Arithmetic intersection

C. Soulé*

1 Definition of the height

Let X be a regular projective flat scheme over \mathbb{Z}, and \bar{L} an hermitian line bundle over X. For every integral closed subset $Y \subset X$ we shall define a real number $h_{\bar{L}}(Y)$, called the (Faltings) height of $Y([4])$. For this we need a few preliminaries.

1.1 Algebraic preliminaries

1.1.1 Length

Let A be a nœtherian (commutative and unitary) ring, and M an A-module of finite type.

There exists a filtration

$$
\begin{equation*}
M=M_{0} \supset M_{1} \supset M_{2} \supset \ldots \supset M_{r}=0 \tag{1}
\end{equation*}
$$

such that $M_{i+1} \neq M_{i}$ and $M_{i} / M_{i+1}=A / \wp_{i}$, where \wp_{i} is a prime ideal, $0 \leq i \leq$ $r-1$.

Definition. M has finite length when there exists a filtration as (1) above where, for all i, \wp_{i} a maximal ideal in A.

Lemma 1 (Jordan-Hölder). If M has finite length, r does not depend on the choice of the filtration (1) with \wp_{i} maximal. We call this number the length of M and denote it $\ell(M) \in \mathbb{N}$.

Lemma 2. Let

$$
0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0
$$

be an exact sequence of A-modules of finite type. Then

$$
\ell(M)=\ell\left(M^{\prime}\right)+\ell\left(M^{\prime \prime}\right)
$$

The proofs of Lemma 1 and Lemma 2 are left to the reader.

[^0]
1.1.2 Order

Let A be as above. The dimension of A is

$$
\begin{aligned}
& \operatorname{dim}(A)=\max \left\{n \backslash \exists \text { a chain of prime ideals } \wp_{0} \subset \wp_{1} \subset \wp_{2} \ldots \subset \wp_{n} \subset A,\right. \\
& \text { with } \left.\wp_{i} \neq \wp_{i+1}\right\} .
\end{aligned}
$$

Let A be an integral ring of dimension 1 , and $a \in A, a \neq 0$.
Lemma 3. $A / a A$ has finite length.
Proof. Let

$$
\overline{\wp_{0}} \subset \ldots \subset \overline{\wp_{n}}
$$

 Let $\wp_{i}=\varphi^{-1}\left(\overline{\wp_{i}}\right)$. We get a chain

$$
\wp_{0} \subset \ldots \subset \wp_{n}
$$

with $\wp_{i} \neq \wp_{i+1}$. Since A is integral, (0) is a prime ideal. And $\wp_{0} \neq(0)$ since \wp_{0} contains a. We conclude that

$$
\operatorname{dim}(A / a A) \leq \operatorname{dim}(A)-1
$$

Since $\operatorname{dim}(A)=1$ this implies that every prime ideal of $A / a A$ is maximal. Therefore $A / a A$ has finite length.
q.e.d.

Let A be as in Lemma 3 and $K=\operatorname{frac}(A)$ the field of fractions of A. If $x \in K$ we define, if $x=a / b$,

$$
\operatorname{ord}_{A}(x)=\ell(A / a A)-\ell(A / b A) \in \mathbb{Z}
$$

Lemma 4. i) $\operatorname{ord}_{A}(x)$ does not depend on the choice of a and b.
ii) $\operatorname{ord}_{A}(x y)=\operatorname{ord}_{A}(x)+\operatorname{ord}_{A}(y)$.

The proof of Lemma 4 is left to the reader.
Example. Assume A is local (i.e. A has only one maximal ideal \mathcal{M}) and regular (i.e. $\operatorname{dim} A=\operatorname{dim}\left(\mathcal{M} / \mathcal{M}^{2}\right)$). When $\operatorname{dim}(A)=1, K$ has a discrete valuation

$$
\begin{gathered}
v: K \rightarrow \mathbb{Z} \cup\{\infty\} \\
A=\{x \in K \text { such that } v(a) \geq 0\}
\end{gathered}
$$

and $\operatorname{ord}_{A}(x)=n$ iff $x \in \mathcal{M}^{n}$ and $x \notin \mathcal{M}^{n+1}$. Therefore

$$
\operatorname{ord}_{A}(x)=v(x)
$$

1.1.3 Divisors

Let X be a nœetherian scheme and O_{X} the sheaf of functions on X.
Definition. A line bundle on X is a locally free O_{X}-module L of rank one.
In other words L is a sheaf of abelian groups on X with a map

$$
\mu: O_{X} \times L \rightarrow L
$$

such that there exists an open cover

$$
X=\bigcup_{\alpha} U_{\alpha}
$$

such that

- $L\left(U_{\alpha}\right) \simeq O\left(U_{\alpha}\right)$
- μ on $L\left(U_{\alpha}\right)$ is the multiplication.

Assume now that X is integral (for every open subset $U \subset X, O(U)$ is integral). Let $\eta \in X$ be the generic point.

Definition. A rational section of L is an element $s \in L_{\eta}$.
Let $Z^{1}(X)$ be the free abelian group spanned by the closed irreducible subsets $Y \subset X$ of codimension one. We call $Z^{1}(X)$ the group of divisors of X.

If $s \in L_{\eta}$ is a rational section, its divisor is defined as

$$
\operatorname{div}(s)=\sum_{Y} n_{Y}[Y] \in Z^{1}(X)
$$

where n_{Y} is computed as follows. If $Y \subset X$ has codimension 1 and $Y=\overline{\{y\}}$ is integral, the ring $A=O_{X, y}$ is local, integral, of dimension 1. Its fraction field is

$$
K=O_{X, \eta}
$$

Choose an isomorphism $L_{y} \simeq A$, hence $L_{\eta} \simeq K$. If $s \in L_{\eta}-\{0\}=K^{*}$, we let

$$
n_{Y}=\operatorname{ord}_{A}(s)
$$

(we shall also write $n_{Y}=\operatorname{ord}_{Y}(s)$).
One can prove that n_{Y} does not depend on choices, and $n_{Y}=0$ for almost all Y.

Example. Let K be a number field and $X=\operatorname{Spec}\left(O_{K}\right)$. Giving L amounts to give

$$
\Lambda=L(X)
$$

a projective O_{K}-module of rank one. If $s \in \Lambda, s \neq 0$, we have a decomposition

$$
\Lambda / O_{K} s \simeq \prod_{\wp \text { prime }}\left(O_{K} / \wp^{n \wp}\right)
$$

where $n_{\wp}=\operatorname{ord}_{O_{\wp}}(s)$, hence

$$
\operatorname{div}(s)=\sum_{\wp} n_{\wp}[\wp]
$$

1.2 Analytic preliminaries

Let X be an analytic smooth manifold over \mathbb{C}, and $O_{X, \text { an }}$ the sheaf of holomorphic functions on X.

Definitions. i) An holomorphic line bundle on X is a locally free $O_{X, \mathrm{an}}$-module of rank one.
ii) A metric $\|\cdot\|$ on L consists of maps

$$
L(x) \xrightarrow{\|\cdot\|} \mathbb{R}_{+}
$$

for any x, where $L(x)=L_{x} / \mathcal{M}_{x}$ is the fiber at x. We ask that

- $\|\lambda s\|=|\lambda|\|s\|$ if $\lambda \in \mathbb{C} ;$
- $\|s\|=0$ iff $s=0$;
- Let $U \subset X$ be an open subset and s a section of L over U vanishing nowhere; then the map

$$
x \longmapsto\|s(x)\|^{2}
$$

is C^{∞}.

We write $\bar{L}=(L,\|\cdot\|)$.
Denote by $A^{n}(X)$ the \mathbb{C}-vector space of C^{∞} differential forms of degree n on X. Recall that $A^{n}(X)$ decomposes as

$$
A^{n}(X)=\bigoplus_{p+q=n} A^{p q}(X)
$$

where $A^{p q}(X)$ consists of those differential forms which can be written locally as a sum of forms of type

$$
u d z_{i_{1}} \wedge \ldots \wedge d z_{i_{p}} \wedge d \bar{z}_{j_{1}} \wedge \ldots \wedge d \bar{z}_{j_{q}}
$$

where u is a C^{∞} function, $d z_{\alpha}=d x_{\alpha}+i d y_{\alpha}$ and $d \bar{z}_{\alpha}=d x_{\alpha}-i d y_{\alpha}$.
The differential

$$
d: A^{n}(X) \rightarrow A^{n+1}(X)
$$

is a sum $d=\partial+\bar{\partial}$ where

$$
\partial: A^{p q}(X) \rightarrow A^{p+1, q}(X)
$$

and

$$
\bar{\partial}: A^{p q}(X) \rightarrow A^{p, q+1}(X)
$$

We have $\partial^{2}=\bar{\partial}^{2}=d^{2}=0$ and we let

$$
d^{c}=\frac{\partial-\bar{\partial}}{4 \pi i},
$$

so that

$$
d d^{c}=\frac{\bar{\partial} \partial}{2 \pi i}
$$

Lemma 4. Let $\bar{L}=(L,\|\cdot\|)$ be an analytic line bundle with metric. There exists a smooth form

$$
c_{1}(\bar{L}) \in A^{1,1}(X)
$$

such that, if $U \subset X$ is an open subset and $s \in \Gamma(U, L)$ is such that $s(x) \neq 0$ for every $x \in U$,

$$
c_{1}(\bar{L})_{\mid U}=-d d^{c} \log \|s\|^{2}
$$

Proof. Let $s^{\prime} \in \Gamma(U, L)$ be another section such that $s(x) \neq 0$ when $x \in U$. We need to show that

$$
\begin{equation*}
-d d^{c} \log \left\|s^{\prime}\right\|^{2}=-d d^{c} \log \|s\|^{2} \quad \text { in } \quad A^{11}(U) \tag{2}
\end{equation*}
$$

There exists $f \in \Gamma\left(U, O_{X_{\mathrm{an}}}\right)$ such that

$$
s^{\prime}=f s
$$

We get

$$
-d d^{c} \log \left\|s^{\prime}\right\|^{2}=-d d^{c} \log \|s\|^{2}-d d^{c} \log |f|^{2}
$$

But

$$
\partial \bar{\partial} \log |f|^{2}=\partial\left[\frac{\bar{\partial} f}{f}+\frac{\bar{\partial} \bar{f}}{\bar{f}}\right]=-\bar{\partial} \frac{\partial(\bar{f})}{\bar{f}}=0
$$

and (2) follows.
q.e.d.

The form $c_{1}(\bar{L})$ is called the first Chern form of \bar{L}.

1.3 Heights

Let X be a regular, projective, flat scheme over \mathbb{Z}. We denote by $X(\mathbb{C})$ the set of complex points of X, an analytic manifold.

Definition. An hermitian line bundle on X is a pair $\bar{L}=(L,\|\cdot\|)$, where L is a line bundle on X and $\|\cdot\|$ is a metric on the holomorphic line bundle

$$
L_{\mathbb{C}}=L_{\mid X(\mathbb{C})}
$$

We also assume that $\|\cdot\|$ is invariant by the complex conjugaison

$$
F_{\infty}: X(\mathbb{C}) \rightarrow X(\mathbb{C})
$$

Let \bar{L} be an hermitian line bundle on X. We let

$$
c_{1}(\bar{L})=c_{1}\left(\bar{L}_{\mathbb{C}}\right) \in A^{1,1}(X(\mathbb{C}))
$$

Theorem 1. There is a unique way to associate to every integral closed subset $Y \subset X$ a real number

$$
h_{\bar{L}}(Y) \in \mathbb{R}
$$

in such a way that:
i) If $\operatorname{dim}(Y)=0$, i.e. when $Y=\{y\}$ where $y \in X$ is a closed point, we let $k(y)=O_{X, y} / \mathcal{M}_{X, y}$ be the residue field. Then $k(y)$ is finite and

$$
h_{\bar{L}}(Y)=\log \#(k(y)) .
$$

ii) If $\operatorname{dim}(Y)>0$, let s be a rational section of L over Y. If

$$
\operatorname{div}_{Y}(s)=\sum_{\alpha} n_{\alpha} Y_{\alpha}
$$

then

$$
h_{\bar{L}}(Y)=\sum_{\alpha} n_{\alpha} h_{\bar{L}}\left(Y_{\alpha}\right)-\int_{Y(\mathbb{C})} \log \|s\| c_{1}(\bar{L})^{\operatorname{dim} Y(\mathbb{C})}
$$

2 Existence of the height

2.1 Resolutions

To prove Theorem 1, we first need to make sense of the integral in ii). For that we use Hironaka's resolution theorem.

Theorem 2 (Hironaka). Let X be a scheme of finite type over \mathbb{C}, and $Z \subset X$ a proper closed subset of X such that $X-Z$ is smooth. Then there exists a proper map

$$
\pi: \widetilde{X} \rightarrow X
$$

such that:
i) \tilde{X} is smooth;
ii) $\widetilde{X}-\pi^{-1}(Z) \xrightarrow{\sim} X-Z$;
iii) $\pi^{-1}(Z)$ is a divisor with normal crossings.

In the situation of ii) in Theorem 1, we apply Theorem 2 to $X=Y(\mathbb{C})$, and to the union $Z=\operatorname{div}(s) \cup Y(\mathbb{C})^{\text {sing }}$ of the support of $\operatorname{div}(s)$ and the singular locus of $Y(\mathbb{C})$. Let $\pi: \widetilde{Y} \rightarrow Y(\mathbb{C})$ be the resolution of $Y(\mathbb{C}), d$ the dimension of $Y(\mathbb{C})$ and $\omega \in A^{d d}(Y(\mathbb{C})-Z)$. Then we define

$$
\int_{Y(\mathbb{C})} \log \|s\| \omega=\int_{\widetilde{Y}} \log \left\|\pi^{*}(s)\right\| \pi^{*}(\omega)
$$

To see that the integral converges choose local coordinates z_{1}, \ldots, z_{d} of \tilde{Y} such that

$$
\pi^{*}(s)=z_{1}^{n} u
$$

with u invertible. Therefore

$$
\log \left\|\pi^{*}(s)\right\|=n \log \left|z_{1}\right|+\alpha
$$

with αC^{∞}, and

$$
\pi^{*}(\omega)=\beta \prod_{i=1}^{d} d z_{i} d \bar{z}_{i}
$$

with $\beta \mathbb{C}^{\infty}$. Since

$$
\int_{0}^{\varepsilon} \log (z) d z d \bar{z}=\int_{0}^{\varepsilon} \log (r) r d r d \theta<+\infty
$$

the integral converges.

2.2

By induction on $\operatorname{dim}(Y)$, the unicity of $h_{\bar{L}}(Y)$ is clear.
Example. Let K be a number field and $X=\operatorname{Spec}\left(O_{K}\right)$. If Σ is the set of complex embeddings of K we have

$$
X(\mathbb{C})=\coprod_{\sigma \in \Sigma} \operatorname{Spec}(\mathbb{C})
$$

To give $\bar{L}=(L,\|\cdot\|)$ amounts to give a pair $\bar{\Lambda}=\left(\Lambda,\|\cdot\|_{\sigma}\right)$ where $\Lambda=L(X)$ is a projective O_{K}-module of rank one and, for any $\sigma \in \Sigma,\|\cdot\|_{\sigma}$ is a metric on $\Lambda \otimes \mathbb{C} \simeq \mathbb{C}$ such that

$$
\left\|F_{\infty}(x)\right\|_{F_{\infty} \sigma \sigma}=\|x\|_{\sigma}
$$

If $s \in \Lambda, s \neq 0$, we have

$$
\operatorname{div}(s)=\sum_{\wp} n_{\wp}[\wp]
$$

and

$$
h_{\bar{L}}(X)=\sum_{\wp} n_{\wp} \log (N \wp)-\sum_{\sigma \in \Sigma} \log \|\sigma(s)\|_{\sigma},
$$

where $N \wp=\#(O / \wp)$.
Since

$$
\Lambda / O s=\prod_{\wp}\left(O_{\wp} / \wp^{n_{\wp}}\right)
$$

we get

$$
\sum_{\wp} n_{\wp} \log \left(N_{\wp}\right)=\log \#(\Lambda / O s)
$$

Lemma 6. $h_{\bar{L}}(X)$ does not depend on the choice of s.
Proof. Let

$$
d(s)=\log \#(\Lambda / O s)-\sum_{\sigma \in \Sigma} \log \|\sigma(s)\|_{\sigma}
$$

If $s^{\prime} \in \Lambda, s^{\prime} \neq 0$, we have

$$
s^{\prime}=f s
$$

with $f \in K^{*}$. Therefore

$$
d\left(s^{\prime}\right)-d(s)=\sum_{\wp} v_{\wp}(f) \log (N \wp)-\sum_{\sigma \in \Sigma} \log \| \sigma(f) \mid=0
$$

by the product formula. q.e.d.

2.3

Let us prove Theorem 1 when Y has dimension one and Y is horizontal, i.e. Y maps surjectively onto $\operatorname{Spec}(\mathbb{Z})$. We have then

$$
Y=\overline{\{y\}}
$$

where y is a closed point in $X \underset{\mathbb{Z}}{\otimes} \mathbb{Q}$. The residue field $K=k(y)$ is a number field and

$$
Y=\operatorname{Spec}(R)
$$

where R is an integral ring with fraction field K. Denote by \widetilde{R} the integral closure of R in K (i.e. $\widetilde{R}=O_{K}$) and let

$$
\pi: \widetilde{Y}=\operatorname{Spec}(\widetilde{R}) \rightarrow Y
$$

be the projection. If

$$
\begin{gathered}
s \in \Gamma(Y, L)-\{0\}, \\
\pi^{*}(s) \in \Gamma\left(\tilde{Y}, \pi^{*} L\right)-\{0\} .
\end{gathered}
$$

We shall prove that

$$
\begin{equation*}
d(s)=d\left(\pi^{*}(s)\right) \tag{3}
\end{equation*}
$$

By 2.2 this will imply that $d(s)$ is independent of the choice of s. To prove (3) we first notice that

$$
Y(\mathbb{C})=\tilde{Y}(\mathbb{C})=\coprod_{\sigma \in \Sigma} \operatorname{Spec}(\mathbb{C})
$$

hence

$$
\begin{equation*}
\sum_{\sigma \in \Sigma} \log \|s\|_{\sigma}=\sum_{\sigma \in \Sigma} \log \left\|\pi^{*}(s)\right\|_{\sigma} \tag{4}
\end{equation*}
$$

Next we consider the commutative diagram

where $\widetilde{s}=\pi^{*}(s) \in \widetilde{L}=\pi^{*}(L)$.
By diagram chase we get

$$
\# K=\# K^{\prime}
$$

On the other hand, for any prime ideal \wp in O_{K}, we have

$$
\#\left(\frac{\widetilde{L}}{L}\right)_{\wp}=\#\left(\frac{\widetilde{R}}{R}\right)_{\wp}
$$

since $\widetilde{L}_{\wp}=L_{\wp} \underset{R \wp}{\otimes} \widetilde{R}_{\wp}$ and L and \widetilde{L} are locally trivial. This implies

$$
\# K^{\prime}=\# K^{\prime \prime}
$$

and $\# K=\# K^{\prime \prime}$. Therefore

$$
\begin{equation*}
\#(L / R s)=\#(\widetilde{L} / \widetilde{R} s) \tag{5}
\end{equation*}
$$

The assertion (3) follows from (4) and (5).
When $\operatorname{dim}(Y)=1$ and Y is vertical i.e. its image in $\operatorname{Spec}(\mathbb{Z})$ is a closed point of finite residue field k, Theorem 1 is proved by considering a resolution

$$
\pi: \widetilde{Y} \rightarrow Y
$$

The proof is the same as in the case Y is horizontal, the product formula being replaced by the equality

$$
\sum_{x \in \widetilde{Y}} v_{x}(f)[k(x): k]=0
$$

for any $f \in k(Y)^{*}$. Indeed,

$$
\log \# k(x)=[k(x): k] \log \# k
$$

2.4

Assume from now on that $\operatorname{dim}(Y) \geq 2$, with $Y \subset X$ a closed integral subscheme, $Y=\overline{\{y\}}$. If $s \in L y, s \neq 0$,

$$
\operatorname{div}(s)=\sum_{\alpha} n_{\alpha} Y_{\alpha}
$$

Lemma 7. There exists $t \in L y$ such that, for every α, the restriction of t to Y_{α} is not zero.

Proof. Let $Y_{\alpha}=\overline{\left\{y_{\alpha}\right\}}$. The ring

$$
R=\underset{\exists \alpha \text { s.t. } y_{\alpha} \in U}{\lim _{\perp}} O(U)
$$

is semi-local, i.e. it has finitely many maximal ideals $\mathcal{M}_{\alpha}, \alpha \in A$. Let

$$
I=\bigcap_{\alpha \in \Lambda} \mathcal{M}_{\alpha}
$$

be the radical of R, and

$$
\Lambda=\underset{\exists \alpha \text { s.t. } y_{\alpha} \in U}{\lim _{X}} L(U) .
$$

Note that, for every α,

$$
R_{\mathcal{M}_{\alpha}}=O_{y_{\alpha}}
$$

and, for every pair $\alpha \neq \beta$

$$
\mathcal{M}_{\alpha}+\mathcal{M}_{\beta}=R
$$

Since L is locally trivial

$$
\Lambda \otimes R / I=\prod_{\alpha}\left(\Lambda \otimes O_{y_{\alpha}}\right) / \mathcal{M}_{\alpha} \simeq \prod_{\alpha} O_{y_{\alpha}} / \mathcal{M}_{\alpha}=R / I
$$

Denote by $t \in \Lambda$ an element such that its class in $\Lambda \otimes R / I$ maps to $1 \in R / I$ by the above isomorphism. The module

$$
M=\Lambda / R t
$$

is such that $M=I M$. Therefore, by Nakayama's lemma, $M=0$. Since

$$
\Lambda=R t
$$

for every $\alpha \in A$ the restriction of t to Y_{α} does not vanish.
q.e.d.

2.5

Given s and t as above we write

$$
\operatorname{div}(s)=\sum_{\alpha} n_{\alpha} Y_{\alpha}
$$

and

$$
\operatorname{div}(t)=\sum_{\beta} m_{\beta} Z_{\beta}
$$

with $Z_{\beta} \neq Y_{\alpha}$ for all β and α. Consider

$$
\operatorname{div}(s) \cdot \operatorname{div}(t)=\sum_{\alpha} n_{\alpha} \operatorname{div}\left(t \mid Y_{\alpha}\right)
$$

and

$$
\operatorname{div}(t) \cdot \operatorname{div}(s)=\sum_{\beta} m_{\beta} \operatorname{div}\left(s \mid Z_{\beta}\right)
$$

These are cycles of codimension two in Y.
Proposition 1. We have

$$
\operatorname{div}(s) \cdot \operatorname{div}(t)=\operatorname{div}(t) \cdot \operatorname{div}(s)
$$

The proof of Proposition 1 will be given later.

Assume $\operatorname{dim} Y(\mathbb{C})=d$, and define

$$
d(s)=h_{\bar{L}}(\operatorname{div}(s))-\int_{Y(\mathbb{C})} \log \|s\| c_{1}(\bar{L})^{d}
$$

By induction hypothesis we have

$$
\begin{aligned}
d(s) & =\sum_{\alpha} n_{\alpha} h_{\bar{L}}\left(\operatorname{div}\left(t_{\mid Y_{\alpha}}\right)\right) \\
& -\sum_{\alpha} n_{\alpha} \int_{Y_{\alpha}(\mathbb{C})} \log \|t\| c_{1}(\bar{L})^{d-1}-\int_{Y(\mathbb{C})} \log \|s\| c_{1}(\bar{L})^{d} \\
& =h_{\bar{L}}(\operatorname{div}(s) \cdot \operatorname{div}(t))-I(s, t)
\end{aligned}
$$

where

$$
I(s, t)=\sum_{\alpha} n_{\alpha} \int_{Y_{\alpha}(\mathbb{C})} \log \|t\| c_{1}(\bar{L})^{d-1}+\int_{Y(\mathbb{C})} \log \|s\| c_{1}(\bar{L})^{d}
$$

Proposition 2. $I(s, t)=I(t, s)$.
From Proposition 1 and Proposition 2 we deduce that $d(s)=d(t)$ when $\operatorname{div}(s)$ and $\operatorname{div}(t)$ are transverse. When s and s^{\prime} are two sections of L there exists a section t such that $\operatorname{div}(s)$ and $\operatorname{div}(t)$ (resp. $\operatorname{div}\left(s^{\prime}\right)$ and $\left.\operatorname{div}(t)\right)$ are transverse. Therefore

$$
d(s)=d(t)=d\left(s^{\prime}\right)
$$

and Theorem 1 follows.

2.6

To prove Proposition 1 we write

$$
\operatorname{div}(s) \cdot \operatorname{div}(t)=\sum_{W} n_{W}[W]
$$

with $\operatorname{codim}_{Y}(W)=2$. Let $W=\overline{\{w\}}$ and

$$
R=O_{Y, w}
$$

Since $L_{w} \simeq O_{Y, w}$ one can assume that t (resp. s) corresponds to $a \in R$ (resp. $b \in R$). Since R is integral and $a \neq 0$, we know from the proof of Lemma 3 that, if $A=R / a R$,

$$
\operatorname{dim}(A) \leq \operatorname{dim}(R)-1=1
$$

Let $\bar{b} \in A$ be the image of b and let $\bar{\wp} \subset A$ be a minimal prime ideal of A. The inverse image $\wp \subset R$ of \wp is a minimal nontrivial prime ideal. Since $a \in \wp$ we have $a R=\wp$ and $b \notin \wp$, otherwise $\operatorname{div}(t)$ is not prime to $\operatorname{div}(s)$. Hence $\bar{b} \notin \bar{\wp}$.

Furthermore \bar{b} does not divide zero in A. Otherwise there exists a minimal prime ideal $\wp \supset a R$ such that \bar{b} divides zero in R / \wp. Since $\bar{b} \neq 0$ and R is integral, we get a contradiction.

Since \bar{b} does not divide zero we have $\operatorname{dim}(A / \bar{b}) \leq \operatorname{dim}(A)-1$. But $\operatorname{dim}(A) \leq$ 1. Therefore $\operatorname{dim}(A)=1$ and $\operatorname{dim}(A / \bar{b})=0$. It follows that A / \bar{b} has finite length. If $\langle a, b\rangle \subset R$ is the ideal spanned by a and $b, A / \bar{b}=R /\langle a, b\rangle$. We shall prove that

$$
n_{W}=\ell(R /\langle a, b\rangle)
$$

2.7

Let A be as above and let M be an A-module of finite type. If $x \in A$ we have an exact sequence

$$
\begin{equation*}
0 \rightarrow M[x] \rightarrow M \xrightarrow{\times x} M \rightarrow M / x M \rightarrow 0 . \tag{6}
\end{equation*}
$$

If $M[x]$ and $M / x M$ have finite length we define

$$
e(x, M)=\ell(M / x M)-\ell(M[x]) \in \mathbb{Z}
$$

Lemma 7. i) $M[\bar{b}]$ and $M / \bar{b} M$ have finite length.
ii)

$$
e(\bar{b}, M)=\sum_{\substack{\wp \subset A \\ \wp \operatorname{minimal}}} \ell_{A_{\wp}}\left(M_{\wp}\right) e(\bar{b}, A / \wp) .
$$

iii)

$$
e(\bar{b}, A / \wp)=\ell(A /(\wp+b A)) .
$$

Proof of i) and ii). Note that both sides in ii) are additive in M. Therefore we can assume that $M=A / q$ where q is a prime ideal. We distinguish two cases:
a) If q is maximal, for any minimal prime ideal \wp we have $M_{\wp}=0$. Therefore $\ell(M)$ is finite. From Lemma 2 and (6) we conclude that

$$
e(\bar{b}, M)=0
$$

b) Assume $q=\wp$ is minimal. If $\wp^{\prime} \neq \wp$ is any prime ideal different from \wp we have

$$
M_{\wp^{\prime}}=0
$$

Therefore the right hand side reduces to one summand and i) holds. Furthermore

$$
\ell_{A_{\wp}}\left(M_{\wp}\right)=1
$$

and

$$
e(\bar{b}, M)=e(\bar{b}, A / \wp)
$$

so ii) is true.
To prove iii) it is also enough to check the case $M=A / \wp$. We saw that $b \notin \wp$ and A / \wp is integral, therefore $M[\bar{b}]=0$.

On the other hand

$$
\operatorname{dim}(A /(\wp+b A)) \leq \operatorname{dim}(A / \wp)-1=0
$$

Therefore

$$
e(\bar{b}, A / \wp)=\ell(A /(\wp+b A))
$$

q.e.d.

2.8

We shall apply Lemma 7 to

$$
M=A=R / a R
$$

Let \wp be a minimal prime in A and $Y \subset|\operatorname{div}(s)|$ the corresponding component of the support of $\operatorname{div}(s)$. We have

$$
\ell_{A_{\wp}}\left(A_{\wp}\right)=\operatorname{ord}_{A_{\wp}}(a)=\operatorname{ord}_{Y}(s)
$$

and

$$
\ell(A /(\wp+b A))=\operatorname{ord}_{W}\left(t_{\mid Y}\right)
$$

Lemma 7 iii) says that

$$
e(\bar{b}, A)=n_{W}
$$

But \bar{b} does not divide zero, so

$$
e(\bar{b}, A)=\ell(R /\langle a, b\rangle)
$$

Therefore $n_{W}=\ell(R /\langle a, b\rangle)$. Since $\langle a, b\rangle=\langle b, a\rangle$ we conclude that

$$
\operatorname{div}(s) \cdot \operatorname{div}(t)=\sum_{W} n_{W}[W]=\operatorname{div}(t) \cdot \operatorname{div}(s)
$$

This ends the proof of Proposition 1.

2.9

We shall now prove Proposition 2. For this we need some more analytic preliminaries. Let X be a smooth complex compact manifold of dimension d.

Definition. A current $T \in D^{p q}(X)$ is a \mathbb{C}-linear form

$$
T: A^{d-p, d-q}(X) \rightarrow \mathbb{C}
$$

which is continuous for the Schwartz' topology.

Examples. 1) If $\eta \in L^{1}(X) \underset{C^{\infty}(X)}{\otimes} A^{p q}(X)$ is an integrable differential, η defines a current by the formula

$$
\eta(\omega)=\int_{X} \eta \wedge \omega
$$

2) If $Z=\sum_{\alpha} n_{\alpha} Z_{\alpha}$ is a cycle of codimension p on X, it defines a Dirac current $\delta_{Z} \in D^{p p}(X)$ by the formula

$$
\delta_{Z}(\omega)=\sum_{\alpha} n_{\alpha} \int_{Z_{\alpha}} \omega
$$

where the integrals converge by Hironaka's theorem.
We can derivate a current $T \in D^{p q}(X)$ by the formulae

$$
\partial T(\omega)=(-1)^{p+q+1} T(\partial \omega)
$$

and

$$
\bar{\partial} T(\omega)=(-1)^{p+q+1} T(\bar{\partial} \omega) .
$$

By the Stokes formula we get a commutative diagram

and idem for $\bar{\partial}$ and $d=\partial+\bar{\partial}$.
Proposition 3 (Poincaré-Lelong). Let \bar{L} be an hermitian line bundle on X and s a meromorphic section of L. Then we have the following formula in $D^{1,1}(X)$

$$
\begin{equation*}
d d^{c}\left(-\log \|s\|^{2}\right)+\delta_{\operatorname{div}(s)}=c_{1}(\bar{L}) \tag{7}
\end{equation*}
$$

2.10

To prove Proposition 3 let $Z=|\operatorname{div}(s)|$ be the support of the divisor of s. By Theorem 2, there exists a birational resolution

$$
\pi: \widetilde{X} \rightarrow X
$$

where $\pi^{-1}(Z)$ has local equation $z_{1} \ldots z_{k}=0$. Therefore

$$
\pi^{*}(s)=z_{1}^{n_{1}} \ldots z_{k}^{n_{k}}
$$

locally. If Proposition 3 holds for $\pi^{*}(\bar{L})$ and $\pi^{*}(s)$, by applying π_{*} we get (7). So we can assume that $X=\widetilde{X}$. By additivity we can assume that
a) $\|s\|=\left|z_{1}\right|$
or
b) $\log \|s\|=\rho \in C^{\infty}(X)$.

In case b) $\operatorname{div}(s)=0$ and (7) is true by definition of $c_{1}(\bar{L})$ (Lemma 4). In case a) we have to show that, for every differerntial form ω, with compact support in U,

$$
-\int_{U} \log \left|z_{1}\right|^{2} d d^{c}(\omega)=\int_{\left|z_{1}\right|=\varepsilon} \omega .
$$

But, by Stokes' theorem, we have

$$
\begin{aligned}
& -\lim _{\varepsilon \rightarrow 0} \int_{\left|z_{1}\right| \geq \varepsilon} \log \left|z_{1}\right|^{2} d d^{c}(\omega) \\
= & \lim _{\varepsilon \rightarrow 0} \int_{\left|z_{1}\right|=\varepsilon} \log \left|z_{1}\right| d^{c} \omega+\lim _{\varepsilon \rightarrow 0} \int_{\left|z_{1}\right| \geq \varepsilon} d \log \left|z_{1}\right|^{2} d^{c} \omega .
\end{aligned}
$$

The first summand vanishes and, applying Stokes' theorem again,

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \int_{\left|z_{1}\right| \geq \varepsilon} d \log \left|z_{1}\right|^{2} d^{c} \omega=-\lim _{\varepsilon \rightarrow 0} \int_{\left|z_{1}\right| \geq \varepsilon} d^{c} \log \left|z_{1}\right|^{2} d \omega \\
= & \lim _{\varepsilon \rightarrow 0} \int_{\left|z_{1}\right|=\varepsilon} d^{c} \log \left|z_{1}\right|^{2} \omega-\lim _{\varepsilon \rightarrow 0} \int_{\left|z_{1}\right| \geq \varepsilon} d d^{c} \log \left|z_{1}\right|^{2} \omega .
\end{aligned}
$$

The second summand vanishes and, taking polar coordinates $z_{1}=r_{1} e^{i \theta_{1}}$, we get

$$
d^{c} \log \left|z_{1}\right|^{2}=\frac{d \theta_{1}}{2 \pi}
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \int_{\left|z_{1}\right|=\varepsilon} \frac{d \theta_{1}}{2 \pi} \omega=\int_{z_{1}=0} \omega .
$$

q.e.d.

2.11

Coming back to Proposition 2 we consider the current

$$
T_{s, t}=\delta_{\operatorname{div}(s)} \log \|t\|^{2}+\log \|s\|^{2} c_{1}(\bar{L}) .
$$

Then

$$
I(s, t)=T_{s, t}\left(c_{1}(\bar{L})^{d-1}\right) / 2 .
$$

Proposition 3 implies

$$
T_{s, t}=\left(c_{1}(\bar{L})+d d^{c} \log \|s\|^{2}\right) \log \|t\|^{2}+\log \|s\|^{2} c_{1}(\bar{L})
$$

at least formally: we have to make sense of the product of currents $\left(d d^{c} \log \|s\|^{2}\right) \log \|t\|^{2}$. By Stokes' theorem we have (at least formally)

$$
\begin{aligned}
d d^{c}\left(T_{1}\right) T_{2} & =d\left(d^{c}\left(T_{1}\right) T_{2}\right)+d^{c}\left(T_{1}\right) d\left(T_{2}\right) \\
& =d\left(d^{c}\left(T_{1}\right) T_{2}\right)+d^{c}\left(T_{1} d T_{2}\right)-T_{1} d^{c} d\left(T_{2}\right) .
\end{aligned}
$$

Since $d^{c} d=-d d^{c}$ and $d\left(c_{1}(\bar{L})^{d-1}\right)=d^{c}\left(c_{1}(\bar{L})^{d-1}\right)=0$ we get

$$
2 I(s, t)=T_{s, t}\left(c_{1}(\bar{L})^{d-1}\right)=T_{t, s}\left(c_{1}(\bar{L})^{d-1}\right)=2 I(t, s)
$$

q.e.d.

2.12 The height of the projective space

Let $N \geq 1$ be an integer and \mathbb{P}^{N} the N-dimensional projective space over \mathbb{Z}. The tautological line bundle $O(1)$ on \mathbb{P}^{N} is a quotient of the trivial vector bundle of rank $N+1$

$$
O_{\mathbb{P}^{N}}^{N+1} \rightarrow O(1) \rightarrow 0 .
$$

We equip $O_{\mathbb{P}^{N}}^{N+1}$ with the trivial metric and $O(1)$ with the quotient metric.
Proposition 4. The height of \mathbb{P}^{N} is

$$
h \overline{O(1)}\left(\mathbb{P}^{N}\right)=\frac{1}{2} \sum_{k=1}^{N} \sum_{m=1}^{k} \frac{1}{m} .
$$

Proof of Proposition 4. Let s be the section of $O(1)$ defined by the homogeneous coordinate X_{0}. Then $\operatorname{div}(s)=\mathbb{P}^{N+1}$ and we get, from Theorem 1 ii),

$$
h\left(\mathbb{P}^{N}\right)=h\left(\mathbb{P}^{N-1}\right)-\int_{\mathbb{P}^{N}(\mathbb{C})} \log \|s\| d \mu
$$

where $d \mu$ is the probability measure on $\mathbb{P}^{N}(\mathbb{C})$ invariant under rotation by $U(N+$ 1). If $d v$ is the probability measure on the sphere $S^{2 N+1}$ invariant under $U(N+$ 1) we have

$$
\int_{\mathbb{P}^{N}(\mathbb{C})} \log \|s\| d \mu=\int_{S^{2 N+1}} \log \left|X_{0}\right| d v
$$

and Proposition 4 follows from

Lemma 8.

$$
\int_{S^{2 N+1}} \log \left|X_{0}\right| d v=\frac{1}{2} \sum_{m=1}^{N} \frac{1}{m}
$$

3 Arithmetic Chow groups

3.1 Definition

Let X be a regular projective flat scheme over \mathbb{Z} and $p \geq 0$ an integer. Let $Z^{p}(X)$ be the group of codimension p cycles on X.

Definition. A Green current for $Z \in Z^{p}(X)$ is a real current $g \in D^{p-1, p-1}(X(\mathbb{C}))$ such that $F_{\infty}^{*}(g)=(-1)^{p-1} g$ and

$$
d d^{c} g+\delta_{Z}=\omega
$$

is a smooth form $\omega \in A^{p p}(X(\mathbb{C}))$.
We let $\widehat{Z}^{p}(X)$ be the group generated by pairs $(Z, g), Z \in Z^{p}(X), g$ Green current for Z, with $\left(Z_{1}, g_{1}\right)+\left(Z_{2}, g_{2}\right)=\left(Z_{1}+Z_{2}, g_{1}+g_{2}\right)$.

Examples. i) Let $Y \subset X$ be a closed irreducible subset with $\operatorname{codim}_{X}(Y)=$ $p-1$, and $f \in k(Y)$ a rational function on Y. Define $\log |f|^{2} \in D^{p-1, p-1}(X(\mathbb{C}))$ by the formula

$$
\left(\log |f|^{2}\right)(\omega)=\int_{Y(\mathbb{C})} \log |f|^{2} \omega
$$

(which makes sense by Theorem 2). We may think of f as a rational section of the trivial line bundle on Y. Therefore Poincaré-Lelong formula (Proposition 3) reads

$$
d d^{c}\left(-\log |f|^{2}\right)+\delta_{\operatorname{div}(f)}=0
$$

Hence the pair

$$
\widehat{\operatorname{div}}(f)=\left(\operatorname{div}(f),-\log |f|^{2}\right)
$$

is an element of $\widehat{Z}^{p}(X)$.
ii) Given $u \in D^{p-2, p-1}(X(\mathbb{C}))$ and $v \in D^{p-1, p-2}(X(\mathbb{C}))$ we have

$$
d d^{c}(\partial u+\bar{\partial} v)=0
$$

so $(0, \partial u+\bar{\partial} v) \in \widehat{Z}^{p}(X)$.
We let $\widehat{R}^{p}(X) \subset \widehat{Z}^{p}(X)$ be the subgroup generated by all elements $\widehat{\operatorname{div}}(f)$ and $(0, \partial u+\bar{\partial} v)$.

Definition. The arithmetic Chow group of codimension p of X is the quotient

$$
\widehat{\mathrm{CH}}^{p}(X)=\widehat{Z}^{p}(X) / \widehat{R}^{p}(X) .
$$

3.2 Example

Let $\widehat{\operatorname{Pic}}(X)$ be the group of isometric isomorphism classes of hermitian line bundles on X, equipped with the tensor product.

If $\bar{L}=(L,\|\cdot\|) \in \widehat{\operatorname{Pic}}(X)$ and if $s \neq 0$ is a rational section of L we let

$$
\widehat{\operatorname{div}}(s)=\left(\operatorname{div}(s),-\log \|s\|^{2}\right) \in \widehat{Z}^{1}(X)
$$

(Proposition 3), and we define

$$
\widehat{c}_{1}(\bar{L}) \in \widehat{\mathrm{CH}}^{1}(X)
$$

to be the class of $\widehat{\operatorname{div}}(s)$. It does not depend on the choice of s : if s^{\prime} is another section of L we have

$$
s^{\prime}=f s
$$

with $f \in k(X)$. Therefore

$$
\widehat{\operatorname{div}}\left(s^{\prime}\right)-\widehat{\operatorname{div}}(s)=\widehat{\operatorname{div}}(f) \in \widehat{R}^{1}(X)
$$

Proposition 5. The map \widehat{c}_{1} induces a group isomorphism

$$
\widehat{c}_{1}: \widehat{\operatorname{Pic}}(X) \rightarrow \widehat{\mathrm{CH}}^{1}(X)
$$

To prove Proposition 5 we consider the commutative diagram with exact rows

where $a(\varphi)$ is the trivial line bundle on X equipped with the norm such that $\|1\|=\exp (\varphi), \zeta(\bar{L})=L, a^{\prime}(\varphi)=\left(0,-\log |\varphi|^{2}\right)$ and $\zeta(Z, g)=Z$. Since c_{1} is an isomorphism the same is true for \widehat{c}_{1}.

3.3 Products

3.3.1

Denote by $\widehat{\mathrm{CH}}^{p}(X)_{\mathbb{Q}}$ the tensor product $\widehat{\mathrm{CH}}^{p}(X) \underset{\mathbb{Z}}{\otimes} \mathbb{Q}$.
Theorem 3. When $p \geq 0$ and $q \geq 0$ there is an intersection pairing

$$
\begin{aligned}
\widehat{\mathrm{CH}}^{p}(X) \otimes \widehat{\mathrm{CH}}^{q}(X) & \longrightarrow \mathrm{CH}^{p+q}(X)_{\mathbb{Q}} \\
x \otimes y & \longmapsto x \cdot y
\end{aligned}
$$

It makes $\underset{p \geq 0}{\oplus} \widehat{\mathrm{CH}}^{p}(X)_{\mathbb{Q}}$ a commutative graded \mathbb{Q}-algebra.
Let $\zeta: \widehat{\mathrm{CH}}^{p}(X) \rightarrow \mathrm{CH}^{p}(X)$ be the map sending the class of (Z, g) to the class of Z, and let $\omega: \widehat{\mathrm{CH}}^{p}(X) \rightarrow A^{p p}(X)$ be the map sending (Z, g) to $d d^{c} g+\delta_{Z}$. Then

$$
z(x \cdot y)=z(x) z(y)
$$

and

$$
\omega(x \cdot y)=\omega(x) \omega(y)
$$

3.3.2

To prove Theorem 3, let $y=\left(Y, g_{Y}\right) \in \widehat{Z}^{p}(X)$ and $z=\left(Z, g_{Z}\right) \in \widehat{Z}^{q}(X)$.
We first define a cycle $Y \cap Z$. For this we assume that the restrictions $Y_{\mathbb{Q}}$ and $Z_{\mathbb{Q}}$ of Y and Z to the generic fiber $X_{\mathbb{Q}}$ meet properly, i.e. the components of $\left|Y_{\mathbb{Q}}\right| \cap\left|Z_{\mathbb{Q}}\right|$ have codimension $p+q$ (the moving lemma allows one to make this hypothesis). It follows that there exists a well defined intersection cycle $Y_{\mathbb{Q}} \cdot Z_{\mathbb{Q}} \in Z^{p+q}\left(X_{\mathbb{Q}}\right)$, supported on the closed set $\left|Y_{\mathbb{Q}}\right| \cap\left|Z_{\mathbb{Q}}\right|$. Let

$$
\mathrm{CH}_{Y}^{p}(X)=\operatorname{ker}\left(\mathrm{CH}^{p}(X)-\mathrm{CH}^{p}(X-Y)\right)
$$

be the Chow group with supports in Y, and $\mathrm{CH}_{\text {fin }}^{p}(X)$ the Chow group with supports in finite fibers of X. There is a canonical map

$$
\mathrm{CH}_{Y}^{p}(X)=\mathrm{CH}_{\mathrm{fin}}^{p}(X) \oplus Z^{p}\left(X_{\mathbb{Q}}\right) .
$$

One can define an intersection paring

$$
\mathrm{CH}_{Y}^{p}(X) \otimes \mathrm{CH}_{Z}^{q}(X) \rightarrow \mathrm{CH}_{Y \cap Z}^{p+q}(X)_{\mathbb{Q}} .
$$

One method to do so ([1], [2], [5]) is to interpret $\mathrm{CH}_{Y}^{p}(X)_{\mathbb{Q}}$ as the subspace of $K_{0}^{Y}(X)_{\mathbb{Q}}$ where the Adams operations ψ^{k} act by multiplication by $k^{p}(k \geq 1)$, and to use the tensor product

$$
K_{0}^{Y}(X) \otimes K_{0}^{Z}(X) \rightarrow K_{0}^{Y \cap Z}(X) .
$$

We let $Y \cap Z \in \mathrm{CH}_{\mathrm{fin}}^{p+q}(X)_{\mathbb{Q}} \oplus Z^{p+q}\left(X_{\mathbb{Q}}\right)_{\mathbb{Q}}$ be the image of

$$
[Y] \otimes[Z] \in \mathrm{CH}_{Y}^{p}(X) \otimes \mathrm{CH}_{Z}^{p}(X)
$$

by the maps

$$
\mathrm{CH}_{Y}^{p}(X) \otimes \mathrm{CH}_{Z}^{q}(X) \rightarrow \mathrm{CH}_{Y \cap Z}^{p+q}(X)_{\mathbb{Q}} \rightarrow \mathrm{CH}_{\mathrm{fin}}^{p+q}(X)_{\mathbb{Q}} \oplus Z^{p+q}(X)_{\mathbb{Q}} .
$$

Next we define a Green current for $Y \cap Z$. For this we write

$$
d d^{c} g_{Y}+\delta_{Y}=\omega_{Y}
$$

and

$$
d d^{c} g_{Z}+\delta_{Z}=\omega_{Z}
$$

and we let

$$
g_{Y} * g_{Z}=\delta_{Y} g_{Z}+g_{Y} \omega_{Z} .
$$

However $g_{Y} \delta_{Z}$, being a product of currents, is not well defined a priori. But g_{Y} is defined up to the addition of a term $\partial(u)+\bar{\partial}(v)$ and one shows that g_{Y} can be chosen to be an L^{1}-form on $X(\mathbb{C})-Y(\mathbb{C})$, with restriction an L^{1}-form η on $Z(\mathbb{C})-Z(\mathbb{C}) \cap Y(\mathbb{C})$. We let $g_{Y} \delta_{Z}$ be the current defined by η on $Z(\mathbb{C})$ (see above Example 1) in §2.9):

$$
g_{Y} \delta_{Z}(\omega)=\int_{Z(\mathbb{C})-(Z(\mathbb{C}) \cap Y(\mathbb{C}))} \eta \omega .
$$

To prove that $g_{Y} * g_{Z}$ is a Green current for $Y \cap Z$ we proceed formally:

$$
\begin{aligned}
d d^{c}\left(g_{Y} * g_{Z}\right) & =d d^{c}\left(\delta_{Y} g_{Z}\right)+d d^{c}\left(g_{Y} \omega_{Z}\right) \\
& =\delta_{Y} d d^{c}\left(g_{Z}\right)+d d^{c}\left(g_{Y}\right) \omega_{Z} \\
& \left.=\delta_{Y}\left(\omega_{Z}-\delta_{Z}\right)+\omega_{Y}-\delta_{Y}\right) \omega_{Z} \\
& =\omega_{Y} \omega_{Z}-\delta_{Y} \delta_{Z} \\
& =\omega_{Y} \omega_{Z}-\delta_{Y \cap Z}
\end{aligned}
$$

We refer to [2] for the justification of this series of equalities.

3.4 Functoriality

Let $f: X \rightarrow Y$ be a morphism.
Theorem 5. For every $p \geq 0$ there is a morphism

$$
f^{*}: \widehat{\mathrm{CH}}^{p}(Y) \rightarrow \widehat{\mathrm{CH}}^{p}(X) .
$$

If the restriction of f to $X(\mathbb{C})$ is a smooth map of complex manifolds, there are morphisms

$$
f_{*}: \widehat{\mathrm{CH}}^{p}(X) \rightarrow \widehat{\mathrm{CH}}^{p+\operatorname{dim}(Y)-\operatorname{dim}(X)}(Y) .
$$

Both f^{*} and f_{*} are compatible to ζ and ω. Furthermore

$$
f^{*}(x \cdot y)=f^{*}(x) \cdot f^{*}(y)
$$

and

$$
f_{*}\left(x \cdot f^{*}(y)\right)=f_{*}(x) \cdot y
$$

3.5 Heights and intersection numbers

3.5.1

Let X be a projective regular flat scheme over \mathbb{Z} and $Y \subset X$ a closed integral subscheme. We assume that X is equidimensional of dimension d and $\operatorname{codim}_{X}(Y)=p$. One can then define as follows a morphism

$$
\int_{Y}: \widehat{\mathrm{CH}}^{d-p}(Y) \rightarrow \mathbb{R}
$$

First, assume that $X=Y$ and that $x \in \widehat{\mathrm{CH}}^{d}(X)$ is the class of $\left(Z, g_{Z}\right)$ where Z is a zero-cycle and $g_{Z} \in D^{d-1, d-1}(X(\mathbb{C}))$. The cycle Z is then a finite sum

$$
Z=\sum_{\alpha} n_{\alpha} y_{\alpha}
$$

where y_{α} is a closed point with finite residue field $k\left(y_{\alpha}\right)$, and there exist currents u and v such that $\eta_{Z}=g_{Z}+\partial(u)+\bar{\partial}(v)$ is smooth. By definition

$$
\int_{X} x=\sum_{\alpha} n_{\alpha} \log \#\left(k\left(y_{\alpha}\right)\right)-\frac{1}{2} \int_{X(\mathbb{C})} \eta_{Z}
$$

In general we let g_{Y} be a Green current for Y in $X(\mathbb{C})$, and $y=\left(Y, g_{Y}\right)$. If $x \in \widehat{\mathrm{CH}}^{d-p}(Y)$ we have $x \cdot y \in \widehat{\mathrm{CH}}^{d}(X)$ and we define

$$
\int_{Y} x=\int_{X} x \cdot y-\frac{1}{2} \int_{X(\mathbb{C})} \omega(x) g_{Y} .
$$

One checks that this number is independent on the choice of g_{Y}.
Theorem 5. The height of Y is

$$
h_{\bar{L}}(Y)=\int_{Y} \widehat{c}_{1}(\bar{L})^{d-p} .
$$

3.5.2

To prove Theorem 5 we shall check that the two properties in Theorem 1 hold true for the number $\int_{Y} \widehat{c}_{1}(\bar{L})^{d-p}$.

When $p=d, Y$ is a closed point y and, if x is the class of $(y, 0)$ in $\widehat{\mathrm{CH}}^{d}(X)$, we have

$$
\int_{X} x=\log \# k(y)=h_{\bar{L}}(Y)
$$

Assume $\operatorname{dim}(Y)>0$. Let g_{Y} be a Green current for Y and $y=\left(Y, g_{Y}\right)$. Close a rational section s of L on Y, and an extension \widetilde{s} of s to X. Then

$$
\widehat{c}_{1}(\bar{L})=\left(\operatorname{div}(\widetilde{s}),-\log \|\widetilde{s}\|^{2}\right)
$$

If $x=\widehat{c}_{1}(\bar{L})^{d-p-1}$ we get, from the definition of \int_{Y},

$$
\begin{equation*}
\int_{Y} x \widehat{c}_{1}(\bar{L})=\int_{X} x \widehat{c}_{1}(\bar{L}) y-\frac{1}{2} \int_{X(\mathbb{C})} \omega\left(x \widehat{c}_{1}(\bar{L})\right) g_{Y} \tag{8}
\end{equation*}
$$

But

$$
\begin{aligned}
x \cdot \widehat{c}_{1}(\bar{L}) \cdot y & =x \cdot\left(\operatorname{div}(\widetilde{s} \mid Y),-\log \|\widetilde{s}\|^{2} * g_{Y}\right) \\
& =x \cdot\left(\operatorname{div}(s),-\log \|\widetilde{s}\|^{2} \delta_{Y}+c_{1}(\bar{L}) g_{Y}\right)
\end{aligned}
$$

If $x=: \widehat{c}_{1}(\bar{L})^{d-p-1}$ is the class of $\left(Z, g_{Z}\right)$, we get

$$
\begin{equation*}
x \cdot \widehat{c}_{1}(\bar{L}) \cdot y=\left(Z \cdot \operatorname{div}(s), \omega(x)\left(-\log \|\widetilde{s}\|^{2} \delta_{Y}+c_{1}(\bar{L}) g_{Y}\right)+g_{Z} \delta_{\operatorname{div}(s)}\right) \tag{9}
\end{equation*}
$$

Since

$$
\int_{X}\left(Z \cdot \operatorname{div}(s), g_{Z} \delta_{\operatorname{div}(s)}\right)=\int_{\operatorname{div}(s)} x
$$

we deduce from (9) that
(10) $\int_{X} x \cdot \widehat{c}_{1}(\bar{L}) \cdot y=\int_{\operatorname{div}(s)} x-\frac{1}{2} \int_{Y(\mathbb{C})} \omega(x) \log \|s\|^{2}+\frac{1}{2} \int_{X(\mathbb{C})} \omega(x) c_{1}(\bar{L}) g_{Y}$.

Since $\omega\left(x \widehat{c}_{1}(\bar{L})\right)=\omega(x) c_{1}\left(\bar{L}_{\mathbb{C}}\right),(8)$ and (10) imply that

$$
\int_{Y} \widehat{c}_{1}(\bar{L})^{d-p}=\int_{\operatorname{div}(s)} \widehat{c}_{1}(\bar{L})^{d-p-1}-\frac{1}{2} \int_{Y(\mathbb{C})} c_{1}(\bar{L})^{d-p-1} \log \|s\| .
$$

q.e.d.

References

[1] Gillet, H., Soulé, C.: Intersection theory using Adams operations, Inventiones Math. 90,1987,243-277.
[2] Gillet, H., Soulé, C.: Arithmetic intersection theory. Inst. Hautes études Sci. Publ. Math. 72 (1990), 93-174.
[3] Bost, J.-B.; Gillet, H.; Soulé, C.: Heights of projective varieties and positive Green forms. J. Am. Math. Soc. 7, No.4, 903-1027 (1994)
[4] Faltings, G.: Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549-576.
[5] Soulé, C., Abramovich, D., Burnol, J.-F. and Kramer, J.: Lectures on Arakelov Geometry. Cambridge University Press 1991.

[^0]: ${ }^{*}$ CNRS et IHES, Le Bois-Marie, 35 route de Chartres, 91440 Bures-Sur-Yvette, France soule@ihes.fr

