of $\mathbf{C W}(\mathrm{E})$ formed by such elements.

Proposition: CW(E) together with the Kato's filtration is graduated:

$$
\mathbf{C W}(\mathrm{E}):=\oplus_{d \geq 0} \operatorname{Gr}_{d}(\mathbf{C W}(\mathrm{E})) .
$$

Moreover:

$$
\operatorname{Gr}_{d}(\mathbf{C W}(\mathrm{E}))=\left\{\begin{array}{lll}
\mathbf{C W}(k \llbracket t \rrbracket) & \text { if } & d=0, \\
\mathbf{C W}^{(-d)}(k) & \text { if } & d>0 .
\end{array}\right.
$$

Note: For all char. p ring R (not necessarily with unit el.t) one has

$$
\frac{\mathbf{C W}(R)}{(\overline{\mathrm{F}}-1)(\mathbf{C W}(R))}=\underline{\longrightarrow}(\mathbf{C W}(R) \xrightarrow{\overline{\mathrm{F}}} \mathbf{C W}(R) \xrightarrow{\overline{\mathrm{F}}} \cdots)
$$

- Hence we are interested to the action of $\overline{\mathrm{F}} . \mathrm{Gr}_{0}(\mathbf{C W}(\mathrm{E}))$ is a sub- $\overline{\mathrm{F}}$-module, while

$$
\overline{\mathrm{F}}\left(\mathbf{C W}^{(-d)}(k)\right) \subset \mathbf{C W}^{(-p d)}(k),
$$

in fact

$$
\left(\cdots, 0,0, \lambda_{0} t^{-n}, \ldots, \lambda_{m} t^{-d}\right) \stackrel{\overline{\mathrm{F}}}{\longmapsto}\left(\cdots, 0,0, \lambda_{0}^{p} t^{-p n}, \ldots, \lambda_{m}^{p} t^{-p d}\right)
$$

- If $d=n p^{m},(n, p)=1$, one has a isomorphism:

$$
\begin{array}{ccc}
\mathbf{C W}^{\left(-n p^{m+1}\right)}(k) \xrightarrow{\sim} & \mathbf{W}_{m+1}(k) \\
\mathbf{F W}^{\left(-n p^{m}\right)}(k) \xrightarrow{\sim} \xrightarrow{\sim}=p \mathbf{W}_{m}(k)
\end{array}
$$

Hence for all $(n, p)=1, n>0$ one has:

$$
\begin{aligned}
& \lim _{\longrightarrow}\left(\mathbf{C W}^{\left(-n p^{m}\right)}(k) \xrightarrow{\overline{\mathrm{F}}} \mathbf{C W}^{\left(-n p^{m+1}\right)}(k) \xrightarrow{\overline{\mathrm{F}}} \cdots\right)= \\
&={\underset{\xrightarrow{l}}{ } \rightarrow m}\left(\mathbf{W}_{m}(k) \xrightarrow{p} \mathbf{W}_{m+1}(k) \xrightarrow{p} \cdots\right)
\end{aligned}
$$

Definition: We set

$$
\widetilde{\mathbf{C W}}(k)=\underset{m}{\lim }\left(\mathbf{W}_{m}(k) \xrightarrow{p} \mathbf{W}_{m+1}(k) \xrightarrow{p} \cdots\right)
$$

It has a natural filtration:

$$
\operatorname{Fil}_{m}(\widetilde{\mathbf{C W}}(k)):=\mathbf{W}_{m}(k) \subset \widetilde{\mathbf{C W}}(k)
$$

Theorem: Let $\mathrm{J}_{p}:=\{n>0,(n, p)=1\}$. Then

$$
\text { - } \quad \mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \cong \widetilde{\mathbf{C W}}(k)^{\left(\mathrm{J}_{p}\right)} \oplus \mathrm{H}^{1}\left(\mathrm{G}_{k}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)
$$

where $\widetilde{\mathbf{C W}}(k)^{\left(\mathrm{J}_{p}\right)}=$ direct sum of copies of $\widetilde{\mathbf{C W}}(k)$, indexed by J_{p}.

- Recall that $\operatorname{Fil}_{d}\left(\mathrm{H}^{1}\right)=\delta\left(\operatorname{Fil}_{d}(\mathbf{C W}(\mathrm{E}))\right.$. For all $d \geq 0$, one has $\left.{ }^{\mathrm{a}}\right)$ $\operatorname{Fil}_{d}\left(\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)\right)=\oplus_{n \in \mathrm{~J}_{p}}\left(\mathrm{Fil}_{m_{n, d}}(\widetilde{\mathbf{C W}}(k))\right) \oplus \mathrm{H}^{1}\left(\mathrm{G}_{k}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)$,
$\operatorname{Gr}_{d}\left(\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)\right)= \begin{cases}\mathbf{W}_{v_{p}(d)}(k) / p \mathbf{W}_{v_{p}(d)}(k) & \text { if } \\ & d>0, \\ \mathrm{H}^{1}\left(\mathrm{G}_{k}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) & \text { if } \\ d=0,\end{cases}$
where $m_{n, d}:=\max \left\{m \geq 0 \mid n p^{m} \leq d\right\}$, and $v_{p}(d)$ is the p-adic valuation of d.

The epimorphism $\operatorname{Proj}_{d}: \operatorname{Gr}_{d}(\mathbf{C W}(\mathrm{E})) \rightarrow \operatorname{Gr}_{d}\left(\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)\right)$ corresponds via the isomorphism

$$
\operatorname{Gr}_{d}(\mathbf{C W}(\mathrm{E}))=\mathbf{C} \mathbf{W}^{(-d)}(k) \xrightarrow{\sim} \mathbf{W}_{v_{p}(d)}(k)
$$

to the following:

$$
\operatorname{Proj}_{d}= \begin{cases}\mathbf{W}_{v_{p}(d)}(k) \longrightarrow \mathbf{W}_{v_{p}(d)}(k) / p \mathbf{W}_{v_{p}(d)}(k) & \text { if } \quad d>0, \\ \mathbf{C W}(k[[t]]) \underset{t \mapsto 0}{ } \frac{\mathbf{C W}(k)}{(\mathrm{F}-1)(\mathbf{C W}(k))} & \text { if } \quad d=0\end{cases}
$$

Corollary: One has
$\operatorname{Fil}_{d}\left(\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q} / \mathbb{Z}\right)\right)=\operatorname{Fil}_{d}\left(\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)\right) \oplus\left(\oplus_{\ell \neq p} \mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}\right)\right)$, and
$\operatorname{Gr}_{d}\left(\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q} / \mathbb{Z}\right)\right)= \begin{cases}\operatorname{Gr}_{d}\left(\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)\right) & \text { if } \quad d>0, \\ \operatorname{Fil}_{0}\left(\mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)\right) \oplus\left(\oplus_{\ell \neq p} \mathrm{H}^{1}\left(\mathrm{G}_{\mathrm{E}}, \mathbb{Q}_{\ell} / \mathbb{Z}_{\ell}\right)\right) & \text { if } \quad d=0 .\end{cases}$

Genesis of the irregularity: Formal irregularity

Differential modules over $L((T))$ are cyclic (Cyclic vector theorem) i.e. defined by an operator

$$
P\left(T, \frac{d}{d T}\right):=\sum_{k=0}^{n} g_{k}(T)\left(\frac{d}{d T}\right)^{k}
$$

with $g_{k}(T) \in L((T)), g_{n}(T)=1$. The Formal Irregularity, and the Formal Slope of P are defined as (Malgrange)

$$
\operatorname{Irr}_{\text {Formal }}(P):=\max _{0 \leq k \leq m}\left\{k-v_{T}\left(g_{k}\right)\right\}-\left(n-v_{T}\left(g_{n}\right)\right),
$$

$$
\operatorname{Slope}_{\text {Formal }}(P)=\max \left(0, \max _{k=0, \ldots, n}\left(\frac{v_{T}\left(g_{n}\right)-v_{T}\left(g_{k}\right)}{n-k}-1\right)\right)
$$

The Formal Newton polygon of P is the convex hull in \mathbb{R}^{2} of the set $\left\{\left(k,\left(v_{T}\left(g_{k}\right)-k\right)-\left(v_{T}\left(g_{n}\right)-n\right)\right)\right\}_{k=0, \ldots, n}$ together with the extra points $\{(-\infty, 0)\}$ and $\{(0,+\infty)\}$.

- Formal break decomposition of $\mathrm{M}=L((T))\left[\frac{d}{d T}\right] / L((T))\left[\frac{d}{d T}\right] \cdot P$:

$$
\mathrm{M}=\oplus_{s \geq 0} \mathrm{M}(s)
$$

into $L((T))\left[\frac{d}{d T}\right]$-submodules. $\mathrm{M}(s)=$ unique sub-module of M whose Newton polygon consists in a single slope s (counted with multiplicity) of the Newton polygon of M .

$$
\operatorname{Irr}_{\text {formal }}(\mathrm{M})=\sum_{s>0} s \cdot \operatorname{dim}_{L((T))} \mathrm{M}(s)
$$

Note: The Formal Slope is explicitly given by the coeff. $\left\{g_{k}\right\}_{k}$!

p-adic Irregularity : the perfect case.

- Let $\nabla_{T}: \mathrm{M} \rightarrow \mathrm{M}$ be a \mathcal{R}_{L}-differential module, defined over some annulus $] 1-\varepsilon, 1\left[\right.$. Let M_{ρ} be the restriction of M to $[\rho, \rho]$. We set

$$
\begin{aligned}
\left|\nabla_{T}^{n}\right|_{\rho} & :=\sup _{m \in \mathrm{M}_{\rho}} \frac{\left|\nabla_{T}^{n}(m)\right|_{\mathrm{M}_{\rho}}}{|m|_{\mathrm{M}_{\rho}}}, \\
\left|\nabla_{T}\right|_{\mathrm{S}_{\mathrm{p}, \rho}} & :=\lim _{\sup _{n \rightarrow \infty}}\left|\left(\nabla_{T}\right)^{n}\right|_{\mathrm{M}_{\rho}}^{1 / n}, \\
\left\|(d / d T)^{n}\right\|_{\rho} & =\sup _{f \in \operatorname{Frac}\left(\mathcal{A}_{L}[\rho, \rho]\right)} \frac{\left|(d / d T)^{n}(f)\right|_{\rho}}{|f|_{\rho}}=|n!| \rho^{-1}, \\
\|d / d T\|_{\mathrm{S}_{\mathrm{p}, \rho}} & :=\lim \sup _{n \rightarrow \infty}\left|(d / d T)^{n}\right|_{\rho}^{1 / n}=\omega \cdot \rho^{-1}, \quad \omega:=|p|^{\frac{1}{(p-1)}}
\end{aligned}
$$

Toric radius of convergence:

$$
T(\mathrm{M}, \rho):=\frac{\|d / d T\|_{S_{p, \rho}}}{\left|\nabla_{T}\right| \mathrm{s}_{\mathrm{p}, \rho}}
$$

(Christol-Dwork-Robba ~1994)
Geometric interpretation: ("à la Christol-Mebkhout") One has $T(\mathrm{M}, \rho)=\operatorname{Ray}(\mathrm{M}, \rho) / \rho$ where $\operatorname{Ray}(\mathrm{M}, \rho)$ is the radius of convergence of a generic Taylor solution, bounded by ρ, at the generic point t_{ρ}.

p-adic slope: Link with the formal theory.

 Definition (RobBa): The p-adic slope of M is the log-slope of $T(\mathrm{M}, \rho)$ at 1^{-}.

The above definition is motivated by the following:
Lemma(Christol-Dwork-RobBa): If $P\left(\frac{d}{d T}, T\right) \in\left(L((t)) \cap \mathcal{R}_{L}\right)\left[\frac{d}{d T}\right]$ then the log-slope at 0^{+}of the Toric radius of convergence $T(\mathrm{M}, \rho)$ is equal to $\operatorname{Slope}_{\text {Formal }}(\mathrm{M})$.

Break decomposition

Theorem (Christol-Mebkhout-2000): One has a break decomposition:

$$
\mathrm{M}=\oplus_{s \geq 0} \mathrm{M}(s) .
$$

$\mathrm{M}(s)=$ greatest submodule of M of "pure" slope s. That is there exists $\varepsilon>0$ such that

1. For all $\rho \in] 1-\varepsilon, 1[, \mathrm{M}(s)$ is (the biggest submodule of M) trivialized by $\mathcal{A}_{K}\left(t_{\rho}, \rho^{s+1}\right)$, (where t_{ρ} is the Berkovich point corresponding to $|\cdot|_{\rho}$);
2. For all $\rho \in] 1-\varepsilon, 1\left[\right.$, and for all $s^{\prime}<s, \mathrm{M}(s)$ has no solutions in $\mathcal{A}_{K}\left(t_{\rho}, \rho^{s^{\prime}+1}\right)$.

One has:

$$
\operatorname{Irr}_{p-a d i c}(\mathrm{M}):=\sum_{s>0} s \cdot \operatorname{dim}_{\mathcal{R}_{L}} \mathrm{M}(s) .
$$

Kedlaya's refined definition in the non perfect case Definition (Kedlaya Dec.2006): Let $\left(\mathrm{M}, \nabla_{T}, \nabla_{u_{1}}, \ldots, \nabla_{u_{r}}\right) \in \operatorname{MCF}\left(\mathcal{O}_{\mathcal{E}_{L}^{\dagger}} / \mathcal{O}_{K}\right)$. We define the Toric radius of convergence of M as:

$$
T(\mathrm{M}, \rho):=\min \left(\frac{\|d / d T\|_{S p, \rho}}{\left|\nabla_{T}\right|_{\mathrm{Sp}, \rho}}, \frac{\left\|d / d u_{1}\right\|_{S p, \rho}}{\left|\nabla_{u_{1}}\right|_{\mathrm{Sp}, \rho}}, \ldots, \frac{\left\|d / d u_{r}\right\|_{S p, \rho}}{\left|\nabla_{u_{r}}\right|_{\mathrm{Sp}, \rho}}\right)
$$

We set

$$
\text { Slope }_{\mathrm{p}-\text { adic }}(\mathrm{M}):=\log \text {-slope of } T(\mathrm{M}, \rho) \text { at } 1^{-} .
$$

Proposition (Kedlaya): Break decomposition holds:

$$
\mathrm{M}=\oplus_{s \geq 0} \mathrm{M}(s)
$$

$M(s)=$ greatest submodule of M of "pure" slope s.
Definition (Kedlaya): We set

$$
\operatorname{Irr}_{\text {Kedlaya }}(\mathrm{M}):=\sum_{s>0} s \cdot \operatorname{dim}_{\mathcal{R}_{L}} \mathrm{M}(s)
$$

Arithmetic and differential Swan conductors

$$
\mathbf{D}^{\dagger}: \operatorname{Rep}_{\mathcal{O}_{K}}^{\mathrm{fin}}\left(\mathrm{G}_{\mathrm{E}}\right) \xrightarrow{\sim}(\varphi, \nabla)-\operatorname{Mod}\left(\mathcal{O}_{\mathcal{E}_{L}^{\dagger}} / \mathcal{O}_{K}\right)
$$

Definition (Kedlaya): Let $\mathrm{V} \in \operatorname{Rep}_{\mathcal{O}_{K}}^{\mathrm{fin}}\left(\mathrm{G}_{\mathrm{E}}\right)$. Let
$\mathrm{M} \in \operatorname{MCF}\left(\mathcal{R}_{L} / \mathcal{O}_{K}\right)$ be the differential module $\mathbf{D}^{\dagger}(\mathrm{V})$ together with $\nabla_{T}, \nabla_{u_{1}}, \ldots, \nabla_{u_{r}}$. We set

$$
\operatorname{Swan}_{\text {Diff }}(\mathrm{V}):=\operatorname{Irr}_{p \text {-adic }}(\mathrm{M}) .
$$

Conjecture (Kedlaya): One has

$$
\operatorname{Swan}_{\text {Diff }}(\mathrm{V}):=\operatorname{Swan}_{\text {Arithm }}(\mathrm{V}) .
$$

- We have proved this conjecture in Rank one case in three steps:

Proof: $\left\{\begin{array}{l}\text { 1)We compute the functor } \mathbf{D}^{\dagger} \text { in rank one case } \\ \text { 2)We reduce the conjecture to the case of a co-monomial }\end{array}\right.$ 3)We compute the differential Swan conductor in this case

Computation of the functor D^{\dagger} in rank one case

- Fix an isomorphism $1 \mapsto \xi_{p^{m+1}}: \mathbb{Z} / p^{m+1} \mathbb{Z} \xrightarrow{\sim} \boldsymbol{\mu}_{p^{\infty}}\left(\mathcal{O}_{K}\right)$. Then:

$$
\alpha: \mathrm{G}_{\mathrm{E}} \rightarrow \boldsymbol{\mu}_{p^{\infty}}\left(\mathcal{O}_{K}\right) \quad \Longleftrightarrow \quad \alpha: \mathrm{G}_{\mathrm{E}} \rightarrow \mathbb{Z} / p^{m+1} \mathbb{Z}
$$

- We classify differential equations, and describe \mathbf{D}^{\dagger} simultaneously.
- The Tame case is easy.
- The wild case is obtained as follows:

where:
$\bullet \operatorname{Pic}^{\mathrm{Frob}}\left(\mathcal{O}_{\mathcal{E}_{L}^{\ddagger}} / \mathcal{O}_{K}\right):=$ Group, under \otimes, of Isom.classes of rk 1 objects.
- For $\boldsymbol{f}^{-}(T) \in \mathbf{W}_{m}\left(T^{-1} \mathcal{O}_{L}\left[T^{-1}\right]\right),\left[\mathrm{e}_{p^{m}}\left(\boldsymbol{f}^{-}(T), 1\right)\right]$ is the isom.class of the diff.eq. whose solution is $\mathrm{e}_{p^{m}}\left(\boldsymbol{f}^{-}(T), 1\right)$, that we will define now.

π-exponentials

- Fix a Lubin-Tate group law $\mathfrak{G}(X, Y)$, with multiplication by p given by $[p]_{\mathfrak{G}}(X)=\left(p X+\cdots+a_{p} X^{p}+\cdots\right) \in X \mathbb{Z}_{p}[X]$.
- Let $\boldsymbol{\pi}:=\left(\pi_{j}\right)_{j \geq 0},[p]_{\mathfrak{G}}\left(\pi_{0}\right)=0,[p]_{\mathfrak{G}}\left(\pi_{j}\right)=\pi_{j-1}, \forall j$, be the generator of the Lubin-Tate group of \mathfrak{G} such that

$$
\left|\pi_{m}-\left(\xi_{p^{m+1}}-1\right)\right|<\left|\pi_{m}\right|
$$

Definition (Pulita 2006): Let
$\boldsymbol{f}^{-}(T)=\left(f_{0}^{-}(T), \ldots, f_{m}^{-}(T)\right) \in \mathbf{W}_{m}\left(T^{-1} \mathcal{O}_{L}\left[T^{-1}\right]\right)$. We set
$\mathrm{e}_{p^{m}}\left(\boldsymbol{f}^{-}(T), 1\right):=\exp \left(\pi_{m} \phi_{0}^{-}(T)+\pi_{m-1} \frac{\phi_{1}^{-}(T)}{p}+\cdots+\pi_{0} \frac{\phi_{m}^{-}(T)}{p^{m}}\right)$,
where $\phi_{j}^{-}(T):=\sum_{k=0}^{j} p^{k} \cdot f_{k}^{-}(T)^{p^{j-k}} \in T^{-1} \mathcal{O}_{L}\left[T^{-1}\right]$ is the j-th phantom component of $\boldsymbol{f}^{-}(T)$.
Theorem (Pulita 2006): If V is the representation defined by $\boldsymbol{f}^{-}(T)$, then $\mathrm{e}_{p^{m}}\left(\boldsymbol{f}^{-}(T), 1\right)$ is the solution of the diff. eq. $\mathbf{D}^{\dagger}(\mathrm{V})$.

Sketch of the proof of $\operatorname{Swan}_{\text {Arithm }}=\operatorname{Swan}_{\text {Diff }}$

- "Sum of characters" \Longleftrightarrow "Tensor product of corresponding repr."
- We know that every $\boldsymbol{f}(t) \in \mathbf{C W}(\mathrm{E})$ can be uniquely written as $f=\sum_{d>0} \boldsymbol{\lambda}_{d} t^{-d}+f^{0}+\boldsymbol{f}^{+}$, with

$$
\begin{aligned}
\boldsymbol{\lambda}_{d} t^{-d} & \in \mathbf{C W}^{(-d)}(k), \\
\boldsymbol{f}^{0} & \in \mathbf{C W}(k), \\
\boldsymbol{f}^{+} & \in \mathbf{C W}(t k \llbracket t \rrbracket) .
\end{aligned}
$$

Then we are reduced to the case of a co-monomial $\boldsymbol{\lambda}_{d} t^{-d}$. We know "its Swan Arith" by the previous description of the Kato's filtration.

- In this case the log-graphic of $T(\mathrm{M}, \rho)$ has no breaks in $]-\infty, 0[$:

$\operatorname{Swan}_{\text {Diff }}(\mathrm{M})=\operatorname{Slope}_{\text {Formal }}(\mathrm{M})$
\Downarrow
The Formal slope is explicitly computable from the equation.

