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NOTATIONS

(K,|.]) =ultrametric field of characteristic 0, containing Q,
k =residual field of K, char(k) =p > 0,

Analytic Functions on the annulus {r; < |z| < ro} are defined as

A (Jr1,m2) = {2272 6, T, s.t. a; € K, and
lim; 400 |ai]|p* =0, ri<Vp<ry}

The Robba ring is formed by germs of analytic functions at the
wedge : Ry = J.o Arx (|1 —¢,1]).
A affinoid will be always a set of the following type : let ¢y € K,
Ry>0,c1,...,¢p € Di(co, Rp), and 0 < Ry, ..., R, < Ry.
X :=D(co, Ro) — U=
Hi (X) := analytic elements on X.

Hx (X) is the completion, with respect to the sup-norm, of the
ring of rational fractions without poles on X.




DIFFERENCE AND DIFFERENTIAL MODULES

o Let Q; := Q;(X) be the open subgroup of D (1,1) of elements g
s.t. f(T) — f(qT) is an automorphism of Hx (X ). We set :

oq(f(T)) = fqT) ,

o Let G(T) € M,,(Hx(X)), A(T) € GL,(Hi (X)), and let
H(T) := (A(t) —1)/(q — 1). We shall study the equations

1 (Y)=G(T) Y, o4Y)=AT)-Y, AyY)

This corresponds to give a free and of finite type Hx (X )—module,
together with an action of §; (resp. o4, Ay) :

O‘M

M 1 M <— M
T A(T) o4 () T Ao (3)+H(T)T

g, —Mod(Hi (X)) = A, — Mod(Hx (X)) .




Differences between the complex

and the p—adic frameworks

complex : C

p—adic : K (e.g. K =Q,)

Constants are “big” i.e.=£ C

Constants are reduced to K

Known cases

lg| > 1 or|q| <1

Studied case is |q| = 1 and
more precisely |¢ — 1| < 1

[fceC,c#0,c#00,q#1
D(c, R) =disk, with R > 0
— q-D(c, R) # D(c, R)

If ce K, D(c, R) =disk,
with R>|q — 1|||
— qD(c, R) = D(c, R)

= The notion of “solution

on a disk” has no meaning

If the disk is ¢ invariant, then
some kind of equations admits a

“Taylor solution” in that disk .




Heuristic Idea of confluence

Let { A,(Y,) = G(q,T) - Yy }gep—(1,6),921 be a family of
g—differences equations. Suppose that there exists the limit

lim G(q,T)=G(1,T), in M,(Hg(X)).

q—1

Consider the differential equation

51(Y1) = G(1,T) - i .

The confluence consists heuristically in the study of the
conditions to have

lim Yq = Y1 .

q—1

in a convenable meaning.

We will show that in the p—adic framework one can have

Y, =Y.




Example-1

Let X be the annulus € < |T| < 1. Let §; := T'd/dT, let P~ = —p,
and let (M, V) be the differential module defined by the equation

(x)  0uly) =G, T) -y
with
G(1,T)= —rxT7 1.
Clearly G(1,T) € H(X). The Taylor solution at oo is
y =exp(nl "),
it converges for |T'| > 1. Let ¢ € K*, then the ¢-deformation if (x) is
y(qT) = Alg, T) - y(T)
with

A(g,T) = exp(n(¢™" = 1)T7) .
Hence if |¢ — 1| < ¢, then A(q,T) € H(X)*.




Example-2

We compute the g-deformation of (U,,, Vi, ) given by :
e 0 L4y - b2 €1
e 0 01 4y - Llppo
0 (Yy, )= Y Yo (T)=| :

e 1
.0

m )

where £,, := log(T)" /n!. One has

04(n(T)) = log(qT)"/n! = >

i=0
Then Yy, (¢T) = A(q,T) - Yo, (T), with

o 2 o m—1
1 log(q) &l ... %\

o m—2
0 1 log(q) - *8

A(Q7 T) —

o




The unique computation of our paper :

Let 61(Y) = G(1,T)Y (T) be a differential equation over H(X). Let

Y(2,y) =150 Gn(y)%

Ur
X

be its generic Taylor solution, where Go = Id, G1 = T~1G(1,T),
and G, = diT(Gn) + G,,G1. Then Y (x,y) is a function on
Ur = {(z,y) € X x X | |t —y| < R} with values in GL,,(K), s.t.

Y(z,y)Y(y,2) =Y (x,2), Y(z,y)"" =Y(y,z),

Hence Y (¢T,y) = A(q, T)Y (T, y), with
Alq.T) =Y (qT,y)Y(T.y)" =Y (¢T,y)Y (y,T) =Y (qT'T) .
If |¢ — 1| =small, then A(q,T) € GL,(H(X)) :

T A(q.T) : X U . GL, (K) .
@ T) X e Y oy e (K)




The Confluence of André-Di Vizio

e They study the case in which :
— The ring of functions is the Robba ring R i

- lg—1| < \p|ﬁ in particular q is not a root of unity.
— Both differential and g—difference equations are supposed to

have a so called Frobenius Structure.
e By the p—adic local monodromy theorem

51 — MOd(RKalg)(¢) T;> RepKalg (Ikalg((t)) X Ga)

e André-Di Vizio proved the (not less hard) g—analogue of this

theorem :

Aq — MOd(RKalg)(qb) T;> RepKalg (Zkalg((t)) X Ga) ’

and hence, by composition, they deduce an equivalence

Defy ;1 : 01 — Mod(R gz )?) —=— A, — Mod(R jaiz)® .
Tq_loTl




What is a “Deformation theory” ?

Our contributions are :

We describe construct Det; , in a very elementary way ,

This construction works over every ring of “functions”,

This construction works for a much more large class of equations,

We describe what happens if ¢ is root of unity.

We show these facts by introducing a category of “sheaves”
o — Mod(H g (X))?" | over the topological space Q7 such that :
— The stalk at ¢ = 1 is a differential equation (M, V) ;
— If ¢ ¢ U, u,,, the stalk at q is a g—difference equation (M, alq\/l) ;
— If ¢ € Upp,,, the stalk at ¢ is triplet (M, aé\d, 5}1\4), consisting in a

g—difterence module together with a “g-tangent operator 524 7.

o A “deformation theory” is a sub-category D Co — Mod(H gk (X))
such that Vg € Q; the “stalk-functor” is an equivalence :

~ D o
~— X
01 — MOd(HK(X)) Def 1,4 Aq — MOd(HK( )) :




THE CATEGORY OF ANALYTIC c—MODULES

Définition 0.1 Let U C Q; :={|q — 1| < 1} be an open subset. Let
(U) be the open subgroup of Q generated by U. An analytic
oc—module on U is a free and of finite type H(X)—module M,
together with a group morphism

o™ (U) —— AutSe™ (M)

M
>
q—0oy,

such that :
— Forallqe (U), f € H(X), m € M one has

oM (fm) = 0g(f) - o1 (m)

— For all ¢ € U there exists T, > 0 such that (in an arbitrary basis
of M) the matriz A(q,T) of oy is “analytic” in the set

(@Q,T) € D (q,7g) x X (4)




CONSTANT DEFORMATION
Let qo € Q1 = {|lg — 1] <1}, qo & Py, Agy(T) € GL,(H(X)),
Set of definition of Agy (T)
e 00 (Y) = Agy(T)-Y (%)
X — (Aqo)n(y) — HqO,n(T) Y

Définition 0.2 The equation (x) is said Taylor admissible, if

there exists R > 0 such that the “generic Taylor solution”

YQ(ZE7 y) = Z HCIo,n<y) (x — y!)q(),n (5)

= ]

converges in the open Ur = {(z,y) € X x X | |r — y| < R}.

Theorem 0.1 If (x) is Taylor admissible, then there exists
e > |q, — 1| such that for all ¢ € D™ (qo,€) the matrix

A(Q7T) = OQ(YQ(T7 y)) ) YQ(T7 y)_l

lies in GLy(H(X)).



CONSTANT ANALYTIC c—MODULES
We define a “deformation theory” by giving the following
sub-category called | 0 — Mod(H(X))ad™ | .

e An analytic c—module (M, oc™) is said constant if the generic

Taylor solution Y (T, y) is simultaneously solution of every equation

Y(qT,y) = A(q,T) - Y(T,y) (6)

defined by M. The previous theorem provides that if g ¢ Moo, then

Every Taylor admissible differential or g, —difference equation
exrtends to a constant c—module defined in an open sub-group

D~ (1,¢) of Qp, with € > |¢q, — 1|.

e In other words if agg : M — M is a gp—difference module, then M

is canonically endowed with an action of 02/[ : M — M, for all

ge (D (1,¢)), with €>|g, — 1.




e If ¢ is not a root of 1, then the forgetful functor is faithful

ResY
o — Mod(H (X))t — 2 5, — Mod(H(X))>d™ .

Let 0, — Mod(H(X))2d™ be the essential image of this functor,
then one obtain an equivalence

a%

o — Mod(H (X))t = 5, — Mod(H(X))2dm™

e We obtain the so called “constant deformation” for all ¢,¢’ € U :

o — Mod(H(X))F25 - (1,€)

/Def X

— Mod(H(X))adm o — Mod(H(X))adm.

where € > ¢ — 1|, |¢" — 1].




Situation on the roots of unity ?

Problems :

If ¢ =& is a root of unity, then :

e The operator o¢ is of finite order ;

e The sub-ring of Hx (X) of o¢-constants is not reduced to K ;

e Since End(T) = {0, — constants}, then we can not obtain an

equivalence with other values of q # €.

e The idea is to

“Replace the category of ¢ —differences with another one”.

In fact, for ¢ = 1, the category we expect is the differential eq.

e The question is “What kind of objects one finds over £ ?” in other
words “What is the STALK at ¢ = £ of a constant module ?”




Situation on the roots of 17

o If ¢ =1, then “1—differences equation” has no meaning.

For ¢ = 1 we expect to obtain a differential equation.

End2™ (H(X)) | A, := 2=

Let M € 0 — Mod(H(X))¢"s*. For all ¢ € U we set

51\/[ 1 0-161\4 o 01(;/[
qg T q - llm r
—q (q q

Then, for all f € H(X), m € M, one has :

— 51(1\/[(fm) = 5q(f)-0év[(m)—|—aq(f)-5§4(m).




The analytic and constant (o,d)—modules

e We define the category (o,d) — Mod(H (X))t If ¢ is not a root
of unity then we find

Construction §

— T
o — Mod(H(X))i™* (0,6) — Mod(H(X))g"*"
<~
Forget ¢

for example if ¢ = 1 this shows the convergence of the limit in

M,,(H(X)) (highly non trivial)

G(1,T) = lim A(Q’T)l
q— q—

Without hypothesis on ¢ € U = D™ (1,¢), the restriction is faithful

U
Res a

(0,0) = Mod(H(X))52(1 o) ——— (04, 0¢) — Mod(H (X))




o Let U C Qi(X) :=A{|g—1| < 1}. If (04,04) — Mod(H(X))y is the
essential image of Resg, then Vq,q € U one has :

const

(0,

— Mod(H
Forget d, Gg 5) construction of J,

o — MOd const

(0gs0q/) — MOd(H(X))%]dm L | (04,0q) — MOd(H(X»%]dm

Forget 5q/ l - o > \Forget dq

oy — Mod(H(X)) S oy = Mod(H(X))y

“Forget 64” is an equivalence

only if g is not a root of unity.



Proposition : The restriction

<D(qg,e)>

U€>0Res {q}

(045 84) — Mod(H(X))*™™

U (0, 8) — Mod(H(X))%8%t .
e>0

Y

is an equivalence (even if ¢ is a root of 1).

e If ¢ =root of unity we find

Ueso 0 — Mod(H(X)P5(y,0y> === U.>0(0,8) — Mod(H(X))Zp{, o)~

U U
Res{q}l 2lReS{q}

o4 — Mod(H(X))™m — (04,64) — Mod(H(X))*™
Forget 5q

The right hand restriction is always an equivalence while the left
hand restriction is an equivalence only for ¢ not root of 1. The
operator o, contains the information in the neighborhood of q. The

functor “Forget 9,” is an equivalence when ¢ is not a root of 1.

e If ¢ is a root of 1, then (0,,d,) — Mod(H(X))2™ is the
“good notion of stalk”.




