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"Theorems are like sausages, it is better not to see them being made"

- (almost) Otto von Bismarck



Part I

Tropical differential algebra
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Chapter 1

Introduction

This first part of the present thesis constitutes the main body of the work I con-
ducted during my PhD. The idea that gave the start to everything is introduced
and studied in the following is to build a bridge between the recently introduced
theory of tropical differential equations and the more established theory of p-adic
differential equations. In particular the research of tropical methods to compute
the radius of convergence of the solutions to a p-adic differential equation.

Ordinary differential equations with real or complex valued functions as co-
efficients are fundamental in a multitude of applications of mathematics to real
world situations. Their theory traces back to the very beginning of modern mathe-
matics, with the first example of differential equations appearing in the work of
Newton and Leibniz. In a few words, differential equations are at the center of
our understanding of continuous processes.

On the other hand, given some prime number p, considering a p-adic field in
the place of real or complex numbers leads to the theory of p-adic differential
equations, whose theory sheds light on problems of discrete, arithmetic and
number theoretic nature. The only comprehensive text on the topic is [Ked10].

The first appearance of p-adic differential equations can be dated back to the
work of Dwork, who in [Dwo60] used them as a tool to prove the rationality of
the zeta function of a variety in characteristic p: solving some particular p-adic
differential equations gives formulas for counting the number of points of varieties
over finite fields. In its first years, the theory was then pushed forward mainly
thanks to the pioneering contributions of Dwork and Robba [DR77, DR79, Rob94,
Dwo12, . . . ] and developed links in many mathematical directions: studying
zeta functions making use of p-adic analysis allows for numerical methods to
be used, and these has found applications in the cryptography based on elliptic
and hyperelliptic curves (see [CFA+05] for an introduction to the subject); the
theory of p-adic differential equations is intimately related to the development
and the consolidation of p-adic rigid cohomology by Berthelot [Ber74, Ber86],
motivated by previous works by Dwork and Monsky and Washnitzer [MW68,
Mon68, Mon71], whose in turn has proven to be a valuable tool in computations
for cryptography, as well. For general surveys and comprehensive texts on the
subject see [Ill94, Ked09, LS07]. Furthermore p-adic differential equations play
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an important role in the theory of p-adic Galois representations, which have
been studied by Fontaine [Fon94, Fon04, Fon07, FO08] by introducing a series
of auxiliary period rings in order to classify them. The study of p-adic Galois
representations is central for the development of a p-adic Hodge theory. More
recently, the work of Berger [Ber02, Ber08a] highlighted a deep role of p-adic
differential equations in this theory, through the use of (φ, Γ)-modules. Surveys
on the subject are [Ber08b, BC09].

An interesting feature of p-adic differential equations is that, in contrast to the
complex case, the convergence radius of their solutions is not controlled by some
"visible" object, such as, in the complex case, the poles of the coefficients of the
equation: in this context in fact even equations as easy as that of the exponential
give solutions with finite radius of convergence at any point. The topology of the
space itself is an obstacle to the convergence.

The language of Berkovich geometry, introduced in [Ber90], has proven to be
the right one to describe phenomena related to this convergence radii. The radius
of convergence of the solutions of a p-adic differential equation on a Berkovich
curve as a function of the expansion point has been proven to be a continuous
piecewise linear function (see [CD94, Bal10, BDV07, Ked10]) with finitely many
changes of slope [Chr11, PP15b, PP15a, PP13, Pul15], whose behaviour is actually
controlled by a finite skeleton on which the curve retracts on. In general, although
an explicit iterative formula to compute the radius of converge exists (see [Chr11]),
it is difficult to calculate it.

Tropical methods are becoming more and more influential in many areas of
mathematics and of sciences in general, and they often can be seen as a pro-
cess shifting a problem from a geometric or algebraic framework to a discrete,
combinatorial or polyhedral one.

Tropical geometry historically developed in at least two independent ways:
as geometry over the tropical semifield and as the study of logarithmic limit
sets of classical algebraic varieties. The first approach derives from problems of
optimization in computer science [Sim78, Sim87, Eil74], solved using min-plus (or
max-plus) algebra, thus tropical geometry is geometry over the tropical semiring
R ∪ ∞, where usual sum and product are replaced respectively by minimum
and sum (or by maximum and sum, isomorphically). Tropical polynomials give
piecewise linear functions and the tropical varieties associated to them, i.e. the
locus of points where the minimum is attained at least twice, are assembled by
convex polyhedra. The second approach, undertaken in [Ber71, GB84, GKZ08],
and reintroduced more recently by Kapranov, consists in considering the map
logt : (C∗)n → Rn sending a vector to the vector of the logarithms of the absolute
value of its entries. The image of an algebraic variety via this map is called
amoeba and taking the limit limt→∞ Xt of a family Xt of algebraic varieties gives a
tropical variety, associated to the tropical polynomial obtained by the polynomial
Ft ∈ C((t)) defining the family Xt by taking the leading order of the coefficients.

This point of view generalises to any valued field, i.e. field equipped with a
map similar to the t-adic valuation on C((t)) ("taking the leading order"). Maps
with these properties are called non-archimedean valuations and are the necessary
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tool that allows us to move from the classical world of algebraic geometry to the
polyhedral world of tropical geometry, through what is called tropicalization. This
is interesting as many features of the geometric objects we start with are preserved
by this process.

More recently, several algebraic foundations for tropical geometry have been
developed, in order to see tropical geometry more classically as algebraic geometry
on a certain category of objects, such as hyperfields [Vir11, BB19, Lor19, Jun21],
Lorscheid’s blueprints [Lor12, Lor15], and idempotent semirings [GG16, GG14,
GG18, MR18, MR14, MR20, JM18b, JM18a, BE17, Yag16, CGM20]. We give a more
in depth treatment of tropical geometry in Chapter 2 where we also recall plenty
of references to the subject and its applications.

It is well known that a vast part of the theory of ODE’s is algebraic, it is enough
to cite the example of Picard-Vessiot theory. Algebraic ODEs are systems of
differential equations formed from polynomial expressions in an indeterminate
function f and its derivatives. The algebraic theory was first established by
Ritt [Rit50] and Kolchin [Kol73]. Many important classes of models from the
natural sciences, such as chemical reaction networks, are algebraic ODEs, and in
pure mathematics algebraic ODEs appear in many parts of geometry, including
periods and monodromy. Understanding their solutions and singularities has
many important consequences in pure and applied mathematics.

Here, we pursue the further development of the tropical mathematics tool set for
studying differential equations. In [Gri17] Grigoriev first introduced a theory of
tropical differential equations and defined a framework for tropicalizing algebraic
ODEs over a ring of formal power series R[[t]]. In this framework, one tropicalizes
a differential equation by recording the leading power of t in each coefficient, and
one tropicalizes a power series solution simply recording the powers of t that are
present.

Solutions to a differential equation tropicalize to solutions to its tropicalization,
and Grigoriev asked if all solutions to the tropicalization of an equation arise
as tropicalizations of classical solutions; i.e., is the map from classical solutions
to tropical solutions surjective? This is the differential equation analogue of the
Fundamental Theorem of Tropical Geometry [MS15, Theorem 3.2.3], and this
question was answered positively by Aroca et al. in [AGT16] (assuming R is an
uncountable algebraically closed field of characteristic 0). These ideas have also
been extended to the case of algebraic partial differential equations in [FGLH+20].

Paralleling the role of Gröbner theory in defining tropical varieties in the non-
differential setting, [FT20] and [HG21] define initial forms and develop a Gröbner-
theoretic approach to Grigoriev’s tropical differential equations. A similar ap-
proach is also presented in [CGL20], which also gives an illuminating account of
tropical ordinary and partial differential equations (in part based on a preliminary
report of the algebraic perspective presented here). We recall most of the results
on the subject of the aformentioned papers in Chapter 3.

A limitation present in all of the aformentioned works is that the tropicalization
construction studied there records only the powers of t present in a power series

4



solution; it does not record any information about the valuations of the coefficients.
Thus any information about convergence of power series solutions is lost when
using Grigoriev’s tropicalization, and to get an understanding of the radii of
convergence of formal power series solutions of p-adic differential equations,
retaining the valuations of the coefficients is of cardinal importance.

Even if we are far from this objective, the long term goal of the study undertaken
here is a better comprehension and easier computability of the radii of convergence
for p-adic differential equation using tropical methods.

Results

The main purpose of this first part of my work is to build a refinement of Grig-
oriev’s framework that records and incorporates the valuations of the coefficients
in a power series solution so that convergence information is encoded in tropical
solutions. This requires developing a theory of differentials on idempotent semir-
ings in which the usual Leibniz rule is weakened to a tropical Leibniz rule, and this
development includes constructing free tropical differential algebras (a tropical
analogue of Ritt algebras) with differential variables coming from a differential
F1-module, that we define in the following.

We give a brief explanation of our framework here. A tropical pair S = (S1 → S0)
is a tropical differential semiring S1 and a homomorphism to a semiring S0. The
coefficients of tropical differential equations live in S0. Solutions live in S1 (where
they can be differentiated), but the condition that tests if something is a solution
takes place in S0. We think of S0 as recording the leading behaviour of elements of
S1. The primary example of a tropical pair has S1 = T[[t]] (the semiring of formal
power series with tropical real number coefficients), S0 = R2

lex ∪ {∞} is a rank 2
version of the tropical semiring, and the map S1 → S0 sends atn + · · · to (n, a).

We now state our main results informally, in the case of free differential F1-
modules with n generators.

Theorem A. We construct a category of S-algebras, and to a set E of tropical differential
equations over S we associate an object of this category such that morphisms to an S-
algebra T are in natural bijection with solutions to E with values in T.

A system of algebraic differential equations over a field K is represented in
coordinate-free form by a differential K-algebra A. To tropicalize A, we need two
pieces of additional data:

(1) A non-archimedean valuation on K taking values in an idempotent semiring
S0, and a differential enhancement of the valuation, which is a lifting to a map
A→ S1 that commutes with the differential. (These notions are defined in
Section 2.4 and Section 6.5.)

(2) A system of generators xi ∈ A so that A is presented as a quotient of a Ritt
algebra K{x1, . . . , xn}� A.
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Any differential algebra A admits a universal presentation K{xa | a ∈ A}� A.
Tropicalizing this presentation, we find:

Theorem B. The tropicalization of A with respect to its universal presentation is the
colimit of its tropicalizations with respect to finite presentations.

Finally, we provide evidence for the appropriateness of our definitions and
framework by proving a differential analogue of Payne’s inverse limit theorem
[Pay09]. Recall that, given an algebra A over a non-archimedean field K, the under-
lying set of the Berkovich analytification of Spec A is the set of all multiplicative
seminorms on A that are compatible with the valuation on K. Now suppose that K
is a differential ring, the valuation v on K has a differential enhancement ṽ taking
values in a pair S, and A is a differential algebra over K. In this setting, given
an S-algebra T = (T1 → T0), we can consider the set of all pairs (w, w̃) where
w : A→ T0 is a multiplicative valuation on A compatible with v and w̃ : A→ T1
is a differential enhancement of w compatible with ṽ. We call this the T-valued
differential Berkovich space of A, denoted BerkT(A).

Theorem C. There is a universal valuation with differential enhancement on A, and it
takes values in the tropicalization of the universal presentation of A. Hence the tropical-
ization of the universal presentation corepresents the functor T 7→ BerkT(A).

Combining this with Theorem B, we immediately obtain our differential ana-
logue of Payne’s inverse limit theorem.

Corollary D. Let k be a differential ring equipped with a non-archimedean valuation and
differential enhancement taking values in S, let A be a differential algebra over a k, and let
T be an S-algebra. The set BerkT(A) is isomorphic to the inverse limit of the T-valued
solution sets of the tropicalizations of all finite presentations of A.

Most of the material presented in the first part of this thesis appears in [GM21], in
the terms we introduced it in the previous lines, i.e. restricting our treatment to free
differential F1-modules with n generators. In addition to take this more general
approach here, we discuss the notion of differential F1-algebra and interactions
between some free base change functors on these categories of differential F1-
objects. In the last chapter, we present a generalisation of all the results introduced
in the following to the case of partial differential equations, generalising the
framework of [FGLH+20].
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Chapter 2

Tropical geometry and tropical
scheme theory

As mentioned in the introduction, the basic object to develop tropical geometry on
is the idempotent semiring (with min-plus convention) of tropical numbers: T :=
(R∪ {∞},⊕,⊗). Addition is replaced by minimum and multiplication by usual
addition. Applications of tropical geometry range from enumerative geometry
[Shu06, Mik05b, GM08, AB13, . . . ] to neural networks [ZNL18, CM18, MRZ21,
. . . ], from mirror simmetry [Gro11, Abo09, Gro10, . . . ] to mathematical biology
and algebraic statistics [MLYK18, PS05, PS04, Man11, . . . ], from optimization
[JS19, AGG12, TY19, DKLV17, But10, . . . ] to representation theory [FZ02, GL10,
. . . ] and many other areas. One of the first results that brought tropical geometry
to the attention of the mathematical community is the tropical computation of
Gromov-Witten invariants of CP2 by Mikhalkin in [Mik05a]. A comprehensive
introduction to tropical geometry is given in [MS15].

In the first section of this chapter we will briefly go through the basic notions
needed to develop tropical geometry. We start with the definition of a (non-
archimedean) valuation on a field K and we give some examples, then we define
the tropicalization of points in Kn, of Laurent polynomials over K and the trop-
ical hypersurface of a Laurent polynomial in T[x±1

1 , . . . , x±1
n ]. After discussing

quickly the theory of initial forms and Gröbner basis for homogeneous ideals
in K[x0, . . . , xn], we conclude by recalling the fundamental theorem of tropical
geometry and two structure theorems describing the polyhedral nature of tropical
hypersurfaces and tropicalization of varieties.

In Section 2.2 we describe how the tropicalization process links with one of
the main constructions in non-archimedean analytic geometry, namely that of
the Berkovich analytification of a variety. Firstly we will recall the process of
tropicalization of a toric variety as introduced by Payne and Kajiwara, then we will
recall Payne’s inverse limit theorem which states that the Berkovich analytification
is the inverse limit of all the tropicalization with respect to toric embedding.

After introducing semirings in general and the so-called bend congruence over
a polynomial semiring in Section 2.3, in Section 2.4 we get into tropical scheme
theory as introduced by Giansiracusa and Giansiracusa which is scheme theory

7



over semirings. In this context we recall a more general definition of valuation that
will be the one we will be using all along this work, the categories of F1-modules
and -algebras and some property of the functor of scheme theoretic tropicalization.
We will conclude by going through a scheme theoretic generalisation of Payne’s
inverse limit theorem, also realising the Berkovich analytification as the tropical
points of a universal tropicalization.

The analogues to most of the ideas of this last two sections will be developed
for differential equations in the following, and will constitute the core of the first
part of this work.

2.1 Tropical geometry: basic definitions, fundamen-
tal and structure theorems

In this section we will briefly go through the fundamental notions and main theo-
rems in tropical geometry. We start by introducing non-archimedean valuations,
the fundamental datum needed to perform a tropicalization:

Definition 2.1.1. Given a field K, a map v : K → T is a valuation on K if it satisfies
the following properties:

• v(a) = ∞ ⇐⇒ a = 0;

• v(ab) = v(a)⊗ v(b) for all a, b ∈ K ;

• v(a + b) ≥ v(a)⊕ v(b) for all a, b ∈ K;

Let us denote by Γv the additive subgroup v(K×) of R, as OK := {a ∈ K |
v(a) ≥ 0} the ring of integers of K, as mK := {a ∈ K | v(a) > 0} its maximal ideal
and as k the residue field OK/mK.

Furthermore, given a valuation v on a field, by defining | | : K → R≥0 as
|x| = e−v(x) for all x ∈ K, | | is a norm on K, thus making it into a topological
space.

Example 2.1.2. (1) Let K := F((t)) be the field of Laurent series over a field
F, then the map v : F((t)) → T sending a power series A = ∑n antn to
min{n | an 6= 0} and 0 to ∞ is a valuation called the t-adic valuation. In this
case Γv = Z, OK = F[[t]], mK = (t) and k = F;

(2) Fix a prime number p, then given any integer n = ∏q qeq , written in its prime
decomposition where all but finitely of the exponents are 0, let vp(n) = ep.
Given any a/b ∈ Q let vp(a/b) = vp(a) − vp(b) and vp(0) = ∞, then
vp : Q→ T is a valuation called p-adic valuation. The completion of Q with
respect to the topology induced by vp is denoted by Qp and called the field
of p-adic numbers, its ring of integers will be denoted as Zp, the maximal
ideal of which is (p) and the residue field k is the field with p elements Fp.
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Let now K be an algebraically closed field and v a surjective valuation on K.
Given an ideal I ⊂ K[x±1

1 , . . . , x±1
n ] we can define three objects:

• there is a way to map subsets of Kn into subsets of Tn by sending an element
x = (x1, . . . , xn) in Kn to the vector of the valuations of the entries of x, i.e.
(v(x1), . . . , v(xn)) ∈ Tn. Let us denote by tropv : Kn → Tn this coordinate-
wise valuation. Considering the associated subvariety X := V(I) of the torus
Tn

K over K, we will say that tropv(X) ⊂ Rn is the tropicalization of X.

• given any F ∈ K[x±1
1 , . . . , x±1

n ] we can consider tropv(F) ∈ T[x±1
1 , . . . , x±1

n ]
obtained by applying v on the coefficients of F. Any f = ∑m∈Nn amxm ∈
T[x±1

1 , . . . , x±1
n ] determines a piecewise linear function Rn → R that, on a

vector w ∈ Rn, acts as:

f (w) =
⊕

m∈Nn

am 6=∞

am �w�m = min
m∈Nn

am 6=∞

{am + wm}

Define the tropical variety associated to f as:

V( f ) := {w ∈ Rn : the minimum in f (w) is attained at least twice} ⊂ Rn

It is the locus in which the function associated to f is not linear, for this
reason is also named the bend locus of f .

• assuming there is a splitting Γv 3 c 7→ tc ∈ K of the valuation map for some
element t ∈ K, a theory of Gröbner basis and initial forms of homogeneous
ideals of K[x0, . . . , xn] can be developed in the valued setting as well. When
K is a local field, t can be chosen to be a uniformizer for K. This splitting
exists for example whenever K is algebraically closed. Defining the initial
term of an homogeneous polynomial f = ∑m∈Nn+1 amxm ∈ K[x0, . . . , xn]
with respect to w ∈ Rn+1 as:

inw( f ) := ∑
m∈Nn+1s.t. minimum of

tropv( f ) is achieved at xm

amt−v(am)xm ∈ k[x0, . . . , xn]

many well-known facts about Gröbner basis extend to this context as well.

Given a polynomial f = ∑m∈Nn amxm ∈ K[x±1
1 , . . . , x±1

n ] and a vector w ∈
Rn it is still possible to define the initial term of f with respect to w in an
analogous way as above. Given an ideal I ∈ K[x±1

1 , . . . , x±1
n ], in this case

its initial term could be a unit, and this precisely happens when inw(I) is
generated by monomials.

A basic result in tropical geometry is the so-called fundamental theorem, also
know as Kapranov’s theorem in the case of hypersurfaces, which links the three
notions we just introduced:
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Theorem 2.1.3 ([MS15] Theorem 3.2.5). Let K a non-trivially valued algebraically
closed field and I ⊂ K[x±1

1 , . . . , x±1
n ] an ideal, let X = V(I) ⊂ (K×)n. Then the

following three sets coincide:

• the intersection
⋂

F∈I V(tropv(F)) ⊂ Rn of the tropical hypersurfaces cut out by
the tropicalization of the polynomials in I;

• the topological closure tropv(X) ⊂ Rn of the tropicalization of X;

• the set {w ∈ Rn | inw(I) 6= (1)} of weight vectors such that the corresponding
initial ideal is not monomial.

For what concerns the polyhedral structure of tropical hypersurfaces, it is closely
related to the subdivision of the Newton polytope of the polynomial induced by
the valuation of its coefficient:

Theorem 2.1.4 ([MS15](Proposition 3.1.6)). Let f = ∑m∈Nn amxm ∈ K[x±1
1 , . . . , x±1

n ].
Then the tropical hypersurface V(tropv( f )) is the support of a pure Γv-rational polyhedral
complex of dimension n-1 in Rn. It is the (n-1)-skeleton of the polyhedral complex dual to
the regular subdivision ∆ of the Newton polytope of f induced by the weights v(am).

Furthermore:

Theorem 2.1.5 ([MS15](Theorem 3.3.6)). Let X be an irreducible d-dimensional subva-
riety of the torus (K×)n. Then tropv(X) is the support of a balanced weighted Γv-rational
polyhedral complex pure of dimension d, connected through codimension one.

In particular, given an ideal I ∈ K[x±1
1 , . . . , x±1

n ], let its minimal associated
primes be Assmin(I) := {p1, . . . , ps} and for i ∈ {1, . . . , s}, define the multiplicity
mult(pi, I) of pi to be the integer length((K[x±1

1 , . . . , x±1
n ]/I)pi), i.e. the length as a

K[x±1
1 , . . . , x±1

n ]pi-module of the quotient K[x±1
1 , . . . , x±1

n ]pi /Ipi

With this definition, given a top-dimensional cell σ of tropv(V(I)), the ideal
inw(I) is constant for w ∈ σ and it does not contain a monomial. Thus we associate
to σ the following weight:

mult(σ) = ∑
p∈Assmin(inw(I))

mult(pi, inw(I))

When I is principal and generated by a polynomial f , let ∆ be the subdivision of
the Newton polytope induced by the valuation of its coefficients as in 2.1.4. Given
a top-dimensional cell σ of tropv(V(I)), mult(σ) is equal to the lattice length of
the edge of ∆ dual to σ.
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2.2 Payne’s inverse limit theorem

This section is devoted to introduce all the ingredients needed to state Payne’s
inverse limit theorem: the two main ones will be the notion of Berkovich analityfi-
cation and that of tropicalization of a toric variety. We start with the former.

In [Ber90] Vladimir Berkovich introduced another procedure to obtain a tree-
like object from an algebraic variety X over a valued field, known as Berkovich
analytification and denoted by Xan. This is a particular instance of a Berkovich
space, analytic spaces over non-archimedean field which refine the notion, given
by Tate in [Tat71], of rigid analytic space. This last class of objects, in turn, gives a
non-archimedean analogue to complex analytic spaces. The approach given by
Berkovich is central in non-archimedean geometry.

An easy way to introduce the Berkovich analytification relies on the definition
of multiplicative seminorm:

Definition 2.2.1. A multiplicative seminorm | | on a ring R is a multiplicative
map R→ R≥0 such that |0| = 0 and |r1 + r2| ≤ |r1|+ |r2| for all r1, r2 ∈ R.

Given v : K → T an algebraically closed valued field, complete with respect
to v, we say that a seminorm | | on a K-algebra A is compatible with v if |a| =
exp(−v(a)) for all a ∈ K.

Definition 2.2.2 (Berkovich analytification). Given an affine algebraic variety X over
K, let K[X] be the its K-algebra of coordinates. The analytification Xan of X is the
topological space

{seminorms | | : K[X]→ R≥0 compatible with v}

equipped with the weakest topology such that, for every f ∈ K[X], the function
| | → | f | is continuous.

In general, given two affine open subsets U1, U2 ⊂ X the gluing is given by
identifying | |1 ∈ Uan

1 and | |2 ∈ Uan
2 if there exists a seminorm | | ∈ Van for

some V ⊂ U1 ∩U2, such that both | |1 and | |2 are a restriction of | |.

All the definitions given in Section 2.1 and the fundamental theorem can be
extended to subvarieties of toric varieties, whose tropicalization was introduced by
Kajiwara and Payne in [Kaj08] and [Pay09], respectively. Originally tropicalization
was considered with respect to embeddings into algebraic tori, but in the two
aformentioned works the authors introduced a straightforward generalisation
to embedding into toric varieties by tropicalizing stratum by stratum and then
assembling the result. This construction is also illustrated in Chapter 6 of [MS15].

For an exhaustive reference on toric varieties refer to [CLS11] or [Ful93].

Given a lattice N ' Zn and Σ a rational polyhedral fan in NR := N ⊗R, we
will denote by XΣ the associated toric variety and by M the lattice Hom(N, Z)
dual to N.
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Definition 2.2.3 (Tropicalization of toric varieties). Given a toric variety XΣ, for each
cone σ ∈ Σ let N(σ) := NR/span(σ), it is a (n − dim(σ))-dimensional vector
space. As a set the tropicalization trop(XΣ) of the toric variety XΣ is:

trop(XΣ) := ä
σ∈Σ

N(σ)

For what concerns its topology, let Uσ be an affine toric variety, then its coor-
dinate ring is K[Sσ] where Sσ := σ∨ ∩ M. The preimage of R under a monoid
homomorphism φ is τ⊥ ∩ Sσ for some face τ � σ: this follows by observing that,
given an element u ∈ Sσ such that φ(u) = ∞, then φ(u + v) = ∞ for all v ∈ Sσ. On
the other hand, if φ(u + v) = ∞, either φ(u) = ∞ or φ(v) = ∞. Thus the disjoint
union trop(Uσ) = äτ�σ N(τ) is identified with Hom(Sσ, T), sending v ∈ N(τ)
to the homomorphism φv : Sσ → T given by:

φv(u) :=

{
〈u, v〉 if u ∈ τ⊥

∞ otherwise

and we equip trop(Uσ) with the subspace topology inherited by Tσ∨∩M.

If τ � σ is a face of σ ∈ Σ then Sσ is a submonoid of Sτ and the map trop(Uτ)→
trop(Uσ) given by restriction is injective, which follows from the fact that Sτ =
Sσ + τ⊥ ∩ M and any u ∈ τ⊥ ∩ M can be written as u = u1 + u2 for u1, u2 ∈
σ∨ ∩ τ⊥.

Notice that Sσ is finitely generated, and any choice of generators determines an
embedding of Hom(Sσ, T) ↪→ TSσ = Tm: the subspace topology inherited this
way is the same as the one described, in a more intrinsic way, above. Equivalently,
a choice of generators determines an embedding of Uσ ↪→ Am and trop(Uσ) is the
tropicalization of this embedding.

Furthermore, there is a natural continuous map Uan
σ → trop(Uσ) = Hom(Sσ, T)

given by sending a seminorm | | to the monoid homomorphism u 7→ − log |u|.
These maps glue together to give a continuous morphism Xan

Σ → trop(XΣ)

Finally, tropicalization of toric varieties is functorial: let Sσ := Sσ ∪ {∞} with
u + ∞ = ∞ for any u ∈ Sσ, then there is an identification between Hom(Sσ, T)
and trop(Uσ). If f : Uτ → Uσ is an equivariant morphism between affine toric
varieties, by pulling back regular functions we get a monoid map f ∗ : Sσ → Sτ

which is ∞ if the pullback of a regular function vanishes on Uτ. This induces a
continuous map trop( f ) : trop(Uτ) → trop(Uσ) given by precomposition by f ∗.
In the non-affine case these maps glue together to give a continuous map between
toric varieties.

Definition 2.2.4 (Kajiwara-Payne tropicalization). Let Y be a variety over K and let
ϕ : Y ↪→ XΣ a closed embedding of Y into a toric variety. Define the tropicalization
tropϕ(Y) to be the closure of the image of Y(K) in trop(XΣ).

Let ϕ1 : Y ↪→ XΣ and ϕ2 : Y ↪→ XΣ′ be two toric embeddings of Y. A morphism
f of toric embeddings from ϕ1 to ϕ2 is an equivariant map XΣ → XΣ′ such that
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f ◦ ϕ2 = ϕ1. Tropicalization is a functor from the category of toric embeddings to
topological spaces. There are natural continuous maps πϕ : Yan → tropϕ(Y) for
every toric embedding ϕ of Y, compatible with the tropicalization of morphisms
between toric embeddings.

Theorem 2.2.5 ([Pay09]). Let Y be a variety over K, then lim←−πϕ is an homeomorphism
between the Berkovich analytification Yan and the limit lim←− tropϕ(Y) over the category of
the toric embeddings of Y.

This theorem intimately relates the two processes of analytification and trop-
icalization: as analytification is intrinsic while tropicalization depends on an
embedding into a toric variety, we are somehow allowed to think at the analytifi-
cation as an intrinsic tropicalization. This point of view has been made clear in
[GG14], whose results are going to be explained more in detail towards the end of
Section 2.4.

2.3 Semirings

For the present work, we find that idempotent semirings provide the most con-
venient language for the development of our theory. We recollect here basic
definitions and facts about semirings.

Definition 2.3.1. A semiring (S,⊕,⊗) is an algebraic structure satisfying all the
axioms to be a ring but the requirement that there exist an additive inverse for
every element in S. A semiring is said to be idempotent if a⊕ a = a for every
a ∈ S. An idempotent semiring carries a canonical partial order defined by a ≤ b
if a⊕ b = b. The additive unit 0S is the unique minimal element. In a semiring,
we will often write the product a⊗ b simply as ab.

Example 2.3.2. (1) Let (Tn,⊕,⊗) denote (R)n∪{∞}. We define a⊕ b = min(a, b),
where the minimum is taken with respect to the lexicographic ordering, and
we define a⊗ b to be component-wise multiplication. Notice that for n = 1
the canonical partial order induced by ⊕ is the opposite of the usual one on
R.

(2) The boolean semiring B is the sub-semiring {0, ∞} ⊂ T. Note that B is the
initial object in the category of semirings.

One of the main features distinguishing rings and semirings is that in the second
category ideals are not in bijection with equivalence relations giving semiring
quotients, in fact, a quotient of a ring R is defined by an equivalence relation on
R such that the ring structure descends to the set of equivalence classes. Such
equivalence relations are of course in bijection with ideals via the correspondence

ideal I 7→ equivalence relation {a ∼ b if a− b ∈ I},
equivalence relation K 7→ ideal {a− b | a ∼K b}.
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This correspondence does not hold for semirings in general, and so we must work
with the equivalence relations themselves when defining quotients.

We say that an equivalence relation K ⊂ S× S on a semiring S is a congruence
if it is also a subsemiring of S× S. If K is a congruence on S, then the semiring
structure on S descends to a well-defined semiring structure on S/K. Moreover, if
f : S � S′ is a surjective homomorphism of semirings then its kernel congruence
ker f = {(a, b) | f (a) = f (b)} is indeed a congruence and S/ker f ∼= S′.

Given a set of binary relations X ⊂ S× S, the congruence it generates can be
described concretely. First take the subsemiring of S× S generated by X, and then
take the transitive and symmetric closure of this. See [GG16, Lemma 2.4.5].

We now come to a class of congruences on idempotent semirings that are essen-
tial in tropical geometry. Given an expression a1 ⊕ a2 ⊕ · · · ⊕ an in an idempotent
semiring S, the bend congruence of this expression, written B(a1 ⊕ · · · ⊕ an), is the
congruence on S generated by the relations

Bj :
n⊕

i=1

ai ∼
n⊕

i=1,i 6=j

ai

for each j = 1 . . . n. These generating relations are called bend relations. As special
cases, when n = 2, B(a⊕ b) is generated by the single relation a ∼ b. When n = 3,
B(a⊕ b⊕ c) is generated by the relations

a⊕ b⊕ c ∼ a⊕ b ∼ a⊕ c ∼ b⊕ c.

The motivation for the bend relations stems from the following fact. Recall that
the tropical hypersurface of a tropical polynomial f ∈ T[x1, . . . , xn] can be described
away from the boundary of Tn as the locus where the graph of f is non-linear.
Then

Proposition 2.3.3 ([GG16], Proposition 5.1.6). Given a tropical polynomial f ∈
T[x1, . . . , xn], the tropical hypersurface of f is precisely the set of homomorphisms
T[x1, . . . , xn]/B( f )→ T.

2.4 Tropical scheme theory

In its first years, tropical geometry has been lacking of a solid algebraic foundation,
for instance of a way to see tropical varieties as actual varieties in a more traditional
sense. A broader environment that allows to look for schemes over a semiring
and to interpret tropical varieties as the set of points of a scheme over a semiring
is that of F1-geometry. In this context one can look for schemes not only over
rings, as in the classical theory as developed by Grothendieck, but also over
semiring and monoids. The realisation that we can tropicalize a subscheme of a
tropical variety thanks to the fact that the coordinate rings of the affine patches
of a toric variety have a distinguished class of monomials, and that they glue by
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localizing monomials leads to consider schemes with a model over F1 instead of
just embeddings into toric varieties. In this context we can consider schemes over
a valued field K that admit an open cover by spectra of monoid rings and such
that the gluing is induced by localizations happening at the level of the monoids.

The theory of F1-schemes have been developed for example in [Dur07], [TV09]
and [Lor12]. In [GG16] the authors considered a category of F1-schemes that is a
subcategory of all the ones introduced in the aformentioned works and developed
a scheme-theoretic approach to tropicalization and tropical geometry in general.
The content of this section is mostly a recapitulation of some results of [GG16] and
[GG14].

In addition to this first generalisation of the context in which tropicalization
can be considered, by working with the following definition of valuation, which
generalises (semi)valuations, it is possible to replace the field K by any ring R and
to replace the tropical semifield T by any idempotent semiring S.

Definition 2.4.1. A valuation on a ring R is a map v : R → S to an idempotent
semiring satisfying the following conditions:

(1) v(0R) = 0S;

(2) v(1R) = v(−1R) = 1S;

(3) v(ab) = v(a)⊗ v(b) for all a, b ∈ R;

(4) v(a + b)⊕ v(a)⊕ v(b) = v(a)⊕ v(b) for all a, b ∈ R.

All along this work we will refer to a valuation as a function satisfying Definition
2.4.1 above.

Remark 2.4.2. Condition (4) generalizes the ultrametric triangle inequality, as it
is equivalent to v(a + b) ≥ v(a)⊕ v(b) in the canonical partial order on S given
by a ≤ b if and only if a ⊕ b = a. This definition thus becomes equivalent to
the usual definition of a Krull valuation when the partial order is a total order,
such as when S = Tn. This condition can also be written more symmetrically
as v(a)⊕ v(b)⊕ v(c) = v(a)⊕ v(b) whenever a + b + c = 0 in A, since v(c) =
v(a + b).

Remark 2.4.3. For use later on, we record the following simple observation. A rank
1 valuation v : R → T can be extended to a rank 2 valuation on the ring R{{t}}
of Puiseux series (or the subrings of formal Laurent series or polynomials) by the
formula

a0tn0 + · · · 7→ (tn0 , v(a0)) ∈ T2.

We move now to introduce the categories of objects over F1 that we are going to
consider to build polynomial algebras with coefficients in a (semi)ring.

Definition 2.4.4. The category F1-Mod of F1-modules is the category of pointed
sets and morphisms of pointed sets.
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Definition 2.4.5. The category F1-Alg is the category of commutative monoids
with zero, i.e. monoids (M, ·, 0M) such that m · 0M = 0M for all m ∈ M, and
morphisms of monoids f : M→ N such that f (0M) = 0N . The category F1-Alg is
a subcategory of the category of monoids Mon.

A base change functor to a (semi)ring is defined:

Definition 2.4.6. Given a (semi)ring S and an F1-algebra M, define the S-algebra
S[M] as the free S-algebra generated by M \ 0M. This assignment gives a functor:

S[−] : F1-Alg→ S-Alg

Furthermore, let M(−) : S-Alg → F1-Mod be the forgetful functor sending a
S-algebra to its underlying F1-algebra, then there is an adjunction:

S[−] : F1-Alg � S-Alg : M(−)

Affine schemes can be defined over Q (where Q is F1 or a semiring) in a very
similar fashion to the usual setting of rings: let A be a Q-algebra, then an ideal I
of A is a subset, if Q = F1 (respectively submonoid if Q is a semiring), such that
a · b ∈ I for all a ∈ A, b ∈ I. The ideal I is said to be prime if its complement
is closed under multiplication. Given a prime ideal p, the localization Ap can be
formed in the usual way.

The prime spectrum of a Q-algebra A is given as the topological space whose
underlying set is that of prime ideals of A and whose topology has a basis of open
sets given by the collection D( f ) := {p | f /∈ p} for all f ∈ A. Given an A-module
(or algebra) M, this determines a sheaf of Q-modules (or algebras) sending an
open set D( f ) to the localization M f = A f ⊗M. In particular if M = A we get the
structure sheaf OA of Spec(A). An affine scheme over Q is a pair (X,O) where X
is a topological space and O is a sheaf of Q-algebras such that it is isomorphic to a
pair of the form (Spec(A),OA) for some Q-algebra A. A general scheme over Q is
locally isomorphic to an affine scheme. Finally, homomorphisms of schemes over
Q are morphisms given by homomorphisms of Q-algebras on affine patches.

When Q is a ring this construction coincides with the usual construction of
schemes over a ring in terms of locally ringed spaces.

The base change functor S[−] : F1-Alg→ S-Alg behaves well with respect to
localizations thus it gives a base change functor for schemes as well:

(−)S : SchF1 → SchS

One can define what a sheaf of semiring congruences is and consider sub-
schemes of a scheme over a semiring. Among all the semiring congruences a
very important role in this story is played by congruences generated by the bend
relations as introduced in Section 2.3.

Let B(P) be the bend congruence on S[M] generated by the bend relations of P.
Given an ideal J ⊂ S[M] the congruence B(J) is generated by the bend relations
of all P ∈ J. Furthermore, we have that the following result holds:
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Proposition 2.4.7 ([GG16], Proposition 6.6.1.). Given a valuation v : R → S, an
integral F1-algebra M and an ideal I ⊂ R[M], the S-submodule tropv(I) ⊂ S[M] is an
ideal.

A closed immersion of schemes is a morphism φ : Y → X such that φ(Y) is
closed in X, the map Y → φ(Y) is an homeomorphism and the induced map of
sheaves φ# : OX → φ∗OY is surjective. Given two closed immersions φ : Y → X
and φ′ : Y′ → X, they are equivalent if there is an isomorphism Y ∼= Y′ that
commutes with φ and φ′. A closed subscheme is an equivalence class of closed
immersions with respect to this equivalence relation.

Over rings the above definition of closed immersion is equivalent to say that φ
is an affine morphism of schemes and φ# is surjective. Over semirings, instead,
this equivalence breaks down, and this is a consequence of the fact that in general
there is no bijection between ideals and congruences for semirings.

Here, for a scheme X over a semiring, a closed immersion φ : Y → X is, as in the
second case, an affine morphism of semiring schemes such that φ# is surjective. A
closed subscheme is an equivalence class of closed immersions with respect to the
same equivalence relation as above.

As in the world of semirings congruences are the right object to take quotients,
we define a congruence sheaf J on a semiring scheme X to be a subsheaf of OX ×OX
such that J(U) is a semiring congruence on OX(U) for each open U ⊂ X.

Given a valued ring v : R→ S, an F1-scheme X locally defined as Spec (M) and
a subscheme ϕ : Y ↪→ XR cut out by an ideal sheaf I, we have all the ingredients
to give the definition of scheme-theoretic tropicalization of Y:

Definition 2.4.8 (Scheme-theoretic tropicalization). The scheme-theoretic tropicaliza-
tion of Y inside X is defined as the subscheme Tropv

ϕ(Y) of XS locally given as the
spectrum of the semiring S[M]/B(tropv(I(R[M]))).

This notion of tropicalization is functorial (see [GG16] Proposition 6.4.1) on
the category C whose objects are closed embeddings Y ↪→ XR of schemes over R
where X is a scheme over F1. Morphisms (Y, X)→ (Y′, X′) in C are morphisms
f : X → X′ of schemes over F1 such that fR(Y) ⊂ Y′. This is a scheme-theoretic
generalisation of the observation that tropicalization on toric varieties is functo-
rial with respect to equivariant morphisms. Indeed, since toric varieties are a
particular instance of schemes admitting an F1-model, it also makes sense to ask
if the scheme-theoretic tropicalization reduces to the one introduces by Payne
and Kajiwara on toric varieties. This is actually the case, the Kajiwara-Payne
tropicalization is recovered as the T-points of the scheme-theoretic one:

Theorem 2.4.9 ([GG16] Theorem 6.3.1). Let X be a toric variety over F1, let v : K → T

be an algebraically closed valued field. Given a scheme Y over K and a closed embedding
ϕ : Y → XK, the set Trop(ϕ)(T) of T-points of the scheme-theoretic tropicalization of Y
inside X coincides with the Kajiwara-Payne tropicalization tropϕ(Y) as a subset of X(T).
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Remark 2.4.10. In the affine case, let v : R → S be a valued ring and I ⊂
R[x1, . . . , xn] an ideal, then there is a bijection between the set of solutions to
tropv(I) in an S-algebra T and the set HomS-Alg(S[x1, . . . , xn]/B(tropv(I)), T).

Both the previously discussed points of view on Berkovich analytification, i.e.
as a moduli space of valuations and as an intrinsic tropicalization, can be made
rigorous using tropical scheme-theory, as worked out in [GG14]. It is fundamental
here that we are working in the category of scheme with a model over F1. The key
to this is to consider the universal embedding Y ↪→ Ŷ of a scheme over R:

Definition 2.4.11. Let A an integral R-algebra and let Â := R[M(A)] then there is
a canonical surjection of R-algebras ev : Â → A sending xa to a for every a ∈ A.
We call ev the evaluation map.

By definition of the adjunction between R[−] and M(−), for any F1-algebra M
and R-algebra homomorphism f : R[M] → A, the adjoint g : M → M(A) is the
unique F1-algebra homomorphism such that the diagram:

Â

R[M] A

ev

f

R[g]

commutes.

Let Y := Spec (A) and Ŷ := Spec (Â). As ev : Â→ A is surjective we can regard
it as an embedding Y ↪→ Ŷ of R-schemes. This, thanks to the good behaviour of
R[−] and M(−) with respect to localizations, generalizes to non-affine schemes
as well and is locally given by the above evaluation maps. Furthermore the
embedding ϕuniv : Y ↪→ Ŷ is initial in the subcategory CY of C of embeddings of
Y into R-schemes with an F1 model, i.e. given any morphism f : X1 → X2 of
F1-schemes and closed embeddings ϕi : Y ↪→ (Xi)R such that fR ◦ ϕ1 = ϕ2, we
have a commutative diagram:

(X1)R

Ŷ (X2)R

Y

fR

ϕ1

ϕ2

Thanks to this fact and to the functoriality of tropicalization we have that
the scheme-theoretic tropicalization Tropuniv(Y) := Tropϕuniv

(Y) of the universal
embedding is canonically isomorphic to lim←−ϕ∈CY

Tropϕ(Y).

Definition 2.4.12. Given a scheme Y over R, a valuation on Y with values in
an idempotent semiring S is a valuation vU : Γ(U,OY|U) → S for every open
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affine U ⊂ Y. They are considered modulo the equivalence relation identifying
vU1 and vU2 if they are both a restriction of a valuation vV for some open affine
V ⊂ U1 ∩U2.

If v : R → S is a valued ring and S′ a S-algebra, a valuation on Y is said to be
compatible with v if the following diagram commutes:

R S

Γ(U,OY|U) S′

v

With this definition the following theorem holds:

Theorem 2.4.13 ([GG14] Theorem 3.3.6). Given a valued ring v : R → S and an R-
scheme Y, the universal tropicalization Tropuniv(Y) represents the controvariant functor
on affine S-schemes sending Spec (S′) to the set of valuations on Y with values in S′

compatible with v, i.e.

Tropuniv(Y)(S
′) = {valuations Y → S′ compatible with v}

In particular, when S is equal to T, we obtain a bijection between the set-theoretic
tropicalization of the universal embedding of Y and the Berkovich analytification
Yan of Y. This bijection can be refined into an homeomorphism by equipping
Tropuniv(Y)(T) with the so-called strong Zariski topology, where closed sets are
given by the T-points of closed subschemes of Y. Furthermore for any ϕ ∈ CY,
the map Tropuniv(Y)→ Tropϕ(Y) reduces to the projection Yan → tropϕ(Y) upon
passing to T-points.

When Y = Spec (A) is an affine R-scheme, let SA := S[M(A)]/Btrop(ker ev)
then Tropuniv(Y) = Spec (SA). We have:

Corollary 2.4.14. There is a valuation w : A → SA universal among all valuations
compatible with v in the following sense: given any valuation w′ : A → S′ compatible
with v there is a unique morphism of S-algebras f : SA → S′ such that the following
diagram commutes:

SA

A S′

f

w′

w

and it sends a ∈ A to xa ∈ SA.

Lastly, to generalise Payne’s result in the affine case, let v : R → S a valued
ring and for a finitely generated integral R-algebra A let Y := Spec (A) and the
category CY,aff the subcategory of CY whose elements are embeddings into affine
spaces. Then:
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Theorem 2.4.15 ([GG14] Theorem 4.1.1). The universal tropicalization of Y is iso-
morphic as an S-scheme to the limit of the tropicalizations of embeddings into affine
spaces:

Tropuniv(Y)
∼= lim←−

ϕ∈CY,aff

Tropϕ(Y)

Remark 2.4.16. Let us denote elements of the category C
op
Y,aff as ψ : R[M] � A, then

the statement of Theorem 2.4.15 is equivalent to say that

SA
∼= colim

ψ∈Cop
Y,aff

S[M]/Btropv(ker ψ)

as S-algebras.
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Chapter 3

Tropical differential algebra and its
fundamental theorem

For a field K, given a differential polynomial over K[[t]] (in the sense of [Rit50])
and given a solution to such a polynomial, relative associated notions of tropical-
ization are introduced in [Gri17]. There, the author introduces tropical differential
equations, related notions of evaluation and solution and an algorithmic method
to test the solvability of tropical differential linear systems, that, in case of positive
answer, constructs a solution. Further computational aspects are investigated.

At the end of the paper, an open question was left: does an analogue of the
fundamental theorem of tropical geometry (Theorem 2.1.3) hold in the differential
setting? In other words, is the set of tropicalizations of solutions to the differential
equation we started with equal to the set of solutions to the tropicalized one?

A positive answer to this question, at least when K is a trivially valued alge-
braically closed field of characteristic 0, has been given in [AGT16] and extended
to partial differential equations in [FGLH+20].

In [FT20] the authors extended this analogy with the classical case by introduc-
ing a notion of initial ideal for a differential ideal I of the Ritt polynomial algebra
over K[[t]] and proving that the set of weight vectors such that the initial ideal does
not contain a monomial coincides with the two sets in the statement of the main
theorem of [AGT16].

The aim of Section 3.1 is to recall the setting of [Gri17] and the results of [AGT16]
and [FT20]. The notation in which this results will be stated here will differ from
the original one, and a dictionary table is given at the end of the section. In
Section 3.2 we highlight the motivating ideas a generalisation of which will be the
philosophy leading us in the following chapters.

3.1 The fundamental theorem of tropical differential
algebra

All along this work a differential equation will be an element of a differential
polynomial ring over a differential ring R, in the sense of Ritt:
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Definition 3.1.1. Given a (semi)ring R let

R{x1, . . . , xn}basic := R[x(j)
i | i = 1, . . . , n; j ∈N]

be the polynomial R-algebra generated by the family of variables {x(j)
i }i=1,...,n; j∈N

Recall that a differential ring is a ring R equipped with an additive map dR : R→
R that satisfies the Leibniz relations d(ab) = (da)b + a(db). This relation for 2-
fold products easily implies that d also satisfies an analogous relation for n-fold
products. We will call these relations the strict Leibniz relations, and a map d
satisfying them will be called a strict differential.

Definition 3.1.2 (Ritt differential polynomial algebra). Given a differential ring (R, dR),
let the differential R-algebra of Ritt polynomials in n variables to be R{x1, . . . , xn}basic

equipped with the differential d given by d(x(j)
i ) = x(j+1)

i and extending dR. De-
note (R{x1, . . . , xn}basic, d) as R{x1, . . . , xn}.

Ritt polynomial algebras are characterized by the following universal prop-
erty: a homomorphism of differential rings ϕ : R{x1, . . . , xn} → R′ is uniquely
determined by the images of the generators ϕ(xi) ∈ R′.

Definition 3.1.3. A solution to P ∈ R{x1, . . . , xn} is a n-tuple r = (r1, . . . , rn) ∈ Rn,
such that

P|
x(j)

i =dj
R(ri)

= 0

Example 3.1.4. Let R = C[[t]] be the differential ring of power series with complex
coefficients, let r = sin(t2) = ∑∞

i=0
(−1)n

(2n+1)! t
4n+2 and consider the polynomial

P = t2 sin(t2)X +
1
4
(X′)2 − t2 ∈ R{X}

Then r is a solution for P, indeed:

P(r) = t2(sin(t2))2 +
1
4
(2t cos(t2))2 − t2 =

= t2(sin(t2))2 + t2(cos(t2))2 − t2 = 0

Throughout the whole work we will look at the semiring T as the isomorphic
semiring ({tr | r ∈ R ∪ {∞}},⊕,�) with sum given by tr ⊕ ts = tmin{r,s} and
product tr � ts = tr+s. This will give us a natural way to multiply boolean power
series and tropical numbers.

Let K be an uncountable algebraically closed characteristic 0 field equipped with
the trivial valuation vK : K → B. For the rest of this section, let R := (K[[t]], d/dt)
and let v : K[[t]] → T be the t-adic valuation on R, sending a power series to its
leading exponent.
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Definition 3.1.5. The tropicalization of P ∈ R{x1, . . . , xn} is the polynomial
tropv(P) ∈ T{x1, . . . , xn}basic obtained by applying the t-adic valuation to the
coefficients of P.

Example 3.1.6. Let P = t2 sin(t2)X + 1
4(X′)2 − t2 ∈ C((t)){X} as in Example 3.1.4,

then
tropv(P) = t4X + t0(X′)2 + t2

Let B[[t]] be the semiring of power series with boolean coefficients. The linear
map d : B[[t]]→ B[[t]] mapping tn to tn−1, satisfies the Leibniz rule. Thus B[[t]] is
the first example of a (strict) differential semiring, whose definition will be given
in general in Definition 4.1.1.

The salient feature of the theory of tropical differential equations is that, as we
look for solutions "at first order", we do not look for solutions to a polynomial
P ∈ T{x1, . . . , xn}basic in a T-algebra but in B[[t]]. Let π : B[[t]] → T be the map
sending a boolean power series to its leading term, it is an homomorphism of
semirings.

Definition 3.1.7. Let B ∈ B[[t]]n, the Grigoriev evaluation in B is the semiring
homomorphism

GevB : T{x1, . . . , xn}basic → T

mapping x(j)
i to π(dj(Bi)).

The assignment GevB is a semiring homomorphism as it is the evaluation in the
element:

B := ((π(dj(B1)))j∈N, . . . , (π(dj(Bn)))j∈N) ∈ (TN)n

Definition 3.1.8. Given P ∈ T{x1, . . . , xn}basic, the n-tuple B ∈ B[[t]]n is a solution
for P if the minimum in GevB(P) is attained in at least two distinct monomials, or
if it is ∞.

The last ingredient needed to state a fundamental theorem is a procedure to
tropicalize n-tuples in K[[t]]n.

Definition 3.1.9. Let ṽ : R→ B[[t]] be the coefficientwise application of the trivial
valuation vK. Given an n-tuple of elements r = (r1, . . . , rn) ∈ Rn its tropicalization
is given by taking the n-tuple

tropṽ(r) := (ṽ(r1), . . . , ṽ(rn)) ∈ B[[t]]n

Remark 3.1.10. The map ṽ commutes with the differentials, i.e. for every A ∈ K[[t]],
ṽ(dA) = d(ṽ(A)). The semiring of Boolean power series (B[[t]],+, ·) is isomorphic
to the semiring (P(N),∪,+M), with Minkowski sum +M, via

P(N) 3 S 7→ ∑
i∈N

biti ∈ B[[t]] where bi =

{
0 if i ∈ S
∞ if i /∈ S
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The inverse map is given by sending b ∈ B[[t]] to Supp(B) = {n ∈ N | an 6= ∞}.
Through this isomorphism, ṽ is mapping a power series A to its support in P(N).
As K has characteristic 0:

Supp(dA) = {n− 1 | n ∈ Supp(A)} ∩N

and the right hand side corresponds to d(ṽ(A)) via the isomorphism illustrated
above.

Furthermore, ṽ is not multiplicative, for example:

ṽ((1− t)(1 + t)) = 0 + 0t2 6= 0 + 0t + 0t2 = ṽ(1− t)ν(1 + t)

Example 3.1.11. Consider P as in Example 3.1.4, thus tropv(P) = t4X + t0(X′)2 + t2

and let r = sin(t2), so B := tropν(r) = ∑∞
i=0 t4n+2. Then:

GevB(tropv(P)) = t4 · t2 + t0 · (t)2 + t2

hence B is a tropical solution to tropv(P).

Given Σ ⊂ R{x1, . . . , xn}, let us denote as Sol(Σ) the set of solutions to the
elements in Σ, then:

Theorem 3.1.12 (Fundamental theorem of tropical differential algebra, [AGT16], The-
orem 8.1). Given a differential ideal I ⊂ R{x1, . . . , xn} the following equality holds:

tropṽ(Sol(I)) = Sol(tropv(I)) (3.1.1)

In order to make the analogy with the fundamental theorem of tropical geometry
even more appropriate let us see how to add the third term in the equality of the
theorem above.

Given m ∈ N, a differential polynomial P ∈ R{x1, . . . , xn} is of order ≤ m if
P ∈ R[x(j)

i | i = 1, . . . , n; j ≤ m], thus it can be written as:

P = ∑
M∈Λ

rM ∏
1≤i≤n
0≤j≤m

(x(j)
i )Mi,j

for Λ ⊂ Mn×(r+1)(N) a finite subset and rM ∈ R for all M ∈ Λ.

In [FT20], given a differential polynomial P ∈ R{x1, . . . , xn} with order ≤ r
and an element B ∈ B[[t]]n, which here will act as a weight vector, the authors
introduce the polynomial PB ∈ R{x1, . . . , xn}, defined as:

PB((x(j)
i )i,j) =

{
t−trop(P)(B)P((π(dj(Bi))x(j)

i )i,j) if tropv(P)(B) 6= ∞
0 if tropv(P)(B) = ∞

The initial term of P with respect to B is InB(P) := PB((x(j)
i )i,j) ∈ K{x1, . . . , xn}basic.

Note that, when tropv(P)(B) 6= ∞:

InB(P) = ∑
M∈Ξ

rMt−v(rM) ∏
1≤i≤n
0≤j≤m

(x(j)
i )Mi,j
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where Ξ = {M ∈ Λ | the minimum in tropv(P)(B) is achieved in the M-th term}.
Given a differential ideal I ∈ R{x1, . . . , xn} and a weight vector S ∈ B[[t]]n, let

InS(I) := 〈InS(P) | P ∈ I〉 ⊂ K{x1, . . . , xn}basic

the initial ideal of I with respect to S. With these definitions a complete analogy
between Theorem 3.1.12 and the Fundamental Theorem of Tropical Geometry can
be established:

Theorem 3.1.13 ([FT20], Theorem 3.9). Given a differential ideal I ⊂ R{x1, . . . , xn}
the following equalities hold :

tropṽ(Sol(I)) = Sol(tropv(I)) = {S ∈ B[[t]]n | InS(I) does not contain a monomial}
(3.1.2)

To conclude, the correspondence between the notation used here and the nota-
tion in [AGT16] is summarized by the following table:

[AGT16] notation Present notation

(P(N),∪,+M) (B[[t]],+, ·, d)

ValS(j) π(dj(S))

trop : K[[t]]→ P(N) ṽ : K[[t]]→ B[[t]]

3.2 A first hint at differential enhancements and pairs

Two of the main ideas of the present work draw inspiration from features already
visible in the theory developed by Gregoriev and illustrated above.

Firstly, in order to state the Fundamental Theorem 3.1.12, we made use of three
maps: the valuation v : K[[t]]→ T, the homomorphism of semirings π : B[[t]]→ T

and the differential map ṽ : K[[t]] → B[[t]]. In particular the valuation v factors
through the differential semiring B[[t]] in the following way:

B[[t]]

R := K[[t]] T

π

v

ṽ

The datum (π, ṽ) is the first instance of what we will define in Definition 6.5.1
as a differential enhancement of a valuation, in this case of v, and the map π is the
first instance of a reduced pair. This datum is what is needed in order to tropicalize
differential equations and their solutions and it plays the same role in this context
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that is played in classical tropical geometry by valuations with respect to the
tropicalization of polynomial equations and solutions.

Secondly, we can endow B[[t]]{x1, . . . , xn}basic with a (strict) differential exactly
as in Definiton 3.1.2, let us call d this differential. Then, given any B ∈ B[[t]]n, the
following diagram commutes:

(B[[t]]{x1, . . . , xn}basic, d) B[[t]]

T{x1, . . . , xn}basic T

evB

π π

GevB

i.e. evaluating a differential polynomial P ∈ B[[t]]{x1, . . . , xn} in B ∈ B[[t]]n

(analogously to Definition 3.1.3) and taking the t-adic valuation of the result gives
the same result as taking the coefficientwise t-adic valuation of P and applying
the Grigoriev evaluation in B.

By Definition 3.1.7 of solution to a tropical differential polynomial and by
definition of the bend congruence introduced in Section 2.3, it is straightforward
that for any differential ideal I ∈ R{x1, . . . , xn} and B ∈ B[[t]]n

B is a solution for tropv(I) ⇐⇒ GevB factors through the quotient by Btropv(I)

thus, B ∈ B[[t]]n is a solution for tropv(I) if and only if from the diagram above
we get the following commutative diagram:

(B[[t]]{x1, . . . , xn}basic, d) B[[t]]

T{x1, . . . , xn}basic/Btropv(I) T

evB

π π

GevB

This is the first incarnation of Theorem 6.3.5 and it hints at us that in order to
have a bijection between tropical solution and morphisms in some category, the
right objects to consider are of the form of the two vertical arrows in the diagram
above, which, as already pointed out above, are examples of (reduced) pairs, the
definition and the property of which are the topic of Chapter 6. Pairs will play in
this theory the role played in algebraic geometry and tropical scheme theory by
(semi)rings and algebras.

Remark 3.2.1. Notice that even if the Grigoriev evaluation can be looked at as the
evaluation map from T{x1, . . . , xn}basic to T in a particular element of (TN)n (as
pointed out after Definition 3.1.7), one can not consider any element in (TN)n. We
only want n-tuples of sequences of elements in T that are compatible in some way:
in particular we want them to be the sequence of leading terms of the successive
derivations of an n-tuple of power series. This condition is equivalent to say that
every entry has to be a sequence of a certain decreasing sawtooth-like form. For
example, sequences of the form (t, t2, . . . ) ∈ TN are not allowed, as there exists
no element B ∈ B[[t]] such that π(B) = t and π(dB) = t2. Thus if we want look at

26



solutions to tropical differential equations as morphisms between some objects, it
is not enough to consider morphisms of semirings from T{x1, . . . , xn}basic to some
T-algebra, as this would not take in account the compatibility discussed above. In
the end, this compatibility request encodes the fact that we want tropical solutions
to be solutions "at first order". This is why pairs are really the right category to
look for morphisms in. Most importantly, working with pairs also allows us to
move from the trivially valued case of [AGT16] to the non-trivially valued case
and to look for solutions in any algebra over the pair we are going to fix as initial
datum in a differential enhancement.
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Chapter 4

Differential semirings

We start in this chapter to introduce original material, which, up to Chapter 7
included, appears in [GM21], restricted to the case of free DF1-modules.

In the present chapter we introduce differential semirings, i.e. idempotent
semiring equipped with an additive map satisfying a relaxed tropical Leibniz rule,
we give some examples that will be relevant in the following and investigate some
of their properties.

4.1 Tropical differential semirings

In this work, we propose that differentials on idempotent semirings should be
required to satisfy a somewhat weaker condition than the strict Leibniz relations.
Given an idempotent semiring S, an additive map d : S→ S is said to be a tropical
differential if it satisfies the tropical Leibniz relations: for any pairs of elements x, y ∈ S
the bend relations of the expression

d(xy) + xd(y) + yd(x)

hold. Note that we can view the tropical Leibniz relations as the tropicalization of
the strict Leibniz relations.

Definition 4.1.1. A tropical differential semiring is an idempotent semiring equipped
with a tropical differential.

We will denote as DSRings the category of differential semirings and, fixing a
differential semiring S, as DS-Alg the category of differential S-algebras.

Just as the strict Leibniz relations for 2-fold products imply the strict Leibniz
relations for n-fold products, such as

d(xyz) = d(x)yz + xd(y)z + xyd(z),

it is possible to derive n-fold tropical Leibniz relations from the 2-fold tropical
Leibniz relations:
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Lemma 4.1.2. In a tropical differential semiring S the bend relations of any expression

d(x1 · · · xn) + ∑
i

x1 · · · xi−1d(xi)xi+1 · · · xn

hold.

Proof. Let us prove it by induction on the number of terms. For n = 3 we need to
prove that the bend relations of the sum

d(xyz) + d(x)yz + xd(y)z + xyd(z)

hold. In S the bend relations of the following expressions hold:

d(xyz) + d(x)yz + xd(yz) (4.1.1)

xd(yz) + xd(y)z + xyd(z) (4.1.2)

Thus, from the bend relations of 4.1.1 we have

d(xyz) + d(x)yz + xd(y)z + xyd(z) = xd(yz) + d(x)yz + xd(y)z + xyd(z)

and from the ones of 4.1.2 we get:

d(xyz) + d(x)yz + xd(y)z + xyd(z) = d(x)yz + xd(y)z + xyd(z)

On the other hand, from the bend relations of 4.1.1 we get:

d(xyz) + d(x)yz + xd(y)z + xyd(z) = d(xyz) + xd(yz) + xd(y)z + xyd(z)

and from the ones of 4.1.2:

d(xyz) + d(x)yz + xd(y)z + xyd(z) = d(xyz) + xd(y)z + xyd(z)

Analogously we can drop the terms xd(y)z and xyd(z), thus the thesis holds for
n = 3.

Assuming that the tropical Leibniz relations hold for a product of n− 1 elements,
let us prove they hold for a product of n elements. Given a product ∏n

i=1 xi and
an index k = 1, . . . , n, denote by Θk the bend relations of the 2-fold product
xk ·∏i 6=k xi and by Λk the product of xk with the (n − 1)-fold tropical Leibniz
relations for ∏i 6=k xi.

Then, we need to prove that the bend relations of the following expression

d

(
n

∏
i=1

xi

)
+

n

∑
j=1

d(xj)∏
i 6=j

xi (4.1.3)

hold.
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In order to prove that the expression above is equal to the expression:

n

∑
j=1

d(xj)∏
i 6=j

xi

it is sufficient to notice that, thanks to relations Θ1, expression 4.1.3 is equivalent
to

x1d

(
n

∏
i=2

)
+

n

∑
j=1

d(xj)∏
i 6=j

xi

and by relations Λ1 we have that expression 4.1.3 is equivalent to

n

∑
j=1

d(xj)∏
i 6=j

xi,

which is what we wanted. Given any k = 1, . . . , n we need to prove that expression
4.1.3 is equivalent to

d

(
n

∏
i=1

xi

)
+

n

∑
j=1
j 6=k

d(xj)∏
i 6=j

xi.

By relations Θk we have that expression 4.1.3 is equivalent to

d

(
n

∏
i=1

xi

)
+ xkd

(
∏
i 6=k

xi

)
+

n

∑
j=1
j 6=k

d(xj)∏
i 6=j

xi

and by relations Λk we get the equality we wanted.

Remark 4.1.3. The tropical Leibniz relations are distinct from the strict Leibniz
relations in two important ways. (1) A strict differential d automatically satisfies
the tropical Leibniz relations, but there are many tropical differentials that are not
strict. (2) The differential of a product xy is constrained by the tropical Leibniz
relations and the differentials of x and y, but it is not uniquely determined by
them.

Example 4.1.4. (1) Let S be an idempotent semiring and let d be either the con-
stant map 0S or the identity; these are each strict differentials on S.

(2) Consider the idempotent semiring B[[t]] of formal power series with coeffi-
cients in B. As mentioned in Section 3.1, the map defined by tn 7→ tn−1 (for
any n ≥ 1 ) is a strict differential. If p is a prime, the map defined by

tn 7→
{

tn−1 n ≥ 1 and p - n
∞ n = 0 or p | n

is a tropical differential that is not strict.
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(3) Consider the idempotent semiring of formal tropical power series T[[t]]. It
can be endowed with a strict differential, d0, defined by

d0(tn) =

{
tn−1 n ≥ 1
∞ n = 0.

Let us denote the differential semiring (T[[t]], d0) as T[[t]]0.

(4) More generally, if v : N→ T is a valuation, then there is a non-strict tropical
differential dv defined by,

dv(tn) =

{
v(n)tn−1 n ≥ 1
∞ n = 0.

(4.1.4)

Indeed, this satisfies the tropical Leibniz relations since

dv(tntm)⊕ dv(tn)tm ⊕ tndv(tm) = (v(n + m)⊕ v(n)⊕ v(m))tn+m−1,

and the coefficient v(n + m)⊕ v(n)⊕ v(m) on the right satisfies the bend
relations (the argument is essentially the same for k-fold products with
k > 2). Note that v could be either a p-adic valuation, or a degenerate p-adic
valuation where v(n) = ∞ if p divides n, and 0 otherwise. When v equals
a p-adic valuation for some prime number p, we will denote (T[[t]], dv) as
T[[t]]p.

Remark 4.1.5. While B is an initial objects in the category of idempotent semirings,
tropical differential semirings do not admit an initial object because the tropical
Leibniz rule does not determine d(1).

4.2 Differential congruences

Let (S, d) be a semiring equipped with an additive map d : S → S. A differential
congruence on S is a congruence K ⊂ S× S that is closed under d; i.e., if (a, b) ∈ K
then (da, db) ∈ K. When K is a differential congruence, the map d descends to an
additive map d : S/K → S/K, and if d is a tropical differential then d is as well.

Proposition 4.2.1. If {Iλ ⊂ S× S} is a set of differential congruences, then the congru-
ence generated by them is a differential congruence.

Proof. Let K denote the congruence generated by the Iλ. It is the transitive and
symmetric closure of the subsemiring K0 generated by the Iλ.

We will first show that d(K0) ⊂ K. Suppose that (a1, a2) is a relation in some Ii
and (b1, b2) is a relation in some Ij. Since d is additive, it certainly sends the sum
(a1 + b1, a2 + b2) to a relation in K. For the product, we proceed as follows. In Ii we
have (a1b1, a2b1) and hence (d(a1b1), d(a2b1)) since Ii is a differential congruence.
Likewise, in Ij we have the relations (b1a2, b2a2) and hence (d(b1a2), d(b2a2)).
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Hence the relation (d(a1b1), d(a2b2)) is indeed contained in the transitive closure
K. Since any element of K0 is produced by a finite sequence of sums and products
of elements in the Iλ, it follows that d(K0) ⊂ K, as desired.

Now, any relation in K can be decomposed as a finite transitive chain of relations
in K0. Thus is follows that d(K) ⊂ K.
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Chapter 5

Differential F1-modules and
differential polynomials over a
differential semiring

As in the non-differential case, in order to define a functorial tropicalization for
differential equation we need some kind of information over F1. It is for this reason
that in the first part of this chapter we introduce the categories of differential F1-
objects whose datum we are going to use to determine the class of differential
presentations that can be tropicalized via the differential tropicalization functor
we will introduce in Chapter 7.

We start by introducing the categories of differential F1-modules and -algebras,
we notice that the former is equivalent to the category of F1[d]-sets (as introduced
in [CLS12]), moving then to explaining the construction of the free differential
F1-algebra generated by a differential F1-module and its definition in terms of
trees, which will be the point of view we will use in most of the proof hereinafter.
In the second subsection the construction of differential polynomial algebras with
coefficients in a differential (semi)ring R will be presented as a base change functor
from the category of differential F1-modules to that of differentia R-algebras: this
will extend the familiar construction of Ritt differential polynomials in the case of
rings and will give rise to a new class of polynomials over differential semirings,
whose monomials will be represented by rooted trees. As last thing, we prove the
functoriality and freeness of the aformentioned base change functor.

5.1 Differential F1-modules and -algebras

The category of differentially enriched F1-objects that will be the main object of
study in the present section is that of differential F1-modules:

Definition 5.1.1. A differential F1-module (also DF1-module in the following) is a
tuple (M, ?M, dM) where (M, ?M) is an F1-module, and dM : M→M is a map of
F1-modules. Let us denote the category of differential F1-modules as DF1-Mod.
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Example 5.1.2. Examples of DF1-modules are:

• the singleton set {?}, it is the zero object in the category DF1-Mod;

• the set F1 := {0, 1} with distinguished point 0, equipped with the constant
map 0 or with the identity;

• the set N := N∪ {∞} equipped with d : n 7→ n + 1 for n ∈N and d(∞) =
∞;

• every F1-module M is trivially a DF1-module equipping it with the trivial
differential, mapping every element to ?M.

Looking at N as an F1-algebra with respect the usual sum of natural numbers,
extended to ∞ by n + ∞ = ∞ for all n ∈N, notice that the datum of a differential
F1-module is the same as that of a N-set, as introduced in [CLS12], Section 2.2.
The action is given by sending 1 ∈N to dM (as the operation of A = N is the sum,
in this case 0A = ∞ and 1A = 0). With this definition, morphisms of N-sets are
morphisms commuting with d, thus there is an equivalence of categories between
DF1-Mod and N-Sets.

As N is isomorphic to the F1-algebra F1[d], several features of DF1-modules
are illustrated in [CLS12], Example 2.2.8. Nonetheless we find it useful to recap
them here, adding some other interesting considerations.

Given a directed graph G := (V, E), where V and E are allowed to be infinite
sets, if G satisfies the following conditions:

(1) |{e ∈ E | source(e) = x}| = 1 for all x ∈ V ;

(2) G has a loop edge, i.e. an edge e such that source(e) = target(e);

it can be endowed with the structure of a DF1-module. Indeed, denoting as
ex the only edge having x as source, let d(x) = target(ex) for all x ∈ N. The
distinguished point can be chosen among elements for which ex is a loop. Different
choices of distinguished point in general give rise to non-isomorphic DF1-module
structures. Conversely, any DF1-module can be visualized as a directed graph
satisfying the conditions above.

Example 5.1.3. • The DF1-module (N, ∞, d) introduced in Example 5.1.2 can
be visualised as the directed graph:

∞ 0 1 2 3 4 . . .

• Consider the directed graph G:
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• • • •

then the two possible DF1-module structures on G:

• • • ? ? • • •

are not isomorphic.

Given two DF1-modules M and N, their coproduct M∨N is given as a set by
their disjoint union M tN modulo the relation ?M ∼ ?N. By endowing M ∨N

with the differential d defined as:

d(x) :=

{
dM(x) if x ∈M

dN(x) if x ∈ N

for any x ∈M∨N, we obtain a DF1-module.

Dually, consider the product M×N equipped with the differential d acting com-
ponentwise, then (M×N, d) is a DF1-module with distinguished point (?M, ?N).
It is easy to prove that the constructions above are respectively the coproduct and
the product of two objects in DF1-Mod.

Definition 5.1.4. Let ∆ : F1-Mod → DF1-Mod be the functor associating to an
F1-module (M, ?M) the DF1-module ∆M defined as:

∆M := ({dnm | m ∈ M, n ∈N}/〈{dn?M ∼ ?M}n∈N〉, d)

We will identify d0m with m for all m ∈ M and often denote the elements dnm as
m(n).

Remark 5.1.5. It is easy to see that the functor ∆ is left adjoint to the forgetful
functor DF1-Mod→ F1-Mod, thus it is a free functor.

Example 5.1.6. Let X = {?X, x}, then ∆X = {?X, x, dx, d2x, . . . } is isomorphic to
the DF1-module (N, ∞, d).

From the example above, a DF1-module is free of rank n ∈N if it is isomorphic
to
∨

n N. Let us now introduce notions of subobjects and quotients in DF1-Mod:

Definition 5.1.7. Given a DF1-module M:

• a DF1-submodule of M is an F1-submodule (N, ?M) of M that is closed with
respect to dM;
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• a congruence on M is an equivalence relation ∼ on M that is also a DF1-
submodule of M×M. A quotient of M is a DF1-module isomorphic to M/∼
for some congruence on M;

• M is finitely generated of rank n if it is isomorphic to a quotient of a free module
of rank n.

Example 5.1.8. (1) Given a DF1-module M, for every n ∈N the image of dn
M is a

DF1-submodule of M.

(2) The coproduct M ∨N of two DF1-modules M and N is isomorphic to the
submodule M× {?N} ∪ {?M} ×N of the product M×N;

(3) If M ∼=
∨

n N is free or rank n, then the set of its DF1-submodules is a DF1-
module isomorphic to ∏n N. Indeed, notice that every submodule N of M is
free and to characterise it it is enough to specify a minimal set of generators.
Such a minimal set will have at most one element in every distinct copy
of N, thus the isomorphism is given by sending each submodule in the
n-tuple (m1, . . . , mn) where mi is equal to the generator of N lying in the i-th
copy of N if there is any, or mi = ∞ otherwise. The trivial submodule ?M
corresponds to the distinguished element of ∏n N and M to the element
(0, . . . , 0);

(4) Any M whose directed graph is a disjoint union of loops has M and ?M as
only DF1-submodules.

Notice that every DF1-submodule N of a given one defines a quotient by the
congruence generated by the relations {n ∼ ?M}n∈N. However not every congru-
ence can be realised this way: let M be free of rank 2 with generators x and y and
N the quotient of M by the congruence generated by dx ∼ dy. Then N can be
represented graphically as:

?
x

y
• • • • . . .

and it is straightforward that N cannot be obtained by collapsing a DF1-submodule
of M.

It can be proved fairly straightforwardly that finitely generated DF1-modules
can be characterized in the following way:

Lemma 5.1.9. A DF1-module is finitely generated if and only if its graph has finitely
many connected components and finitely many roots i.e. elements not in the image of d.

Definition 5.1.10. A differential F1-algebra (also DF1-algebra) is a tuple (A, 0A, ·, 1A, dA)
where (A, 0A, dA) is a differential F1-module and (A, 0A, ·, 1A) is an F1-algebra.
Let us denote the category of differential F1-algebras as DF1-Alg.

Equivalently, a DF1-algebra is an F1-algebra (A, 0A, ·, 1A) with an action of F1[d]
making it into an F1[d]-set.
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Remark 5.1.11. It is worth noticing that for any a, b ∈ A, there is no relation required
between the terms dA(ab), dA(a)b and adA(b) appearing in the usual Leibniz rule.

Example 5.1.12. • The DF1-module N is a DF1-algebra with respect to the
usual sum of natural numbers, extended to ∞ by n + ∞ = ∞ for all n ∈N.

• Every DF1-algebra A is trivially a DF1-algebra by endowing it with the
differential mapping every element to ?A.

Given two DF1-modules M and N, the set Hom(M,N) has the structure of a
DF1-module as well, with distinguished point ? : m 7→ ?N and differential d
defined as:

d f (m) := f (dM(m)) = dN( f (m))

When M = N, the identity map idM and the differential dM of M belong to
Hom(M,M). The operation of composition makes this set into a (in general
non-commutative) DF1-algebra with multiplicative identity idM.

Definition 5.1.13. Let F : F1-Mod → F1-Alg be the free functor sending (X, ?X)
into the free F1-algebra (F(X), ?X, ·, 1) generated by it.

Definition 5.1.14. Given a differential F1-module (M, dM), let us define a sequence

M0 ⊂M1 ⊂M2 ⊂ . . .

of differential F1-modules as:

M0 := (M, dM) Mn := (∆F(Mn−1)/〈dm ∼ dMm〉m∈M, d) for all n ≥ 1

By definition we get an injective map of differential F1-modules Mn ↪→Mn+1 for
every n ∈N. Let M∞ =

⋃∞
n=0 Mn, it is a DF1-algebra.

A perhaps more concrete realisation of the DF1-algebra M∞ can be given. Let
us first establish some terminology:

Definition 5.1.15. A forest is a finite set V, called vertices, together with a parent
map P : V → V such that for n large enough Pn sends every vertex to a fixed
point of P. The fixed points of P are called roots. The valence of a vertex v ∈ V is
the cardinality of P−1(v)r {v} A forest with a single root will be called a tree and
vertices of valence 0 will be called leaves.

Consider the monoid of isomorphism classes of trees with leaves labelled by
elements of M, with monoid structure given by joining two trees at the root
and where the multiplicative identity is the tree consisting of a single root. The
differential d is given by adding a segment to the stem of a tree. Given an element
m ∈ M, we denote by [m] the tree consisting of the single leaf labelled by m.
Denote as F(F1,M) the quotient of this monoid by the relations generated by
{d[m] ∼ [dMm]}m∈M. Then the following holds:

Lemma 5.1.16. The map sending m ∈M to [m] ∈ F(F1,M) induces an isomorphism of
DF1-algebras between M∞ and F(F1,M).
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For any n ∈ N, the isomorphism above gives the following isomorphism of
DF1-modules:

Mn ∼=
{

classes of trees with at most n branching
points on any path from the root to a leaf

}
⊂ F(F1,M)

Remark 5.1.17. Notice that, from the definition of ∆ and F, every tree with a leaf
labelled by the distinguished point ?M of M is identified with the empty tree, i.e.
the distinguished point of M∞.

Definition 5.1.18. Given a tree t ∈M∞, let the complexity of t

c(t) := min{n ∈N | t ∈Mn}

or, equivalently:

c(t) := max{# of branching points along paths from the root to a leaf in t}

By definition:
Mn = {t ∈M∞ | c(t) ≤ n}

Example 5.1.19. Let M := ∆X with X as in Example 5.1.6; an example of an element
of M∞ is d(x(2)d(xx(1))), which is equivalent to the following tree:

x(2)

x(1)x

In particular, this is an element of M2.

Proposition 5.1.20. The assignment M 7→M∞ is a free functor

(−)∞ : DF1-Mod→ DF1-Alg.

Proof. Firstly, let us prove it is a functor. Given a DF1-module morphism f : M→
N we define f∞ as the map sending a tree in M∞ with n leaves labelled m1, . . . , mn
to the tree of the same shape in N∞ with leaves labelled f (m1), . . . , f (mn). By
construction and by definition of M∞ and N∞ the map f∞ commutes with the
differentials. It is also straightforward to check that it is a morphism of F1-algebras.
Identity and composition checks are trivial, thus (−)∞ is a functor.

Let us prove the freeness of (−)∞, by proving that the forgetful functor U : DF1-Alg→
DF1-Mod is right adjoint to (−)∞.
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Given a DF1-module M, let ηM : M→ U(M∞) the identity morphism sending
m ∈ M to [m] ∈ M0 ⊂ M∞; this commutes with the differential. For any DF1-
algebra A and morphism g : M → U(A) in DF1-Mod, there exists a unique
f : M∞ → A making the following diagram commute:

M U(M∞)

U(A)

ηM

g U( f )

given by sending a tree with leaves m1, . . . , mn to the tree of the same shape (mean-
ing series of products and differentiations in A) with elements g(m1), . . . , g(mn) ∈
A grafted in the place of the respective mi’s. This proves the required universal
property.

5.2 Failure of the naive construction of Ritt polyno-
mials over a differential semiring

We observe that the naive definition of a differential polynomial algebra S{x1, . . . , xn}
over a differential semiring (S, dS) does not satisfy the expect universal property,
i.e. morphisms of differential algebra from it to any DS-algebra are not determined
by the image of the variables.

In particular we shall now see that it impossible to endow S{x1, . . . , xn}basic with
a differential (either strict or tropical) for which the analogous universal property
holds. In fact, we show that there is no longer a unique choice of differential, and
for any choice of differential the universal property fails. We will show in the
next section that the idempotent semiring S{x1, . . . , xn}basic can be enlarged to a
tropical differential semiring S{x1, . . . , xn} enjoying the universal property that
justifies calling it the tropical Ritt algebra.
Remark 5.2.1. Notice that if S is an idempotent semiring satisfying the strict Leibniz
rule, equipping the S-algebra S{x1, . . . , xn}basic with a differential exactly as we
have done for rings in Definition 3.1.2, gives a strict differential S-algebra as result
(as noted in Section 3.2 for S = B[[t]]). This algebra satisfies an analogous universal
property in the category of strict differential S-algebras as R{x1, . . . , xn} does
in DR-Alg, but in general it does satisfy an analogous property in DS-Alg, see
Proposition 5.2.3 below.

Let us now attempt to extend the differential of S to S{x1, . . . , xn}basic. Obviously
we would like to send x(j)

i to x(j+1)
i , and we would like the map to be additive.

The difficulty is in choosing how to extend it to arbitrary products. In contrast to
the case of coefficients in a differential ring, the tropical Leibniz relations allow
more freedom in extending a partially-defined differential to all products; there is
not a uniquely determined extension of dS to a map d on all of S{x1, . . . , xn}basic
satisfying the tropical Leibniz relations. In fact, S{x1, . . . , xn}basic admits many
distinct differentials.
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Example 5.2.2. Suppose w : N→ S is a valuation. Then we can define a differential
dw on S{x1, . . . , xn}basic by the following rule. First, for a pure power (x(j)

i )k , we
define

dw(x(j)
i )k = w(k)(x(j)

i )k−1x(j+1)
i

Then, we extend this to monomials c(x(j1)
i1

)k1 · · · (x(jm)
im )km as a strict derivation.

E.g.,

dw(cxa
1(x(3)2 )b) = dS(c)xa

1(x(3)2 )b + cw(a)xa−1
1 x′1(x(3)2 )b + cw(b)(x(3)2 )b−1x(4)2 xa

1.

It is straightforward to check that this map dw does indeed satisfy the tropical
Leibniz relations.

One can generalize this example by choosing a distinct valuation wi for each
variable xi, defining the differential on pure powers by the rule

d(x(j)
i )k = wi(k)(x(j)

i )k−1x(j+1)
i ,

and then extending to arbitrary monomials using the strict Leibniz rule.

The above example shows that there is at least one differential on S{x1, . . . , xn}basic
for each n-tuple of valuations N→ S.

Proposition 5.2.3. There is no tropical differential on S{x1, . . . , xn}basic that extends the
tropical differential on S and makes this the free object on n generators.

Proof. We use proof by contradiction. Suppose d is such a differential, and let w1
and w2 be distinct valuations N→ S. The identity map must be a morphism of
differential idempotent semirings

(S{x1, . . . , xn}basic, d)→ (S{x1, . . . , xn}basic, dwi).

for i = 1, 2. This implies that d = dw1 and d = dw2 on pure powers. But this is a
contradiction since dw1 6= dw2 as w1 and w2 are distinct valuations.

5.3 Ritt polynomial algebras over a differential (semi)ring

The aim of this section is to construct two free functors S{−} : DF1-Mod →
DS-Alg and (−)S : DF1-Alg → DS-Alg for any differential (semi)ring (S, dS),
and to prove they give rise to the following commutative diagram:

DF1-Mod DF1-Alg

DS-Alg

(−)∞

S{−} (−)S
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We start by the definition of the functor S{−} : DF1-Mod→ DS-Alg. This will
give a generalisation of Ritt’s construction, allowing coefficients in differential
semirings and products of elements of an arbitrary differential F1-module as
differential monomials. This construction is the general case of the one introduced
in [GM21], Section 3.3, where only free DF1-modules were considered.

Let DM : DS-Alg→ DF1-Mod be the forgetful functor sending a differential
S-algebra (A, dA) to the DF1-module (A, 0A, dA), forgetting about its S-algebra
structure. Given a DF1-module (M, dM), consider the monoid of forests consist-
ing of trees in (DM(S) ∨M)∞, where the monoid structure is given by disjoint
union. We will denote as F(S,M) the quotient obtained from this monoid by the
differential congruence generated by the following relations:

(1) The tree [1S] with a single leaf labelled by the unit of S is equivalent to the
identity of (DM(S) ∨M)∞, i.e. the tree consisting of the root only:

1S

∼

(2) Given any two elements s, r ∈ S, the tree [s][r] is equivalent to the tree [sr]:

s r

∼
sr

(3) Given any two elements s, r ∈ S, the disjoint union of the trees [s] and [r] is
equivalent to the tree [r + s]:

r s

∼

r + s

From now on we need to distinguish between the case of differential rings and
differential semirings, as the definition of the differential algebra generated by a
DF1-module M involves quotienting by Leibniz relations that will differ in the two
cases. In the case of a differential ring R, it is clear that F(R,M) is an R-algebra as
R sits inside it as a subalgebra, and its product is inherited from the product of
(DM(R) ∨M)∞ acting distributively on the disjoint union. Furthermore, F(R,M)
comes with a linear map d, by linear extension of the differential of (DM(R)∨M)∞.
In order to make (F(R,M), d) into a differential R-algebra, the differential d is
required to satisfy the Leibniz rule, thus:

Definition 5.3.1. Let L be the differential ideal generated by the set

{d(st)− sdt− tds | s, t ∈ F(R,M)}
i.e. the smallest ideal in F(R,M) containing this set and closed under applying
d. We define R{M} as F(R,M)/L. Then R{M} is a differential R-algebra, by
definition of L.
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The following Proposition clarifies the R-algebra structure of R{M}:

Proposition 5.3.2. Given any differential ring R and DF1-module M, R{M} is isomor-
phic to R[F(M)] as an R-algebra.

Remark 5.3.3. In particular, when M is free of rank n, the R-algebra R[F(M)]
underlying R{M} is isomorphic to R{x1, . . . , xn}basic, the R-algebra underlying
the differential algebra of Ritt polynomials in n variables R{x1, . . . , xn}. In this
case, this isomorphism extends to an isomorphism of differential R-algebras
between R{M} and R{x1, . . . , xn}. Thus the construction discussed here, taking a
DF1-module as input, generalises Ritt’s construction.

Proof of Proposition 5.3.2. Let ι be the homomorphism of R-algebras R[F(M)] →
R{M} given by:

∑i ri ∏j mi,j 7−→ ⊔
i

ri mi,1 mi,2 mi,s. . .

Clearly it is injective and we want to prove it is also surjective. Let the complexity
of the class T of a tree in F(R,M) to be the minimum of the complexity c(t) of the
elements of its class, where c(t) is defined as in Definiton 5.1.18. Thanks to the
relations imposed to get F(R,M), in any class T of F(R,M) of positive complexity,
there is a representative t whose apical branchings have the form:

r m1 m2 mn. . .

with r ∈ R and mi ∈ M. For this representative we have c(t) = c(T). Let
p(T) := |{paths in t where c(T) is achieved}|.

We want to prove by induction on c(T) and p(T) that any class in R{M} is
equivalent to an element in the image of ι, thus any forest is as well.

For c(T) = 1, the minimal representative t is a product of trees of the form:

r m1 m2 mr. . .
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Thanks to linearity and Leibniz rule, every tree of this form is equivalent to an
element in R[F(M)]. If c(T) = 1, either we have that T is equivalent to an element
of R[F(M)] either p(T) decreased by 1.

In general, if c(T) ≥ 2, using the Leibniz relations, T is equivalent to a sum of
classes ∑m

i=0 Ti such that either c(Ti) ≤ c(T)− 1 or p(Ti) ≤ p(T)− 1 for every i.
Thus we get the thesis by inductive hypothesis.

Example 5.3.4. Let M be free of rank 1 with generator x and consider the element
t := r1d(x(2)d(r2x(1))) in R{M} = R{x}. The element t is minimal in its class and
can be represented as the following tree:

r1

x(2)

x(1)r2

Its complexity is c(t) = 2 and, using the relations imposed to define R{M}, as
in the proof of Proposition 5.3.2, we have the following equality:

r1

x(2)

x(1)r2

=
r1

x(2) x(1)dR(r2)

r1

x(2) x(2)r2

where the complexity dropped by 1. By the same relations again we obtain that
t is equivalent to an element in R[F(M)], namely:

r1x(1)(d2
R(r2)x(2) + dR(r2)x(3)) + 2r1dR(r2)x(2)(x(2) + x(3))

It is worth noticing that there is another way to reduce t to get an element in
R[F(M)]: indeed since the ideal L is a differential ideal, the following equality
holds in R{M} too:

r1

x(2)

x(1)r2

=
r1 x(3)

r2 x(1)

r1 x(2)

x(1)r2
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By applying again the Leibniz rule, it is easy to prove that this sum reduces to
the element r1x(1)(d2

R(r2)x(2)+ dR(r2)x(3))+ 2r1dR(r2)x(2)(x(2)+ x(3)) of R[F(M)]
as in the previous case.

Example 5.3.5. (1) Let M be the DF1-module:

? • •

Notice that M is isomorphic to the quotient of the free DF1-module of rank
1 by the differential congruence 〈x(2) ∼ x〉. Thus the differential R-algebra
R{M} is isomorphic to the quotient of the free differential algebra R{x} by
the differential ideal generated by the linear polynomial x− x(2).

(2) Let M be the DF1-module:

?

• • •. . .

n

then, arguing in a similar way as the previous example, R{M} is isomorphic
to the quotient of the Ritt algebra R{x1, . . . , xn} by the differential ideal
generated by the elements x′1, . . . , x′n. This gives an isomorphism

(R{M}, d) ∼= (R[x1, . . . , xn], d = 0)

Thus ordinary polynomial algebras can be recovered from this construction
as well.

Let us now move to the construction of S{M}when S is a differential idempotent
semiring. As in the previous case we consider the commutative S-algebra F(S,M).
Let

Ltrop = {d(st) + sdt + tds | s, t ∈ F(S,M)}
then:

Definition 5.3.6. Given a differential idempotent semiring S and a DF1-module
M define the differential S-algebra S{M} as the quotient:

S{M} := F(S,M)/B〈Ltrop〉

by the bend relations of the differential ideal generated by Ltrop.
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Remark 5.3.7. In contrast to what happens for rings, as proved in Proposition
5.3.2, in general there is just an injective homomorphism of S-algebras S[F(M)] ↪→
S{M} with analogous definition as for differential rings. When M is a free DF1-
module of rank n the S-algebra S[F(M)] is the algebra S{x1, . . . , xn}basic.

We finally prove the functoriality and freenes of the assignment M 7→ S{M} for
a differential (semi)ring S:

Proposition 5.3.8. Given a differential (semi)ring S, the assignment M 7→ S{M} is a
free functor

S{−} : DF1-Mod→ DS-Alg.

Proof. Firstly, let us prove S{−} is a functor. Given a morphism of DF1-modules
f : M → N, the function S{ f } sends a forest with leaves labelled by s1, . . . , sn
and m1, . . . mr to the same forest with leaves labelled by elements s1, . . . , sn and
f (m1), . . . f (mr). It is straightforward to verify that this assignment is well defined
and is an homomorphism of differential S-algebras S{M} → S{N}. The identity
morphism is sent to the identity morphism and composition is preserved, thus
S{−} is a functor.

Let us now prove this functor is left adjoint to the forgetful functor DM : DS-Alg→
DF1-Mod. Given a DF1-module M, let ηM : M → DM(S{M}) the morphism
sending m ∈ M to [m] ∈ S{M}. It commutes with the differentials thanks to
the definition of (−)∞. For any differential S-algebra A and morphism g : M→
DM(A) in DF1-Mod, there exists a unique f : S{M} → A in DS-Alg making the
following diagram commute:

M DM(S{M})

DM(A)

ηM

g DM( f )

given by the map F(S,M)→ A sending a forest with leaves labelled by s1, . . . , sn
and m1, . . . mr to the same forest (meaning sum of successive products and dif-
ferentiations in A) with leaves labelled by s1, . . . , sn and g(m1), . . . g(mr). Since A
is a differential S-algebra, the ideal L (resp. the differential congruence Ltrop) is
contained in the kernel of f , making it into a well defined map S{M} → A. This
proves the required universal property.

The freeness of S{−} is equivalent to say that for every DF1-module M and for
every DS-algebra T there is a bijection

Ψ : HomDS-Alg(S{M}, T) ∼= HomDF1-Mod(M, DM(T)).

When M is free of rank n, any morphism of DF1-modules M→ N is determined
by the image of the generators of M in N, thus we get a bijection of sets

HomDF1-Mod(M,N) ∼= Nn.
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In particular, when N = DM(T) this tells us that the tropical Ritt algebra S{M} =
S{x1, . . . , xn} enjoys a universal property in the category of differential idempotent
semirings that is entirely analogous to the universal property of the classical Ritt
algebra in the category of differential rings, i.e.:

Corollary 5.3.9. Given a differential S-algebra T, there is a bijection

HomDS-Alg(S{x1, . . . , xn}, T) ∼= (T)n

implemented by sending a homomorphism ϕ to the n-tuple (ϕ(x1), . . . , ϕ(xn)).

We move now to the definition of the functor (−)S : DF1-Alg→ DS-Alg. Given
a DF1-algebra A we proceed in a similar way as in the case of S{−}, by considering
the monoid of forests of trees in (DM(S) ∨U(A))∞ and by defining its quotient
F(S,A) by the differential congruence generated by relations as in (2) and (3)
above plus additional relations:

(1 bis) The trees [1S] and [1A] are equivalent to the identity of (DM(S) ∨U(A))∞,
i.e. the tree consisting of the root only:

1S

∼

1A

∼

(4) Given any two elements a, b ∈ A, the tree [a][b] is equivalent to the tree [ab]:

a b

∼
ab

As above we distinguish the case of a differential ring and a differential semiring.
Analogously F(R,A) is an R-algebra with product inherited from the product of
(DM(R) ∨U(A))∞ acting distributively on the disjoint union and it is equipped
with a linear map d, by linear extension of the differential of (DM(R) ∨U(A))∞.
In order to make (F(R,A), d) into a differential R-algebra we proceed by imposing
the Leibniz relations for d:

Definition 5.3.10. Let L be the differential ideal generated by the set

{d(st)− sdt− tds | s, t ∈ F(R,A)}

We define AR as F(R,A)/L. Then AR is a differential R-algebra, by definition of L.

Remark 5.3.11. In this case, an analogous statement to Proposition 5.3.2 does not
hold: there is no isomorphism of R-algebras between R[A] and AR. The kernel of
the homomorphism of R-algebras ψ : R[A]→ AR sending every element a ∈ A to
its class in AR is the ideal generated by the set:

{dA(a1a2)− a1dA(a2)− a2dA(a1) | a1, a2 ∈ A}

thus ψ is not injective.
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When S is a differential idempotent semiring, F(S,A) is a commutative S-
algebra. As for DF1-modules, let

Ltrop = {d(st) + sdt + tds | s, t ∈ F(S,A)}

and we define:

Definition 5.3.12. Given a differential idempotent semiring S and a DF1-module
A, the differential S-algebra AS as the quotient:

AS := F(S,A)/B〈Ltrop〉

As in the case of DF1-modules, let DA : DS-Alg → DF1-Alg be the forgetful
functor assigning to a differential S-algebra (A, dA) the DF1-algebra (A, 0A, ·A, 1A, dA).

Proposition 5.3.13. Given a differential (semi)ring S, the assignment A→ AS is a free
functor

(−)S : DF1-Alg→ DS-Alg.

Proof. Given a morphism of differential F1-algebras f : A → B, the morphism
(idS ∨ f )∞, induces a well defined morphism of differential S-algebras fS : AS →
BS, with analogous action to the one describe in the proof of Proposition 5.3.8. It
is straightforward to prove that identity and composition are preserved.

Let us now prove this functor is left adjoint to the forgetful functor DA : DS-Alg→
DF1-Alg. Given a differential F1-algebra A, let ηA : A→ DA(AS) the morphism
sending m ∈ A to [m] ∈ AS, it commutes with the differentials. For any differen-
tial S-algebra B and morphism g : A→ DA(B) in DF1-Alg, there exists a unique
f : AS → B in DS-Alg making the following diagram commute:

A DA(AS)

DA(B)

ηA

g DA( f )

The definition of f is analogous to that in the proof of Proposition 5.3.8. This prove
the freeness of the functor (−)S.

Proposition 5.3.14. The following diagram of free functors commutes:

DF1-Mod DF1-Alg

DS-Alg

(−)∞

S{−} (−)S
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Proof. Given a DF1-module M, forests of (M∞)S have leaves labelled by elements
of S and M∞, and elements of the latter are trees with leaves labelled by elements
of M. So elements of (M∞)S are elements of S{M} and viceversa every element
of S{M} can be seen as an element of (M∞)S. It is easy to check that these assign-
ments are well defined with respect to the quotients imposed to define F(S,M∞)
and F(S,M) and with respect to the quotient by the Leibniz ideal (respectively trop-
ical Leibniz congruence), and that they are morphisms of differential S-algebras
inverse to each other.

Remark 5.3.15. If R is a differential ring, from the commutativity of the diagram in
Proposition 5.3.14 and from Proposition 5.3.2 it follows that when A is a free DF1-
algebra, i.e. A is of the form M∞ for some DF1-module M, we get an isomorphism
of R-algebras:

AR
∼= R{M} ∼= R[F(M)]

and the map ψ of Remark 5.3.11 gives an isomorphism between R[M∞]/ker ψ and
R[F(M)].
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Chapter 6

Tropical pairs

In the classical world, a differential equation over a differential ring R is an el-
ement f ∈ R{x1, . . . , xn}, and a solution to f in a differential R-algebra A is an
element p ∈ An such that f (p) = 0. Equivalently, p is a solution if the corre-
sponding homomorphism p : R{x1, . . . , xn} → A factors through the quotient
R{x1, . . . , xn}/( f ).

In the tropical world, we have introduced differential idempotent semirings,
but these objects on their own are not sufficient to describe solutions to tropical dif-
ferential equations. A tropical differential equation over a differential idempotent
semiring S is an element f ∈ S{x1, . . . , xn} (where this is the tropical Ritt algebra
defined in the previous section). Solutions to this differential equation will live
in Sn, but asking that f vanish or tropically vanish at p ∈ Sn turns out to be too
restrictive. Following the idea of Grigoriev’s framework, p should be considered a
solution to f if f tropically vanishes at p to leading order (rather than to all orders).
This suggests that we must equip our differential idempotent semirings with
something like a valuation that provides a way of measuring the leading order of
elements. To this end, we will now define and study the category of tropical pairs,
morphisms of idempotent semirings whose domain is a differential semiring.

We start in Section 6.1 by introducing them and giving a collection of examples
that will be useful in the following of this work. We introduce a way to build a
Ritt differential polynomial algebra over a pair with coefficients in a DF1-module
and we prove that, as in the case of differential semirings, this is a free functor.
Then, in Section 6.2 we introduce the notion of reduction of a pair and prove its
functoriality and that the subcategory of reduced pairs is reflective. In Section
6.3 we finally introduce tropical differential equations and prove Theorem 6.3.5,
giving a bijection between solutions to a set of tropical differential equations in a
pair T and morphisms of pairs between a quotient pair, given by bend relations,
and the pair T. We conclude with Example 6.3.6, that shows that this new setting
gives stricly more refined information that the one studied by Grigoriev. In the
following Section 6.4 we study the adjunction properties of the functors sending
a pair to its top and bottom parts, for future use in Chapter 7. Section 6.5 is
devoted to the introduction of the notion of differential enhancement, which will
be fundamental to introduce a tropicalization functor in the differential setting. A
differential enhancement of a valuation is an additional data that allows to preserve
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information about taking derivative while moving from the classical to the tropical
world. In Example 6.5.5 we study the case of a p-adic differential enhancement
that allows us to tropicalize p-adic differential equations, extending the theory
of Grigoriev to encompass this case. Finally, in Section 6.6 we introduce and
explore a differential notion of Berkovich analytification as the space of differential
enhancements compatible with a given one.

6.1 The categories of tropical pairs and of S-algebras

A tropical pair S consists of a tropical differential semiring S1, an idempotent
semiring S0, and a homomorphism of idempotent semirings π : S1 → S0.

Remark 6.1.1. We think of S1 as a space of functions, and we think of S0 as a space
of leading exponents of the series expansions of these functions. The map π, like
the usual valuation on Puiseux series, sends a function to its leading exponent.

In category theoretic terms, if

F : DSemiRings→ SemiRings

is the forgetful functor from differential idempotent semirings to idempotent
semirings, then the category of pairs is the simply the comma category (F ↓
SemiRings). Explicitly, a morphism of pairs ϕ from (S1 → S0) to (T1 → T0) is a
commutative diagram of idempotent semirings

S1 T1

S0 T0

ϕ1

ϕ0

in which the upper horizontal arrow ϕ1 is a morphism of differential idempotent
semirings.

A pair (S1
π→ S0) is said to be reduced if S1 admits no nontrivial quotient

differential idempotent semiring over S0; i.e., it is reduced if there is no nontrivial
differential congruence contained in the congruence ker(π).

Example 6.1.2. (1) For any morphism of idempotent semirings µ : S → T we
have a pair

(S, d = 0)→ T,

and it is reduced if and only if µ is injective. If µ is not injective, then we can
replace S with Im(µ) to obtain a reduced pair.

(2) Endow B[[t]] with the differential tn 7→ tn−1 and consider the homomorphism

π : B[[t]]→ T

defined by tn 7→ n, as in section 3.1. This is a pair, and it is reduced by the
following argument. Suppose a 6= b ∈ B[[t]]. If a = ∑ aiti and b = ∑ biti, then
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there exists a minimal n such that an 6= bn. It then follows that π(dna) 6=
π(dnb), and so (dn(a), dn(b)) /∈ ker(π). Hence any non-trivial differential
congruence containing (a, b) is not contained in ker(π).

(3) Consider T[[t]]0 defined as in point (3) of Example 4.1.4 and

π′ : T[[t]]0 → T

sending a tropical power series to its leading exponent, as in the previous
item. The pair π′ is not reduced as the support map ϕ : T[[t]]→ B[[t]], which
coefficientwise sends any r ∈ R to 0 and ∞ to ∞, is a nontrivial quotient
differential semiring of T[[t]]0 and π′ = π ◦ ϕ.

(4) Consider
π : T[[t]]→ T2,

where the source has any of the differentials from Example 4.1.4 and the
morphism π is given by

(an0tn0 ⊕ an1tn1 ⊕ · · · ) 7→ (n0, an0).

This is a pair, and a modification of the argument of point (2) above shows
that it is also reduced.

We let Pairsred denote the full subcategory of reduced pairs. We will show
below in Section 6.2 that Pairsred is a reflective subcategory, and so any pair
S = (S1 → S0) has a functorial reduction Sred = (Sred

1 → S0).

Finally we are ready to define the category that will describe tropical differential
equations and their solutions.

Definition 6.1.3. Given a reduced pair S, an S-algebra is a reduced pair under S,
and we let S-Alg denote the category of S-algebras.

An important example of an S-algebras comes from the construction illustrated
in Section 5.3. Given a pair S = (S1 → S0) and a DF1-module M, we first define
an idempotent semiring (S0|S1){M} by taking the pushout:

S1 S1{M}

S0 (S0|S1){M}

in the category of semirings. This pushout can be described explicitly as the
algebra of trees S1{M} modulo the congruence generated by the relations that
identify a, b ∈ S1 ⊂ S1{M} if they have the same image in S0; i.e. leaves incident
at the root labelled by elements of S1 are replaced by leaves labelled by their image
in S0. Note that (S0|S1){M} contains the polynomial S0-algebra S0[F(M)].

The right vertical arrow in the above diagram gives an S-algebra that we will
denote by S{M}. These pairs will play the role of tropical Ritt algebras in the
category of S-algebras.
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Proposition 6.1.4. Given a reduced pair S = (S1 → S0), the assignment M 7→ S{M}
is a free functor

S{−} : DF1-Mod→ S-Alg.

Proof. The functoriality of S{−} descends from Proposition 5.3.8 and from the
properties of pushouts.

Let us now prove this functor is left adjoint to the forgetful functor V : S-Alg→
DF1-Mod sending a pair (Y1 → Y0) to DM(Y1). Given a DF1-module M, let
ηM : M → V(S{M}) = DM(S1{M}) the morphism sending m ∈ M to [m] ∈
S1{M} as in the proof of Proposition 5.3.8. For any S-algebra T = (T1 → T0)
and morphism g : M → V(T) = DM(T1) in DF1-Mod, from Proposition 5.3.8,
there exists a unique f1 : S1{M} → T1 in DS1-Alg making the following diagram
commute:

M DM(S1{M})

DM(T1)

ηM

g DM( f1) (6.1.1)

From the universal property of the pushout, f1 induces an arrow

f0 : (S0|S1){M} → T0

such that f := ( f0, f1) : S{M} → T is a morphism of S-algebras. This morphism
is unique since f1 is unique and it makes the following diagram commute:

M V(S{M})

V(T)

ηM

g V( f )

as this diagram is the same as the previous one. This proves that S{−} is a free
functor.

Similarly to what we said above for S{−}, from the freeness of S{−}, for every
DF1-module M and for every S-algebra T there is a bijection

Φ : HomS-Alg(S{M}, T) ∼= HomDF1-Mod(M, V(T))

which, when M is free of rank n, tells us that the S-algebra S{x1, . . . , xn} enjoys
a universal property in S-Alg analogous again to the universal property of the
classical Ritt algebra in the category of differential rings. Explicitly:

Corollary 6.1.5. Let S = (S1 → S0) be a reduced pair and T = (T1 → T0) an S-algebra.
There is a bijection

HomS-Alg(S{x1, . . . , xn}, T) ∼= (T1)
n

implemented by sending a morphism ϕ = (ϕ1, ϕ0) to (ϕ1(x1), . . . ϕ1(xn)).
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Remark 6.1.6. Let S = (S1 → S0) be a strict pair, i.e. a pair such that S1 is a strict
differential semiring. We have seen in Remark 5.2.1 that the strict differential
S-algebra (S1{x1, . . . , xn}basic, d) satisfies a universal property, analogous to that
of the Ritt algebra over a ring, in the category of strict differential S1-algebras.
Similarly, the pair resulting from the pushout of the diagram

S1 (S1{x1, . . . , xn}basic, d)

S0

satisfies a universal property analogous to that of Corollary 6.1.5 in the category of
strict S-algebras, but in general not in S-Alg. In particular, when S = (B[[t]]→ T)
as in the Grigoriev setting of Section 3.2, the pushout above gives us the strict pair

(B[[t]]{x1, . . . , xn}basic, d)→ T{x1, . . . , xn}basic

appearing in Section 3.2.

6.2 The reduction functor

Given a pair S = (S1
π→ S0), it follows from Proposition 4.2.1 that the set of

differential congruences contained in ker π has a unique maximal element R(π),
and hence the pair Sred := (S1/R(π)→ S0) is reduced.

Proposition 6.2.1. The morphism S → Sred is initial among morphisms from S to
reduced pairs.

Proof. Suppose T = (T1
ψ→ T0) is a reduced pair and

S1 T1

S0 T0

π

ϕ1

ψ

ϕ0

is a morphism of pairs. There are inclusions

R(π) ⊂ ker π ⊂ ker π ◦ ϕ0.

The map ϕ1 sends ker π ◦ ϕ0 into ker ψ, and the image of a differential congru-
ence by a homomorphism of tropical differential semirings is again a differential
congruence, so ϕ1 must send R(π) to a differential congruence contained in ker ψ.
Since T is reduced, the only such differential congruence on T1 is the diagonal,
and so ϕ1 factors uniquely through the quotient map S1 → S1/R(π).

We now show that the above reduction construction exhibits Pairsred as a
reflective subcategory of Pairs.
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Proposition 6.2.2. Sending S to Sred defines a functor

R : Pairs→ Pairsred

and the quotient map S→ Sred is a natural transformation Id→ R. Moreover R is left
adjoint to the inclusion ι : Pairsred ↪→ Pairs.

Proof. Suppose f : S → T is a morphism of pairs and consider the composition
S → T → Tred. By Proposition 6.2.1, there is a unique factorization S → Sred →
Tred, and hence we obtain a morphism R( f ) : Sred → Tred. It is straightforward
the check that this respects compositions: R( f ◦ g) = R( f ) ◦R(g). Hence R is a
functor.

It is a straightforward verification that the quotient map S→ Sred defines a natu-
ral transformation from the identity on Pairs to ι ◦R. Clearly if S is reduced, then
Sred = S, and there is trivially a natural transformation from R ◦ ι to the identity
on Pairsred. It is now elementary to check that these two natural transformations
give the claimed adjunction.

As a consequence of reduction being a left adjoint functor, it commutes with
colimits.

6.3 Tropical differential equations and their solutions

In this section we firstly introduce quotients of pairs and tropical differential equa-
tions and a notion of solution for such an equation. We then prove that solutions
to tropical differential equations in an S-algebra T correspond to morphisms of
S-algebras between a quotient of S{M} and T.

Let us get started by introducing the definition of a quotient of a pair.

Definition 6.3.1. Let S = (S1 → S0) be a pair. A quotient of S is a morphism of
pairs

S1 T1

S0 T0

π

ϕ1

ϕ0

such that both ϕ1 and ϕ0 are surjective.

Notice that the kernel of ϕ1 is a differential congruence ker ϕ1 on S1, the kernel
of ϕ0 is a congruence ker ϕ0 on S0, and π sends ker ϕ1 into ker ϕ0. Conversely, a
pair of congruences (K1 ⊂ S1 × S1, K0 ⊂ S0 × S0) satisfying π(K1) ⊂ K0 defines a
quotient of S.

We now describe an important class of quotients. Suppose we are given a pair
S = (S1 → S0), a DF1-module M and a congruence K on the polynomial semiring
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S0[F(M)]. By a slight abuse of notation, let (S0|S1){M}/K denote the induced
quotient, and then let

S{M}//K

denote the reduction of the pair S1{M} → (S0|S1){M}/K. Quotients of this
form will be used when we define the tropicalization of a system of differential
equations in Section 7.1.

Proposition 6.3.2. Let T = (T1 → T0) be a reduced S-algebra, then HomS-Alg(S{M}//
K, T) is in bijection with the set:

{ f ∈ HomDF1-Mod(M, T1) | Φ( f )0 factors through (S0|S1){M}/K}

where Φ is the Hom-set bijection induced by the freeness of S{−}, as in Section 6.1.

Proof. As in Proposition 6.2.2 we proved that the reduction functor is left adjoint to
the inclusion functor ι : Pairsred ↪→ Pairs, applying R gives a bijection between
the set of morphisms of (unreduced) S-algebras from S1{M} → (S0|S1){M}/K to
T and HomS-Alg(S{M}//K, T). From Proposition 6.1.4, we have a bijection

Φ : HomDF1-Mod(M, T1) ∼= HomS-Alg(S{M}, T)

and from the observation at the beginning of the proof we get the thesis.

When M is free of rank n, Proposition 6.3.2 above translates to the following:

Corollary 6.3.3. Let T = (T1
π→ T0) be a reduced S-algebra and K a congruence on

S0{x1, . . . , xn}basic. Morphisms of S-algebras

S{x1, . . . , xn}//K → T

correspond bijectively with n-tuples y1, . . . , yn ∈ T1 such that the elements π(djyi) ∈ T0
define an S0-algebra homomorphism S0{x1, . . . , xn}basic/K → T0.

Let S be a reduced pair and T = (T1
π→ T0) an S-algebra. In order to introduce

tropical differential equations and their solutions we consider at first the case
of a free DF1-module of rank n. In this case a tropical differential equation is a
polynomial f ∈ S0{x1, . . . , xn}basic. Let us write f = ∑α fαxα, where xα runs over
the differential monomials in f . If xα has any factors of the form dnxi for n > 0
then it does not make sense to evaluate xα at an element c ∈ Tn

0 because T0 is not a
differential semiring. However, we can evaluate xα at an element C ∈ Tn

1 and then
push down to T0 via π. Thus we can evaluate f ∈ S0{x1, . . . , xn}basic at C ∈ Tn

1 by
the expression

f (C) =
⊕

α

fαπ(Cα).

and the set of solutions in T of a differential polynomial f = ∑α fαxα ∈ S0{x1, . . . , xn}basic
is the subset of Tn

1 consisting of all elements C = (C1, . . . , Cn) such that the sum⊕
α

fαπ(Cα)
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tropically vanishes.

When the pair S1 → S0 is B[[t]] π→ T, the above definition recovers Grigoriev’s
framework. A subset W ⊂ N corresponds to the boolean formal power series
∑i∈W ti, and Grigoriev’s map ValW(j) is precisely π(djW), as highlighted in the
table at the end of Section 3.1.

Fix a reduced pair S = (S1
π→ S0) and a DF1-module M. In view of Corollary

6.1.5, Corollary 6.3.3 and Proposition 6.3.2, the appropriate general definitions of
tropical differential equation and solution are the following: a tropical differential
equation is a polynomial f ∈ S0[F(M)] and:

Definition 6.3.4. Let T = (T1 → T0) be an S-algebra. The set of solutions in T of a
differential polynomial f ∈ S0[F(M)], denoted SolT( f ), is the set of morphisms
p ∈ HomDF1-Mod(M, T1) such that Φ(p)0 factors through (S0|S1){M}/B( f ).

Given E ⊂ S0[F(M)], it follows directly from Proposition 6.3.2 and the definition
of solutions to tropical differential equations that S-algebra morphisms

S{M}//B(E)→ S

are in bijection with the solution set SolS(E). More in general, we have:

Theorem 6.3.5. The functor S-Alg → Sets sending an S-algebra T to SolT(E) is
corepresented by S{M}//B(E).

We see from the following example that the general framework we just intro-
duced provides more information than Grigoriev’s one.

Example 6.3.6. Consider the pair S = T[[t]] π→ T2, where T[[t]] has the differen-
tial from Example 4.1.4 part (4) corresponding to the 2-adic valuation, d(tn) =
v2(n)tn−1. Over this pair we consider solutions to the differential equation

f = (4, 0)x + (0,−3)x′ + (1,−3)x′′ ∈ T2{x}basic.

Let us look for solutions of the form

x = 0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 + · · · .

We have

x′ = a1 + (a2 + 1)t + a3t2 + (a4 + 2)t3 + a5t4 + · · ·
x′′ = (a2 + 1) + (a3 + 1)t + (a4 + 2)t2 + (a5 + 2)t3 + · · · .

If a1 6= ∞ then

π(x) = (0, 0), π(x′) = (0, a1), π(x′′) = (0, a2 + 1),

and so evaluating f at x gives the expression

f (x) = (4, 0)(0, 0)⊕ (0,−3)(0, a1)⊕ (1,−3)(0, a2 + 1)
= (4, 0)⊕ (0, a1 − 3)⊕ (1, a2 − 2).
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The maximum occurs only in the middle term, so there is no solution with a1 6= ∞.

Assuming next that a1 = ∞ and a2 6= ∞, we have

π(x) = (0, 0), π(x′) = (1, a2 + 1), π(x′′) = (0, a2 + 1),

and

f (x) = (4, 0)(0, 0)⊕ (0,−3)(1, a2 + 1)⊕ (1,−3)(0, a2 + 1)
= (4, 0)⊕ (1, a2 − 2)⊕ (1, a2 − 2).

The second and third terms are equal and maximal, so this is a solution for any
finite value of a2.

If a1 = a2 = ∞ and a3 6= ∞, then

π(x) = (0, 0), π(x′) = (2, a3), π(x′′) = (1, a3 + 1),

and f (x) = (4, 0)⊕ (2, a3 − 3)⊕ (2, a3 − 2). The middle term is the sole maximal
term, so this is not a solution.

If a1 = a2 = a3 = ∞ and a4 6= ∞ then

π(x) = (0, 0), π(x′) = (3, a4 + 2), π(x′′) = (2, a4 + 2),

and f (x) = (4, 0)⊕ (3, a4− 1)⊕ (3, a4− 1), so we have a solution since the second
and third terms are jointly maximal.

The last case we will look at is a1 = a2 = a3 = a4 = ∞ and a5 6= ∞. Now

π(x) = (0, 0), π(x′) = (4, a5), π(x′′) = (3, a5 + 2),

and f (x) = (4, 0)⊕ (4, a5 − 3)⊕ (4, a5 − 1).

If a5 = 3, then the first two terms are jointly maximal and we have a solution but
when a5 6= 3 either the first or second term is the sole maximum. In this case we see
for the first time that the tropical framework here provides additional information
about solutions beyond the information contained in Grigoriev’s framework.

6.4 Colimits of pairs

In this section we show that colimits in the category of pairs can be computed by
computing the colimits of the top and bottom individually. In order for this to be
useful, it is helpful to note the following.

Proposition 6.4.1. The categories of idempotent semirings and differential idempotent
semirings are cocomplete.

Proof. The category of idempotent semirings is cocomplete for the same reason
as the category of rings; one can easily check that arbitrary coproducts and co-
equalizers exist. For differential idempotent semirings, one must only verify that
tropical differentials di on Si induce a tropical differential on the coproduct

⊕
i Si,

and likewise for coequalizers. Both of these verifications are elementary and
straightforward.
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Proposition 6.4.2. The forgetful functors

Pairs

SemiRings DSemiRings

πtπb

sending, respectively, a pair to its bottom and to its top, commute with colimits, and πt
also commutes with limits.

Proof. It suffices to show that πb admits a right adjoint and πt admits both a left
and a right adjoint.

We start with πt. Let

Lt : DSemiRings→ Pairs

be the functor sending a differential idempotent semiring S to the pair S id→ S,
and let Rt be the functor sending S to the pair S→ ∗, where ∗ denotes the trivial
idempotent semiring consisting of a single element. Given a pair A

p→ B, a
morphism of differential idempotent semirings f : S→ A uniquely determines,
and is uniquely determined by, a morphism of pairs

S A

S B

id

f

p

p◦ f

that is evidently natural in the semiring S and the pair A → B. Thus Lt is left
adjoint to πt. For Rt, observe that a morphism of differential semirings f : A→ S
is equivalent to a morphism of pairs:

A S

B ∗

p

f

For πb, we will construct a right adjoint Rb. Consider the subcategory

PairsT ⊂ Pairs

of pairs S → T, where a morphism is a morphism of pairs that is the identity
on T. The colimit colimPairsT πt comes with a natural semiring homomorphism
to T, and this defines a pair Rb(T). It is straightforward to verify that Rb(T) is
functorial in T. A morphism of pairs
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A colimPairsT πt

B T

p

f

clearly provides a semiring homomorphism B→ T. Conversely, given a semiring
homomorphism B → T, the composition A → B → T is an object of PairsT and
hence it has a canonical map to Rb(T).

Finally, note that since the reduction functor is idempotent and has a left adjoint
(Proposition 6.2.2), the colimit of a diagram of reduced pairs is reduced.

6.5 Differential enhancements of valuations

Given a valuation v on R as in Definition 2.4.1, v(r) does not in general determine
the valuation of derivatives of r. In order to define the tropicalization of solutions
to differential equations, we must enhance the seminorm with some additional
information in order to determine the valuation of sequences r, dr, d2r, . . .. For this
reason, we now introduce differential enhancements of valuations.

Definition 6.5.1. Given a differential ring R and a valuation v : R→ S0, a differen-
tial enhancement of v is a reduced pair S = (S1 → S0) and a map of sets ṽ : R→ S1
such that

(1) ṽ(0) = 0 ∈ S1 and ṽ(1) = 1 ∈ S1;

(2) it commutes with the differentials: dS1 ṽ(x) = ṽ(dRx) for any x ∈ R;

(3) the following diagram commutes:

S1

R S0

ṽ

v

We will use the term differentially enhanced valuation v = (v, ṽ) : A→ S to mean
a seminorm v together with a differential enhancement ṽ.

Remark 6.5.2. Notice that the map ṽ : R→ S1 is a morphism of DF1-modules.

If (v, ṽ) : A→ S is a differentially enhanced valuation, T is a reduced pair and
(ϕ0, ϕ1) : S→ T is a morphism of pairs, then the composition

S1 T1

R S0 T0

ϕ1

ṽ

v ϕ0
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is also a differentially enhanced valuation.

Example 6.5.3. Given a valued ring v : R → T, endowing both R and T with
the constant differentials 0R and 0T respectively, the valuation v admits a trivial
differential enhancement:

T

R T

idT
v

v

Example 6.5.4. Let K be a field and consider the differential ring of formal power
series K[[t]] with differential d/dt. The t-adic valuation K[[t]]→ T admits a differ-
ential enhancement

B[[t]]

K[[t]] T

ṽ

v

which is the one considered in Section 3.2, in which the map B[[t]] → T sends
a boolean power series tn + · · · to n. Note that while v is multiplicative, its
differential enhancement ṽ is not, as notice in Section 3.1.

This is the differentially enhanced valuation used by Grigoriev [Gri17] in his
framework and subsequent works [AGT16], [CGL20] and [FT20].

Example 6.5.5. Consider the p-adic valuation vp : Q → T and extend this to a
valuation Q[[t]]→ T2 as in Remark 2.4.3. This admits a differential enhancement

T[[t]]

Q[[t]] T2

ũ

u

where the differential on T[[t]] is by (4.1.4), and the vertical arrow sends a0tn0 ⊕ · · ·
to (n0, a0). Let u = (u, ũ). There is a morphism of pairs

T[[t]] B[[t]]

T2 T

given on the top by the sending all finite coefficients to 0, and on the bottom by
projection onto the first component. This morphism of pairs sends differentially
enhanced valuation u to the v of Example 6.5.4. Thus u provides a refinement of
the structure considered by Grigoriev.
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In a differential ring R, an element a ∈ R is said to be a constant if d(a) = 0. The
constants form a subring of R.

Proposition 6.5.6. Given a differentially enhanced valuation v = (ṽ : R→ S1, v : R→
S0) on R, ṽ restricts to a valuation on the subring of constants in R.

Proof. Suppose a, b are constants and consider the semiring congruence K on S1
generated by the relations

ṽ(0) ∼ 0S1

ṽ(1) ∼ ṽ(−1)
ṽ(ab) ∼ ṽ(a)ṽ(b)

ṽ(a + b)⊕ ṽ(a)⊕ ṽ(b) ∼ ṽ(a)⊕ ṽ(b).

Since v is a valuation, the relations v(a + b) ⊕ v(a) ⊕ v(b) = v(a) ⊕ v(b) and
v(ab) = v(a)v(b) hold in S0, and hence the semiring homomorphism S1 → S0
factors through the quotient semiring S1/K because each of the generators of K
(as a semiring congruence) is a relation that holds in S0. Since ṽ commutes with
the differentials, ṽ(1), ṽ(−1), ṽ(a), ṽ(b), ṽ(a + b) and ṽ(ab) are each constants in
S1. From this we see that K is in fact a congruence of differential semirings. If K
were nontrivial then the factorization S1 → S1/K → S0 would contradict the fact
that S1 → S0 is reduced. Thus the equalities

ṽ(0) = 0S1

ṽ(1) = v(−1)
ṽ(a)ṽ(b) = ṽ(ab),

ṽ(a + b)⊕ ṽ(a)⊕ ṽ(b) = ṽ(a)⊕ ṽ(b)

must hold in S1.

6.6 The differential Berkovich space

We now propose a generalization to the differential setting of the notion of
Berkovich analytification introduced in Section 2.2. Suppose (R, d) is a differential
ring equipped with a differentially enhanced valuation v to S = (S1 → S0), and
let A be a differential R-algebra. Given an S-algebra T, a differentially enhanced
valuation w = (w̃, w) is said to be compatible with v if the diagram

S1 T1

A

S0 T0

wv

ṽ w̃

(6.6.1)

commutes.

61



Definition 6.6.1. Given an S-algebra T, the differential Berkovich space over T of A,
denoted BerkT(A), is the set of differentially enhanced valuations w : A→ T that
are compatible with v.

With the notation introduced in Section 2.4, recall that

Tropuniv(Spec A)(T0) = {w : A→ T0 | w is a valuation compatible with v}

Then, note that there is a natural map

Λ : BerkT(A)→ Tropuniv(Spec A)(T0)

induced by sending a differentially enhanced valuation w = (w̃, w) to its underly-
ing ordinary valuation w.

Lemma 6.6.2. Given a valued differential ring v : R→ S0, fix a reduced pair S : S1
π−→

S0 and let ṽ and ṽ′ be two maps R→ S1 such that both (S, ṽ) and (S, ṽ′) are differential
enhancements of v. Then ṽ = ṽ′.

Proof. Let us assume ṽ 6= ṽ′ and let a ∈ R an element such that ṽ(a) 6= ṽ′(a).
As both (S, ṽ) and (S, ṽ′) are differential enhancements of v, we have π(ṽ(a)) =
v(a) = π(ṽ′(a)), thus (ṽ(a), ṽ′(a)) ∈ ker π. Furthermore, for the same reason and
since ṽ and ṽ′ commute with the differential, we have (dn(ṽ(a)), dn(ṽ′(a))) ∈ ker π
for every n ∈ N. As π is a reduced pair, this implies dn(ṽ(a)) = dn(ṽ′(a)) for
every n. So ṽ(a) = ṽ′(a) which is a contradiction, thus ṽ = ṽ′.

It follows directly from the above Lemma that the map Λ is injective:

Proposition 6.6.3. Let A be a differential R-algebra and let (v, ṽ) : R→ S a differentially
enhanced valuation. Then for every S-algebra T = (T1 → T0) the natural map

Λ : (w, w̃) 7→ w

from the differential Berkovich space BerkT(A) to the T0-points of the (classical) universal
tropicalization Tropuniv(Spec A)(T0) of Spec A is injective.

Remark 6.6.4. If S is not reduced Lemma 6.6.2 does not hold. Indeed, consider the
non-reduced pair T[[t]]0

π−→ T as in Example 6.1.2 part (3), sending a tropical power
series to its leading exponent. Then for a field K, let R = (K[[s]])[[t]] equipped
with the d/dt differential and let vt (resp. vs) the t-adic (resp. s-adic) valuation on
R and v : K[[s]]→ B the trivial valuation. It is possible to complete the following
diagram:

T[[t]]0

R T

π

vt

to a commutative diagram with a differential map R → T[[t]]0 in two different
ways by the two maps given by coefficientwise application of v and vs.
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Notice that for every S-algebra T with T0 = T, the map Λ gives an inclu-
sion BerkT(A) ↪→ (Spec A)an of the differential Berkovich space over T into the
Berkovich analytification of Spec A. In the following we give examples of the
possible mutual behaviour of the differential Berkovich space BerkT(A) and the
classical one.

Example 6.6.5. In this first example we will see the extreme case in which the
differential Berkovich space and the classical one are in bijection. Let v : K → T be
a valued field equipped with the trivial differential d = 0, and consider the trivial
differential enhancement

(T, d = ∞)

K T

idT
v

v

of Example 6.5.3. Given the differential algebra (K[x], d = 0) over K, the Berkovich
analytification of Spec (K[x]) is the Berkovich affine line over K(see for example
[Ber90, BR10] for a detailed treatement of its geometry and topology). Given
a valuation w ∈ (Spec K[x])an, this is by definition a valuation w : K[x] → T

extending the valuation v, thus the following trivial differential enhancement is
extending the trivial differential enhancement of v above:

(T, d = ∞)

K[x] T

idT
w

w

Denoting as T the pair T
idT−−→ T, in this case the map Λ : BerkT(K[x])→ (Spec K[x])an

is a bijection. This is a desirable result, since we are considering the zero differ-
ential, thus every point of the Berkovich analytification should be a differential
point.

Example 6.6.6. Let v : C((t)) → T be the t-adic valuation and equip K := C((t))
with the differential d

dt . Consider the differentially enhanced valuation

B((t))

C((t)) T

π
ṽ

v

where S := (B((t)) π−→ T) is given analogously to the pair introduced in Example
6.1.2. Let the differential algebra (K[x], d) over K, where d(X) = 1. Again, the
Berkovich analytification of Spec (K[x]) is the Berkovich affine line over K. Given
a point of type II or III on the Berkovich affine line, associated to a ball of center 0
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and radius er for some r ∈ R, denote the associated valuation as w0,r. It is given as
the map

f =
n

∑
i=0

aiXi 7→
⊕

i

(v(ai) + ir) ∈ T.

The pair
T := (B((t)){X}/〈X′ ∼ 0〉 ρr−→ T)

sending F to π(F(r)) is an S-algebra and the following diagram is a differentially
enhancement of w0,r compatible with (v, ṽ):

B((t)){X}/〈X′ ∼ 0〉

K[X] T

ρrw̃

w0,r

where the map w̃ is the coefficientwise application of ṽ. This proves that, for every
r ∈ R, the points of the form w0,r can be obtained as differential points.
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Chapter 7

Differential tropicalization functor
and colimit theorem

The main aim of this chapter is the definition of a tropicalization procedure for
differential equations with coefficients in a differential ring R equipped with a
differentially enhanced valuation to a pair S, and for their solutions. This is the
topic of Sections 7.1 and 7.2, where we also prove, in Proposition 7.1.5, that the
easy containment of the fundamental theorem of tropical differential algebra holds
in this generalised context. In the last section we will introduce the universal
differential presentation of a differential algebra A over R, in analogy to [GG14]
as recalled in Section 2.4. We will prove that its tropicalization is the colimit of the
tropicalization functor over the category of presentations of A and that there exists
a differentially enhanced valuation from A to its universal tropicalization that
is universal, thus getting a differential version of Corollary 2.4.14. Furthermore,
when the differential algebra A is finitely generated the colimit can be taken over
the category of finite presentations and this statement is a differential analogue of
Payne’s inverse limit theorem (Theorem 2.2.5, Theorem 2.4.15) This also implies
that maps from the universal tropicalization to any other S-algebra T are in
bijection with the points of the differential Berkovich space over T, an analogue of
Theorem 2.4.13.

7.1 Differential tropicalization

In the familiar non-differential setting, as seen in Section 2.1 and Section 2.4,
one starts with a ring R with a valuation v : R → S, and then defines three
tropicalization maps:

(1) Tropicalization of points is the map tropv : Rn → Sn given by applying the
valuation v coordinate-wise.

(2) Tropicalization of equations is the map tropv : R[x1, . . . , xn]→ S[x1, . . . , xn]
given by applying the valuation v coefficient-wise. This extends to a map
sending ideals in R[x1, . . . , xn] to ideals in S[x1, . . . , xn].
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(3) Tropicalization of varieties sends V(I) to the subset of Sn defined by the
intersection of the tropical hypersurfaces of all f ∈ trop(I).

An ideal I ⊂ R[x1, . . . , xn] is of course a system of polynomial equations, and
a solution to this system in an R-algebra A is the same as a homomorphism
R[x1, . . . , xn]/I → A. Since the tropical hypersurface of a tropical polynomial
f is exactly the solution set of the bend relations of trop( f ), it follows that the
tropicalization of a variety is the set of solutions to the bend relations of the
tropicalization of its defining ideal. Moreover, solutions to these bend relations
are precisely homomorphisms of S-algebras S[x1, . . . , xn]/Btrop(I) → T, as in
Remark 2.4.10. One can thus think of the semiring S[x1, . . . , xn]/Btrop(I) as the
coordinate algebra of the tropical variety, and hence tropicalization of varieties
has an incarnation at the level of algebras given by

R[x1, . . . , xn]/I 7→ S[x1, . . . , xn]/Btrop(I)

We now turn to the differential setting. Let R be a differential ring equipped
with a differentially enhanced seminorm v = (ṽ, v) : R→ S = (S1

π→ S0).

(1) We tropicalize points p ∈ Rn via the map tropṽ : Rn → Sn
1 defined by

applying ṽ component-wise.

(2) We tropicalize differential equations by applying v coefficient-wise to define
a map

tropv : R{x1, . . . , xn} → S0{x1, . . . , xn}basic

so there is an induced a map sending ideals in R{x1, . . . , xn} to ideals in
S0{x1, . . . , xn}basic.

(3) We use the tropicalization of equations map to define a construction sending
quotients α : R{x1, . . . , xn} � R{x1, . . . , xn}/I to quotients trop(α) of the
pair S{x1, . . . , xn}. Define

trop(α) := S{x1, . . . , xn}//Btropv(I),

where Btropv(I) is the congruence on (S0|S1){x1, . . . , xn} generated by the
bend relations of tropv(I) and we use the quotient construction of Section
6.3.

We will extend what we just sketched to any DF1-module, not just considering
free ones, and we will prove the functoriality of the assignment α 7→ trop(α).

Remark 7.1.1. Since for any DF1-module M the algebra (S0|S1){M} is not a poly-
nomial algebra, we cannot form the bend relations of an arbitrary element in
it. The above construction uses the fact that applying v coefficient-wise lands in
S0[F(M)] ⊂ (S0|S1){M}, and this algebra is a polynomial algebra so we can form
bend relations in it.
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So far we introduced the definition of solution to a tropical differential equation
f ∈ S0{M} with monomials in a DF1-module M only in the world of pairs, in
Definition 6.3.4. For differential rings, in Definition 3.1.3 we defined a notion of
solution only when the differential equation f ∈ R{x1, . . . , xn} has monomials in
a free differential DF1-modules, let us do it now in general.

As in Section 5.3, given a differential (semi)ring S, for every DF1-module M and
for every DS-algebra T, let us denote as Ψ the Hom-set bijection

Ψ : HomDS-Alg(S{M}, T) ∼= HomDF1-Mod(M, T)

induced by the freeness of S{−} proved in Proposition 5.3.8. When R is a differen-
tial ring, from Proposition 5.3.2 the differential R-algebra R{M} is isomorphic as
an R-algebra to R[F(M)] and we give the general definition of the solution set to a
differential equation as:

Definition 7.1.2. Let M be a DF1-module and A a differential algebra over R. The
set of solutions in A of a differential polynomial f ∈ R{M}, denoted SolA( f ), is
the set of morphisms p ∈ HomDF1-Mod(M, A) such that its adjoint Ψ(p) factors
through R{M}/[ f ], where [ f ] is the differential ideal generated by f .

Remark 7.1.3. Notice that when M is free of rank n this new definition matches
with Definition 3.1.3.

Similarly to Theorem 6.3.5, we have

Theorem 7.1.4. Given a differential ideal I ⊂ R{M}, the functor DR-Alg → Sets
sending a differential R-algebra A to SolA(I) is corepresented by R{M}/I.

As above, let R be a differential ring equipped with a differentially enhanced
valuation v = (ṽ, v) : R → S = (S1

π→ S0), A a differential R-algebra equipped
with a differentially enhanced valuation w = (w̃, w) : A → T = (T1

ρ→ T0)
compatible with v and M a DF1-module. Then:

(1) We tropicalize morphisms p ∈ HomDF1-Mod{M, A} via the map

tropw̃ : HomDF1-Mod{M, A} → HomDF1-Mod{M, T1}

defined by mapping p to w̃ ◦ p. It is well defined thanks to Remark 6.5.2.
This map reduces to the previously introduced definition of tropṽ when M

is free of rank n and A = R.

(2) We tropicalize differential equations by applying v coefficient-wise to define
a map

tropv : R{M} → S0[F(M)]

and again there is an induced a map sending ideals in R{M} to ideals in
S0[F(M)].
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(3) We use the tropicalization of equations map to define a construction sending
quotients α : R{M} � R{M}/I to quotients trop(α) of the pair S{M}.
Define

trop(α) := S{M}//Btropv(I).

With the same notations as above:

Proposition 7.1.5. Given a differential ideal I ⊂ R{M}, the tropicalization map

tropw̃ : HomDF1-Mod{M, A} → HomDF1-Mod{M, T1}

sends SolA(I) into SolT(tropv(I)).

Proof. It suffices to show that if p ∈ HomDF1-Mod{M, A} is a solution to I in A,
then w̃ ◦ p ∈ HomDF1-Mod{M, T1} is a solution to tropv(I) ⊂ S0{F(M)} in T. I.e.,
that if

Ψ(p) : R{M} → A

sending m to p(m), factors through the quotient by I then

Φ(w̃ ◦ p)0 : (S0|S1){M} → T0

acting on the S0-subalgebra S0[F(M)] by sending m to ρ((w̃ ◦ p)(m)), factors
through the quotient by Btropv(I).

Write f = ∑i fi ∏j mi,j for an element of R{M}, where the fi’s are elements of R.
As p is a solution for I, given any f ∈ I we have Ψ(p)( f ) = ∑i fi ∏j p(mi,j) = 0,
thus w(∑i fi ∏j p(mi,j)) = 0T0 . Since w : R→ T0 is a valuation this happens if and
only if the sum

∑
i

w( fi ∏
j

p(mi,j))

tropically vanishes in T0. The sum above is equal to

∑
i

v( fi)∏
j

ρ((w̃ ◦ p)(mi,j))

which is equal to tropv( f )(ρ((w̃ ◦ p)(mi,j))). This last expression is

Φ(w̃ ◦ p)0(tropv( f ))

by definition, as tropv( f ) belongs to S0[F(M)], and for all f ∈ I it is tropically
vanishing in T0. This is equivalent to say that Φ(w̃ ◦ p)0 descends to the quotient
of (S0|S1){M} by Btropv(I), by definition of this quotient.

Remark 7.1.6. It is important to notice though that in order for a fundamental
theorem to hold it might be necessary to add some hypothesis, as we require
the valuation to be surjective and the coefficient field to be algebraically closed
for the non-differential fundamental theorem to hold. In fact, as highlighted
in [FGLH+20, Example 7.4], considering the differentially enhanced valuation
(v, ṽ) : K[[t]] → S = (B[[t]] → T) of Section 3.2 and the differential K[[t]]-algebra
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of Puiseux series K{{t}} equipped with the differentially enhanced valuation
(w, w̃) : K{{t}} → T = (B{{t}} → T) defined analogously, for the differential
ideal I generated by 2tx′ − x ∈ K[[t]]{x}, the containment

tropw̃(SolK{{t}}(I)) ⊂ SolT(tropv(I))

is strict.
Another interesting fact to notice is that the failure of the fundamental theorem

in this example does not imply that the fundamental theorem does not hold when
considering a field K with a nontrivial valuation: for example if we choose K = Q2,
equipped with the differentially enhanced valuation of Example 6.5.5, from the
morphism of pairs

T{{t}} B{{t}}

T2 T

we have that every solution to the tropicalization of the differential ideal I gener-
ated by P = 2tx′ − x ∈ Q2[[t]]{x} in T = (T{{t}} → T2) has to be supported on a
solution in Grigoriev’s setting. In particular, as computed in the aformentioned
example of [FGLH+20], the possible supports for tropical solutions are only of the
form tα for α ∈ Q∩ [0, 1]. Thus let us assume that A = ctα ∈ T{{t}} is a solution,
then

tropv(P)(A) = (1, 1)(α− 1, c + v2(α))⊕ (0, 0)(α, c)
= (α, c + v2(α) + 1)⊕ (α, c)

so A is a solution if and only if v2(α) = −1 which happens only if α = 1/2. Thus
the set of tropical solutions is equal to the tropicalization of the set of solution to I
in Q2{{t}}.

If instead we choose a prime number p 6= 2, we get

tropv(P)(A) = (α, c + vp(α))⊕ (α, c)

thus vp(α) = 0, and there are still infinitely many tropical solutions. This is another
example showing that the setting we introduced is strictly refining the setting
introduced by Grigoriev.

Another interesting fact to notice is that if, given a prime number p 6= 2, we
consider the equation P = ptx′ − x ∈ Qp[[t]]{x} then, equipping Qp[[t]] with
the differentially enhanced valuation (v, ṽ) of Grigoriev’s setting, by a similar
computation as in [FGLH+20], we have that the containment tropw̃(SolK{{t}}(I)) ⊂
SolT(tropv(I)) is strict and all the Puiseux series tropical solutions are of the form
tα with α ∈ Q∩ [0, 1]. Passing to the refined setting in this case does not give the
equality: in fact by proceeding as above we get that ctα is a solution to tropv(P)
only if vp(α) = −1 but, as p 6= 2, there are at least two differential exponents
α ∈ Q∩ [0, 1] satisfying the required property, thus the fundamental theorem fails
in this setting too.
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7.2 Functoriality of tropicalization

Tropicalization of differential equations sends a presentation of a differential
algebra to a tropical pair. Here we show that this defines a functor from a category
of presentations to the category of tropical pairs. Let us start by introducing the
category Pres(A):

Definition 7.2.1. Given a differential R-algebra A let Pres(A) be the category of
differential F1-presentations of A whose objects are differential F1-modules M

together with a morphism M→ DM(A) in DF1-Mod such that its adjoint

R{M}� A

is a surjective morphisms of differential R-algebras, and arrows are morphisms f
in DF1-Mod such that the induced diagram of differential R-algebras is commuta-
tive:

R{M} R{N}

A

R{ f }

Furthermore, let Presfin(A) be the subcategory of finite differential presentations
of A inside the category Pres(A), whose objects are free DF1-modules of rank n
for some n ∈N.

Proposition 7.2.2. Given a differential R-algebra A, the tropicalization construction

(R{M}
α
� A) 7→ trop(α) := S{M}//Btropv(ker α)

yields a functor Pres(A)→ S-Alg.

Proof. Any morphism in Pres(A)

R{M} R{N}

A
α β

by definition is the adjoint of a morphism of DF1-module f : M → N and by
Proposition 6.1.4, f gives a morphism of differential S-algebras

S{ f } : S{M} → S{N}

and this restricts to a morphism

S0[F(M)]→ S0[F(N)]
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of the basic subalgebras on the bottom. Moreover, the congruence Btropv(ker α)
on S0[F(M)] is sent into the congruence Btropv(ker β) on S0[F(N)] thanks to
Proposition 6.4.1 of [GG16]. Hence S{ f } descends to a morphism of quotient
pairs:

S1{M} S1{N}

(S0|S1){M}/Btropv(ker α) (S0|S1){N}/Btropv(ker β)

and by Proposition 6.2.2 this induces a morphism of their reductions, which is
precisely the desired morphism

trop(α)→ trop(β).

7.3 The universal presentation and the universal trop-
icalization

Given a differential R-algebra A, consider the differential presentation

Univ : R{DM(A)}� A

induced by the DF1-modules morphism idA : DM(A) → DM(A). Denoting as
xa the differential variables in R{DM(A)}, the presentation Univ sends xa to a. It
takes a formal differential polynomial in the elements of A and evaluates it to an
element of A using the differential algebra structure of A. A similar morphism
was studied in the non-differential setting of [GG14], presented in Section 2.4. In
light of the following fact, we call this the universal presentation of A:

Proposition 7.3.1. The presentation Univ : R{DM(A)}� A is

(1) the final object in Pres(A)

(2) the colimit of the inclusion functor ι : Presfin(A) ↪→ Pres(A).

Proof. Part (1): Let α : R{M}� A be a presentation. We will show that the set of
morphisms HomPres(A)(α, Univ) contains exactly one element. Any morphism of
presentations f from α to Univ must send each element m ∈M to an element of A
that is mapped to α(m) by Univ. One option is f (m) = xα(m), and this is evidently
the unique choice that gives a morphism of presentations α→ Univ.

Part (2): By (1), any finite presentation α admits a unique morphism α→ Univ,
and hence there is a canonical morphism u : colim ι → Univ. Given a finite
presentation α : R{y1, . . . , yn} → A and an element a ∈ A, we extend to a new
finite presentation α′ : R{y1, . . . , yn, ya} → A by ya 7→ a. The morphism α′ → Univ
sends ya to xa, and thus any element xa in the universal presentation is in the
image of some finite presentation, so u is surjective.
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We turn now to the injectivity of u. If

R{y1, . . . , yn}
α−→ A

β←− R{z1, . . . , zm}

are two finite presentations with α(y1) = β(z1), then they each map to the pre-
sentation R{w, y2 . . . , yn, z2, . . . , zm} by y1, z1 7→ w and identity of all of the other
generators. Hence u is injective as well.

We define the universal tropicalization of A to simply be the tropicalization of the
universal presentation, trop(Univ).

Theorem 7.3.2. For any differential R-algebra A, there is a canonical isomorphism of
pairs

trop(Univ) ∼= colim
α∈Pres(A)

trop(α),

and if A is finitely generated, i.e. admits a finite presentation R{x1, . . . , xn}� A, then
the colimit can be taken over the subcategory Presfin(A) of finite presentations.

Proof. The first statement is an immediate consequence of Proposition 7.3.1. For
the second statement, consider the canonical morphism

j = (j1, j0) : colim
α∈Presfin(A)

trop(α)→ trop(Univ).

Given any element a ∈ A, any finite presentation α : R{x1, . . . , xn} → A maps
to a finite presentation α′ : R{x1, . . . , xn, xa} → A, with α′(xa) = a. Hence it
follows from Proposition 6.4.2 that j1 and j0 are both surjective. For what concerns
injectivity, observe that the congruence Btropv(ker Univ) on S0[F(DM(A))] is the
transitive closure of the symmetric semiring generated by the bend relations of
elements in tropv(ker Univ), and so for any relation ( f ∼ g) ∈ Btropv(ker Univ)
there exists a finite subset Λ ⊂ A containing all variables appearing in either f or
g and such that, for the restriction Univ|Λ : R{xa | a ∈ Λ} → A, we have

( f ∼ g) ∈ Btropv(ker Univ|Λ).

If Λ does not generate A as a differential algebra then we may add finitely many
elements so that it does. We thus have a finite presentation β such that ( f ∼ g) is
in the image of the canonical map

Btropv(ker β)→ Btropv(ker Univ).

Therefore the map

j0 : colim
α∈Presfin(A)

(S0|S1){xa | a ∈ Λ}/Btropv(ker β)→ (S0|S1){DM(A)}/Btropv(ker Univ)

is an isomorphism. The claim now follows from Proposition 6.4.2.

We now come to the main result of this section, which says that a differential
algebra A admits a universal differentially enhanced valuation which is valued in
the tropicalization of the universal presentation of A (c.f. [GG14, Theorem A]).
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Theorem 7.3.3. Given a differential R-algebra A, there is a differentially enhanced
valuation

u = (u, ũ) : A→ trop(Univ)

defined by sending a 7→ xa, and this is initial among differentially enhanced valuations on
A compatible with the differentially enhanced valuation v on R.

As an immediate corollary, we have:

Corollary 7.3.4. Let T be an S-algebra. There is a bijection

HomS-Alg(trop(Univ), T) ∼= BerkT(A).

that is natural in T. I.e., trop(Univ) co-represents the functor sending T to the set of
differentially enhanced valuations on A taking values in T and compatible with v.

The proof of Theorem 7.3.3 above requires an explicit description of the congru-
ence Btropv(ker Univ), which we provide below.

Proposition 7.3.5. The differential ideal ker Univ is generated as an ideal by the following
elements:

(1) x1 − 1;

(2) λxa − xλa for all a ∈ A, λ ∈ R;

(3) xa + xb + xc for all a, b, c ∈ A such that a + b + c = 0 in A;

(4) xab − xaxb for all a, b ∈ A.

Proof. It is clear that all of these relations are in the kernel of Univ. Denote by J the
ideal generated by the elements of the four classes listed above. Thanks to Propo-
sition 5.3.2, giving an isomorphism between R{DM(A)} and R[F(DM(A))] as R-
algebras, we can denote elements of ker Univ as ∑i λi ∏j xai,j with ∑i λi ∏j ai,j = 0
in A.

Firstly, let us prove that, for every n ∈ N and every n elements a1, . . . , an ∈ A
the element x∏n

j aj
−∏n

j xaj belongs to J. The case n = 2 holds by definition of J, for
n ≥ 2 we have x(∏n−1

j aj)an
− x∏n−1

j aj
xan ∈ J again by definition and by inductive

hypothesis we get:

x(∏n−1
j aj)an

− x∏n−1
j aj

xan + xan(x∏n−1
j aj

−
n−1

∏
j

xaj) =

= x(∏n−1
j aj)an

−
n

∏
j

xaj = x∏n
j aj
−

n

∏
j

xaj ∈ J

Now, given an element ∑i λi ∏j xai,j ∈ ker Univ, by adding the element ∑i xλi ∏j ai,j−
∑i λi ∏j xai,j ∈ J to it we get ∑i xλi ∏j ai,j . By subtracting from ∑i xλi ∏j ai,j the element
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xλ1 ∏j a1,j + xλ2 ∏j a2,j + x−λ1 ∏j a1,j−λ2 ∏j a2,j and then again adding x−λ1 ∏j a1,j−λ2 ∏j a2,j +

xλ1 ∏j a1,j+λ2 ∏j a2,j we get a sum with one fewer terms. Repeating this process in-
ductively yields x∑i λi ∏j xai,j

but by hypothesis ∑i λi ∏j xai,j = 0 thus x∑i λi ∏j xai,j
=

x0 = 0.

Tropicalizing the above family of elements, we have:

Lemma 7.3.6. The congruence Btropv(ker Univ) on S0[F(DM(A))] is generated by
the bend relations of the polynomials:

(1) x1 + 1S0 ;

(2) xλa + v(λ)xa for a ∈ A and λ ∈ k;

(3) xaxb + xab for a, b ∈ A;

(4) xa + xb + xc for a, b, c ∈ A satisfying a + b + c = 0.

Proof. It suffices to show that the bend relations of listed expressions imply the
bend relations of any element g ∈ tropv(ker Univ). As in the proof of Proposition
7.3.5 above, using the bend relations of (1)–(3) allows us reduce g to an expression
of the form

∑
a∈Λ

xa, with ∑
a∈Λ

a = 0.

Let us call a finite set Λ ⊂ A a null set if ∑Λ a = 0. It remains to show that the bend
relations of sums over null sets of size 3 (i.e., relation (4) from the list) imply the
bend relations for sums as above over null sets of arbitrary size.

We prove this by induction on the cardinality n of the null set Λ. The base case
n = 3 is simply relation (4). Assume the bend relations hold for all sums over null
sets of size ≤ n, and consider a null set Λ = {a1, . . . , an+1}. Let

b = a1 + a2 = −(a3 + · · ·+ an+1),

so we have null sets Λ1 = {a1, a2,−b} and Λ2 = {b, a3, . . . , an+1} of size 3 and n.
Then

xa1+ xa2 + · · ·+ xan+1

∼ xa1+ xa2 + · · ·+ xan+1 +x−b (using the bend relations of Λ1 to pull out x−b)
∼ xa2 + · · ·+ xan+1 +x−b (using the bend relations of Λ1 to delete xa1)
∼ xa2 + · · ·+ xan+1 +xb (since xb ∼ x−b by (2))
∼ xa2 + · · ·+ xan+1 (using the bend relations of Λ2 to delete xb).

Since a1 was chosen arbitrarily, this shows that the bend relations of sums over
null sets of size n + 1 hold.
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Note that relations (1)–(4) correspond to the four conditions defining a valuation
in Definition 2.4.1.

Let us write U1
π→ U0 for the pair trop(Univ), which is the reduction of the pair

S1[F(DM(A))]→ (S0|S1)[F(DM(A))]/Btropv(ker Univ).

Proof of Theorem 7.3.3. It is clear from the definition that π ◦ ũ = u. By definition
of S1{−}, the map ũ : A → U1 commutes with the differential, and by relations
(1), (3) and (4) of Lemma 7.3.6, the map u : A → U0 is a valuation. Thus u
is a differentially enhanced valuation. Moreover, relation (2) implies that u is
compatible with the valuation v : A→ S0.

It remains to show that there is a unique morphism from u to any other differ-
entially enhanced seminorm w = (w, w̃) : A → T : (T1

τ→ T0) compatible with
v : A→ S. From Proposition 6.3.2, to define a morphism of pairs trop(Univ)→ T
it is enough to define a morphism of DF1-modules f : DM(A)→ T1 such that the
bottom component Φ( f )0 of its adjoint with respect to the functor S{−} factors
through the quotient by Btropv(ker Univ).

Let us denote by xa the elements of DM(A). Define a DF1-module morphism
f : DM(A)→ T1 by xa 7→ w̃(a), then Φ( f )0 acts on elements of S0[F(DM(A))] by
mapping xa to τ( f (xa)) = w(a). Since w is a valuation compatible with v, the map
Φ( f )0 factors through the quotient by Btropv(ker Univ), thus giving a morphism
of pairs trop(Univ)→ T. It is clearly unique as f is unique.
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Chapter 8

A general framework for tropical
PDEs

The aim of the present chapter is to extend all the previously introduced ideas
to the partial setting, in order to be able to tropicalize partial differential equa-
tions with coefficients in a partial differential ring (R, {∂1, . . . , ∂r}) (see [Rit50]
and [Kol73]) and define tropical PDEs and their solutions. As the previously
introduced notions are generalising Grigoriev’s setting of [Gri17] and [AGT16],
the framework we introduce here will be generalising the setting of [FGLH+20].
We will introduce partial differential semirings, partial differential F1-modules
and partial tropical pairs in the following pages, a construction of partial Ritt
algebras in n variables over a partial differential semiring and a generalised notion
of differential enhancement tropicalization functor adapted to this context. All
the notations and construction introduced in this chapter reduce to the one of the
previous chapters when the number of differentials r is equal to 1.

8.1 Partial differential semirings

We start by introducing the notion of a partial differential semiring: for every
r ∈ N, a tropical partial differential semiring with r commuting differentials is an
idempotent semiring equipped with a family {∂1, . . . , ∂r} of mutually commuting
tropical differential. We will denote the category of tropical partial differential
semirings with r differentials as DSemiRingsr.

Example 8.1.1. The following are examples of partial differential semirings, respec-
tively generalising the cases of Example 4.1.4:

(1) Let S be an idempotent semiring. Then for any r ∈N we can make it into a
partial differential semiring (S, {∂1, . . . , ∂r}) by setting every ∂i be either the
constant map 0S or the identity; any such choice gives strict differentials on
S.

(2) For any r ∈N, consider the idempotent semiring B[[t1, . . . , tr]] of multivari-
ate formal power series with coefficients in B. Endowing it with the set of
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differentials ∂/∂ti, for i = 1, . . . , r defined as:(
∂

∂ti

)
tn

j =

{
tn−1
i n ≥ 1 and j = i

∞ otherwise

and extended by Leibniz rule, gives it the structure of a strict partial differen-
tial semiring.

Similarly, if p is a prime, for i = 1, . . . , r, let(
∂

∂ti

)
tn

j :=

{
tn−1
i n ≥ 1, j = i and p - n

∞ otherwise

and extend them strictly on mixed products, then (B[[t1, . . . , tr]], {∂/∂t1, . . . , ∂/∂tr}, )
is a partial differential semiring that is not strict.

(3) Consider the idempotent semiring of multivariate formal tropical power
series T[[t1, . . . , tr]]. As in example (2), it can be endowed with a family of
strict differentials defined on pure powers as(

∂

∂ti

)
tn

j =

{
tn−1
i n ≥ 1 and j = i

∞ otherwise

and extended strictly on mixed products. Let us denote the differential
semiring T[[t1, . . . , tr]] endowed with this family as T[[t1, . . . , tr]]0.

(4) More generally, given a family of valuations {vi : N→ T}i=1,...,r, let ∂i to be
defined as

∂i(tn
j ) =

{
vi(n)tn−1

i n ≥ 1 and j = i
∞ otherwise

(8.1.1)

and extended strictly on mixed products. As in the ordinary case, vi could be
either the trivial valuation, a p-adic valuation, or a degenerate p-adic valua-
tion where vi(n) = 0 if p divides n, and ∞ otherwise. When vi equals a valua-
tion v for all i, we will denote (T[[t1, . . . , tr]], {∂1, . . . , ∂r}) as T[[t1, . . . , tr]]v. If v
is the p-adic valuation for some prime number p we will write T[[t1, . . . , tr]]p.

Remark 8.1.2. As in Lemma 4.1.2, in a tropical partial differential semiring (S, {∂i})
for any i, the bend relations of any expression

∂i(x1 · · · xn) + ∑
j

x1 · · · xj−1∂i(xj)xj+1 · · · xn

hold.

Let (S, {∂1, . . . , ∂r}) be a semiring equipped with a family of r additive maps
∂i : S → S. A differential congruence on S is a congruence K ⊂ S × S that is
closed under the action of the commutative monoid generated by {∂1, . . . , ∂r}.
Analogously to the ordinary case, when K is a differential congruence, the maps ∂i
descends to additive maps ∂i : S/K → S/K, and if the ∂i’s are tropical differentials
then the family {∂1, . . . , ∂r} is a family of tropical differentials on S/K. Proposition
4.2.1 holds in this context as well, with similar proof.
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8.2 Ritt polynomial algebras over a partial differen-
tial (semi)ring

In this section we define a similar constructions to those of Chapter 5, in the case of
coefficients in a partial differential (semi)ring (S, {∂1, . . . , ∂r}). Most of the results
will have analogous proofs to those of the ordinary case.

In the following, let F1[∂1, . . . , ∂r] be the free F1-algebra generated by the set
{∂1, . . . , ∂r}. Notice that F1[∂1, . . . , ∂r] is isomorphic to Nr ∪ {∞} as F1-algebras.
Sometimes, we will denote F1[∂1, . . . , ∂r] as Ξr for shortness.

We start with the definition of a partial differential F1-module:

Definition 8.2.1. The category DF1-Modr of partial differential F1-modules with r
commuting differentials is the category of F1[∂1, . . . , ∂r]-sets. When m = 1 we will
omit to write r in the previous notation as we recover the previously introduced
category DF1-Mod, thus the notation is coherent.

It is straightforward to see that a partial DF1-module M with r differential is
the same as an F1-module equipped with a set of r morphisms δ1, . . . , δr : M→M

of F1-modules commuting with each other. We will denote the free F1-algebra
generated by the δi as ΞM.

As for ordinary ones, partial differential F1-modules can be represented as
graphs with some additional properties: every object in DF1-Modr can be repre-
sented as a directed graph G := (V, E), where V and E are allowed to be infinite
sets and we allow multiple edges between any two vertices, satisfying the follow-
ing conditions:

(1) |{e ∈ E | source(e) = x}| = r for all x ∈ V ;

(2) For any x ∈ V, r(r− 1) out of the r2 possible concatenation of 2 edges have
pairwise the same target;

(3) G has at least one vertex x such that every edge with source x has also x as
target;

On the other hand a graph satisfying the conditions above can be endowed with
the structure of a partial DF1-module with m commuting differentials. Indeed,
denoting as e1(x), . . . , er(x) the edges having x as source, let ∂i(x) = target(ei(x))
for all x ∈N. The distinguished point can be chosen among elements for which
the ei’s are all loops. Since these choices are arbitrary, different choices give rise to
a priori non-isomorphic partial DF1-module structures.

Example 8.2.2. For any r, the partial DF1-module F1[∂1, . . . , ∂r] is isomorphic
to Nr ∪ {∞} equipped with differentials ∂i((a1, . . . , ar)) = (a1, . . . ai + 1, . . . , ar).
Then F1[∂1, ∂2] can be visualised graphically as:
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∞ (0, 0)

(1, 0)

(0, 1)

(1, 1)

(2, 0)

(0, 2)

(0, 1)

(1, 1)

(2, 0)

(0, 2)

. . .

. . .

. . .

...

Definition 8.2.3. Given r ∈N, let ∆r : F1-Mod→ DF1-Modr be the free functor
associating to an F1-module (M, ?M) the partial DF1-module with r commuting
differentials ∆r M defined as:

∆r M := ({∂m | ∂ ∈ Ξr, m ∈ M}/〈{∂?M ∼ ?M}∂∈Ξr〉, {∂1, . . . , ∂r})

We will identify ?Ξr m with m for all m ∈ M.

Example 8.2.4. Let X = {?X, x}, r ∈ N, then ∆rX is isomorphic to the partial
DF1-module (F1[∂1, . . . , ∂r], {∂1, . . . ∂r}).

Products and coproducts in DF1-Modr are defined in a similar way as in Sec-
tion 5.1. A partial DF1-module with r differentials is free of rank n ∈ N if it is
isomorphic to

∨
n F1[∂1, . . . , ∂r]. We define partial DF1-submodules, congruences

and quotients analogously to Definition 5.1.7.

Definition 8.2.5. A partial differential F1-algebra with r commuting differentials is
an F1-algebra A with an action of F1[∂1, . . . , ∂r] making it into an F1[∂1, . . . , ∂r]-set.
Let us denote the category of differential F1-algebras as DF1-Algr.

For every r ∈N, we now introduce the free functor

(−)∞,r : DF1-Modr → DF1-Algr

mapping a partial DF1-module with r differentials to the free partial DF1-algebras
with r differentials on it.

Definition 8.2.6. Given a partial DF1-module (M, {δ1, . . . , δr}), let us define a
sequence

M0 ⊂M1 ⊂M2 ⊂ . . .

of partial differential F1-modules as:

M0 := (M, {δ1, . . . , δr})
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Mn := (∆rF(Mn−1)/〈∂im ∼ δim〉m∈M, {∂1, . . . , ∂r}) for all n ≥ 1.

Then as in the case r = 1, we get an injective map of partial F1-modules Mn ↪→
Mn+1 for every n ∈N and we define M∞,r :=

⋃∞
n=0 Mn. It is a partial DF1-algebra

with r differentials.

Again, we can give a more concrete realisation of M∞,r, this time in terms of
r-colored trees and forests, which we are now going to define: forgetting the labels
of the differentials we can see elements of M∞,r as trees as we did in Section 5.1
when we defined (−)∞. Using the same terminology as in Definition 5.1.15, let us
denote as G(P) the graph {(v1, v2) | v2 = P(v1)} ⊂ V ×V of the parent function
P of such trees. Then, given r ∈N, an r-colour map on the forest (V, P) is a function

c : G(P)→ {1, . . . , r}

For n ∈N, a tuple of vertices v0, . . . , vn, vn+1 ∈ V such that P(vi) = vi+1 is said
to be a defining sequence for (V, P) if v0 is not univalent, the vertices v1, . . . , vn are
univalent and vn+1 is not univalent or it is a root.

Two r-colour maps c1 and c2 on (V, P) are equivalent if given any defining
sequence v0, . . . , vn+1 the images of {(vi, P(vi)) | i = 0, . . . , n} via c1 and c2 are
equal as multisets. This is an equivalence relation ∼ on the set Cr of r-colour maps
on (V, P).

Definition 8.2.7. An r-colouring on a forest is an element of the quotient Cr/∼. An
r-coloured forest is a forest (V, P) equipped with a r-colouring. We will say that
two r-coloured forests are equivalent if they have the same underlying forest and
equivalent r-colourings.

Example 8.2.8. We will visualise r-coloured forests as forests where each segment
whose vertices are in a defining sequence is labelled with an index i ∈ {1, . . . , r}.
We focus on this set of segments as the value of an r-coloured function outside
this set does not influence the r-colouring class it belongs to. As an example, the
following two 3-coloured forests are equivalent:

2

1

1

2

3

=

1

2

1

3

2

Consider the monoid of isomorphism classes of r-coloured trees with leaves
labelled by elements of M, with monoid structure given as in the ordinary case.
We can make it into a partial DF1-algebra by defining the set of differentials
{∂1, . . . , ∂r} as ∂i being the map adding an i-labelled segment to the stem of an
r-coloured tree. Thanks to the definition of r-colouring, we have that ∂i∂j = ∂j∂i
for any i, j ∈ {1, . . . , r}.
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Given an element m ∈ M, we denote by [m] the tree consisting of the single
leaf labelled by m. Denote as Fr(F1,M) the quotient of the partial DF1-module
described above by the relations generated by {∂i[m] ∼ [δim]}m∈M, i∈{1,...,r}. Anal-
ogously to Lemma 5.1.16, we have that M∞,r and Fr(F1,M) are isomorphic as
partial DF1-algebras with r differentials. Furthermore, for any n ∈ N, the iso-
morphism above gives the following isomorphism of partial DF1-modules with r
differentials:

Mn ∼=
{

classes of r-coloured trees with at most n branching
points on any path from the root to a leaf

}
⊂ Fr(F1,M)

With analogue proof to that of Proposition 5.1.20, we have the following:

Proposition 8.2.9. For every r ∈N, the assignment M 7→M∞,r is a free functor

(−)∞,r : DF1-Modr → DF1-Algr.

As in Section 5.3, for any partial differential (semi)ring (S, {∂1, . . . , ∂r}) with r
commuting differentials, we will construct two free functors S{−} : DF1-Modr →
DS-Alg and (−)S : DF1-Algr → DS-Alg such that for every r the following
diagram commutes:

DF1-Modr DF1-Algr

DS-Alg

(−)∞,r

S{−} (−)S

(8.2.1)

Let DM : DS-Alg → DF1-Modr be the forgetful functor. Given a partial
DF1-module (M, {∂1, . . . , ∂r}), let Fr(S,M) to be defined in complete analogy
to F(S,M), as in Section 5.3, substituting (−)∞ with (−)∞,r. As Fr(S,M) comes
equipped with a set of linear maps ∂1, . . . , ∂r as in the r = 1 case, we make it into a
differential algebra by taking the following quotients, in the case of rings:

Definition 8.2.10. If R is a partial differential ring, let Lr be the differential ideal
generated by the set

{∂i(st)− s∂it− t∂is | s, t ∈ Fr(R,M), i ∈ {1, . . . , r}}

i.e. the smallest ideal in Fr(R,M) containing this set and closed under apply-
ing ∂1, . . . , ∂r. We define the partial differential R-algebra R{M} as Fr(R,M)/Lr
equipped with differentials ∂1, . . . , ∂r.

With proof analogous to 5.3.2 we have the following:

Proposition 8.2.11. Given any partial differential ring R and partial DF1-module M,
both equipped with r differentials, R{M} is isomorphic to R[F(M)] as an R-algebra.
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Remark 8.2.12. When M is free of rank n, this isomorphism extends to an isomor-
phism of partial differential R-algebras

(R{M}, {∂1, . . . , ∂r}) ∼= (R{x1, . . . , xn}, {∂1, . . . , ∂r}).
Thus this construction generalises Ritt’s one in the partial case as well.
Example 8.2.13. Let (R, {∂1, ∂2}) be a partial differential ring and (M, {δ1, δ2}) be
the partial DF1-module associated to the following directed graph:

∞(0, 0)

(1, 0)

(0, 1)

(1, 1)

where the choice of the differentials is uninfluent as in this case the two possible
choices for δ1 and δ2 return isomorphic DF1-modules.

Since M is isomorphic to the quotient of F1[∂1, ∂2] by the free submodule gener-
ated by ∂2

1 and ∂2
2, the differential R-algebra R{M} is isomorphic to the quotient

of the free differential algebra R{x} by the differential ideal generated by the
monomials ∂2

1x and ∂2
2x.

Let us now move to the construction of S{M} when (S, {∂1, . . . , ∂r}) is a partial
differential idempotent semiring. Analogously to the ordinary case, let

Ltrop,r = {∂i(st) + s∂it + t∂is | s, t ∈ Fr(S,M), i ∈ {1, . . . , r}}
and:

Definition 8.2.14. Given a partial DF1-module (M, {δ1, . . . , δr}) define the differ-
ential S-algebra S{M} as the following quotient:

S{M} := Fr(S,M)/B〈Ltrop,r〉.
Remark 8.2.15. In this case too, when S is a partial differential semiring, in general
there is just an injective homomorphism of S-algebras S[F(M)] ↪→ S{M}.

With analogous proof to that of Proposition 5.3.8, we have:

Proposition 8.2.16. For every r ∈ N, given a partial differential (semi)ring S with r
commuting differentials, the assignment M 7→ S{M} is a free functor

S{−} : DF1-Modr → DS-Alg.

From the freeness of S{−} it follows that:

Corollary 8.2.17. Given a differential S-algebra T, there is a bijection

HomDS-Alg(S{x1, . . . , xn}, T) ∼= (T)n

Given any partial differential (semi)ring, the definition of the functor

(−)S : DF1-Alg→ DS-Alg

the proof of its freeness and of the commutativity of diagram 8.2.1 are completely
analogous to the ordinary case, as in Section 5.3
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8.3 Partial tropical pairs

Similar to the ordinary case, in order to talk about tropical partial differential
equations we introduce the category of partial tropical pairs. This section is
devoted to introduce in the partial setting all the main objects of Chapter 6.

For every r ∈N, a partial tropical pair S with r differentials consists of a partial
tropical differential semiring S1 with r differentials, an idempotent semiring S0,
and a homomorphism of idempotent semirings π : S1 → S0. Let us denote as
Pairsr the category of partial tropical pairs with r differentials.

We define reduced partial pairs as for ordinary ones and we denote the full
subcategory of Pairsr of reduced partial pairs as Pairsr,red. Analogously we define
S-algebras for a partial pair S and denote their category as S-Alg: this category
will describe tropical partial differential equations and their solutions.

Example 8.3.1. (1) For any morphism of idempotent semirings µ : S → T we
have a pair

(S, {∂1 = · · · = ∂r = 0})→ T,

and it is reduced if and only if µ is injective. If µ is not injective, then we can
replace S with Im(µ) to obtain a reduced pair.

(2) For every r ∈N, let (Convr(B),⊕,⊗) be the semiring whose underlying set
is that of convex hulls of finite (possibly empty) sets of points in Rr, where
⊕ is given by taking the convex hull of the union and ⊗ is Minkowski sum.
With these operation 0Convr(B) = ∅, which is the convex hull of itself, and
1Convr(B) is the convex hull of the singleton set {0Rr}, i.e. the positive orthant
of Rr.

Let (B[[t1, . . . , tr]], {∂/∂ti}) as in Example 8.1.1 and consider the partial pair

πr : B[[t1, . . . , tr]]→ Convr(B).

sending an element a ∈ B[[t1, . . . , tr]] to the convex hull of its support. Notice
that πr(A) is the convex hull of a finite set of exponents, namely its vertices,
by definition of multivariate power series. We will call leading terms the
terms whose exponents are the vertices of πr(a). As the information of the
convex hull of a subset or that of its vertices are equivalent we will often not
distinguish between the two. It is straightforward to see that when r = 1,
Conv1(B) ∼= T and π1 is the pair π of point (2) of Example 6.1.2.

This partial pair is reduced. Indeed if a 6= b ∈ B[[t1, . . . , tr]] then there
exists an exponent n = (n1, . . . , nr) such that the n-th term of a and of b are
different, and without loss of generality we can assume an = 0 and bn = ∞.
Then, letting

∂n :=
r

∏
i=1

(∂/∂ti)
ni ,

we have that πr(∂n(a)) is the positive orthant while πr(∂n(b)) is strictly
contained in it.
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(3) Similarly to the ordinary case, for every r ∈N the partial pair

π′r : T[[t1, . . . , tr]]0 → Convr(B)

sending a tropical power series to its convex hull, as above, is not reduced.
In fact it reduces to the partial pair of point (2).

(4) For every r ∈ N, let (Convr(T),⊕,⊗) be the semiring whose underlying
set is the set of convex hulls of finite (possibly empty) subsets of Rr with
vertices weighted in T. The sum ⊕ is given by taking the convex hull of
the union with weights given by the sum in T of the weights. Similarly, the
product ⊗ is the Minkowski sum with weights given by the product in T of
the weights.

Consider the partial pair

πr : T[[t1, . . . , tr]]→ Convr(T),

where the source has any of the differentials as in Example 8.1.1 for a single
valuation v. The morphism πr is given by sending a ∈ T[[t1, . . . , tr]] to the
convex hull of its support with vertices weighted by the valuation v(an) of
the coefficients of the corresponding leading terms. A modification of the
argument used in point (2) above shows that πr is reduced, furthermore,
when r = 1, we recover the pair of point (4) of Example 6.1.2.

(5) For r ∈ N, given an ordering tl1 � tl2 � · · · � tlr of the variables of
T[[t1, . . . , tr]], and endowing T[[t1, . . . , tr]] with any of the differentials of
Example 8.1.1 let

ρr : T[[t1, . . . , tr]]→ Tr+1

be the map sending a multivariate power series ∑w∈N awtw to (w, aw) where
w = min�{w ∈ N | aw 6= ∞}. As in (2) and (4), the pair ρr is reduced for
any r ∈N, and when r = 1 the pair ρ1 recovers that of point (4) and ρ1|B[[t]]
recovers the pair π of point (2) of Example 6.1.2.

For every r ∈ N, given a partial pair S = (S1 → S0) with r differentials,
we define now the functor S{−} : DF1-Modr → Pairsr generalising the functor
introduced in Section 6.1 for r = 1. Let the idempotent semiring (S0|S1){M} be
the pushout:

S1 S1{M}

S0 (S0|S1){M}

in the category of semirings. As for r = 1 this pushout can be described as
the algebra of r-coloured trees S1{M}modulo the congruence generated by the
relations that identify a, b ∈ S1 ⊂ S1{M} if they have the same image in S0. In this
case too we have that (S0|S1){M} contains the polynomial S0-algebra S0[F(M)]
and we denote as S{M} the S-algebra S1{M} → (S0|S1){M}.

With analogous proof as that of 6.1.4, the following holds:
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Proposition 8.3.2. For every r ∈ N, given a reduced partial pair S = (S1 → S0), the
assignment M 7→ S{M} is a free functor

S{−} : DF1-Modr → S-Alg.

Which for free partial DF1-modules implies a generalisation of Corollary 6.1.5
to any r ∈N.

Proceeding as in Section 6.2, we have a reduction functor in the partial setting
as well:

Proposition 8.3.3. For every r ∈N, the assignment S 7→ Sred defines a functor

R : Pairsr → Pairsr,red

and the quotient map S→ Sred is a natural transformation Id→ R. Moreover R is left
adjoint to the inclusion ι : Pairsr,red ↪→ Pairsr.

A quotient of a partial differential pair S : S1
π→ S0 is a morphism S → T in

Pairsr such that both components are surjective or equivalently a pair of congru-
ences (K1 ⊂ S1 × S1, K0 ⊂ S0 × S0) where K1 is a differential congruence and K0
is a semiring congruence, such that π(K1) ⊂ K0.

Given a partial DF1-module M and a congruence K on the polynomial semir-
ing S0[F(M)] as in the ordinary case we let (S0|S1){M}/K denote the induced
quotient, and

S{M}//K

denote the reduction of the pair S1{M} → (S0|S1){M}/K. Analogous statements
to Proposition 6.3.2 and Corollary 6.3.3 holds.

Fix a reduced partial pair S = (S1
π→ S0) and a partial DF1-module M, then

a tropical partial differential equation is a polynomial f ∈ S0[F(M)] and, as in Def-
inition 6.3.4, given an S-algebra T = (T1 → T0), the set of solutions to f in T,
denoted SolT( f ), is the set of morphisms p ∈ HomDF1-Modr(M, T1) such that
Φ(p)0 factors through (S0|S1){M}/B( f ).

Remark 8.3.4. When the pair S1 → S0 is B[[t1, . . . , tr]]
πr→ Convr(B), the above

definition recovers the framework considered in [FGLH+20].

Finally, a generalisation of 6.3.5 holds:

Theorem 8.3.5. For every r ∈ N, given a partial pair S : S1 → S0 with r differentials
and given any set E ⊂ S0[F(M)] of tropical PDEs, the functor S-Alg→ Sets sending
an S-algebra T to SolT(E) is corepresented by S{M}//B(E).

By a similar proof to that of Proposition 6.4.1 we have that the category of
differential idempotent semirings with r commuting differentials is cocomplete
for any r ∈N, and proceeding as in Section 6.4 it is possible to prove that colimits
in the category Pairsr can be computed by computing the colimits of the top and
bottom parts separately.
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Definition 8.3.6. Given a differential ring (R, {∂R,1, . . . , ∂R,r}) with r commuting
differentials and a valuation v : R→ S0, a differential enhancement of v is a reduced
partial pair S = (S1 → S0) in Pairsr,red and a map of sets ṽ : R→ S1 such that

(1) ṽ(0) = 0 ∈ S1 and ṽ(1) = 1 ∈ S1;

(2) it commutes with the differentials: ∂S1,iṽ(x) = ṽ(∂R,ix) for any x ∈ R, for
any i ∈ {1, . . . , r};

(3) the following diagram commutes:

S1

R S0

ṽ

v

Proposition 6.5.6 and all the properties highlighted in Section 6.5 about differen-
tially enhanced valuations are valid for every r ∈N.

Example 8.3.7. (1) Given a field K, the valuation v : K[[t1, . . . , tr]] → Convr(B)
sending a power series to the convex hull of its support admits a differential
enhancement to the pair of Example 8.3.1 part (2):

B[[t1, . . . , tr]]

K[[t1, . . . , tr]] Convr(B)

ṽ

v

where ṽ is the map K[[t1, . . . , tr]] → B[[t1, . . . , tr]] given by coefficientwise
trivial valuation, i.e. taking the support. This is the differentially enhanced
valuation used in [FGLH+20].

(2) Given a prime number p, consider the valuation v : Qp[[t1, . . . , tr]]→ Convr(T),
defined by sending a power series to the convex hull of its support, with
weights given by the p-adic valuations of the coefficients of the vertices. This
admits a differential enhancement to the pair of Example 8.3.1 part (4)

T[[t1, . . . , tr]]p

Qp[[t1, . . . , tr]] Convr(T)

ũ

u

where ũ sends a power series to its coefficientwise p-adic valuation. Let
u := (u, ũ), there is a morphism of pairs
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T[[t1, . . . , tr]]p B[[t1, . . . , tr]]

Convr(T) Convr(B)

given on the top by the sending all finite coefficients to 0, and on the bottom
by sending all finite weights to 0. This morphism of pairs sends differentially
enhanced valuation u to the v := (v, ṽ) of the previous point. Thus u
provides a refinement of the structure considered by Falkensteiner at al. in
[FGLH+20].

The same construction gives a differential enhancement also in the case of a
valued field w : K → T in place of Qp and with T[[t1, . . . , tr]] equipped with
the differential associated to w.

(3) Let w : K → T be a valued field, given an ordering tl1 � tl2 � · · · � tlr of the
variables of K[[t1, . . . , tr]], consider the valuation

v : K[[t1, . . . , tr]]→ Tr+1

sending a power series ∑w∈N bwtw ∈ K[[t1, . . . , tr]] to (w, v(bw)) where w =
min�{w ∈N | aw 6= 0}. This admits a differential enhancement to the pair
of Example 8.3.1 part (5)

T[[t1, . . . , tr]]w

K[[t1, . . . , tr]] Tr+1

ṽ

v

where again ṽ is the coefficientwise application of w.

Let (R, {∂1, . . . , ∂r}) a partial differential ring equipped with a differentially
enhanced valuation v to a partial pair S = (S1 → S0) and let A be a partial
differential R-algebra. We conclude this section by noticing that it is possible
to define differential enhancements compatible with v on A and the differential
Berkovich space over an S-algebra T of A exactly as in Section 6.6. Furthermore
we can still define the natural map

Λ : BerkT(A)→ Tropuniv(Spec A)(T0)

sending a differentially enhanced valuation w = (w̃, w) to its underlying valuation
w and with analogous proof to Lemma 6.6.2 we have that Λ is injective for every
r ∈N.

8.4 Tropicalization of partial differential equations

In this section we quickly go through a generalisation of the results of Chapter 7
to the partial case. We start by giving the notion of solution to a partial differential
equation over a differential algebra R{M}.
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Definition 8.4.1. Let M be a partial DF1-module and A a differential algebra
over a partial differential ring (R, {∂1, . . . , ∂r}). The set of solutions in A of a
differential polynomial f ∈ R{M}, denoted SolA( f ), is the set of morphisms
p ∈ HomDF1-Modr(M, A) such that its adjoint Ψ(p) factors through R{M}/[ f ],
where [ f ] is the differential ideal generated by f .

As in Theorem 7.1.4, given a differential ideal I ⊂ R{M}, the functor of solutions
from DR-Alg to the category of sets is corepresented by R{M}/I.

Given a partial differential ring R equipped with a differentially enhanced
valuation v = (ṽ, v) : R → S = (S1

π→ S0), A a differential R-algebra equipped
with a differentially enhanced valuation w = (w̃, w) : A → T = (T1

ρ→ T0)
compatible with v and M a partial DF1-module, we tropicalize morphisms p ∈
HomDF1-Modr{M, A} by composition with w̃, we tropicalize partial differential
equations f ∈ R{M} by applying v coefficient-wise, landing in S0[F(M)]. Given a
quotients α : R{M}� R{M}/I we define trop(α) to be the partial pair

trop(α) := S{M}//Btropv(I).

The easy containment of the fundamental theorem of tropical differential algebra
holds for every r with the same proof of Proposition 7.1.5.

Let Pres(A) be the category of F1 partial differential presentations of A, with
analogous definition as in the case r = 1, thus

(R{M}
α
� A) 7→ trop(α) := S{M}//Btropv(ker α)

is a functor Pres(A)→ S-Alg and defining the universal presentation of A as

Univ : R{DM(A)}� A

induced by morphism idA : DM(A)→ DM(A) in DF1-Modr we have that ana-
logues to Proposition 7.3.1 and Theorem 7.3.2 hold for every r ∈N.

Finally we notice that we have a partial differential version of [GG14, Theorem
A]), in fact it is possible to prove Theorem 7.3.3 and consequent Corollary 7.3.4 for
arbitrary r ∈N following the same steps of Section 7.3.
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Chapter 9

Future directions

The material introduced in the previous pages opens up many different paths of
research and here we will list some possible future directions that we identified:

• The most natural application to think of is perhaps the proof of an extended
version of the fundamental theorems of [AGT16] and [FGLH+20] to this
generalized context, this would allow to directly give informations about the
convergence of solutions to differential equations by using combinatorial
methods in the tropical world. This would also link to the computation of
the convergence radii of solutions to p-adic differential equations, which is
described in the next bullet.

• As sketched in the introductive chapter, investigate the possibility to re-
cover information about the radius of convergence of the solution to a p-adic
differential equation by computations taking place in the tropical world.
Furthermore, explore a possible way to give a notion of radius of conver-
gence for p-adic differential equations in higher dimensions: in the one
dimensional case the radii of convergence are in relation with the slopes
of the Newton polygon associated to the differential polynomial defining
the equation: it is just a matter of rephrasing to show that these slopes are
the tropical roots of the tropicalization of the polynomial. Generalising this
line of thought, it would be interesting to find a definition for these radii in
higher dimension such that they are encoded in the tropical variety of the
polynomial associated with the equation;

• Moving from the purely algebraic approach of treated here to a geometric
one: an extension of the tropicalization functor to non-affine differential
schemes over F1 in analogy with the classical case treated in [GG16], com-
bining differential scheme-theory [Kei75, CF78, Kov02, Bar10] and the work
in [CLS12]. Once given this formulation, a more thorough study of the geo-
metric and combinatoric aspects of this new kind of tropical schemes can be
undertaken;

• A development of a theory of differential tropical ideals: which would at first
require a development of a notion of "differential valued matroid", in analogy
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to the work carried out in [MR18]. Tropical ideals are ideals in the polynomial
ring over the tropical semifield such that each bounded degree piece is the
set of vectors of a valuated matroid; the variety associated to a tropical ideal
is still a finite balanced polyhedral complex. Furthermore the tropicalization
of an ideal is a tropical ideal, so this new, intrinsic notion proves to give
the right class of ideals cutting out well-behaved tropical varieties, also
satisfying several other nice properties (ascending chain condition, eventual
polynomiality of Hilbert function, tropical Nullstellensatz). As a first step, it
would be interesting to develop a notion of tropical differential module and
investigate its links with linear tropical differential equations.

• A definition of differential tropical basis: in tropical geometry a tropical basis
for an ideal is a finite generating set such the intersection of the tropical
hypersurfaces of its polynomials is equal to the tropical variety associated
to the ideal, thus giving a finite intersection instead that an infinite one.
A tropical basis exists for every ideal. In [FT20] a natural definition of a
differential analogue has been given and its non-existence has been proven
in an example, thus another, less straightforward idea has to be found.

• Developing an algorithmic way to compute solutions to linear tropical differ-
ential equations in the setting we introduce in the present work, generalising
the algorithm introduced in [Gri17], and implement it as a package for
mathematical softwares.

• Investigating the possible interplay between the theory of tropical (partial)
differential equations and box-ball systems (also known as soliton cellular
automata). These are integrable cellular automata that were introduced in
[TS90] as a discrete counterpart of the Korteweg-de Vries equation, which is
a mathematical model of waves on shallow water surface. Box-ball systems
arise both from classical and quantum integrable systems via discretization
procedures, this endows them with several aspects related to Yang-Baxter in-
tegrable models. Tropical geometry has already proven to be a valuable tool
in their study, thus we believe that the framework we introduced here could
give new instights in the study of these systems. For a general overview on
the subject see [IKT12].
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Part II

Trusses and braces
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Chapter 10

Introduction

In the 1920s H. Prüfer and R. Baer defined heaps as algebraic objects consisting of a
set with a ternary operation which fulfils conditions that allows to associate a class
of isomorphic groups, one for every element of the heap; conversely, every group
gives rise to a heap by taking the operation (a, b, c) 7→ ab−1c (see [Bae29] and
[Prü24]). In 2007 W. Rump introduced braces as algebraic systems corresponding
to set-theoretic solutions of the Yang-Baxter equation [Rum07]. A brace is a triple
(G,+, ·) where (G,+) is an Abelian group, (G, ·) is a group and the following
distributive law holds, for all a, b, c ∈ G,

a · (b + c) = a · b− a + a · c;

see [CJO14]. Through their connection with set-theoretical solutions of the Yang-
Baxter equation, braces have become an intensive field of studies. In particular it
has been shown that a brace allows one to construct a non-degenerate involutive
set-theoretic solution of Yang-Baxter equation (see for example, [CJO14], [Rum07],
[CGIS17] and [Smo18]). In 2017 L. Guarnieri and L. Vendramin introduced the
notion of a skew brace. This is a generalisation of a brace in which (G,+) is
not required to be Abelian [GV17]. It has been shown to correspond closely
to non-degenerate set-theoretic solutions of the Yang-Baxter equation; one can
construct such a solution from any skew brace, while to any non-degenerate
bijective solution one can associate a skew brace that satisfies a universal property
(see [GV17], [ESS99], [Sol00], [LYZ00], [SV18] or [Bac18]). In recent years there has
been a vast progress in the research on set-theoretical solutions of the Yang-Baxter
equation, but, even though we know that every skew brace provides us with such
a solution, it is not an easy task to construct skew braces (for a list of problems on
skew braces and a literature review see [Ven18]). In 2018, T. Brzezinski in [Brz19]
observed that it is possible to unify the distributive laws of rings and braces in
a single more general algebraic structure, that of a truss. A skew left truss T is a
heap (T, [−,−,−]) with an additional binary operation · : T × T → T which is
associative and which distributes over the ternary operation from the left, i.e., for
all a, b, c, d ∈ T,

a · [b, c, d] = [a · b, a · c, a · d].
The theory of trusses have been developed further in [Brz20, BR21, BMR20, BRS20,
ABR21, BR20].
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Every skew brace can be associated with an appropriate skew left truss: here
we will call such trusses brace-type trusses. This leads to the main questions that
motivated the work presented in this second part, result of a collaboration with
Tomasz Brzeziński and Bernard Rybołowicz, appearing in [BMR20]. What are
exactly brace-type trusses? How to construct them starting from a not necessarily
brace-type truss? When is such a construction possible? Here we present two
approaches to answer questions of this kind. The first approach is to take quotients
of trusses by some special congruence and the second one relies on a localisation
procedure.

We give answers to the questions above in a more general context, considering
pre- and near-trusses, skew rings and skew braces, the definition of which is in
Chapter 11. Congruences in pre- and near-trusses are shown to arise from normal
sub-heaps with an additional closure property of equivalence classes that involves
both the ternary and binary operations. Such sub-heaps, introduced in [Brz20],
are called paragons. A necessary and sufficient criterion on paragons under which
the quotient of a unital near-truss corresponds to a skew brace is derived. Regular
elements in a pre-truss are defined as elements with left and right cancellation
properties; following the ring-theoretic terminology pre-trusses in which all non-
absorbing elements are regular are termed domains. The latter are described as
quotients by completely prime paragons, also defined hereby. Regular pre-trusses
and near-trusses as domains that satisfy the Ore condition are introduced and the
pre-trusses of fractions are constructed through localisation. In particular, it is
shown that near-trusses of fractions without absorber correspond to skew braces.
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Chapter 11

Background

The present chapter contains definitions and facts about near-rings, skew braces
and heaps which that are necessary for the following. It concludes with Lemma 11.2.1
which describes fully all equivalence classes for a sub-heap relation∼S as mutually
isomorphic heaps with an explicitly given isomorphism in each case.

11.1 Near-rings, skew-rings and skew braces

A near-ring (see [Pil11]) is a set N with two associative binary operations + and ·,
such that (N,+) is a group and, for all n, m, m′ ∈ N,

n(m + m′) = nm + nm′.

Analogously to the case of rings a near-field is a near-ring such that (N \ {0}, ·) is a
group, where 0 is the neutral element for +.

A homomorphism of near-rings is a function f : N → N′ that commutes with both
near-ring operations, that is, for all a, b ∈ N,

f (ab) = f (a) f (b) and f (a + b) = f (a) + f (b).

A skew-ring [Rum19, Definition 3 and Corollary] is a triple (B,+, ·), where (B,+)
is a group (B, ·) is a monoid and the following distributive law holds

a(b + c) = ab− a + ac,

for all a, b, c ∈ B. A skew-ring (B,+, ·) in which (B, ·) is a group is called a skew left
brace [GV17]. A homomorphism of skew braces is a function that commutes with both
group operations. A close connection between skew left braces and near-rings is
revealed in [SV18, Proposition 2.20], which states that any construction subgroup
of a near-ring is a skew left brace. In what follows, we drop the adjective "left",
and hence skew brace means skew left brace. An ideal in a skew brace B is a subset
B′ ⊂ B such that (B′,+) is a normal subgroup, aB′ = B′a and ab− a ∈ B′, for all
a ∈ B and b ∈ B′.
Remark 11.1.1. Obviously, "right" versions of all the notions discussed in this text
can be defined and developed symmetrically, and in fact in [Rum19] Rump gives
the definition of a skew-ring in the right-sided convention.
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11.2 Heaps

A heap is a set H together with a ternary operation,

[−,−,−] : H × H × H → H,

that is associative and satisfies Mal’cev identities. Explicitly this means that, for
all a1, a2, a3, a4, a5 ∈ H,

[a1, a2, [a3, a4, a5]] = [[a1, a2, a3], a4, a5] and [a1, a1, a2] = a2 = [a2, a1, a1].

These conditions imply that, for all a1, a2, a3, a4, a5 ∈ H,

[[a1, a2, a3], a4, a5] = [a1, [a4, a3, a2], a5]. (11.2.1)

We say that H is an Abelian heap if [a, b, c] = [c, b, a], for all a, b, c ∈ H.

A homomorphism of heaps is a map that commutes with the ternary operations,
that is, f : H → H′ is a heap morphism if, for all a, b, c ∈ H,

f ([a, b, c]) = [ f (a), f (b), f (c)].

Every non-empty heap can be associated with a group by fixing the middle
entry of the ternary operation: explicitly, for all a ∈ H, +a := [−, a,−] is a group
operation on H. This group is called a retract of H at a and is denoted by G(H; a).
Retracts at two different elements are isomorphic. Starting with a group G one can
assign a heap to it by setting [a, b, c] := ab−1c, for all a, b, c ∈ G. This heap associated
to a group G will be denoted by H(G).

A subset S of a heap H is a sub-heap if it is closed under the heap operation of H.
A non-empty sub-heap S of a heap H is said to be normal if there exists e ∈ S such
that, for all a ∈ H and s ∈ S, there exists t ∈ S such that [a, e, s] = [t, e, a]. This is
equivalent to say that for all a ∈ H and e, s ∈ S, [[a, e, s], a, e] ∈ S. Every non-empty
sub-heap of an Abelian heap is normal. The retract of a normal sub-heap at an
element e is a normal subgroup of the retract of the heap at the same element e.
Furthermore, for any heap homomorphism f : H → H′ and any b ∈ Im f , f−1(b)
is a normal sub-heap of H; see e.g. [Brz20, Lemma 2.12].

If S is a sub-heap of H, then the relation ∼S on H given by

a ∼S b ⇐⇒ ∃s ∈ S [a, b, s] ∈ S ⇐⇒ ∀s ∈ S [a, b, s] ∈ S

is an equivalence relation. The set of equivalence classes is denoted by H/S. The
equivalence class of any s ∈ S is equal to S. If S is a normal sub-heap, then ∼S is a
congruence and thus the canonical map π : H → H/S is a heap epimorphism; see
[Brz20, Proposition 2.10].

The following Lemma summarises properties of the sub-heap equivalence re-
lation and gives an explicit description of all equivalence classes and relations
between them.
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Lemma 11.2.1. Let S be a non-empty sub-heap of (H, [−,−,−]), and consider the
sub-heap relation ∼S.

(1) For all a, b ∈ H, define the translation map:

τb
a : H → H, z 7→ [z, a, b]. (11.2.2)

(a) The map τb
a is an isomorphism of heaps.

(b) The equivalence classes of ∼S are related by the formula:

b̄ = τb
a (ā) = {[z, a, b] | z ∼S a}.

(c) For all e ∈ S and a ∈ H, set Sa
e := τa

e (S). Then ā = Sa
e .

(2) For all a ∈ H, the equivalence class ā is a sub-heap of H. Furthermore, if S is a
normal sub-heap of H, then so are the ā’s.

(3) Equivalence classes of ∼S are mutually isomorphic as heaps.

(4) For all a ∈ H, the sub-heap equivalence relation ∼S coincides with the sub-heap
equivalence relation ∼ā. Consequently H/S = H/ā.

Proof. (1) (a) First we need to check that τb
a preserves the ternary operation. Using

the associativity and Mal’cev identities, we can compute, for all z, z′, z′′ ∈ H,[
τb

a (z), τb
a (z
′), τb

a (z
′′)
]
=
[
[z, a, b], [z′, a, b], [z′′, a, b]

]
=
[
z, a,

[
b, [z′, a, b], [z′′, a, b]

]]
=
[
z, a,

[
[b, b, a], z′, [z′′, a, b]

]]
(by (11.2.1))

=
[
[z, z′, z′′], a, b

]
= τb

a ([z, z′, z′′]).

Therefore, the τb
a preserve ternary operations and thus each one of them is a

homomorphism of heaps. The inverse of τb
a is τa

b .

(1)(b) Assume that z ∼S a, that is, that [z, a, s] ∈ S, for all s ∈ S. If z′ =
τb

a (z) = [z, a, b], then [z′, b, s] = [z, a, s], by the associativity and the Mal’cev
property. Hence z′ ∼S b, that is, τb

a (ā) ⊆ b̄. On the other hand, if z′ ∈ b̄, then set
z = τa

b (z
′) = [z′, b, a]. Since τa

b is the inverse of τb
a , z′ = τb

a (z). Furthermore, for all
s ∈ S, [z, a, s] = [z′, b, s], and so [z, a, s] ∈ S, since z′ ∼S b. This proves the second
inclusion b̄ ⊆ τb

a (ā), and hence the required equality.

Assertion (1)(c) follows by 1(b) and the fact that ē = S.

Statement (2) follows by (1) and the observation that heap isomorphisms pre-
serve the normality. Statement (3) is a straightforward consequence of (1) and
(2).

(4) Using (1)(c) we can argue as follows: b ∼S c if, and only if, there exist s, s′ ∈ S
such that [b, c, s] = s′. This is equivalent to the equality [[b, c, s], e, a] = [s′, e, a],
for any a ∈ H and e ∈ S, which, by associativity, is equivalent to [b, c, [s, e, a]] =
[s′, e, a]. The fact that ā = Sa

e implies that b ∼ā c.
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Chapter 12

Quotient pre-trusses, near-trusses
and skew braces

This chapter focuses on trusses. We start with the introduction of pre-trusses,
near-trusses and skew trusses. A pre-truss is a heap with an additional semigroup
operation. A near-truss is a pre-truss in which the semigroup operation distributes
over the ternary operation from the left. The best known examples of these objects
are near-trusses with left absorbers associated with near-rings (see Example 12.1.4)
or unital near-trusses which can be associated to recently introduced skew-rings
[Rum19] (see Example 12.1.5). The notion of near-truss was introduced in [Brz19,
Definition 2.1] under the name of skew left truss; the present terminology is
intended to be coherent with that of the near-ring theory. Another example of
a near-truss which is of particular interest is that of a near-truss associated with
a skew brace (see Example 12.1.8); these near-trusses are said to be brace-type.
Finally, a skew truss is a near-truss for which the right distributive law holds. We
start by defining trusses, then in Section 12.2 we focus on the characterisation of
algebraic structures that correspond to congruences in a pre-truss. For that, we
give the definition of a paragon as a normal sub-heap, the equivalence classes
of which have a particular closure property, and in Theorem 12.2.6 we show
that paragons fully describe all the congruences in a pre-truss. We conclude this
theorem with Corollary 12.2.7 and Corollary 12.2.9 which tell us that congruence
equivalence classes in near-rings and skew braces are in fact paragons in the
associated near-trusses. In Section 12.3, we introduce the definition of an ideal to
determine, in Proposition 12.3.5, whether a unital near-truss is associated with a
skew brace or a near-ring.

Finally, in Section 12.4, combining the most natural concept of a maximal
paragon with the analysis of the ideal structure of a truss we give a full description
of those paragons whose quotient is a brace-type near-truss: in Theorem 12.4.5 we
show that a quotient near-truss is brace-type if and only if all equivalence classes
are not subsets of any ideal in a near-truss. We conclude this Chapter with two
examples of paragons that fulfil the hypothesis of the theorem.
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12.1 Trusses

Definition 12.1.1.

(1) A pre-truss is a heap (T, [−,−,−]) together with an associative binary opera-
tion (denoted by juxtaposition of elements or by ·).

(2) A pre-truss T satisfying the left distributive law:

a[b, c, d] = [ab, ac, ad], for all a, b, c, d ∈ T,

is called a near-truss.

(3) A near-truss T satisfying the right distributive law

[b, c, d]a = [ba, ca, da], for all a, b, c, d ∈ T,

is called a skew truss.

(4) A skew truss such that the underlying heap is Abelian is called a truss.

Every one of the above notions is said to be unital provided the binary operation
has an identity (denoted by 1).

A homomorphism of (pre-, near-, skew) trusses is a homomorphism of heaps
that is also a homomorphism of semigroups (or monoids in the unital case).

It is clear from this definition that the image of a homomorphism of (pre-, near-,
skew) trusses is itself a (pre-, near-, skew) truss.

Remark 12.1.2. Except for a pre-truss all the notions listed in Definition 12.1.1 have
been introduced in [Brz19] and [Brz20]. Note, however, that the terminology
introduced there was motivated by braces, and thus what we call a near-truss here
was named a skew left truss there. In this paper we are adopting a terminology
more aligned with the ring (or near-ring) theory one. Of course, a right distributive
version of a near-truss can be considered, but in line with the convention of
Section 11.1 we only consider the left distributive version (with no qualifier).

A left (resp. right) absorber is an element a of a pre-truss T such that, for all
t ∈ T, ta = a (resp. at = a). We say that a is an absorber if it is a left and right
absorber. It is worth noting that if a pre-truss T has both a left and a right absorber,
then they necessarily coincide, in particular an absorber is unique. We denote by
TAbs := T \ {a}, if a is the unique absorber with tacit understanding that TAbs = T
when T has no absorbers. Furthermore, since homomorphisms of pre-trusses
preserve multiplication, if f : T → T′ is a morphism and e is a left (resp. right)
absorber in T, then f (e) is a left (resp. right) absorber in the pre-truss f (T).
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Example 12.1.3. If T is a truss that has an absorber, then T is a ring-type truss. This
means that by taking the retract of T at the absorber, say 0, we obtain a ring
(T,+0, ·).

Conversely, if R is a ring then one can associate to it the truss (H(R), ·) with
absorber 0. This truss is denoted by T(R). If R is unital, then T(R) is unital.
Observe that if we start with a ring R, we assign to it the truss T(R) and then take
the retract we necessarily obtain R again, since the absorber is unique.

Example 12.1.4. Let T be a near-truss such that there exists a left absorber e. Then a
near-ring can be associated to T by taking the retract of the heap T at e to obtain
(T,+e, ·). We call such T a ring-type near-truss

Conversely, if N is a near-ring then one can associate to it the near-truss (H(N), ·)
which we will denote by T(N). In contrast to rings, since left absorbers are not
unique, if one associates a near-truss T(N) to N and then take the retract at a left
absorber, then not necessarily one obtains N.

Example 12.1.5. Let T be a unital near-truss. Then a skew-ring can be associated to
it by taking the retract of the heap T at the identity 1 of the multiplication, that is
(T,+1, ·) is a skew-ring.

Conversely, if B is a skew-ring, then one can assign to it the unital near-truss
(H(B), ·) which we will denote by T(B). Observe that if we start with a skew-ring
B, we assign to it the near-truss T(B) and then take the retract at the identity, we
obtain the same skew-ring as identity is unique.

Recall from [Rum19] that an element u in a skew-ring B is called a unit if, for all
a ∈ B,

a · u = a + u + a.

Lemma 12.1.6. Units in a skew-ring B are in one-to-one correspondence with left ab-
sorbers in the associated unital near-truss T(B).

Proof. The correspondence is given by u = [1, e, 1]. That is, u is a unit in B (resp.
absorber in T(B)) provided e is an absorber in T(B) (resp. unit in B).

Remark 12.1.7. Combining Example 12.1.4 with Example 12.1.5 and Lemma 12.1.6
we are led to the correspondence between skew-rings with units and unital near-
rings. If u is a unit in a skew-ring B, then (T(B),+[1,u,1], ·, 1) is a unital near-ring,
and vice versa, if (N,+, ·, 1) is a unital near-ring with zero e, then (T(N),+1, ·) is a
skew-ring with unit [1, e, 1] = −e (cf. [Rum19, Example 3]). This correspondence is
seemingly different from the one described in [Rum19, Proposition 2] as it changes
the additive structure keeping the multiplication fixed, while in [Rum19, Proposi-
tion 2] one considers a new multiplication with addition unchanged. However, if e
is a left absorber in a unital near-truss (T, [−,−,−], ·, 1), then using the translation
heap automorphism (11.2.2) one can induce a new associative product on T by the
formula:

a ∗e b = τ1
e (τ

e
1(a) · τe

1(b)) , for all a, b ∈ T.
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Then (T, [−,−,−], ∗e, [1, e, 1]) is a unital near-truss isomorphic to (T, [−,−,−], ·, 1)
in which 1 is a left absorber. Consequently, (T,+1, ∗e) is a unital near-ring corre-
sponding to the skew-ring (T,+1, ·). In particular, if B is a skew-ring with unit
u, then (T(B),+1, ∗[1,u,1], u) = (B,+, ∗−u, u) is the unital near-ring described in
[Rum19, Proposition 2].
Example 12.1.8. Let T be a near-truss such that (T, ·) is a group with neutral element
1. Then (T,+1, ·) is a skew brace. We call such T a brace-type near-truss.

Conversely, if B is a skew brace, then one can assign to it the near-truss (H(B), ·)
which we will denote by T(B). As was the case with the skew-rings, if we start
with a skew brace B, assign to it the near-truss T(B) and then take the retract at
identity, we obtain the same skew brace.

12.2 Paragons

Our goal is to describe the properties that a pre-truss T and a congruence ∼ on
it must have for the quotient near-truss T/∼ to be a brace-type near-truss, i.e.
a near-truss associated with a skew brace. The main theorem of this section is
Theorem 12.4.5 which states when a near-truss T/∼ can be associated with a skew
brace. First we identify those normal sub-heaps of a pre-truss T that faithfully
correspond to congruences.

Definition 12.2.1. Let T be a pre-truss.

(1) A sub-heap S of T is said to be left-closed (resp. right-closed) if, for all s, s′ ∈ S
and t ∈ T,

[ts′, ts, s] ∈ S (resp. [s′t, st, s] ∈ S). (12.2.1)

(2) A sub-heap S that is left- and right-closed is said to be closed.

(3) A normal sub-heap P of T such that every equivalence class of the sub-heap
relation ∼P is a closed (normal) sub-heap of T is called a paragon.

Observe that Lemma 11.2.1 implies that if P is a paragon in a pre-truss T, then
all the equivalence classes of ∼P are mutually isomorphic paragons as well.
Remark 12.2.2. In the case of a non-empty sub-heap S the quantifier ‘for all s ∈ S’
in the definition of the left or right closure property (12.2.1) can be equivalently
replaced by the existential quantifier. Indeed, assume that there exists q ∈ S such
that, for all s′ ∈ S and t ∈ T, [ts′, tq, q] ∈ S. Then, for all s ∈ S,

[ts′, ts, s] = [[[ts′, tq, q], q, tq], ts, s] = [[ts′, tq, q], [ts, tq, q], s] ∈ S,

by the associativity, Mal’cev’s identities and (11.2.1), and since S is a sub-heap.
Similarly for the right closure property.

Lemma 12.2.3. A normal sub-heap P of a pre-truss T is a paragon if and only if, for all
a, b ∈ T and p, e ∈ P,

[a[p, e, b], ab, e] ∈ P and [[p, e, b]a, ba, e] ∈ P.
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Proof. By Lemma 11.2.1, the equivalence class of b ∈ T is b̄ = Pb
e = {[p, e, b] | p ∈

P}, for all e ∈ P. Hence b̄ is left-closed if and only if, for all p ∈ P and a ∈ T, there
exists q ∈ P such that

[a[p, e, b], ab, b] = [q, e, b],

that is, if and only if
[a[p, e, b], ab, e] = q ∈ P,

as required. By the same argument we obtain that b̄ is right-closed.

Corollary 12.2.4. A normal sub-heap P of a near-truss T is a paragon if and only if P is
left-closed and all equivalence classes of the induced sub-heap relation are right-closed. In
particular P is a paragon in a skew truss if and only if it is a closed normal sub-heap.

Proof. Since in a near-truss the left distributivity law holds, the left-closure prop-
erty in Lemma 12.2.3 reduces to [ap, ae, e] ∈ P, that is, the left-closedness of P. In a
skew truss the right-closure property is treated symmetrically.

Corollary 12.2.4 shows that, in the case of skew trusses (and hence trusses)
the notion of a paragon introduced in Definition 12.2.1 reduces to the notion
introduced in [Brz20, Definition 3.15].

Lemma 12.2.5. Let f : T → T′ be a morphism of pre-trusses.

(1) For all z ∈ Im f , f−1(z) is a paragon in T. In particular, if P′ is a paragon in
Im f , then f−1(P′) is a paragon in T.

(2) If P is a paragon in T then f (P) is a paragon in Im f .

Proof. (1) By [Brz20, Lemma 2.12], f−1(z) is a normal sub-heap which is non-empty
(since z ∈ Im f ). For all a, b ∈ T and p, e ∈ f−1(z),

f ([a[p, e, b], ab, e]) = [ f (a)[ f (p), f (e), f (b)], f (a) f (b), f (e)]
= [ f (a)[z, z, f (b)], f (a) f (b), z] = z,

since f preserves multiplication and ternary operations, and by Mal’cev identities.
Thus [a[p, e, b], ab, e] ∈ f−1(z). By the same arguments, [[p, e, b]a, ba, e] ∈ f−1(z).
In view of Lemma 12.2.3 this means that f−1(z) is a paragon.

Assume that P′ is a paragon. That the pre-image of a normal sub-heap is a
normal sub-heap follows by the standard group-theoretic arguments. Since f
preserves multiplication and heap operation, for all a, b ∈ T and p, q ∈ f−1(P′),

f ([a[p, q, b], ab, q]) = [ f (a)[ f (p), f (q), f (b)], f (a) f (b), f (q)] and
f ([[p, q, b]a, ba, q]) = [[ f (p), f (q), f (b)] f (a), f (b) f (a), f (q)] .

Since P′ is a paragon, and f (p), f (q) ∈ P′, both expressions are elements of
P′. Therefore, [a[p, q, b], ab, q], [[p, q, b]a, ba, q] ∈ f−1(P′), and hence f−1(P′) is a
paragon.

Statement (2) is proven by similar arguments.
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Theorem 12.2.6. Let P be a normal sub-heap of a pre-truss T. Then the canonical heap
map π : T → T/P is a homomorphism of pre-trusses if and only if P is a paragon.

Proof. Assume that π is a pre-truss homomorphism. Since P = π−1(P), P is a
paragon by Lemma 12.2.5.

For the proof of the opposite implication assume that P is a paragon. Then
∼P is a congruence on the heap T, so we only need to show that this relation
is a congruence on the pre-truss T as well. Let a, b ∈ T be such that a ∼P b, so
that a, b ∈ π(b). Since P is a paragon, for all t ∈ T, [ta, tb, b] ∈ π(b). Hence,
[π(tb), π(ta), π(b)] = π(b), that is, π(tb) = π(ta) or, equivalently, ta ∼P tb. In
the same way one can prove that a ∼P b implies at ∼P bt for all t ∈ T. Assume
that a ∼P b and c ∼P d. Then ac ∼P bc, bc ∼P bd and ac ∼P bd, since ∼P is
an equivalence relation. Therefore, ∼P is a congruence and the canonical map
π : T → T/P is a homomorphism of pre-trusses. This completes the proof.

Corollary 12.2.7. Let N be a near-ring. Then P ⊆ N is an equivalence class for a
congruence on N if and only if P is a paragon in T(N)

Proof. Let us assume that P is an equivalence class for a congruence on N, let N̄
be the quotient near-truss with canonical homomorphism π : N → N̄. Since π
is also a homomorphism of associated near-rings, that is, π : T(N)→ T(N̄), and
P = π−1(P), P is a paragon in T(N) by Lemma 12.2.5.

In the opposite direction, assume that P is a paragon in T(N). Then there
exists a near-truss homomorphism π : T(N)→ T(N)/P. Observe that the triple
(T(N)/P,+π(e), ·), where e is the neutral element of N, is a near-ring, since the
image of a left absorber through a near-truss homomorphism is a left absorber.
Therefore π is also a homomorphism of the retracted near-rings and P is an
equivalence class of a congruence given by π as P = π−1(P).

Lemma 12.2.8. Let T(B) be a near-truss associated to a skew brace B (with identity 1).
Then P is a paragon in T(B) if and only if, for all p ∈ P, P1

p is an ideal in B.

Proof. Assume that P is a paragon in T(B). Then 1 ∈ P1
p , (P1

p ,+1) is a normal
subgroup of (B,+) as P1

p is a normal sub-heap and +1 = +. Since P1
p is closed, for

all a ∈ B and b ∈ P1
p ,

ab− a = [ab, a1, 1] ∈ P1
p & ba− a = [ba, 1a, 1] ∈ P1

p .

Therefore, ba− ab = c ∈ P1
p , and, using the brace distributive law,

a−1ba = a−1(c + ab) = a−1c− a−1 + b ∈ P1
p ,

since P1
p is left-closed. This implies that a−1P1

p a = P1
p , that is, aP1

p = P1
p a, and

completes the proof that P1
p is an ideal in B.

Conversely, if P1
p is an ideal in B, then B/P1

p is a skew-brace by [GV17, Lemma 2.3],
and the canonical skew-brace epimorphism π : B → B/P1

p induces a near-truss
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morphism π : T(B) → T(B/P1
p). Since P1

p = π−1(P1
p), P1

p and consequently also

P =
(

P1
p

)p

1
are paragons by Lemma 12.2.5.

Corollary 12.2.9. Let B be a skew brace, then P ⊆ B is an equivalence class for some
congruence on B if and only if P is a paragon in T(B).

Proof. The proof of the left to right implication is the same as in Corollary 12.2.7.
The other implication follows by Lemma 12.2.8.

12.3 Ideals in (pre-)trusses

To connect quotients of near-trusses with skew braces we need to determine which
paragons do not produce absorbers in the quotients. To this end we introduce the
notion of an ideal.

Definition 12.3.1. A normal sub-heap I of a pre-truss T is called a left (resp. right)
ideal if, for all t ∈ T and i ∈ I, ti ∈ I (resp. it ∈ I). If I is both left and right ideal,
then it is called an ideal. A proper left (resp. right) ideal is said to be maximal if it is
not strictly contained in any left (resp. right) proper ideal.

Note that an ideal is a closed sub-heap, but this does not yet make it into a
paragon, since the equivalence classes of the corresponding sub-heap relations
need not be closed. Also note that if f : T → T′ is a homomorphism of pre-trusses,
then the pre-image of an ideal in Im f is an ideal in T and the image of an ideal in
T is an ideal in Im f .

Lemma 12.3.2. If a left-closed normal sub-heap of a pre-truss contains a left ideal, then it
is a left ideal.

Proof. Let P be a left-closed normal sub-heap of T, and let I be a left ideal such
that I ⊆ P. Then, for all p ∈ P, t ∈ T and i ∈ I, tp = [[tp, ti, i], i, ti] ∈ P, since
[tp, ti, i] ∈ P and ti, i ∈ I ⊆ P.

Lemma 12.3.3. Let T be a pre-truss and P be a paragon. Then T/P has a left absorber if
and only if there exist a ∈ P and t ∈ T such that Pt

a is a left ideal.

Proof. The assertion follows from the fact that for every a ∈ P and t ∈ T, Pt
a = π(t),

where π is the canonical surjection onto the quotient T/P.

Corollary 12.3.4. If I is a paragon that is a right ideal in a pre-truss T, then for all
e ∈ T \ I and all a ∈ I, Ie

a is not a left ideal.

Proof. We know from Lemma 11.2.1 that T/I = T/Ie
a. Assume that I is a right

ideal and suppose that Ie
a is a left ideal. Then, by Lemma 12.3.3, I is a right absorber

in T/I and Ie
a is a left absorber in T/Ie

a. Hence I = Ie
a. But e 6∈ I and e ∈ Ie

a, which
yields a required contradiction and completes the proof.
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Proposition 12.3.5. Let T be a unital near-truss.

(1) T is a near-truss associated with a skew brace if and only if T has exactly one left
ideal.

(2) T is a near-truss associated with a near-field if and only if T has a left absorber and
exactly two left ideals.

Proof. (1) Assume that T has exactly one left ideal. For all x ∈ T the left ideal
Tx := {tx | t ∈ T} has to be the whole of T (in particular if T has at least two
elements, then it has no left absorbers). Therefore, there exists y ∈ T such that
yx = 1 and y is a left inverse to x. As x is an arbitrary element there exists x′ such
that x′y = 1. Thus (x′y)x = x and by associativity x′ = x. The conclusion is that
y is the two-sided inverse of x and the monoid (T, ·) is a group. Therefore, the
near-truss T is a brace-type near-truss (see [Brz20, Corollary 3.10]).

Conversely, suppose that T = T(B) for a skew brace B and that there exists a
left ideal I ( T(B). Observe that if x ∈ I, then x−1x = 1 ∈ I, therefore I = T. This
contradicts the assumption that I 6= T. Thus T has exactly one left ideal.

(2) Let us assume that T has a left absorber and exactly two left ideals. Then
there exists a near-ring R such that T = T(R), to be precise R is the retract (T,+e, ·),
where e is the left absorber. Seeking contradiction, suppose that R is not a near-
field. Then there exists a left ideal {e} 6= I ( R; but I is also a left ideal of T(R),
which contradicts with the assumption that T has only two left ideals. Therefore,
R is a near-field.

Assume that T = T(F), where F is a near-field, then 0 (the neutral element for
the addition in F) is a left absorber in T. Suppose by contradiction that T(F) has a
left ideal {0} 6= I ( T(F). Consider, for any a ∈ I the ideal I0

a := {[b, a, 0] | b ∈ I}.
The ideal I0

a is neither equal to {0} nor to T, since the map [−, a, 0] is a bijection.
Furthermore, I0

a is an ideal in F, and hence F is not a near-field. This contradicts
with the assumption that F is a near-field.

Lemma 12.3.6. Let T be a near-truss. If I is a paragon in T that is a maximal left ideal,
then T/I has no ideals different from a singleton set and T/I.

Proof. Suppose that J 6= T/I is a left ideal in T/I that is not a singleton set. Since
I is a left absorber in T/I, for any element J ∈ J, JI

J is a left ideal in T/I by the
left distributive law. Hence, π−1(JI

J) is a left ideal in T, where π : T → T/I is the
canonical surjection. Moreover, I ⊂ π−1(JI

J), since I ∈ JI
J . Therefore, since I is a

maximal left ideal, either I = π−1(JI
J), and hence JI

J = {I}, which implies that
J = {J}, or π−1(JI

J) = T, which implies in turn that J = T/I. Thus both cases
lead to a contradiction.
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12.4 Brace-type trusses as quotients

Although quotienting by a paragon which is a maximal left ideal yields a near-
truss without proper left ideals, this near-truss always has an absorber. Therefore
it is never a brace-type near-truss. The most straightforward idea to generalise
maximality to paragons leads us to the following definition:

Definition 12.4.1. Let T be a pre-truss. A left-closed (resp. right-closed) normal
sub-heap P ( T is said to be maximal if it is not contained in any left-closed (resp.
right-closed) sub-heap other than T. A paragon P is said to be left maximal (resp.
right-maximal, maximal) if it is a maximal left-closed (resp. right-closed, left- and
right-closed) sub-heap.

Lemma 12.4.2. Let T be a near-truss or a skew truss and P be a left-closed normal sub-
heap. Then P is maximal if and only if, for all a ∈ P and t ∈ T, Pt

a is a maximal left-closed
normal sub-heap.

Proof. Note that by the normality of P and the left distributive law, all the Pt
a are

left-closed normal sub-heaps. Seeking contradiction assume that P is maximal and
there exists a ∈ P and t ∈ T such that Pt

a is not maximal. Then there exists a left-
closed normal sub-heap Q such that Pt

a ( Q ( T. Since τt
a is an isomorphism with

the inverse τa
t , this implies that P ( Qa

t ( T. Hence P is not maximal, contrary to
the assumption.

The opposite implication is also easily deduced from the fact that P = (Pt
a)

a
t .

Remark 12.4.3. In the case of rings the notion of maximal ideals and maximal
paragons coincide as every paragon P in the ring can be associated with an ideal
P0

a for any a ∈ P and an absorber 0.

Lemma 12.4.4. Let T be a near-truss or a skew truss and P ⊆ T a left maximal paragon,
then T/P has no proper (i.e. different from singletons and the whole of T/P) left ideals.

Proof. By the definition of maximality of P, T/P has no proper left paragons.
Therefore it has no proper left ideals as a left ideal is a left paragon.

Observe that by dividing a near-truss without left absorbers by a paragon which
is left-maximal one obtains a near-truss associated with a skew brace. If the
quotient is a skew brace, then it is a simple skew brace, that is, it has no ideals in
the sense of sub-braces different from the skew brace itself and singleton subsets
of it. Maximal paragons do not characterise all the quotients which are brace-type
near-trusses, since there exist skew braces that are non-simple.

Theorem 12.4.5. Let T be a unital near-truss and P be a paragon, and let πP : T → T/P
be the canonical epimorphism. Then T/P is a brace-type near-truss if and only if, for all
left ideals I ( T and ā ∈ T/P, π−1

P (ā) 6⊆ I.

105



Proof. Let us assume that T/P is a brace-type near-truss. Observe that should
π−1

P (ā) ⊆ I for a left ideal I, then πP(I) would be a left ideal in T/P. Thus,
πP(I) = T/P, since T/P is a brace-type near-truss. On the other hand, if c ∈ T \ I
then πP(c) 6∈ πP(I). Indeed, should πP(c) ∈ πP(I), then there would exist i ∈ I
and p ∈ P such that [c, i, p] ∈ P. Thus, for all a ∈ π−1

P (ā), [c, i, a] = [[c, i, p], p, a] ∈
π−1

P (ā) ⊂ I and c ∈ I. Therefore, I = T.

Now, assume that, for all left ideals I ( T and ā ∈ T/P, π−1
P (ā) 6⊆ I and T/P is

not a brace-type near-truss. Then there exists a left ideal J ( T/P. The pre-image
π−1

P (J) ( T is a left ideal in T and, obviously, for any ‖j ∈ J, π−1
P (‖j) ⊆ π−1

P (J).
This contradicts the assumption that, for all ā ∈ T/P, π−1

P (ā) 6⊆ I, so T/P is a
brace-type near-truss. The proof is completed.

Example 12.4.6. Let B be a skew brace and R a ring. One can consider the product
near-truss T(B)× T(R) with operation given by (b, r)(b′, r′) = (bb′, rr′), for all
(b, r), (b′, r′) ∈ T(B)× T(R). It is easy to check that, for any ideal I in R, T(B)× I
is an ideal in T(B)×T(R) and that for any paragon P in T(B), P× I is a paragon in
T(B)× T(R). Every paragon of the form P× T(R) fulfills conditions in Theorem
12.4.5 and one easily finds that (T(B)× T(R))/(P× T(R)) ∼= T(B)/P

Example 12.4.7. Let T = 2Z + 1 be the sub-truss of T(Z). The set P = {2nm +
1 | m ∈ T} ⊂ T is a paragon and the quotient T/P is a brace-type truss isomor-
phic to U(Z/2n+1Z), the sub-truss of all units in the quotient ring Z/2n+1Z. To
prove that this isomorphism holds it is first of all helpful to notice that |T/P| =
2n = |U(Z/2n+1Z)|. Indeed, there are as many classes in the quotient as the
odd numbers between 2nm + 1 and 2n(m + 2) + 1 (it is important to notice that,
if m is odd, then m + 1 is even), so exactly 2n. Then the isomorphism is given
by sending ¯2m + 1 ∈ T/P to 2m + 1 mod 2n+1: this is evidently injective, so also
surjective since the two sets have the same size, and it is easily proven to be a
homomorphism.
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Chapter 13

The (pre-)truss of fractions

The aim of the first Section 13.1 of this Chapter is to introduce the definition of
completely prime paragons. This, in analogy to the case of rings, should lead to a
quotient pre-truss that is a domain, i.e. a pre-truss in which cancellation properties
hold. After describing this class of paragons, our next step is to consider the Ore
localisation for pre-trusses, which is the subject of Section 13.2. By inverting all
elements of a domain we obtain a pre-truss without proper left ideals and with no
absorbers, so if the distributive law holds this will be a near-truss associated with a
skew brace. Let us start with the definition of a domain. When working with rings,
there is always an absorber which in many cases allows for simplification of some
conditions. Not all pre-trusses have an absorber (in fact, having brace applications
in mind, we are particularly interested in those that do not have absorbers), so
many of the well-known definitions need to be in some sense generalised or stated
without involving any absorber.

13.1 Domains and completely prime paragons

We begin with the definition of regular elements :

Definition 13.1.1. Let T be a pre-truss. An element a ∈ TAbs is said to be left
regular (resp. right regular) if, for all b 6= c,

ab 6= ac (resp. ba 6= ca). (13.1.1)

If a is both left and right regular element then it is said to be regular.

Observe that conditions (13.1.1) can be written in a way that makes them remi-
niscent of the closedness conditions (12.2.1) used in the definition of a paragon.
The statement that ac 6= ab is equivalent to saying that [ac, ab, b] 6= b. Similarly,
ba 6= ca is equivalent to say that [ca, ba, b] 6= b. This indicates that these conditions
are closely related to the definition of paragon.

Lemma 13.1.2. Let T be a near-truss. Then a ∈ T is a left regular element if and only if
there exists an element c such that, for all b ∈ T \ {c},

ab 6= ac. (13.1.2)
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Proof. If a is left regular then, for all c ∈ T and all b ∈ T \ {c}, the inequality
(13.1.2) holds, which implies the existence of c.

Assume that there exists c ∈ T such that, for all b 6= c, ab 6= ac. Thus
[ab, ac, ac′] = a[b, c, c′] 6= ac′, for all c′ ∈ T. Note that, for all c, c′ ∈ T, the
map

[−, c, c′] : T \ {c} → T \ {c′}, b 7→ [b, c, c′],

is a bijection. Therefore, for all t ∈ T \ {c′}, at 6= ac′. By the arbitrariness of c′, a is
a left regular element. This completes the proof.

Lemma 13.1.3. Let R be a ring. Then a ∈ R is a regular element if and only if a is a
regular element in T(R).

Proof. The equivalence will be proven for left regularity only, the right regularity
case in symmetric. Let us assume that a ∈ R is a regular element. Then there is no
b ∈ R \ {0} such that ab = 0. Thus, by Lemma 13.1.2, if c = 0 in (13.1.2), then a is
a regular element in T(R), since a is regular in R.

Suppose that a is regular in T(R). Then ab 6= ac implies a(b− c) 6= 0. Therefore,
by substituting b = t + c, at 6= 0 for all t ∈ R \ {0}, which completes the proof.

Now we are ready to introduce the definition of a domain in clear analogy with
the usual notion for rings.

Definition 13.1.4. A pre-truss T is called a domain if all elements of TAbs are
regular.

In view of Lemma 13.1.3, a ring R is a domain if and only if T(R) is a domain.

Lemma 13.1.5. A near-truss T is a domain if and only if it satisfies the cancellation
property, that is for all a ∈ TAbs and b, b′ ∈ T, each one of the equalities ab = ab′ or
ba = b′a implies that b = b′.

Proof. This follows immediately for the definitions of a regular element and a
domain.

Definition 13.1.6. Let T be a pre-truss. A non-empty paragon P ⊆ T is said to be
completely prime if, for all p ∈ P, a, b, c ∈ T,

[ab, ac, p] ∈ P =⇒ Pa
p is an ideal or [b, c, p] ∈ P

and

[ba, ca, p] ∈ P =⇒ Pa
p is an ideal or [b, c, p] ∈ P.

Lemma 13.1.7. Let T be a pre-truss and P be a non-empty paragon. Then P is completely
prime if and only if, for all p ∈ P and t ∈ T, Pt

p is completely prime.
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Proof. Let us assume that P is a completely prime paragon and let p ∈ P and t ∈ T.
We know that Pt

p is a paragon (see comment that follows Definition 12.2.1). Then,
for all a, b, c ∈ T and q ∈ P, [ab, ac, [q, p, t]] ∈ Pt

p implies [[ab, ac, [q, p, t]], t, p] =
[ab, ac, q] ∈ P, since (Pt

p)
p
t = P. Thus, Pa

q is an ideal or [b, c, q] ∈ P. In view of
(Pt

p)
a
[q,p,t] = Pa

q , the first option is equivalent to (Pt
p)

a
[q,p,t] being an ideal and the

second to [b, c, [q, p, t]] ∈ Pt
p. Hence Pt

p fulfils the left condition to be a completely
prime paragon. Analogously one can prove that Pt

p satisfies the right condition.
Therefore, Pt

p is a completely prime paragon.

Unsurprisingly, the distributive laws yield simplification of the definition of a
completely prime paragon.

Lemma 13.1.8. Let T be a skew truss and P be a paragon. Then P is completely prime if
and only if there exists p ∈ P such that, for all a, d ∈ T,

[ad, ap, p] ∈ P =⇒ Pa
p is an ideal or d ∈ P

and

[da, pa, p] ∈ P =⇒ Pa
p is an ideal or d ∈ P.

Proof. It is sufficient to observe that, for every b ∈ T, [b, c, p] can be substituted
by some d ∈ T since [−, c, p] : T → T is a bijection with the inverse given by
[−, p, c] : T → T. Hence, if b = [d, p, c], d = [[d, p, c], c, p], and so

[ab, ac, p] = [a[d, p, c], ac, p] = [ad, ap, p] and [ba, ca, p] = [[d, p, c]a, ca, p] = [da, pa, p],

by the distributive laws and the axioms of a heap. This completes the proof.

Lemma 13.1.9. If P ( T is a completely prime paragon in a pre-truss T, then, for all
p ∈ P and for all left (right) absorbers a, a′ ∈ T, Pa

p = Pa′
p .

Proof. Let a be a left absorber. For all b, c ∈ T and p ∈ P, [ba, ca, p] = [a, a, p] =
p ∈ P, so Pa

p is an ideal or [b, c, p] ∈ P. The second option is equivalent to b ∼P c,
for all b, c ∈ T. Observe, though, that since P 6= T, there exist b, c ∈ T such that
b 6∼P c. Therefore, Pa

p is an ideal and ‖a ∈ T/P is an absorber. From the fact that
if a truss has an absorber then it has only one left absorber one concludes that
Pa

p = Pa′
p , for all left absorbers a, a′.

Theorem 13.1.10. Let T be a pre-truss. Then P is a completely prime paragon if and only
if T/P is a domain.

Proof. We write ‖a for the class of a in T/P. The pre-truss T/P is a domain if and
only if, for all ‖a, ‖b, ‖c ∈ T/P, ‖ab = ‖ac implies that ‖b = ‖c or ‖a is an absorber.
The equality ‖ab = ‖ac amounts to the existence of p ∈ P such that [ab, ac, p] ∈ P.
Observe that ‖b = ‖c if and only if [b, c, p] ∈ P, and ‖a is an absorber if and
only if Pa

p is an ideal. The proof proceeds analogously for the right cancellation
property.
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Remark 13.1.11. Every paragon in a near-truss T(B) associated with a skew brace
B is completely prime.

Corollary 13.1.12. Let R be a ring. An ideal I is completely prime in R if and only if I is
a completely prime paragon in T(R).

Proof. Let us assume that I is a completely prime ideal in R. Then, for all a, b ∈ R
and absorber 0 ∈ I,

[ab, a0, 0] = ab ∈ I =⇒ a ∈ I or b ∈ I.

Thus, if a ∈ I, then Ia
0 = I is an ideal, and hence I is a completely prime ideal in

T(R).
Conversely, assume that I is a completely prime paragon in T(R). For all

a, b ∈ T(R),
ab = [ab, a0, 0] ∈ I =⇒ Ia

0 is an ideal or b ∈ I.

Observe that Ia
0 is an ideal if and only if a ∈ I. Therefore, I is a completely prime

ideal in R. This completes the proof.

Lemma 13.1.13. Let f : T → T′ be a morphism of pre-trusses. If P is a completely prime
paragon in Im f , then f−1(P) is a completely prime paragon in T.

Proof. By Lemma 12.2.5, f−1(P) is a paragon. For all a, b, c ∈ T and p ∈ f−1(P), if
[ab, ac, p] ∈ f−1(P), then

f ([ab, ac, p]) = [ f (a) f (b), f (a) f (c), f (p)] ∈ P.

This implies that P f (a)
f (p) is an ideal or f ([b, c, p]) = [ f (b), f (c), f (p)] ∈ P. Therefore,

[b, c, p] ∈ f−1(P) or P f (a)
f (p) is an ideal. Let us assume that

z ∈ f−1
(

P f (a)
f (p)

)
= {x ∈ T | ∃q ∈ P s.t. f (z) = [q, f (p), f (a)]}.

Then f (z) = [q, f (p), f (a)], for some q ∈ P and f ([z, a, p]) = [ f (z), f (a), f (p)] =
q ∈ P. Hence z = [[z, a, p], p, a] ∈ f−1(P)a

p and f−1(P f (a)
f (p)) ⊆ f−1(P)a

p. Therefore,

f−1(P)a
p ⊆ f−1(P f (a)

f (p)) and by Lemma 12.3.2, f−1(P)a
p is an ideal. This completes

the proof.

We conclude this section with an example of a completely prime paragon and
the corresponding quotient domain.
Example 13.1.14. Let O(x) be the set of all polynomials in Z[x] in which the sum
of coefficients is odd. One can easily check that O(x) is a sub-monoid of the
multiplicative monoid Z[x] and a sub-heap of Z[x] with the standard operation
[p, q, r] = p− q + r. All this means that O(x) is a (commutative) truss.

Take any t0, t1 ∈ O(x) and define

P(t0, t1) := {p ∈ O(x) | (t1 − t0)divides (p− t0)}.

Then P(t0, t1) is a paragon in O(x) and it is a completely prime paragon provided
that t1 − t0 is irreducible in Z[x].

110



Proof. Clearly, if p− t0, q− t0 and r− t0 are divisible by t1− t0, then so is [p, q, r]−
t0 = p− q + r− t0. Hence P(t0, t1) is a sub-heap of O(x). Note that t0 ∈ P(t0, t1),
and hence, for all p ∈ P(t0, t1) and q ∈ O(x),

[qp, qt0, t0]− t0 = qp− qt0 = q(p− t0).

Therefore, [qp, qt0, t0] = [pq, t0q, t0] ∈ P(t0, t1), which means that P(t0, t1) is a
paragon.

Now assume that c = t1 − t0 is irreducible in Z[x], and take a, b ∈ O(x) for
which there exists p ∈ P(t0, t1) such that [ab, ap, p] ∈ P(t0, t1), that is c | a(b− t0).
Since c is irreducible, then either c | (b− t0), in which case b ∈ P(t0, t1), or c | a,
that is, there exists q ∈ Z[x] such that a = cq. In this case,

P(t0, t1)
a
p = {r− p + cq | r ∈ P(t0, t1)}.

Thus P(t0, t1)
a
p contains all elements of O(x) divisible by c (since c | (r− p), for all

r, p ∈ P(t0, t1)), and hence it is an ideal in O(x). Combined with the commutativity
of O(x), Lemma 13.1.8 yields that P(t0, t1) is a completely prime paragon.

Note that in general in the situation described in Example 13.1.14,

ā = b̄ ∈ O(x)/P(t0, t1) if and only if (t1 − t0) | (a− b).

So, for example, take t0 = x and t1 = x2 + x + 1. Then c = t1 − t0 = x2 + 1 is an
irreducible polynomial in Z[x] and O(x)/P(x, x2 + x + 1) is a domain that can
be identified with the sub-truss O(i) of the truss (ring) of Gaussian integers Z[i],
defined as

O(i) = {m + ni | m + n is odd}.

13.2 Skew braces of fractions

As of now we have introduced the notions of a domain and a completely prime
paragon, so that as long as we start with a pre-truss that has a completely prime
paragon we can quotient out by it and obtain a domain. The next, and most
important step, is to introduce localisation for pre-trusses. As the main goal of
this section is to produce braces from near-trusses we will consider near-trusses
without left absorbers and we will focus on localisation in the entire near-truss (to
construct a "brace of fractions") following Ore’s classic construction [Ore31]. First
observe that since not every ring can be localised the same is true for trusses, thus,
following [Ore31], we start by defining a regular pre-truss.

Definition 13.2.1. A pre-truss T is said to be left regular if T is a domain and it
satisfies the left Ore condition, that is, for all x, y ∈ TAbs, there exist r, s ∈ TAbs

such that rx = sy.
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In other words, a pre-truss is left (resp. right) regular if and only if TAbs is a
left Ore set. Next, we define the fraction relation on TAbs × T, by (b, a) ∼ (b′, a′)
if and only if there exists β, β′ ∈ TAbs such that βb = β′b′ and βa = β′a′. This
is an equivalence relation by the same arguments as in [Ore31, Section 2]. The
equivalence class of (b, a) is denoted by a

b and called a fraction, and the quotient
set TAbs × T/ ∼ is denoted by Q(T).

Theorem 13.2.2. (Ore localisation for regular pre-trusses) Let T be a left regular pre-truss.
Then Q(T) is a pre-truss with the following operations

(1) For all a
b , a′

b′ ,
a′′
b′′ ∈ Q(T), the ternary operation is defined by[

a
b

,
a′

b′
,

a′′

b′′

]
:=

[β1a, β2a′, β3a′′]
β1b

=
[β1a, β2a′, β3a′′]

β2b′
=

[β1a, β2a′, β3a′′]
β3b′′

,

(13.2.1)
where β1, β2, β3 are any elements of TAbs such that β1b = β2b′ = β3b′′.

(2) For all a
b , a′

b′ ∈ Q(T),
a
b
· a′

b′
:=

γa′

γ′b
, (13.2.2)

where γ, γ′ ∈ TAbs are such that γb′ = γ′a.

Furthermore, (Q(T)Abs, ·) is a group. We will call Q(T) the pre-truss of (left) fractions
of T.

Proof. We follow closely the proof of [Ore31, Theorem 1]. The multiplication of
fractions (13.2.2) is defined in such a way that a

b can be interpreted as b−1a. Since
it relies entirely on the properties of the semigroup (T, ·), the arguments of the
proof of [Ore31, Theorem 1] (with no modification, apart from the conventions)
yield that (Q(T), ·) is a semigroup.

It remains to be proven that Q(T) is a heap. In fact, by the Ore condition we
may assume that all fractions in the definition of the ternary operation (13.2.1) on
Q(T) have common denominator, so that[

a
b

,
a′

b
,

a′′

b

]
=

[βa, βa′, βa′′]
βb

, (13.2.3)

since in this case we can choose β := β1 = β2 = β3. Thus suffices it to prove that
(13.2.3) is well-defined, as then the heap axioms for T will imply the corresponding
axioms for the derived operation (13.2.3). We proceed in two steps. At first, we
show that the formula (13.2.3) does not depend on the choice of β; in the second
stage we will prove that it is also independent of the choice of the representatives
a, b for the class a

b .

Choose another element s ∈ TAbs such that[
a
b

,
a′

b
,

a′′

b

]
=

[sa, sa′, sa′′]
sb

.
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There exist g, g′ ∈ TAbs such that gβb = g′sb, which implies

gβ = g′s,

since T is a domain. Therefore,

g[βa, βa′, βa′′] = g′[sa, sa′, sa′′], gβb = g′sb.

Consequently,
[βa, βa′, βa′′]

βb
=

[sa, sa′, sa′′]
sb

,

which shows the independence of the formula (13.2.3) of the the choice of β.

To prove that the ternary operation (13.2.1) does not depend on the choice of the
representatives in each equivalence class, let (b, a), (b′, a′), (b′′, a′′), (d, c), (d′, c′), (d′′, c′′) ∈
TAbs × T be such that

a
b
=

c
d

,
a′

b′
=

c′

d′
,

a′′

b′′
=

c′′

d′′
,

and consider[
a
b

,
a′

b′
,

a′′

b′′

]
=

[β1a, β2a′, β3a′′]
β1b

,
[

a
b

,
a′

b′
,

c′′

d′′

]
=

[s1a, s2a′, s3c′′]
s1b

, (13.2.4)

for suitable β1, β2, β3, s1, s2, s3 ∈ TAbs. Then there exist g, g′ ∈ T, such that

gβ1b = gβ2b′ = gβ3b′′ = g′s1b = g′s2b′ = g′s3d′′,

and, since T is a domain,

gβ1 = g′s1, gβ2 = g′s2.

Thus both fractions in the equation (13.2.4) are equal if and only if gβ3a′′ =
g′s3c′′. Observe, however, that since g′s3d′′ = gβ3b′′, gβ3a′′ = g′s3c′′ as a′′

b′′ =
c′′
d′′ .

Therefore, [
a
b

,
a′

b′
,

a′′

b′′

]
=

[
a
b

,
a′

b′
,

c′′

d′′

]
.

The remaining equalities[
a
b

,
a′

b′
,

c′′

d′′

]
=

[
a
b

,
c′

d′
,

c′′

d′′

]
and

[
a
b

,
c′

d′
,

c′′

d′′

]
=

[
c
d

,
c′

d′
,

c′′

d′′

]
,

are proven in a similar way. This completes the proof that the definition of the
ternary operation (13.2.1) does not depend on the choice of representatives.

Finally, observe that if a is an absorber, then the class a
b is an absorber and it is

obviously unique. One can easily check that the class b
b for b ∈ TAbs is a neutral

element of (Q(T)Abs, ·) and that if a ∈ TAbs then a
b is a two-sided inverse to b

a .
Thus (Q(T)Abs, ·) is a group. This completes the proof of the theorem.
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From the fact that one can find a common denominator to any system of fractions
one can observe that additional properties of T are carried over to Q(T).

Proposition 13.2.3. Let T be a regular pre-truss.

(1) If T is Abelian, then so is Q(T).

(2) If T is a near-truss, then Q(T) is a near-truss.

(3) If T is a skew truss, then Q(T) is a skew truss.

Proof. It is sufficient to consider heap operations of fractions with a common
denominator, that is, those given by the formula (13.2.3). Statement (1) follows
immediately from (13.2.3).

If T is a near-truss, then[
a
b

,
a′

b
,

a′′

b

]
=

[βa, βa′, βa′′]
βb

=
β[a, a′, a′′]

βb
=

[a, a′, a′′]
b

.

Take any c
d , a

b , a′
b , a′′

b ∈ Q(T) and γ, γ′ ∈ TAbs such that γb = γ′c, and compute

c
d
·
[

a
b

,
a′

b
,

a′′

b

]
=

c
d
· [a, a′, a′′]

b
=

γ[a, a′, a′′]
γ′d

=
[γa, γa′, γa′′]

γ′d

=

[
γa
γ′d

,
γa′

γ′d
,

γa′′

γ′d

]
=

[
c
d
· a

b
,

c
d
· a′

b
,

c
d
· a′′

b

]
.

Hence the left distributive law holds, and this proves statement (2).

To prove (3) we take c
d , a

b , a′
b , a′′

b ∈ Q(T) and γ, γ′ ∈ TAbs such that γd =
γ′[a, a′, a′′]. Then [

a
b

,
a′

b
,

a′′

b

]
· c

d
=

[a, a′, a′′]
b

· c
d
=

γc
γ′b

.

On the other hand, using the definitions (13.2.1) and (13.2.2) and the right distribu-
tivity in T, we obtain[

a
b
· c

d
,

a′

b
· c

d
,

a′′

b
· c

d

]
=

[
γ1c
γ′1b

,
γ2c
γ′2b

,
γ3c
γ′3b

]
=

[s1γ1, s2γ2, s3γ3]c
s1γ′1b

,

where s1, s2, s3, γ1, γ2, γ3, γ′1, γ′2, γ′3 ∈ TAbs are such that

γ′1a = γ1d, γ′2a′ = γ2d, γ′3a′′ = γ3d, s1γ′1 = s2γ′2 = s3γ′3. (13.2.5)

Let h, h′ ∈ TAbs be such that
hγ′ = h′s1γ′1. (13.2.6)

Then, using the distributive laws in T, (13.2.5) and (13.2.6), we find

hγd = hγ′[a, a′, a′′] = [hγ′a, hγ′a′, hγ′a′′] = [h′s1γ′1a, h′s1γ′1a′, h′s1γ′1a′′]
= h′[s1γ′1a, s2γ′2a′, s3γ′3a′′] = h′[s1γ1d, s2γ2d, s3γ3d] = h′[s1γ1, s2γ2, s3γ3]d.
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The right cancellation property yields

hγ = h′[s1γ1, s2γ2, s3γ3],

which in view of (13.2.6) implies that

γc
γ′b

=
[s1γ1, s2γ2, s3γ3]c

s1γ′1b
.

Therefore, also the right distributive law holds in the near-truss Q(T).

The construction of the truss of quotients is universal in the following sense.

Proposition 13.2.4. Let T be a regular pre-truss. Then

(1) For any b ∈ TAbs,

ιb : T → Q(T), a 7→ ba
b

,

is a monomorphism of semigroups, and it is a monomorphism of trusses provided T
is a near- or skew truss.

(2) If T is a unital pre-truss then ι1 is a monomorphism of unital trusses. Furthermore,
for any brace-type near-truss B and any unital truss homomorphism f : T →
B, there exists a unique unital truss homomorphism f̂ : Q(T) → B rendering
commutative the following diagram:

T
ι1 //

f ��

Q(T)

f̂||
B.

Proof. (1) Since T is regular, ιb is an injective map. For all a, a′ ∈ T,

ιb
(
aa′
)
=

baa′

b
& ιb (a) · ιb

(
a′
)
=

ba
b
· ba′

b
=

γba′

γ′b
,

where γ, γ′ are such that γb = γ′ba. Take any β, β′ ∈ T such that βb = β′γ′b. Then

βbaa′ = β′γ′baa′ = β′γba′,

which means that ιb (aa′) = ιb (a) · ιb (a′) as required.

In the case of a near- or skew truss, that ιb is a homomorphism of trusses follows
by (13.2.3) and the left distributive law.

(2) The monomorphism of semigroups ι1 preserves the heap operation since 1 is
the multiplicative identity in T.

Assume that f : T → B is a unital homomorphism of trusses and, for all fractions
a
b ∈ Q(T), define

f̂ : Q(T)→ B,
a
b
7→ f (b)−1 f (a).
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This is well defined since two fractions a
b and a′

b′ are identical if and only if there
are β, β′ such that βa = β′a′ and βb = β′b′, in which case

f̂
( a

b

)
= f (b)−1 f (a) = f (b)−1 f (β)−1 f (β) f (a)

= f (βb)−1 f (βa) = f (β′b′)−1 f (β′a′) = f (b′)−1 f (a′) = f̂
(

a′

b′

)
,

by the multiplicativity of f . By the same token, for all a
b , a′

b′ ∈ Q(T),

f̂
(

a
b
· a′

b′

)
= f̂

(
γa′

γ′b

)
= f (γ′b)−1 f (γa′) = f (b)−1 f (γ′)−1 f (γ) f (a′),

where γ, γ′ ∈ T are such that γb′ = γ′a. Applying f to both sides of this equality
and using the multiplicative property to f we obtain

f (γ′)−1 f (γ) = f (a) f (b′)−1,

and hence

f̂
(

a
b
· a′

b′

)
= f (b)−1 f (a) f (b′)−1 f (a′) = f̂

( a
b

)
f̂
(

a′

b′

)
,

that is f̂ is a homomorphism of multiplicative groups. To check that f̂ is a heap
morphism it is enough to consider fractions with a common denominator and
then

f̂
([

a
b

,
a′

b
,

a′′

b

])
= f (b)−1 [ f (a), f (a′) f (a′′)

]
=
[

f (b)−1 f (a), f (b)−1 f (a′) f (b)−1 f (a′′)
]

=

[
f̂
( a

b

)
, f̂
(

a′

b

)
, f̂
(

a′′

b

)]
,

by the fact that f is a heap homomorphism and the left distributive law in B. That
f̂ ◦ ι1 = f follows by the unitality of f .

Suppose that there exists a unital truss homomorphism ĝ : Q(T)→ B such that
ĝ ◦ ι1 = f . Note that

a
b
=

1
b
· a

1
. (13.2.7)

In particular,

1 = ĝ
(

1
1

)
= ĝ

(
1
b
· b

1

)
= ĝ

(
1
b

)
f (b),

where the last equality follows by the splitting assumption ĝ ◦ ι1 = f . Hence
ĝ
(

1
b

)
= f (b)−1 and the equality ĝ = f̂ follows by the multiplicativity of ĝ and

equations (13.2.7).

The following corollary provides one with the method of constructing skew
braces, which might be considered as one of the main results of this paper.
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Corollary 13.2.5. If T is a regular near-truss without an absorber, then Q(T) is a brace-
type near-truss, that is, for all b ∈ T, the retract of Q(T) at b

b with the product (13.2.2) is
a skew brace.

Proof. Observe that if T has no absorbers then Q(T) has no absorbers either.
Indeed, suppose that there exists a

b ∈ Q(T) such that, for all c
d ∈ Q(T), c

d ·
a
b = a

b .
Since T has no absorbers, it has at least two elements, and hence, in particular we
may consider c 6= d. Then there exist γ, γ′ ∈ T, such that γa

γ′d = γa
γb and γ′c = γb.

Thus γa
γ′d = γa

γ′c , so there exist β, β′ ∈ T such that βγ′d = β′γ′c and βγa = β′γa. By
regularity, β = β′ and c = d, which is the required contradiction. Therefore, a

b is
not an absorber for all a, b ∈ T. Now, since Q(T) is a group with multiplication
and identity b

b , the retract of Q(T) in b
b is a skew brace by [Brz20, Remark 3.13].

Note in passing that if T satisfies the same assumptions as in Corollary 13.2.5,
but there exists an absorber in T, then Q(T) is associated with a near-field.

Example 13.2.6. Let us consider the sub-truss 2Z + 1 of T(Z). It is a domain
satisfying the Ore condition, thus it is a regular truss and we can localise it in
itself. Since 2Z + 1 is commutative, the construction is much simpler than the one
presented in the proof of Theorem 13.2.2. One can easily check that Q(2Z + 1) =
2Z+1
2Z+1 :=

{
2p+1
2q+1 | p, q ∈ Z

}
. The two-sided brace associated with this truss is the

retract in 1, i.e. the triple (Q(2Z + 1), [−, 1,−], ·).
Similarly, the truss O(x) of integer polynomials with coefficients summing up

to odd numbers considered in Example 13.1.14 is regular with no absorbers, and
hence it can be localised to a brace-type truss of the following rational functions

Q(O(x)) =
O(x)
O(x)

:=
{

p(x)
q(x)

| p(x), q(x) ∈ O(x)
}

.

As a yet another example we can consider the truss O(i) constructed as a special
case of Example 13.1.14. Again this is a commutative domain satisfying the Ore
condition and with no absorbers, and hence

Q(O(i)) =
{

m + ni
p + qi

| m + n and p + q are odd integers
}

=

=

{
m

2p + 1
+

n
2q + 1

i | p, q ∈ Z, m + n is an odd integer
}

.

The example of odd fractions described above is a special case of a more general
construction.

Example 13.2.7. Let Tn(Z) denote the set of all n× n-matrices over Z with odd
entries on the diagonal and even off diagonal entries. That is,

Tn(Z) =
{
(aij)

n
i,j=1 | aii ∈ 2Z + 1 and aij ∈ 2Z, i 6= j

}
.
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(1) Tn(Z) endowed with the matrix multiplication and the standard heap oper-
ation [a, b, c] = a− b + c is a unital regular truss with no absorbers.

(2) The brace-type truss of fractions Q(Tn(Z)) can be identified with the set
Tn(Q) of n × n-matrices over the rational numbers with diagonal entries
made by the odd fractions (that is, fractions of both the numerator and
denominator odd, Q(2Z + 1)) and with fractions with even numerator and
odd denominator as off-diagonal entries. That is,

Q(Tn(Z)) ∼= Tn(Q) :=
{
(qij)

n
i,j=1 | qii ∈

2Z + 1
2Z + 1

and qij ∈
2Z

2Z + 1
, i 6= j

}
.

It is clear that the set Tn(Z) is closed under the described heap operation. That it
is closed also under the matrix multiplication follows from an observation that in
the product formula for the off-diagonal entries the sum involves the products of
numbers of which at least one is even, while for the diagonal entry there is a single
odd summand made out of the product of matching diagonal entries. Obviously
Tn(Z) has no absorber, as the zero matrix is not an element of Tn(Z). Since the
identity matrix has the prescribed form, Tn(Z) is unital. The other statements of
Example 13.2.7 can be justified by the following (elementary) lemma.

Lemma 13.2.8. For all a ∈ Tn(Z),

(1) The determinant det(a) is an odd number.

(2) The matrix of cofactors ā of a and hence also its transpose āt are elements of Tn(Z).

Proof. Let ai,j denote the matrix obtained from a by removing of the i-th row and
the j-th column. Note that ai,i ∈ Tn−1(Z) and that ai,j, i 6= j has one row of even
numbers.

The first statement is proven by induction on the size n of matrices. For n = 1
the statement is obviously true. Assuming that the statement is true for k we
calculate the determinant of a ∈ Tk+1(Z) by expanding by the first row. Since a1,1
is an element of Tk(Z), det(a1,1) is odd by inductive assumption. In the expansion
of det(a) this is multiplied by the first entry a11 of a and thus it gives an odd
number. All the remaining summands involve products of other entries of the
first row, which are even. Hence the sum of all terms in the expansion is odd as
required.

The diagonal entries of ā are given by det(ai,i) which are odd by statement (i).
Off-diagonal entries (−1)i+j det(ai,j) are even since one row of each of ai,j, i 6= j
consists entirely of even numbers. The transposition statement is obvious.

With this lemma at hand we can now prove that Tn(Z) is a domain satisfying
the Ore condition. Since we can embed Tn(Z) into a ring of matrices, the statement
ab = ac, for some a, b, c ∈ Tn(Z) is equivalent to the statement that a(b− c) = 0,
hence

0 = a(b− c) = āta(b− c) = det(a)(b− c),
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which implies that b = c, since det(a) 6= 0 by Lemma 13.2.8(i). The regularity of
the other side of each a ∈ Tn(Z) can be proven in a symmetric way.

To prove the Ore condition we take any a, b ∈ Tn(Z) and set

r = ab̄t & s = det(b)1.

Both these matrices are elements of Tn(Z) by Lemma 13.2.8, and they satisfy the
Ore condition sa = rb. Hence, Tn(Z) is a left regular (in fact also right regular by
similar arguments) truss.

For any element q ∈ Tn(Q) we write q for the product of all denominators in
entries of q. This is an odd number and thus obviously qq ∈ Tn(Z). In particular,
in view of Lemma 13.2.8, det(qq) is an odd number and its matrix of cofactors
is an element of Tn(Z). This in turn implies that the inverse of q is an element
of Tn(Z) divided by an odd number, hence an element of Tn(Q). Consequently,
Tn(Q) is group with respect to multiplication of matrices. In order to identify
Tn(Q) with the truss of fractions Q(Tn(Z)) we will explore the universal property
described in Proposition 13.2.4(2). Thus consider a brace-type skew truss B and a
homomorphism of unital trusses f : Tn(Z)→ B and set

f̂ : Tn(Q)→ B, q 7→ f (q1)−1 f (qq).

Note that this definition does not depend on the way the fractions in q are repre-
sented, as the multiplication of the numerator and a denominator of an entry by a
common (odd) factor results in multiplying both q and q by the same factor which
will cancel each other out in the formula for f̂ , by the multiplicative property of
f . Since q1 is a central element in Tn(Z), f (q1)−1 is central in the image of f and,
combined with the multiplicative property of f this implies that f̂ is a homomor-
phism of (multiplicative) groups. That f̂ is a homomorphism of heaps follows
by the distributivity. Obviously, f̂ ◦ ι1 = f and is a unique such morphisms. By
the uniqueness of universal objects, Tn(Q) is isomorphic to the truss of fractions
Q(Tn(Z)).
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Appendix A: Computing tropical
solutions to the tropicalization of
some linear p-adic ODEs

We compute here the tropical solutions for the tropicalization of three ordinary
differential equations with coefficients in Qp[[t]] of a certain interest in the theory
of p-adic differential equations and we notice that in both cases the fundamental
theorem of differential tropical algebra holds. Let us fix the differentially enhanced
valuation

(v, ṽ) : Qp[[t]]→ S = (T[[t]]p → T2)

of Example 6.5.5.

The first equation we are going to consider has as only solution the p-adic
exponential function: as this is the easiest differential equation one can think of, if
we want to test our methods in a concrete case and have hopes that a fundamental
theorem holds,we need to start from this equation. Let p a prime number and con-
sider the differential ideal I ⊂ Qp[[t]]{x} generated by the differential polynomial
f = x′ − x. Solutions to this ideal are of the form:

c exp(t) = c
∞

∑
n=0

1
n!

tn (13.2.8)

for c ∈ Qp. The p-adic series ∑n
1
n! t

n is called the p-adic exponential and it
only converges for |t|p < 1/p(p−1) (i.e. for vp(t) > p − 1, if we normalise by
|p|p = 1/p).

We want to prove that all the tropical solutions to the tropicalization of the
ideal I are the tropicalization of some solution of the form 13.2.8, i.e. that in this
particular case the fundamental theorem of differential tropical algebra holds.

Let A = ∑∞
n=0 antn ∈ T[[t]] be a tropical solution. As adding the same real

number to all the coefficients of a solution given another solution, i.e. the set
of solutions is a tropical linear space, we can assume a0 = 0. We need to prove
inductively that an+1 = −vp((n + 1)!) for every n ∈ N. As A is a solution for
tropv(I) it must be in particular a tropical solution for the tropicalization of every
generator of I, which means to the family of polynomials f (n) = x(n) + x(n+1) ∈
T2{x}basic for every n ∈N. For n = 0 we have:

f (A) = (0, 0)⊕ (0, a1)
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thus A is a solution to f if and only if a1 = 0 = −vp(1!). So the case n = 0 holds.
The general case follows from noticing that for every n ∈N, dntn = vp(n!), as the
map Qp[[t]]→ T[[t]]p sending a p-adic power series to its coefficientwise valuation
commutes with the differentials. Thus assuming an = 0− vp(n!) holds, we have:

f (n)(A) = (0, an + vp(n!))⊕ (0, an+1 + vp((n+ 1)!) = (0, 0)⊕ (0, an+1 + vp((n+ 1)!)

which implies the thesis as A is a tropical solution. Since we know that the
tropicalization of a solution is a tropical solutions, and we proved that every
tropical solution is of that form, the two sets are the same.

Analogously one can prove that given an element π in an algebraic extension L
of Qp such that πp−1 = −p, we have that the fundament theorem holds for the
equation x′ − πx ∈ L{x}, whose solutions are multiples of exp(πt) ∈ L[[t]]. As
the p-adic norm of π is |π|p = pp−1, the radius of convergence of exp(πt) is 1 at
any point, thus the radius of converge function is the constant function 1.

Let us consider now another equation, namely f = x′− pπtp−1x ∈ L{x}. p-adic
solutions to this equations are p-adic multiples of exp(πtp) ∈ L[[t]]. The interest of
this p-adic differential equation lies in the fact that it is somehow the easiest one for
which we can observe the piecewise linear behaviour of the radius of convergence
as a function in the distance from the point 0, in particular, exp(πtp) has radius
of convergence 1 but there exists an r > 1 such that when |x|p > r the radius
of converge of the solutions decreases. Another interesting fact is that the two
differential modules related to this equation and the previous one are isomorphic
via a Frobenius morphism, on the disc centered in 0 and of radius r, but are not
outside this disk, as the radius of converge is invariant under isomorphisms.

Let us prove that the fundamental theorem holds for this equation too, consider-
ing the set of solutions at 0. The n-th derivative of F can be expressed as:

dn f =

{
x(n+1) −∑n

i=0 (
n
i )π ∏n−i

k=0(p− k)tp−1−n+ix(i) if n < p

x(n+1) −∑
p−1
i=0 ( n

p−1−i)π ∏
p−1−i
k=0 (p− k)tp−1−ix(i+n−p+1) if n ≥ p

which implies:

trop(dn f ) =

x(n+1) + ∑n
i=0(p− 1− n + i, vp((

n
i )) +

p
p−1)x(i) if n < p

x(n+1) + ∑
p−1
i=0 (i, vp((

n
p−1−i)) +

p
p−1)x(i+n−p+1) if n ≥ p

In order to prove that the fundamental theorem holds, we prove that given a
solution to the tropical system {trop(dnF)}n∈N:

A = 0 + a1t + a2t2 + · · · ∈ T[[t]]p

we have

ak =

{
∞ if p6 | k

m
p−1 − vp(m!) if k = mp
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i.e. that A is the tropicalization of exp(πtp).
We will prove this by induction on k. For k = 0 this is trivially satisfied as p | 0

and 0 = 0
p−1 − vp(0!). For 0 < k ≤ p, consider trop( f ) = x′ + (p− 1, p

p−1)x and

trop( f )(A) = (0, a1)⊕
(

p− 1,
p

p− 1

)
.

Being A a solution, ak has to be equal to ∞ for every 0 < k < p, thus we obtain:

trop( f )(A) = (p− 1, ap + 1)⊕
(

p− 1,
p

p− 1

)
which gives ap = 1

p−1 = 1
p−1 − vp(1!).

In general let Mp < k ≤ (M + 1)p for some M ∈N and assume the inductive
hypothesis holds for Mp. Notice that vp((

Mp
p−1−i)) = 1 for all M ∈ N and for all

i ∈ {0, . . . , p− 2}, thus:

trop(dMp f ) = x(Mp+1)+

(
p− 1,

p
p− 1

)
x(Mp)+

p−1

∑
j=1

(
p− 1− j,

p
p− 1

+ 1
)

x(Mp−j)

where j := i− p + 1. We obtain that trop(dMp f )(A) is equal to:(
0, aMp+1 +

M

∑
m=1

vp(mp)

)
⊕
(

p− 1,
p

p− 1

)
⊗
(

0,
M

p− 1
− vp(M!) +

M

∑
m=1

vp(mp)

)
⊕

p−1⊕
j=1

(
p− 1− j,

p
p− 1

+ 1
)
⊗
(

j,
M

p− 1
− vp(M!) +

M

∑
m=1

vp(mp)

)
As the first coordinate of every addendum of the sum above, except for the first
one, is equal to p− 1 and A is a solution, we have as before that ak has to be equal
to ∞ for Mp < k < (M + 1)p. For k = (M + 1)p, since

M

∑
m=1

vp(mp) =
M

∑
m=1

(1 + vp(m)) = M + vp(M!)

we have:

trop(dMp f )(A) =
(

p− 1, a(M+1)p + M + 1 + vp((M + 1)!)
)
⊕
(

p− 1,
M + p
p− 1

+ M
)
⊕

⊕
(

p− 1,
M + p
p− 1

+ M + 1
)

which gives:

a(M+1)p + 1 + vp((M + 1)!) =
M + p
p− 1

which is equivalent to a(M+1)p = M+1
p−1 − vp((M + 1)!), as we wanted.

In general, in order to make tropical methods useful for the computation of the
radius of convergence fucntion, it would be interesting to introduce an appropriate
notion of tropical differential linear spaces, that would be the tropical shadow
of differential modules and would encode the datum of a tropical differential
equation.
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Résumé de thèse en français

Première partie

La première partie de la présente thèse constitue le corps principal des travaux
que j’ai menés au cours de ma thèse. L’idée qui a donné le départ à tout est
introduite et étudiée dans ce qui suit est de construire un pont entre la théorie
récemment introduite des équations différentielles tropicales et la théorie plus
établie des équations différentielles p-adiques. En particulier la recherche de
méthodes tropicales pour calculer le rayon de convergence des solutions à une
équation différentielle p-adique.

Les équations différentielles ordinaires (EDO) avec des fonctions valuées réelles
ou complexes comme coefficients sont fondamentales dans une multitude d’applications
des mathématiques à des situations du monde réel. Leur théorie remonte au tout
début des mathématiques modernes, avec le premier exemple d’équations dif-
férentielles apparaissant dans les travaux de Newton et Leibniz. En quelques mots,
les équations différentielles sont au centre de notre compréhension des processus
continus.

D’autre part, étant donné un certain nombre premier p, considérer un corps p-
adique à la place des nombres réels ou complexes conduit à la théorie des équations
différentielles p-adiques, dont la théorie éclaire les problèmes de l’arithmétique et
la théorie des nombres. Le seul texte complet sur le sujet est [Ked10].

La première apparition des équations différentielles p-adiques remonte aux
travaux de Dwork, qui dans [Dwo60] les a utilisées comme outil pour prouver
la rationalité de la fonction zêta d’une variété en caractéristique p : la résolu-
tion de certaines équations différentielles p-adiques particulières donne des for-
mules pour compter le nombre de points de variétés sur des corps finis. Dans
ses premières années, la théorie a ensuite été poussée principalement grâce
aux contributions pionnières de Dwork et Robba [DR77, DR79, Rob94, Dwo12,
. . . ] et a développé des liens dans de nombreuses directions mathématiques :
étudier les fonctions zêta avec l’analyse p-adique permet d’utiliser des méthodes
numériques, et celles-ci ont trouvé des applications dans la cryptographie basée
sur les courbes elliptiques et hyperelliptiques (voir [CFA+05] pour une introduc-
tion au sujet) ; la théorie des équations différentielles p-adiques est intimement
liée au développement et à la consolidation de la cohomologie rigide p-adique
par Berthelot [Ber74, Ber86], motivée par les travaux antérieurs de Dwork et Mon-
sky et Washnitzer [MW68, Mon68, Mon71], qui s’est également avéré être un
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outil précieux dans les calculs pour la cryptographie. Pour des présentations
générales et des textes complets sur le sujet, voir [Ill94, Ked09, LS07]. De plus,
les équations différentielles p-adiques jouent un rôle important dans la théorie
des représentations galoisiennes p-adiques, qui ont été étudiées par Fontaine
[Fon94, Fon04, Fon07, FO08] en introduisant une série d’anneaux de périodes
auxiliaires afin de les classer. L’étude des représentations galoisiennes p-adiques
est centrale pour le développement d’une théorie de Hodge p-adique. Plus récem-
ment, les travaux de Berger [Ber02, Ber08a] ont mis en évidence un rôle profond
des équations différentielles p-adiques dans cette théorie, grâce à l’utilisation de
(φ, Γ)-modules. Ce sujet est presenter dans [Ber08b, BC09].

Une caractéristique intéressante des équations différentielles p-adiques est que,
contrairement au cas complexe, le rayon de convergence de leurs solutions n’est
pas contrôlé par un objet "visible", comme, dans le cas complexe, les pôles des
coefficients de l’équation : dans ce contexte en effet même des équations aussi sim-
ples que celle de l’exponentielle donnent des solutions à rayon de convergence fini
en tout point. La topologie de l’espace elle-même est un obstacle à la convergence.

Le langage de la géométrie de Berkovich, introduit dans [Ber90], s’est avéré
être le bon pour décrire les phénomènes liés à ces rayons de convergence. Le
rayon de convergence des solutions d’une équation différentielle p-adique sur
une courbe de Berkovich en fonction du point d’expansion s’est avéré être une
fonction linéaire continue par morceaux (voir [CD94, Bal10, BDV07, Ked10] ) avec
un nombre fini de changements de pente [Chr11, PP15b, PP15a, PP13, Pul15], dont
le comportement est en fait contrôlé par un squelette fini sur lequel la courbe se
rétracte. En général, bien qu’une formule itérative explicite pour calculer le rayon
de convergence existe (voir [Chr11]), il est difficile de la calculer.

Les méthodes tropicales deviennent de plus en plus influentes dans de nom-
breux domaines des mathématiques et des sciences en général, et elles peuvent
souvent être considérées comme un processus faisant passer un problème d’un
cadre géométrique ou algébrique à un cadre discret, combinatoire ou polyédrique.

La géométrie tropicale s’est historiquement développée d’au moins deux manières
indépendantes: en tant que géométrie sur le semi-corp tropical et en tant qu’étude
des ensembles logarithmiques limites des variétés algébriques classiques. La
première approche dérive de problèmes d’optimisation en informatique [Sim78,
Sim87, Eil74], résolus en utilisant l’algèbre min-plus (ou max-plus), ainsi la géométrie
tropicale est la géométrie sur le semi-anneau tropical R∪∞, où somme et produit
usuels sont respectivement remplacés par minimum et somme (ou par maxi-
mum et somme, de manière isomorphe). Les polynômes tropicaux donnent des
fonctions linéaires par morceaux et les variétés tropicales qui leur sont associées,
c’est-à-dire le lieu des points où le minimum est atteint au moins deux fois, sont
assemblées par des polyèdres convexes. La deuxième approche, entreprise dans
[Ber71, GB84, GKZ08], et réintroduite plus récemment par Kapranov, consiste à
considérer l’application logt : (C∗)n → Rn envoyant un vector au vecteur des
logarithmes de la valeur absolue de ses entrées. L’image d’une variété algébrique
via cette fonction s’appelle amibe et prendre la limite limt→∞ Xt d’une famille Xt
de variétés algébriques donne une variété tropicale, associée au polynôme tropical
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obtenu par le polynôme Ft ∈ C((t)) définissant la famille Xt en prenant l’ordre des
coefficients.

Ce point de vue se généralise à tout champ valué, c’est-à-dire muni d’une
fonction similaire à la valuation t-adique sur C((t)) ("prendre l’ordre de tête"). Les
fonction avec ces propriétés sont appelées valuations non archimédiennes et sont
l’outil nécessaire qui nous permet de passer du monde classique de la géométrie
algébrique au monde polyédrique de la géométrie tropicale, à travers ce qu’on
appelle la tropicalisation. Ceci est intéressant car de nombreuses caractéristiques
des objets géométriques avec lesquels nous commençons sont préservées par ce
processus.

Plus récemment, plusieurs fondements algébriques de la géométrie tropicale
ont été développés, afin de voir plus classiquement la géométrie tropicale comme
géométrie algébrique sur une certaine catégorie d’objets, comme les hypercorps
[Vir11, BB19, Lor19, Jun21], les blueprints de Lorscheid [Lor12, Lor15], et les
semi-anneaux idempotents [GG16, GG14, GG18, MR18, MR14, MR20, JM18b,
JM18a, BE17, Yag16, CGM20]. Nous donnons un traitement plus approfondi
de la géométrie tropicale dans le chapitre 2 où nous rappelons également de
nombreuses références sur le sujet et ses applications.

Il est bien connu qu’une grande partie de la théorie des EDO est algébrique,
il suffit de citer l’exemple de la théorie de Picard-Vessiot. Les EDO algébriques
sont des systèmes d’équations différentielles formés à partir d’expressions poly-
nomiales dans une fonction indéterminée f et ses dérivées. La théorie algébrique
a d’abord été établie par Ritt [Rit50] et Kolchin [Kol73]. De nombreuses classes
importantes de modèles des sciences naturelles, telles que les réseaux de réactions
chimiques, sont des EDO algébriques, et en mathématiques pures, les EDO al-
gébriques apparaissent dans de nombreuses parties de la géométrie, y compris les
périodes et la monodromie. Comprendre leurs solutions et leurs singularités a de
nombreuses conséquences importantes en mathématiques pures et appliquées.

Ici, nous poursuivons le développement de l’ensemble d’outils de mathéma-
tiques tropicales pour l’étude des équations différentielles. Dans [Gri17], Grigoriev
a introduit pour la première fois une théorie des équations différentielles tropi-
cales et a défini un cadre pour tropicaliser les EDO algébriques sur un anneau de
séries formelles de puissances R[[t]]. Dans ce cadre, on tropicalise une équation
différentielle en enregistrant la puissance dominante de t dans chaque coefficient,
et on tropicalise une solution en série de puissances en enregistrant simplement
les puissances de t qui sont présentes.

Les solutions à une équation différentielle se tropicalisent en solutions à sa
tropicalisation, et Grigoriev demandé si toutes les solutions à la tropicalisation
d’une équation se présentent comme des tropicalisations de solutions classiques;
c’est-à-dire, la fonctions des solutions classiques aux solutions tropicales est-
elle surjective ? C’est l’analogue pour les équations différentielles du théorème
fondamental de la géométrie tropicale [MS15, Theorem 3.2.3], et cette question a
été répondue positivement par Aroca et al. in [AGT16] (en supposant que R est
un corps indénombrable algébriquement clos de caractéristique 0). Ces idées ont
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également été étendues au cas des équations différentielles aux dérivées partielles
algébriques dans [FGLH+20].

Parallèlement au rôle de la théorie de Gröbner dans la définition des variétés
tropicales dans le cas non-différentiel , [FT20] et [HG21] définissent les formes
initiales et développent une approche théorique de Gröbner des équations différen-
tielles tropicales de Grigoriev. Une approche similaire est également présentée
dans [CGL20], qui donne un résumé éclairant autour des équations différentielles
ordinaires et partielles tropicales (basées en partie sur un rapport préliminaire du
perspective algébrique présentée ici). Nous rappelons la plupart des résultats au
sujet des articles précités au chapitre 3.

Une limitation présente dans tous les travaux ci-dessus est que la construction
de tropicalisation qui y est étudiée n’enregistre que les puissances de t présentes
dans une solution en série de puissances ; il n’enregistre aucune information sur
les valuations des coefficients. Ainsi, toute l’information sur la convergence des
solutions de séries de puissances est perdue lors de l’utilisation de la tropicalisa-
tion de Grigoriev, et pour comprendre les rayons de convergence des solutions
formelles de séries de puissances d’équations différentielles p-adiques, préserver
les évaluations des coefficients est d’importance cardinale .

Même si nous sommes loin de cet objectif, le but à long terme de l’étude en-
treprise ici est une meilleure compréhension et une calculabilité plus aisée des
rayons de convergence pour l’équation différentielle p-adique en utilisant des
méthodes tropicales.

Résultats

L’objectif principal de la première partie de mon travail est de construire un
raffinement du cadre de Grigoriev qui enregistre et intègre les valuations des
coefficients dans une solution de série de puissance afin que l’information de
convergence soit codée dans les solutions tropicales. Cela nécessite de développer
une théorie des différentielles sur les semi-anneaux idempotents dans laquelle
la règle de Leibniz habituelle est affaiblie en une règle de Leibniz tropicale, et
ce développement comprend la construction d’algèbres différentielles tropicales
libres (un analogue tropical des algèbres de Ritt) avec des variables différentielles
provenant d’un F1-module différentiel , que nous définissons dans ce qui suit.

Nous donnons ici une brève explication de notre context. Une paire tropicale
S = (S1 → S0) est un semi-anneau différentiel tropical S1 et un homomorphisme à
un semi-anneau S0. Les coefficients des équations différentielles tropicales vivent
dans S0. Les solutions vivent dans S1 (où elles peuvent être différenciées), mais
la condition qui teste si quelque chose est une solution a lieu dans S0. Nous
pensons que S0 enregistre le comportement au prèmier ordre des éléments de
S1. L’exemple principal d’une paire tropicale a S1 = T[[t]] (le semi-anneau d’une
série de puissances formelles avec des coefficients de nombres réels tropicaux),
S0 = R2

lex ∪ {∞} est une version de rang 2 du semi-anneau tropical, et la fonction
S1 → S0 envoie atn + · · · à (n, a).
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Nous énonçons maintenant les principaux résultats de manière informelle, dans
le cas des F1-modules différentiels libres avec n générateurs.

Theorem E. On construit une catégorie de S-algèbres, et un ensemble E d’équations
différentielles tropicales sur S on associe un objet de cette catégorie tel que les morphismes
à une S-algèbre T sont en bijection naturelle avec solutions de E à valeurs dans T.

Un système d’équations différentielles algébriques sur un corps K est représenté
par une K-algèbre différentielle A. Pour tropicaliser A, nous avons besoin de deux
données supplémentaires :

(1) Une valuation non archimédienne sur K prenant des valeurs dans un semi-
anneau idempotent S0, et un rehaussement différentiel de la valuation, qui est
une application A→ S1 qui commute avec le différentiels. (Ces notions sont
définies dans la Section 2.4 et la Section 6.5.)

(2) Un système de générateurs xi ∈ A tel que A soit présenté comme un quotient
d’une algèbre de Ritt K{x1, . . . , xn}� A.

Toute algèbre différentielle A admet une présentation universelle K{xa | a ∈
A}� A. Tropicalisant cette présentation, on retrouve :

Theorem F. La tropicalisation de A par rapport à sa présentation universelle est la
colimite de ses tropicalisations par rapport aux présentations finies.

Enfin, nous fournissons des preuves de la pertinence de nos définitions et de
notre context en prouvant un analogue différentiel du théorème du limite inverse
de Payne [Pay09]. Rappelons que, étant donnée une algèbre A sur un corps non
archimédien K, l’ensemble sous-jacent de l’analytification de Berkovich de Spec A
est l’ensemble de toutes les seminormes multiplicatives sur A qui sont compatibles
avec la valuation sur K. Supposons maintenant que K soit un anneau différentiel,
la valuation v sur K a un rehaussement différentielle ṽ prenant des valeurs dans
une paire tropicale S, et A est un algèbre différentielle sur K. Dans ce cadre,
étant donné une S-algèbre T = (T1 → T0), nous pouvons considérer l’ensemble
de toutes les paires (w, w̃) où w : A → T0 est une valuation multiplicative sur
A compatible avec v et w̃ : A → T1 est une rehaussement différentielle de w
compatible avec ṽ. Nous appelons cela l’espace différentiel de Berkovich de A à valeur
en T, noté BerkT(A).

Theorem G. Il existe une valuation universelle avec un rehaussement différentiel sur A,
et elle prend des valeurs dans la tropicalisation de la présentation universelle de A. Donc
la tropicalisation de la présentation universelle coreprésente le foncteur T 7→ BerkT(A).

En combinant cela avec le théorème F, nous obtenons immédiatement notre
analogue différentiel du théorème limite inverse de Payne.

Corollary H. Soit k un anneau différentiel muni d’une valuation non archimédienne et
d’un enhaussement différentiel prenant des valeurs dans S, soit A une algèbre différentielle
sur un k, et soit T soit une S-algèbre. L’ensemble BerkT(A) est isomorphe à la limite
inverse des ensembles de solutions à valeur T des tropicalisations de toutes les présentations
finies de A .
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La majeure partie du matériel présenté dans la première partie de cette thèse
apparaît en [GM21], dans les termes que nous l’avons présentés dans les lignes
précédentes, c’est-à-dire en restreignant notre traitement aux F1-modules différen-
tiels libres avec n générateurs. En plus d’adopter cette approche plus générale
ici, nous discutons de la notion de F1-algèbre différentielle et des interactions
entre certains foncteurs de changement de base libre sur ces catégories d’objets
différentiels F1. Dans le dernier chapitre, nous présentons une généralisation
de tous les résultats introduits dans la thèse au cas des équations aux dérivées
partielles, généralisant le cadre de [FGLH+20].

Deuxième partie

Dans les années 1920, H. Prüfer et R. Baer définissent les heaps comme des objets
algébriques constitués d’un ensemble avec une opération ternaire qui remplit
des conditions permettant d’associer une classe de groupes isomorphes, un pour
chaque élément du heap ; inversement , chaque groupe donne lieu à un heap en
prenant l’opération (a, b, c) 7→ ab−1c (voir [Bae29] et [Prü24]). En 2007, W. Rump a
introduit les braces comme systèmes algébriques correspondant à des solutions de
l’équation de Yang-Baxter [Rum07]. Un brace est un triplet (G,+, ·) où (G,+) est
un groupe abélien, (G, ·) est un groupe et la loi de distribution suivante s’applique,
pour tout a, b, c ∈ G,

a · (b + c) = a · b− a + a · c ;

voir [CJO14]. Grâce à leur lien avec les solutions théoriques de l’équation de
Yang-Baxter, les braces sont devenues un domaine d’études intensif. En particulier,
il a été montré qu’un brace permet de construire une solution involutive non
dégénérée de l’équation de Yang-Baxter (voir par exemple, [CJO14], [Rum07],
[CGIS17] et [Smo18]). En 2017, L. Guarnieri et L. Vendramin ont introduit la
notion de skew brace. C’est une généralisation d’une accolade dans laquelle (G,+)
n’est pas obligatoirement abélien [GV17]. Il a été démontré qu’il correspond aux
solutions théoriques des ensembles non dégénérées de l’équation de Yang-Baxter;
on peut construire une telle solution à partir de n’importe quel skew brace, tandis
qu’à toute solution bijective non dégénérée on peut associer un skew brace qui
satisfait une propriété universelle (voir [GV17], [ESS99], [Sol00], [LYZ00], [SV18]
ou [Bac18]). Ces dernières années, il y a eu de grands progrès dans la recherche
sur les solutions théoriques de l’équation de Yang-Baxter, mais, même si nous
savons que chaque skew brace nous fournit une telle solution, ce n’est pas une
tâche facile de construire des skew braces (pour une liste des problèmes sur les
skew braces et une revue de la littérature, voir [Ven18]). En 2018, T. Brzezinski dans
[Brz19] a observé qu’il est possible d’unifier les lois distributives des anneaux et
des accolades dans une seule structure algébrique plus générale, celle d’un truss.
Un skew truss à gauche T est un heap (T, [−,−,−]) avec une opération binaire
supplémentaire · : T × T → T qui est associative et qui distribue sur le ternaire
opération depuis la gauche, c’est-à-dire pour tout a, b, c, d ∈ T,

a · [b, c, d] = [a · b, a · c, a · d].
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La théorie des trusses a été développée dans [Brz20, BR21, BMR20, BRS20, ABR21,
BR20].

Chaque skew brace peut être associé à un skew truss gauche approprié : nous
appellerons ce trusses brace-type. Ceci conduit aux principales questions qui ont
motivé le travail présenté dans cette deuxième partie, fruit d’une collaboration
avec Tomasz Brzeziński et Bernard Rybołowicz, paru dans [BMR20]. Que sont
exactement les trusses brace-type ? Comment les construire à partir d’un truss
pas forcément brace-type ? Quand une telle construction est-elle possible ? Nous
présentons ici deux approches pour répondre à des questions de ce type. La
première approche consiste à prendre des quotients de truss par une congruence
particulière et la seconde repose sur une procédure de localisation.

Nous donnons des réponses aux questions ci-dessus dans un contexte plus
général, en considérant les pre-trusses et les near-trusses, les anneau non commuta-
tives et les skew braces, dont la définition se trouve au chapitre 11. On montre que
les congruences dans les pre-trusses et les near-trusses proviennent de sous-heaps nor-
maux avec une propriété de fermeture supplémentaire des classes d’équivalence
qui implique à la fois les opérations ternaires et binaires. De tels sous-heaps, in-
troduits dans [Brz20], sont appelés paragons. Un critère nécessaire et suffisant
sur les paragons sous lequel le quotient d’une near-truss unitaire correspond à un
skew brace est dérivé. Les éléments réguliers d’une pre-truss sont définis comme
des éléments avec des propriétés d’annulation gauche et droite ; suivant la termi-
nologie de la théorie des anneaux, les pre-trusses dans lesquelles tous les éléments
non absorbants sont réguliers sont appelées domaines. Ces derniers sont décrits
comme des quotients par des paragons complètement premiers, également définis
ici. Des pre- et near-trusses réguliers sont introduits comme domaines qui satisfont
à la condition Ore et le pre-truss des fractions est construites par localisation. En
particulier, on montre que les pre-truss des fractions sans absorbeur correspondent
à un skew brace.
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baxter equation. Communications in Mathematical Physics, 327(1):101–
116, 2014.

[CLS11] David A. Cox, John B. Little, and Henry K. Schenck. Toric varieties,
volume 124. American Mathematical Soc., 2011.

[CLS12] Chenghao Chu, Oliver Lorscheid, and Rekha Santhanam. Sheaves
and k-theory for f1-schemes. Advances in Mathematics, 229(4):2239–
2286, 2012.

[CM18] Vasileios Charisopoulos and Petros Maragos. A tropical approach
to neural networks with piecewise linear activations. arXiv preprint
arXiv:1805.08749, 2018.

[Cre98] Richard Crew. Finiteness theorems for the cohomology of an over-
convergent isocrystal on a curve. In Annales Scientifiques de l’École
Normale Supérieure, volume 31, pages 717–763. Elsevier, 1998.

[DKLV17] Kerstin Dächert, Kathrin Klamroth, Renaud Lacour, and Daniel Van-
derpooten. Efficient computation of the search region in multi-
objective optimization. European Journal of Operational Research,
260(3):841–855, 2017.

[DR77] Bernard Dwork and Philippe Robba. On ordinary linear p-adic dif-
ferential equations. Transactions of the American Mathematical Society,
231(1):1–46, 1977.

[DR79] Bernard Dwork and Philippe Robba. On natural radii of p-adic
convergence. Transactions of the American Mathematical Society, 256:199–
213, 1979.

[Dur07] Nikolai Durov. New approach to arakelov geometry. arXiv preprint
arXiv:0704.2030, 2007.

[Dwo60] Bernard Dwork. On the rationality of the zeta function of an algebraic
variety. American Journal of Mathematics, 82(3):631–648, 1960.

133



[Dwo12] Bernard Dwork. Lectures on p-adic differential equations, volume 253.
Springer Science & Business Media, 2012.

[Eil74] Samuel Eilenberg. Automata, languages, and machines. Academic press,
1974.

[ESS99] Pavel Etingof, Travis Schedler, and Alexandre Soloviev. Set-
theoretical solutions to the quantum yang-baxter equation. Duke
mathematical journal, 100(2):169–209, 1999.

[FGLH+20] Sebastian Falkensteiner, Cristhian Garay-López, Mercedes Haiech,
Marc Paul Noordman, Zeinab Toghani, and François Boulier. The fun-
damental theorem of tropical partial differential algebraic geometry.
arXiv preprint arXiv:2002.03041, 2020.

[FO08] Jean-Marc Fontaine and Yi Ouyang. Theory of p-adic galois represen-
tations. preprint, 2008.

[Fon94] Jean-Marc Fontaine. Représentations p-adiques semi-stables.
Astérisque, 223:113–184, 1994.

[Fon04] Jean-Marc Fontaine. Représentations de de rham et représentations
semi-stables. Orsay preprint, (2004-12), 2004.

[Fon07] Jean-Marc Fontaine. Représentations p-adiques des corps locaux. In
The Grothendieck Festschrift, pages 249–309. Springer, 2007.

[FT20] Alex Fink and Zeinab Toghani. Initial forms and a notion of basis for
tropical differential equations. arXiv preprint arXiv:2004.08258, 2020.

[Ful93] William Fulton. Introduction to toric varieties. Princeton University
Press, 1993.

[FZ02] Sergey Fomin and Andrei Zelevinsky. Cluster algebras i: foundations.
Journal of the American Mathematical Society, 15(2):497–529, 2002.

[GB84] JRJ Groves and Robert Bieri. The geometry of the set of characters
iduced by valuations. 1984.

[GG14] Jeffrey Giansiracusa and Noah Giansiracusa. The universal
tropicalization and the berkovich analytification. arXiv preprint
arXiv:1410.4348, 2014.

[GG16] Jeffrey Giansiracusa and Noah Giansiracusa. Equations of tropical
varieties. Duke Mathematical Journal, 165(18):3379–3433, 2016.

[GG18] Jeffrey Giansiracusa and Noah Giansiracusa. A Grassmann algebra
for matroids. Manuscripta Math., 156(1-2):187–213, 2018.

[GKZ08] Israel M Gelfand, Mikhail Kapranov, and Andrei Zelevinsky. Discrim-
inants, resultants, and multidimensional determinants. Springer Science
& Business Media, 2008.

[GL10] Anton A Gerasimov and Dimitri R Lebedev. Representation theory
over tropical semifield and langlands correspondence. arXiv preprint
arXiv:1011.2462, 2010.

134



[GM08] Andreas Gathmann and Hannah Markwig. Kontsevich’s formula and
the wdvv equations in tropical geometry. Advances in Mathematics,
217(2):537–560, 2008.

[GM21] Jeffrey Giansiracusa and Stefano Mereta. A general framework for
tropical differential equations. arXiv preprint arXiv:2111.03925, 2021.

[Gol13] Jonathan S Golan. Semirings and their Applications. Springer Science &
Business Media, 2013.

[Gri17] Dima Grigoriev. Tropical differential equations. Advances in Applied
Mathematics, 82:120–128, 2017.

[Gro10] Mark Gross. Mirror symmetry for p2 and tropical geometry. Advances
in Mathematics, 224(1):169–245, 2010.

[Gro11] Mark Gross. Tropical geometry and mirror symmetry. Number 114.
American Mathematical Soc., 2011.

[GV17] Leandro Guarnieri and Leandro Vendramin. Skew braces and the
yang–baxter equation. Mathematics of Computation, 86(307):2519–2534,
2017.

[HG21] Y. Hu and XS. Gao. Tropical differential gröbner bases. Math. Comput.
Sci., 15:255–269, 2021.

[IKT12] Rei Inoue, Atsuo Kuniba, and Taichiro Takagi. Integrable structure
of box–ball systems: crystal, bethe ansatz, ultradiscretization and
tropical geometry. Journal of Physics A: Mathematical and Theoretical,
45(7):073001, 2012.

[Ill94] Luc Illusie. Crystalline cohomology. Motives (Seattle, WA, 1991),
55:43–70, 1994.

[IMS09] Ilia Itenberg, Grigory Mikhalkin, and Eugenii I Shustin. Tropical
algebraic geometry, volume 35. Springer Science & Business Media,
2009.

[JM18a] Dániel Joó and Kalina Mincheva. On the dimension of polynomial
semirings. J. Algebra, 507:103–119, 2018.

[JM18b] Dániel Joó and Kalina Mincheva. Prime congruences of additively
idempotent semirings and a Nullstellensatz for tropical polynomials.
Sel. Math., New Ser., 24(3):2207–2233, 2018.

[JS19] Michael Joswig and Benjamin Schröter. The tropical geometry of
shortest paths. arXiv e-prints, pages arXiv–1904, 2019.

[Jun21] Jaiung Jun. Geometry of hyperfields. J. Algebra, 569:220–257, 2021.

[Kaj08] Takeshi Kajiwara. Tropical toric geometry. Contemporary Mathematics,
460:197–208, 2008.

[Kat17] Eric Katz. What is tropical geometry? Notices of the AMS, 64(4), 2017.

[Ked09] Kiran S Kedlaya. p-adic Cohomology, volume 80. Amer. Math. Soc
Providence, 2009.

135



[Ked10] Kiran S Kedlaya. p-adic Differential Equations, volume 125. Cambridge
University Press, 2010.

[Kei75] William Keigher. Adjunctions and comonads in differential algebra.
Pacific journal of Mathematics, 59(1):99–112, 1975.

[Kol73] Ellis Robert Kolchin. Differential algebra & algebraic groups. Academic
press, 1973.

[Kov02] Jerald J Kovacic. Differential schemes. In Differential algebra and related
topics, pages 71–94. World Scientific, 2002.

[Lor12] Oliver Lorscheid. The geometry of blueprints: Part I: Algebraic
background and scheme theory. Adv. Math., 229(3):1804–1846, 2012.

[Lor15] Oliver Lorscheid. Scheme-theoretic tropicalization. arXiv:1508.07949,
2015.

[Lor19] Oliver Lorscheid. Tropical geometry over the tropical hyperfield.
arXiv:1907.01037, 2019.

[LS07] Bernard Le Stum. Rigid cohomology. Cambridge University Press,
2007.

[LYZ00] Jiang-Hua Lu, Min Yan, and Yong-Chang Zhu. On the set-theoretical
yang-baxter equation. Duke Mathematical Journal, 104(1):1–18, 2000.

[Man92] Elisabeth Louise Mansfield. Differential Gröbner bases. PhD thesis,
University of Sidney, 1992.

[Man11] Christopher Manon. Dissimilarity maps on trees and the representa-
tion theory of slm(C). Journal of Algebraic Combinatorics, 33(2):199–213,
2011.

[Mik05a] Grigory Mikhalkin. Enumerative tropical algebraic geometry in R2.
Journal of the American Mathematical Society, 18(2):313–377, 2005.

[Mik05b] Grigory Mikhalkin. Enumerative tropical algebraic geometry in r2.
Journal of the American Mathematical Society, 18(2):313–377, 2005.

[MLYK18] Anthea Monod, Bo Lin, Ruriko Yoshida, and Qiwen Kang. Tropical
geometry of phylogenetic tree space: a statistical perspective. arXiv
preprint arXiv:1805.12400, 2018.

[Mon68] Paul Monsky. Formal cohomology: Ii. the cohomology sequence of a
pair. Annals of Mathematics, pages 218–238, 1968.

[Mon71] Paul Monsky. Formal cohomology: Iii. fixed point theorems. Annals
of Mathematics, 93(2):315–343, 1971.

[MR14] Diane Maclagan and Felipe Rincón. Tropical schemes, tropical cycles,
and valuated matroids. arXiv preprint arXiv:1401.4654, 2014.

[MR18] Diane Maclagan and Felipe Rincón. Tropical ideals. Compositio Math-
ematica, 154(3):640–670, 2018.

136



[MR20] D. Maclagan and F. Rincón. Varieties of tropical ideals are balanced.
arXiv:2009.14557, 2020.

[MRZ21] Guido Montúfar, Yue Ren, and Leon Zhang. Sharp bounds for the
number of regions of maxout networks and vertices of minkowski
sums. arXiv preprint arXiv:2104.08135, 2021.

[MS15] Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry,
volume 161. American Mathematical Soc., 2015.

[MW68] Paul Monsky and Gerard Washnitzer. Formal cohomology: I. Annals
of Mathematics, pages 181–217, 1968.

[Ore31] Oystein Ore. Linear equations in non-commutative fields. Annals of
Mathematics, pages 463–477, 1931.

[Pay09] Sam Payne. Analytification is the limit of all tropicalizations. arXiv
preprint arXiv:0805.1916, 2009.

[Pil11] Gunter Pilz. Near-rings: the theory and its applications. Elsevier, 2011.

[PP13] Jérôme Poineau and Andrea Pulita. The convergence newton poly-
gon of a p-adic differential equation iii: global decomposition and
controlling graphs. arXiv preprint arXiv:1308.0859, 2013.

[PP15a] Jérôme Poineau and Andrea Pulita. Continuity and finiteness of the
radius of convergence of a p-adic differential equation via potential
theory. Journal für die reine und angewandte Mathematik (Crelles Journal),
2015(707):125–147, 2015.

[PP15b] Jérôme Poineau and Andrea Pulita. The convergence newton poly-
gon of a p-adic differential equation ii: Continuity and finiteness on
berkovich curves. Acta Mathematica, 214(2):357–393, 2015.

[Prü24] Heinz Prüfer. Theorie der abelschen gruppen. Mathematische
Zeitschrift, 20(1):165–187, 1924.

[PS04] Lior Pachter and Bernd Sturmfels. Tropical geometry of statistical
models. Proceedings of the National Academy of Sciences, 101(46):16132–
16137, 2004.

[PS05] Lior Pachter and Bernd Sturmfels. Algebraic statistics for computational
biology, volume 13. Cambridge university press, 2005.

[Pul14] Andrea Pulita. Equations différentielles p-adiques. Mémoire
d’habilitation à diriger de recherches, 2014.

[Pul15] Andrea Pulita. The convergence newton polygon of a p-adic differ-
ential equation i: Affinoid domains of the berkovich affine line. Acta
Mathematica, 214(2):307–355, 2015.

[Rit50] Joseph Fels Ritt. Differential algebra, volume 33. American Mathemati-
cal Soc., 1950.

[Rob94] Philippe Robba. Equations différentielles p-adiques. Applications aux
sommes exponentielles, Actualites Mathe., 1994.

137



[Rum07] Wolfgang Rump. Braces, radical rings, and the quantum yang–baxter
equation. Journal of Algebra, 307(1):153–170, 2007.

[Rum19] Wolfgang Rump. Set-theoretic solutions to the yang–baxter equa-
tion, skew-braces, and related near-rings. Journal of Algebra and Its
Applications, 18(08):1950145, 2019.

[Shu06] Eugenii Shustin. A tropical approach to enumerative geometry. St.
Petersburg Mathematical Journal, 17(2):343–375, 2006.

[Sim78] Imre Simon. Limited subsets of a free monoid. In 19th Annual Sym-
posium on Foundations of Computer Science (sfcs 1978), pages 143–150.
IEEE Computer Society, 1978.

[Sim87] Imre Simon. Caracterizacao de conjuntos racionais limitados. Tese de
Livre-Docencia, Instituto de Matemàtica e Estatìstica da Universidade
de Sao Paulo, 1987.

[Smo18] Agata Smoktunowicz. A note on set-theoretic solutions of the yang–
baxter equation. Journal of Algebra, 500:3–18, 2018.

[Sol00] Alexandre Soloviev. Non-unitary set-theoretical solutions to the quan-
tum yang-baxter equation. arXiv preprint math/0003194, 2000.

[SV18] Agata Smoktunowicz and Leandro Vendramin. On skew braces (with
an appendix by n. byott and l. vendramin). Journal of combinatorial
algebra, 2(1):47–86, 2018.

[Tat71] John Tate. Rigid analytic spaces. Inventiones mathematicae, 12(4):257–
289, 1971.

[TS90] Daisuke Takahashi and Junkichi Satsuma. A soliton cellular automa-
ton. Journal of the Physical Society of Japan, 59(10):3514–3519, 1990.

[TV09] Bertrand Toën and Michel Vaquié. Au-dessous de spec Z, preprint.
arXiv preprint math.AG/0509684, 2009.

[TY19] Ngoc Mai Tran and Josephine Yu. Product-mix auctions and tropical
geometry. Mathematics of Operations Research, 44(4):1396–1411, 2019.

[VdP86] Marius Van der Put. The cohomology of monsky and washnitzer.
Mém. Soc. Math. France (NS), 23(4):33–59, 1986.

[Ven18] Leandro Vendramin. Problems on skew left braces. arXiv preprint
arXiv:1807.06411, 2018.

[Vir11] Oleg Viro. On basic concepts of tropical geometry. Proc. Steklov Inst.
Math., 273:252–282, 2011.

[Yag16] Keyvan Yaghmayi. Geometry over the tropical dual numbers. 2016.
arXiv:1611.05508.

[ZNL18] Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geom-
etry of deep neural networks. In International Conference on Machine
Learning, pages 5824–5832. PMLR, 2018.

138


	Acknowledgments
	Foreword
	I Tropical differential algebra
	Introduction
	Tropical geometry and tropical scheme theory
	Tropical geometry: basic definitions, fundamental and structure theorems
	Payne's inverse limit theorem
	Semirings
	Tropical scheme theory 

	Tropical differential algebra and its fundamental theorem
	The fundamental theorem of tropical differential algebra
	A first hint at differential enhancements and pairs

	Differential semirings
	Tropical differential semirings
	Differential congruences

	Differential F1-modules and differential polynomials over a differential semiring
	Differential F1-modules and -algebras
	Failure of the naive construction of Ritt polynomials over a differential semiring 
	Ritt polynomial algebras over a differential (semi)ring

	Tropical pairs
	The categories of tropical pairs and of S-algebras
	The reduction functor
	Tropical differential equations and their solutions
	Colimits of pairs
	Differential enhancements of valuations
	The differential Berkovich space

	Differential tropicalization functor and colimit theorem
	Differential tropicalization
	Functoriality of tropicalization
	The universal presentation and the universal tropicalization

	A general framework for tropical PDEs
	Partial differential semirings
	Ritt polynomial algebras over a partial differential (semi)ring
	Partial tropical pairs
	Tropicalization of partial differential equations

	Future directions

	II Trusses and braces
	Introduction
	Background
	Near-rings, skew-rings and skew braces
	Heaps

	Quotient pre-trusses, near-trusses and skew braces
	Trusses
	Paragons
	Ideals in (pre-)trusses
	Brace-type trusses as quotients

	The (pre-)truss of fractions
	Domains and completely prime paragons
	Skew braces of fractions


	Appendices
	Appendix A: Computing tropical solutions to the tropicalization of some linear p-adic ODEs
	Résumé de thèse en français


