Arithmetic intersection

C. Soulé*

1 Definition of the height

Let X be a regular projective flat scheme over \mathbb{Z} , and \overline{L} an hermitian line bundle over X. For every integral closed subset $Y \subset X$ we shall define a real number $h_{\overline{L}}(Y)$, called the (Faltings) *height* of Y ([4]). For this we need a few preliminaries.

1.1 Algebraic preliminaries

1.1.1 Length

Let A be a noetherian (commutative and unitary) ring, and M an A-module of finite type.

There exists a filtration

(1)
$$M = M_0 \supset M_1 \supset M_2 \supset \ldots \supset M_r = 0$$

such that $M_{i+1} \neq M_i$ and $M_i/M_{i+1} = A/\wp_i$, where \wp_i is a prime ideal, $0 \le i \le r-1$.

Definition. *M* has *finite length* when there exists a filtration as (1) above where, for all *i*, \wp_i a maximal ideal in *A*.

Lemma 1 (Jordan-Hölder). If M has finite length, r does not depend on the choice of the filtration (1) with \wp_i maximal. We call this number the *length* of M and denote it $\ell(M) \in \mathbb{N}$.

Lemma 2. Let

$$0 \to M' \to M \to M'' \to 0$$

be an exact sequence of A-modules of finite type. Then

$$\ell(M) = \ell(M') + \ell(M'').$$

The proofs of Lemma 1 and Lemma 2 are left to the reader.

 $^{^{*}\}mathrm{CNRS}$ et IHES, Le Bois-Marie, 35 route de Chartres, 91440 Bures-sur-Yvette, France soule@ihes.fr

1.1.2 Order

Let A be as above. The *dimension* of A is

 $\dim(A) = \max\{n \mid \exists a \text{ chain of prime ideals } \wp_0 \subset \wp_1 \subset \wp_2 \ldots \subset \wp_n \subset A,$

with
$$\wp_i \neq \wp_{i+1}$$
.

Let A be an integral ring of dimension 1, and $a \in A$, $a \neq 0$.

Lemma 3. A/aA has finite length.

Proof. Let

$$\overline{\wp_0} \subset \ldots \subset \overline{\wp_n}$$

a maximal chain in A/aA, with $\overline{\wp_i} \neq \overline{\wp_{i+1}}$, and $\varphi : A \to A/aA$ the projection. Let $\wp_i = \varphi^{-1}(\overline{\wp_i})$. We get a chain

$$\wp_0 \subset \ldots \subset \wp_n$$

with $\wp_i \neq \wp_{i+1}$. Since A is integral, (0) is a prime ideal. And $\wp_0 \neq (0)$ since \wp_0 contains a. We conclude that

$$\dim(A/aA) \le \dim(A) - 1.$$

Since dim(A) = 1 this implies that every prime ideal of A/aA is maximal. Therefore A/aA has finite length.

q.e.d.

Let A be as in Lemma 3 and $K = \operatorname{frac}(A)$ the field of fractions of A. If $x \in K$ we define, if x = a/b,

$$\operatorname{ord}_A(x) = \ell(A/aA) - \ell(A/bA) \in \mathbb{Z}.$$

Lemma 4. i) $\operatorname{ord}_A(x)$ does not depend on the choice of a and b. ii) $\operatorname{ord}_A(xy) = \operatorname{ord}_A(x) + \operatorname{ord}_A(y)$.

The proof of Lemma 4 is left to the reader.

Example. Assume A is *local* (i.e. A has only one maximal ideal \mathcal{M}) and *regular* (i.e. dim $A = \dim(\mathcal{M}/\mathcal{M}^2)$). When dim(A) = 1, K has a discrete valuation

$$v: K \to \mathbb{Z} \cup \{\infty\}$$

$$A = \{x \in K \text{ such that } v(a) \ge 0\}$$

and $\operatorname{ord}_A(x) = n$ iff $x \in \mathcal{M}^n$ and $x \notin \mathcal{M}^{n+1}$. Therefore

$$\operatorname{ord}_A(x) = v(x)$$
.

1.1.3 Divisors

Let X be a noetherian scheme and O_X the sheaf of functions on X.

Definition. A *line bundle* on X is a locally free O_X -module L of rank one. In other words L is a sheaf of abelian groups on X with a map

$$\mu: O_X \times L \to L$$

such that there exists an open cover

$$X = \bigcup_{\alpha} U_{\alpha}$$

such that

- $L(U_{\alpha}) \simeq O(U_{\alpha})$
- μ on $L(U_{\alpha})$ is the multiplication.

Assume now that X is integral (for every open subset $U \subset X$, O(U) is integral). Let $\eta \in X$ be the generic point.

Definition. A rational section of L is an element $s \in L_{\eta}$.

Let $Z^1(X)$ be the free abelian group spanned by the closed irreducible subsets $Y \subset X$ of codimension one. We call $Z^1(X)$ the group of *divisors of* X.

If $s \in L_{\eta}$ is a rational section, its *divisor* is defined as

$$\operatorname{div}(s) = \sum_{Y} n_{Y}[Y] \in Z^{1}(X) \,,$$

where n_Y is computed as follows. If $Y \subset X$ has codimension 1 and $Y = \overline{\{y\}}$ is integral, the ring $A = O_{X,y}$ is local, integral, of dimension 1. Its fraction field is

$$K = O_{X,\eta}$$
.

Choose an isomorphism $L_y \simeq A$, hence $L_\eta \simeq K$. If $s \in L_\eta - \{0\} = K^*$, we let

$$n_Y = \operatorname{ord}_A(s)$$

(we shall also write $n_Y = \operatorname{ord}_Y(s)$).

One can prove that n_Y does not depend on choices, and $n_Y = 0$ for almost all Y.

Example. Let K be a number field and $X = \text{Spec}(O_K)$. Giving L amounts to give

$$\Lambda = L(X) \,,$$

a projective O_K -module of rank one. If $s \in \Lambda$, $s \neq 0$, we have a decomposition

$$\Lambda/O_K s \simeq \prod_{\wp \text{ prime}} (O_K/\wp^{n\wp})$$

where $n_{\wp} = \operatorname{ord}_{O_{\wp}}(s)$, hence

$$\operatorname{div}(s) = \sum_{\wp} \, n_{\wp} \, [\wp] \, .$$

1.2 Analytic preliminaries

Let X be an analytic smooth manifold over \mathbb{C} , and $O_{X,an}$ the sheaf of holomorphic functions on X.

Definitions. i) An holomorphic line bundle on X is a locally free $O_{X,an}$ -module of rank one.

ii) A metric $\|\cdot\|$ on L consists of maps

$$L(x) \xrightarrow{\|\cdot\|} \mathbb{R}_+$$

for any x, where $L(x) = L_x / \mathcal{M}_x$ is the fiber at x. We ask that

- $\|\lambda s\| = |\lambda| \|s\|$ if $\lambda \in \mathbb{C}$;
- ||s|| = 0 iff s = 0;
- Let $U \subset X$ be an open subset and s a section of L over U vanishing nowhere; then the map

$$x \longmapsto \|s(x)\|^2$$

is C^{∞} .

We write $\overline{L} = (L, \|\cdot\|)$.

Denote by $A^n(X)$ the \mathbb{C} -vector space of C^{∞} differential forms of degree n on X. Recall that $A^n(X)$ decomposes as

$$A^{n}(X) = \bigoplus_{p+q=n} A^{pq}(X) \,,$$

where $A^{pq}(X)$ consists of those differential forms which can be written locally as a sum of forms of type

$$u d z_{i_1} \wedge \ldots \wedge d z_{i_n} \wedge d \overline{z}_{j_1} \wedge \ldots \wedge d \overline{z}_{j_n}$$

where u is a C^{∞} function, $dz_{\alpha} = dx_{\alpha} + i dy_{\alpha}$ and $d\overline{z}_{\alpha} = dx_{\alpha} - i dy_{\alpha}$.

The differential

$$d: A^n(X) \to A^{n+1}(X)$$

is a sum $d = \partial + \overline{\partial}$ where

$$\partial: A^{pq}(X) \to A^{p+1,q}(X)$$

and

$$\overline{\partial}: A^{pq}(X) \to A^{p,q+1}(X)$$
.

We have $\partial^2 = \overline{\partial}^2 = d^2 = 0$ and we let

$$d^c = \frac{\partial - \overline{\partial}}{4 \, \pi \, i} \, ,$$

so that

$$dd^c = \frac{\overline{\partial}\,\partial}{2\,\pi\,i}\,.$$

Lemma 4. Let $\overline{L} = (L, \|\cdot\|)$ be an analytic line bundle with metric. There exists a smooth form

$$c_1(\overline{L}) \in A^{1,1}(X)$$

such that, if $U \subset X$ is an open subset and $s \in \Gamma(U, L)$ is such that $s(x) \neq 0$ for every $x \in U$,

$$c_1(\overline{L})|_U = -dd^c \log \|s\|^2.$$

Proof. Let $s' \in \Gamma(U, L)$ be another section such that $s(x) \neq 0$ when $x \in U$. We need to show that

(2)
$$-dd^c \log \|s'\|^2 = -dd^c \log \|s\|^2 \quad \text{in} \quad A^{11}(U) \,.$$

There exists $f \in \Gamma(U, O_{X_{an}})$ such that

$$s' = fs$$

We get

$$-dd^{c} \log ||s'||^{2} = -dd^{c} \log ||s||^{2} - dd^{c} \log ||f|^{2}.$$

But

$$\partial \overline{\partial} \log |f|^2 = \partial \left[\frac{\overline{\partial} f}{f} + \frac{\overline{\partial} \overline{f}}{\overline{f}} \right] = -\overline{\partial} \frac{\partial (\overline{f})}{\overline{f}} = 0,$$

and (2) follows.

q.e.d.

The form $c_1(\overline{L})$ is called the *first Chern form* of \overline{L} .

1.3 Heights

Let X be a regular, projective, flat scheme over \mathbb{Z} . We denote by $X(\mathbb{C})$ the set of complex points of X, an analytic manifold.

Definition. An hermitian line bundle on X is a pair $\overline{L} = (L, \|\cdot\|)$, where L is a line bundle on X and $\|\cdot\|$ is a metric on the holomorphic line bundle

$$L_{\mathbb{C}} = L_{|X(\mathbb{C})}.$$

We also assume that $\|\cdot\|$ is invariant by the complex conjugaison

$$F_{\infty}: X(\mathbb{C}) \to X(\mathbb{C}).$$

Let \overline{L} be an hermitian line bundle on X. We let

$$c_1(\overline{L}) = c_1(\overline{L}_{\mathbb{C}}) \in A^{1,1}(X(\mathbb{C})).$$

Theorem 1. There is a unique way to associate to every integral closed subset $Y \subset X$ a real number

$$h_{\overline{L}}(Y) \in \mathbb{R}$$

in such a way that:

i) If dim(Y) = 0, i.e. when $Y = \{y\}$ where $y \in X$ is a closed point, we let $k(y) = O_{X,y} / \mathcal{M}_{X,y}$ be the residue field. Then k(y) is finite and

$$h_{\overline{L}}(Y) = \log \# (k(y)).$$

ii) If $\dim(Y) > 0$, let s be a rational section of L over Y. If

$$\operatorname{div}_Y(s) = \sum_{\alpha} n_{\alpha} Y_{\alpha} \,,$$

then

$$h_{\overline{L}}(Y) = \sum_{\alpha} n_{\alpha} h_{\overline{L}}(Y_{\alpha}) - \int_{Y(\mathbb{C})} \log \|s\| c_1(\overline{L})^{\dim Y(\mathbb{C})}$$

2 Existence of the height

2.1 Resolutions

To prove Theorem 1, we first need to make sense of the integral in ii). For that we use Hironaka's resolution theorem.

Theorem 2 (Hironaka). Let X be a scheme of finite type over \mathbb{C} , and $Z \subset X$ a proper closed subset of X such that X - Z is smooth. Then there exists a proper map

$$\pi: X \to X$$

such that:

i) X̃ is smooth;
ii) X̃ − π⁻¹(Z) → X − Z;
iii) π⁻¹(Z) is a divisor with normal crossings.

In the situation of ii) in Theorem 1, we apply Theorem 2 to $X = Y(\mathbb{C})$, and to the union $Z = \operatorname{div}(s) \cup Y(\mathbb{C})^{\operatorname{sing}}$ of the support of $\operatorname{div}(s)$ and the singular locus of $Y(\mathbb{C})$. Let $\pi : \widetilde{Y} \to Y(\mathbb{C})$ be the resolution of $Y(\mathbb{C})$, d the dimension of $Y(\mathbb{C})$ and $\omega \in A^{dd}(Y(\mathbb{C}) - Z)$. Then we define

$$\int_{Y(\mathbb{C})} \log \|s\| \, \omega = \int_{\widetilde{Y}} \log \|\pi^*(s)\| \, \pi^*(\omega) \, .$$

To see that the integral converges choose local coordinates z_1, \ldots, z_d of \widetilde{Y} such that

$$\pi^*(s) = z_1^n u \,,$$

with u invertible. Therefore

$$\log \|\pi^*(s)\| = n \log |z_1| + \alpha,$$

with αC^{∞} , and

$$\pi^*(\omega) = \beta \prod_{i=1}^a d \, z_i \, d \, \overline{z}_i \,,$$

with $\beta \mathbb{C}^{\infty}$. Since

$$\int_0^\varepsilon \log(z) \, d \, z \, d \, \overline{z} = \int_0^\varepsilon \log(r) \, r \, dr \, d\theta < +\infty \,,$$

the integral converges.

2.2

By induction on dim(Y), the unicity of $h_{\overline{L}}(Y)$ is clear.

Example. Let K be a number field and $X = \text{Spec}(O_K)$. If Σ is the set of complex embeddings of K we have

$$X(\mathbb{C}) = \prod_{\sigma \in \Sigma} \operatorname{Spec} (\mathbb{C}).$$

To give $\overline{L} = (L, \|\cdot\|)$ amounts to give a pair $\overline{\Lambda} = (\Lambda, \|\cdot\|_{\sigma})$ where $\Lambda = L(X)$ is a projective O_K -module of rank one and, for any $\sigma \in \Sigma$, $\|\cdot\|_{\sigma}$ is a metric on $\Lambda \bigotimes_{\sigma} \mathbb{C} \simeq \mathbb{C}$ such that

$$\|F_{\infty}(x)\|_{F_{\infty}\circ\sigma} = \|x\|_{\sigma}.$$

If $s \in \Lambda$, $s \neq 0$, we have

$$\operatorname{div}(s) = \sum_{\wp} n_{\wp} \left[\wp \right]$$

and

$$h_{\overline{L}}\left(X\right) = \sum_{\wp} n_{\wp} \log(N_{\wp}) - \sum_{\sigma \in \Sigma} \log \|\sigma(s)\|_{\sigma} \,,$$

where $N\wp = \# (O/\wp)$.

Since

$$\Lambda/Os = \prod_{\wp} (O_{\wp}/\wp^{n_{\wp}})$$

we get

$$\sum_{\wp} n_{\wp} \log(N_{\wp}) = \log \# \left(\Lambda / Os \right).$$

Lemma 6. $h_{\overline{L}}(X)$ does not depend on the choice of s.

Proof. Let

$$d(s) = \log \# (\Lambda/Os) - \sum_{\sigma \in \Sigma} \log \|\sigma(s)\|_{\sigma} \,.$$

If $s' \in \Lambda$, $s' \neq 0$, we have

$$s' = f s$$

with $f \in K^*$. Therefore

$$d(s') - d(s) = \sum_{\wp} v_{\wp}(f) \log(N_{\wp}) - \sum_{\sigma \in \Sigma} \log \|\sigma(f)\| = 0$$

by the product formula.

q.e.d.

$\mathbf{2.3}$

Let us prove Theorem 1 when Y has dimension one and Y is horizontal, i.e. Y maps surjectively onto Spec (\mathbb{Z}). We have then

$$Y = \overline{\{y\}} \,,$$

where y is a closed point in $X \underset{\mathbb{Z}}{\otimes} \mathbb{Q}$. The residue field K = k(y) is a number field and

$$Y = \operatorname{Spec}\left(R\right)$$

where R is an integral ring with fraction field K. Denote by \widetilde{R} the integral closure of R in K (i.e. $\widetilde{R} = O_K$) and let

$$\pi: Y = \operatorname{Spec}\left(\bar{R}\right) \to Y$$

be the projection. If

$$s \in \Gamma(Y, L) - \{0\},$$

$$\pi^*(s) \in \Gamma(\widetilde{Y}, \pi^*L) - \{0\}.$$

We shall prove that

(3)
$$d(s) = d(\pi^*(s)).$$

By 2.2 this will imply that d(s) is independent of the choice of s. To prove (3) we first notice that

$$Y(\mathbb{C}) = \widetilde{Y}(\mathbb{C}) = \prod_{\sigma \in \Sigma} \operatorname{Spec}(\mathbb{C}),$$

hence

(4)
$$\sum_{\sigma \in \Sigma} \log \|s\|_{\sigma} = \sum_{\sigma \in \Sigma} \log \|\pi^*(s)\|_{\sigma}.$$

Next we consider the commutative diagram

where $\tilde{s} = \pi^*(s) \in \tilde{L} = \pi^*(L)$.

By diagram chase we get

$$\#K = \#K'.$$

On the other hand, for any prime ideal \wp in ${\cal O}_K,$ we have

$$\#\left(\frac{\widetilde{L}}{L}\right)_{\wp} = \#\left(\frac{\widetilde{R}}{R}\right)_{\wp}$$

since $\widetilde{L}_\wp = L_\wp \underset{R\wp}{\otimes} \widetilde{R}_\wp$ and L and \widetilde{L} are locally trivial. This implies

$$\#K' = \#K''$$

and # K = # K''. Therefore

(5)
$$\# (L/Rs) = \# (\widetilde{L}/\widetilde{R}s).$$

The assertion (3) follows from (4) and (5).

When $\dim(Y) = 1$ and Y is vertical i.e. its image in Spec (\mathbb{Z}) is a closed point of finite residue field k, Theorem 1 is proved by considering a resolution

$$\pi: \widetilde{Y} \to Y$$
.

The proof is the same as in the case Y is horizontal, the product formula being replaced by the equality

$$\sum_{x\in\widetilde{Y}}v_x(f)\left[k(x):k\right]=0$$

for any $f \in k(Y)^*$. Indeed,

$$\log \# k(x) = [k(x):k] \log \# k.$$

$\mathbf{2.4}$

Assume from now on that dim $(Y) \ge 2$, with $Y \subset X$ a closed integral subscheme, $Y = \overline{\{y\}}$. If $s \in Ly, s \neq 0$,

$$\operatorname{div}(s) = \sum_{\alpha} n_{\alpha} Y_{\alpha} \,.$$

Lemma 7. There exists $t \in Ly$ such that, for every α , the restriction of t to Y_{α} is not zero.

Proof. Let $Y_{\alpha} = \overline{\{y_{\alpha}\}}$. The ring

$$R = \varinjlim_{\exists \alpha \text{ s.t. } y_\alpha \in U} O(U)$$

is semi-local, i.e. it has finitely many maximal ideals $\mathcal{M}_{\alpha}, \alpha \in A$. Let

$$I = \bigcap_{\alpha \in \Lambda} \mathcal{M}_{\alpha}$$

be the radical of R, and

$$\Lambda = \varinjlim_{\exists \alpha \text{ s.t. } y_{\alpha} \in U} L(U) \,.$$

Note that, for every α ,

$$R_{\mathcal{M}_{\alpha}} = O_{y_{\alpha}}$$

and, for every pair $\alpha \neq \beta$

$$\mathcal{M}_{\alpha} + \mathcal{M}_{\beta} = R \,.$$

Since L is locally trivial

$$\Lambda \otimes R/I = \prod_{\alpha} (\Lambda \otimes O_{y_{\alpha}})/\mathcal{M}_{\alpha} \simeq \prod_{\alpha} O_{y_{\alpha}}/\mathcal{M}_{\alpha} = R/I.$$

Denote by $t \in \Lambda$ an element such that its class in $\Lambda \otimes R/I$ maps to $1 \in R/I$ by the above isomorphism. The module

$$M = \Lambda/R \, t$$

is such that M = IM. Therefore, by Nakayama's lemma, M = 0. Since

$$\Lambda = Rt,$$

for every $\alpha \in A$ the restriction of t to Y_{α} does not vanish.

$\mathbf{2.5}$

Given s and t as above we write

$$\operatorname{div}(s) = \sum_{\alpha} n_{\alpha} Y_{\alpha}$$

and

$$\operatorname{div}(t) = \sum_{\beta} m_{\beta} \, Z_{\beta} \,,$$

with $Z_{\beta} \neq Y_{\alpha}$ for all β and α . Consider

$$\operatorname{div}(s) \cdot \operatorname{div}(t) = \sum_{\alpha} n_{\alpha} \operatorname{div}(t \mid Y_{\alpha})$$

and

$$\operatorname{div}(t) \cdot \operatorname{div}(s) = \sum_{\beta} m_{\beta} \operatorname{div}(s \mid Z_{\beta}).$$

These are cycles of codimension two in Y.

Proposition 1. We have

$$\operatorname{div}(s) \cdot \operatorname{div}(t) = \operatorname{div}(t) \cdot \operatorname{div}(s).$$

The proof of Proposition 1 will be given later.

q.e.d.

Assume dim $Y(\mathbb{C}) = d$, and define

$$d(s) = h_{\overline{L}} \left(\operatorname{div}(s) \right) - \int_{Y(\mathbb{C})} \log \|s\| c_1(\overline{L})^d.$$

By induction hypothesis we have

$$d(s) = \sum_{\alpha} n_{\alpha} h_{\overline{L}} (\operatorname{div}(t_{|Y_{\alpha}}))$$

-
$$\sum_{\alpha} n_{\alpha} \int_{Y_{\alpha}(\mathbb{C})} \log \|t\| c_{1}(\overline{L})^{d-1} - \int_{Y(\mathbb{C})} \log \|s\| c_{1}(\overline{L})^{d}$$

=
$$h_{\overline{L}} (\operatorname{div}(s) \cdot \operatorname{div}(t)) - I(s, t)$$

where

$$I(s,t) = \sum_{\alpha} n_{\alpha} \int_{Y_{\alpha}(\mathbb{C})} \log \|t\| c_1(\overline{L})^{d-1} + \int_{Y(\mathbb{C})} \log \|s\| c_1(\overline{L})^d.$$

Proposition 2. I(s,t) = I(t,s).

From Proposition 1 and Proposition 2 we deduce that d(s) = d(t) when $\operatorname{div}(s)$ and $\operatorname{div}(t)$ are transverse. When s and s' are two sections of L there exists a section t such that $\operatorname{div}(s)$ and $\operatorname{div}(t)$ (resp. $\operatorname{div}(s')$ and $\operatorname{div}(t)$) are transverse. Therefore

$$d(s) = d(t) = d(s')$$

and Theorem 1 follows.

$\mathbf{2.6}$

To prove Proposition 1 we write

$$\operatorname{div}(s) \cdot \operatorname{div}(t) = \sum_{W} n_{W} \left[W\right]$$

with $\operatorname{codim}_Y(W) = 2$. Let $W = \overline{\{w\}}$ and

$$R = O_{Y,w}$$
.

Since $L_w \simeq O_{Y,w}$ one can assume that t (resp. s) corresponds to $a \in R$ (resp. $b \in R$). Since R is integral and $a \neq 0$, we know from the proof of Lemma 3 that, if A = R/a R,

$$\dim(A) \le \dim(R) - 1 = 1$$

Let $\overline{b} \in A$ be the image of b and let $\overline{\wp} \subset A$ be a minimal prime ideal of A. The inverse image $\wp \subset R$ of $\overline{\wp}$ is a minimal nontrivial prime ideal. Since $a \in \wp$ we have $a R = \wp$ and $b \notin \wp$, otherwise div(t) is not prime to div(s). Hence $\overline{b} \notin \overline{\wp}$.

Furthermore \overline{b} does not divide zero in A. Otherwise there exists a minimal prime ideal $\wp \supset a R$ such that \overline{b} divides zero in R/\wp . Since $\overline{b} \neq 0$ and R is integral, we get a contradiction.

Since \overline{b} does not divide zero we have $\dim(A/\overline{b}) \leq \dim(A) - 1$. But $\dim(A) \leq 1$. Therefore $\dim(A) = 1$ and $\dim(A/\overline{b}) = 0$. It follows that A/\overline{b} has finite length. If $\langle a, b \rangle \subset R$ is the ideal spanned by a and b, $A/\overline{b} = R/\langle a, b \rangle$. We shall prove that

$$n_W = \ell(R/\langle a, b \rangle)$$

2.7

Let A be as above and let M be an A-module of finite type. If $x \in A$ we have an exact sequence

(6)
$$0 \to M[x] \to M \xrightarrow{\times x} M \to M/x M \to 0.$$

If M[x] and M/x M have finite length we define

$$e(x, M) = \ell(M/x M) - \ell(M[x]) \in \mathbb{Z}.$$

Lemma 7. i) $M[\overline{b}]$ and $M/\overline{b}M$ have finite length. ii)

$$e(\overline{b}, M) = \sum_{\substack{\wp \subset A\\ \wp \text{ minimal}}} \ell_{A_\wp}(M_\wp) e(\overline{b}, A/\wp) \,.$$

iii)

$$e(\overline{b}, A/\wp) = \ell(A/(\wp + bA)).$$

Proof of i) and ii). Note that both sides in ii) are additive in M. Therefore we can assume that M = A/q where q is a prime ideal. We distinguish two cases:

a) If q is maximal, for any minimal prime ideal \wp we have $M_{\wp} = 0$. Therefore $\ell(M)$ is finite. From Lemma 2 and (6) we conclude that

$$e(b,M) = 0.$$

b) Assume $q=\wp$ is minimal. If $\wp'\neq\wp$ is any prime ideal different from \wp we have

$$M_{\wp'} = 0 \, .$$

Therefore the right hand side reduces to one summand and i) holds. Furthermore

 $\ell_{A_\wp}(M_\wp) = 1$

and

$$e(\overline{b}, M) = e(\overline{b}, A/\wp)$$

so ii) is true.

To prove iii) it is also enough to check the case $M = A/\wp$. We saw that $b \notin \wp$ and A/\wp is integral, therefore $M[\overline{b}] = 0$.

On the other hand

$$\dim(A/(\wp + bA)) \le \dim(A/\wp) - 1 = 0.$$

Therefore

$$e(\overline{b}, A/\wp) = \ell(A/(\wp + bA)).$$

q.e.d.

$\mathbf{2.8}$

We shall apply Lemma 7 to

$$M = A = R/a R.$$

Let \wp be a minimal prime in A and $Y \subset |\operatorname{div}(s)|$ the corresponding component of the support of $\operatorname{div}(s)$. We have

$$\ell_{A_{\wp}}(A_{\wp}) = \operatorname{ord}_{A_{\wp}}(a) = \operatorname{ord}_{Y}(s)$$

and

$$\ell(A/(\wp + bA)) = \operatorname{ord}_W(t_{|Y}).$$

Lemma 7 iii) says that

$$e(b,A) = n_W.$$

But \overline{b} does not divide zero, so

$$e(\overline{b}, A) = \ell(R/\langle a, b \rangle).$$

Therefore $n_W = \ell(R/\langle a, b \rangle)$. Since $\langle a, b \rangle = \langle b, a \rangle$ we conclude that

_

$$\operatorname{div}(s) \cdot \operatorname{div}(t) = \sum_{W} n_{W}[W] = \operatorname{div}(t) \cdot \operatorname{div}(s).$$

This ends the proof of Proposition 1.

2.9

We shall now prove Proposition 2. For this we need some more analytic preliminaries. Let X be a smooth complex compact manifold of dimension d.

Definition. A current $T \in D^{pq}(X)$ is a \mathbb{C} -linear form

$$T: A^{d-p,d-q}(X) \to \mathbb{C}$$

which is continuous for the Schwartz' topology.

Examples. 1) If $\eta \in L^1(X) \underset{C^{\infty}(X)}{\otimes} A^{pq}(X)$ is an integrable differential, η defines a current by the formula

$$\eta(\omega) = \int_X \eta \wedge \omega$$

2) If $Z = \sum_{\alpha} n_{\alpha} Z_{\alpha}$ is a cycle of codimension p on X, it defines a Dirac current $\delta_Z \in D^{pp}(X)$ by the formula

$$\delta_Z(\omega) = \sum_{\alpha} n_{\alpha} \int_{Z_{\alpha}} \omega \,,$$

where the integrals converge by Hironaka's theorem.

We can derivate a current $T \in D^{pq}(X)$ by the formulae

$$\partial T(\omega) = (-1)^{p+q+1} T(\partial \omega)$$

and

$$\overline{\partial} T(\omega) = (-1)^{p+q+1} T(\overline{\partial} \omega).$$

By the Stokes formula we get a commutative diagram

$$\begin{array}{cccc} D^{pq}(X) & \stackrel{\partial}{\longrightarrow} & D^{p+1,q}(X) \\ \cup & & \cup \\ A^{pq}(X) & \stackrel{\partial}{\longrightarrow} & A^{p+1,q}(X) \end{array}$$

and idem for $\overline{\partial}$ and $d = \partial + \overline{\partial}$.

Proposition 3 (Poincaré-Lelong). Let \overline{L} be an hermitian line bundle on X and s a meromorphic section of L. Then we have the following formula in $D^{1,1}(X)$

(7)
$$dd^{c}(-\log ||s||^{2}) + \delta_{\operatorname{div}(s)} = c_{1}(L)$$

2.10

To prove Proposition 3 let $Z = |\operatorname{div}(s)|$ be the support of the divisor of s. By Theorem 2, there exists a birational resolution

$$\pi:X\to X$$

where $\pi^{-1}(Z)$ has local equation $z_1 \dots z_k = 0$. Therefore

$$\pi^*(s) = z_1^{n_1} \dots z_k^{n_k}$$

locally. If Proposition 3 holds for $\pi^*(\overline{L})$ and $\pi^*(s)$, by applying π_* we get (7). So we can assume that $X = \widetilde{X}$. By additivity we can assume that

a) $||s|| = |z_1|$

 or

b)
$$\log \|s\| = \rho \in C^{\infty}(X).$$

In case b) $\operatorname{div}(s) = 0$ and (7) is true by definition of $c_1(\overline{L})$ (Lemma 4). In case a) we have to show that, for every differential form ω , with compact support in U,

$$-\int_U \log |z_1|^2 \, dd^c(\omega) = \int_{|z_1|=\varepsilon} \omega \, dz$$

But, by Stokes' theorem, we have

$$-\lim_{\varepsilon \to 0} \int_{|z_1| \ge \varepsilon} \log |z_1|^2 \, dd^c(\omega)$$

=
$$\lim_{\varepsilon \to 0} \int_{|z_1| = \varepsilon} \log |z_1| \, d^c \, \omega + \lim_{\varepsilon \to 0} \int_{|z_1| \ge \varepsilon} d \log |z_1|^2 \, d^c \, \omega \, .$$

The first summand vanishes and, applying Stokes' theorem again,

$$\lim_{\varepsilon \to 0} \int_{|z_1| \ge \varepsilon} d\log |z_1|^2 d^c \,\omega = -\lim_{\varepsilon \to 0} \int_{|z_1| \ge \varepsilon} d^c \log |z_1|^2 d\,\omega$$
$$= \lim_{\varepsilon \to 0} \int_{|z_1| = \varepsilon} d^c \log |z_1|^2 \,\omega - \lim_{\varepsilon \to 0} \int_{|z_1| \ge \varepsilon} dd^c \log |z_1|^2 \,\omega \,.$$

The second summand vanishes and, taking polar coordinates $z_1 = r_1 e^{i\theta_1}$, we get

$$d^c \log |z_1|^2 = \frac{d\,\theta_1}{2\,\pi}$$

and

$$\lim_{\varepsilon \to 0} \int_{|z_1| = \varepsilon} \frac{d \theta_1}{2 \pi} \, \omega = \int_{z_1 = 0} \omega \, .$$

q.e.d.

2.11

Coming back to Proposition 2 we consider the current

$$T_{s,t} = \delta_{\operatorname{div}(s)} \log ||t||^2 + \log ||s||^2 c_1(\overline{L}).$$

Then

$$I(s,t) = T_{s,t}(c_1(\overline{L})^{d-1})/2.$$

Proposition 3 implies

$$T_{s,t} = (c_1(\overline{L}) + dd^c \log ||s||^2) \log ||t||^2 + \log ||s||^2 c_1(\overline{L})$$

at least formally: we have to make sense of the product of currents $(dd^c \log ||s||^2) \log ||t||^2$. By Stokes' theorem we have (at least formally)

$$\begin{aligned} dd^c(T_1) \, T_2 &= d(d^c(T_1) \, T_2) + d^c(T_1) \, d(T_2) \\ &= d(d^c(T_1) \, T_2) + d^c(T_1 \, d \, T_2) - T_1 \, d^c d(T_2) \, . \end{aligned}$$

Since $d^c d = -dd^c$ and $d(c_1(\overline{L})^{d-1}) = d^c(c_1(\overline{L})^{d-1}) = 0$ we get

$$2I(s,t) = T_{s,t}(c_1(\overline{L})^{d-1}) = T_{t,s}(c_1(\overline{L})^{d-1}) = 2I(t,s).$$

q.e.d.

2.12 The height of the projective space

Let $N \geq 1$ be an integer and \mathbb{P}^N the N-dimensional projective space over \mathbb{Z} . The tautological line bundle O(1) on \mathbb{P}^N is a quotient of the trivial vector bundle of rank N + 1

$$O_{\mathbb{P}^N}^{N+1} \to O(1) \to 0$$
.

We equip $O_{\mathbb{P}^N}^{N+1}$ with the trivial metric and O(1) with the quotient metric.

Proposition 4. The height of \mathbb{P}^N is

$$h_{\overline{O(1)}}(\mathbb{P}^N) = \frac{1}{2} \sum_{k=1}^N \sum_{m=1}^k \frac{1}{m}.$$

Proof of Proposition 4. Let s be the section of O(1) defined by the homogeneous coordinate X_0 . Then $\operatorname{div}(s) = \mathbb{P}^{N+1}$ and we get, from Theorem 1 ii),

$$h(\mathbb{P}^N) = h(\mathbb{P}^{N-1}) - \int_{\mathbb{P}^N(\mathbb{C})} \log \|s\| \, d\mu$$

where $d\mu$ is the probability measure on $\mathbb{P}^{N}(\mathbb{C})$ invariant under rotation by U(N+1). If dv is the probability measure on the sphere S^{2N+1} invariant under U(N+1) we have

$$\int_{\mathbb{P}^{N}(\mathbb{C})} \log \|s\| \, d\mu = \int_{S^{2N+1}} \log |X_0| \, dv$$

and Proposition 4 follows from

Lemma 8.

$$\int_{S^{2N+1}} \log |X_0| \, dv = \frac{1}{2} \sum_{m=1}^N \frac{1}{m} \, .$$

3 Arithmetic Chow groups

3.1 Definition

Let X be a regular projective flat scheme over \mathbb{Z} and $p \ge 0$ an integer. Let $Z^p(X)$ be the group of codimension p cycles on X.

Definition. A Green current for $Z \in Z^p(X)$ is a real current $g \in D^{p-1,p-1}(X(\mathbb{C}))$ such that $F^*_{\infty}(g) = (-1)^{p-1} g$ and

$$dd^c g + \delta_Z = \omega$$

is a smooth form $\omega \in A^{pp}(X(\mathbb{C}))$.

We let $\widehat{Z}^p(X)$ be the group generated by pairs $(Z,g), Z \in Z^p(X), g$ Green current for Z, with $(Z_1, g_1) + (Z_2, g_2) = (Z_1 + Z_2, g_1 + g_2).$

Examples. i) Let $Y \subset X$ be a closed irreducible subset with $\operatorname{codim}_X(Y) = p-1$, and $f \in k(Y)$ a rational function on Y. Define $\log |f|^2 \in D^{p-1,p-1}(X(\mathbb{C}))$ by the formula

$$(\log |f|^2)(\omega) = \int_{Y(\mathbb{C})} \log |f|^2 \, \omega$$

(which makes sense by Theorem 2). We may think of f as a rational section of the trivial line bundle on Y. Therefore Poincaré-Lelong formula (Proposition 3) reads

$$dd^{c}(-\log|f|^{2}) + \delta_{\operatorname{div}(f)} = 0.$$

Hence the pair

$$\widehat{\operatorname{div}}(f) = (\operatorname{div}(f), -\log|f|^2)$$

is an element of $\widehat{Z}^p(X)$.

ii) Given $u \in D^{p-2,p-1}(X(\mathbb{C}))$ and $v \in D^{p-1,p-2}(X(\mathbb{C}))$ we have

$$dd^c(\partial u + \overline{\partial} v) = 0,$$

so $(0, \partial u + \overline{\partial} v) \in \widehat{Z}^p(X)$.

We let $\widehat{R}^p(X) \subset \widehat{Z}^p(X)$ be the subgroup generated by all elements $\widehat{\operatorname{div}}(f)$ and $(0, \partial u + \overline{\partial} v)$.

Definition. The arithmetic Chow group of codimension p of X is the quotient

$$\widehat{\operatorname{CH}}^p(X) = \widehat{Z}^p(X) / \widehat{R}^p(X)$$

3.2 Example

Let $\hat{\text{Pic}}(X)$ be the group of isometric isomorphism classes of hermitian line bundles on X, equipped with the tensor product.

If $\overline{L} = (L, \|\cdot\|) \in \widehat{\text{Pic}}(X)$ and if $s \neq 0$ is a rational section of L we let

$$\widehat{\operatorname{div}}(s) = (\operatorname{div}(s), -\log ||s||^2) \in \widehat{Z}^1(X)$$

(Proposition 3), and we define

 $\widehat{c}_1(\overline{L}) \in \widehat{\operatorname{CH}}^1(X)$

to be the class of $\widehat{\operatorname{div}}(s)$. It does not depend on the choice of s: if s' is another section of L we have

$$s' = f s$$

with $f \in k(X)$. Therefore

$$\widehat{\operatorname{div}}(s') - \widehat{\operatorname{div}}(s) = \widehat{\operatorname{div}}(f) \in \widehat{R}^1(X)$$

Proposition 5. The map \hat{c}_1 induces a group isomorphism

$$\widehat{c}_1: \widehat{\operatorname{Pic}}(X) \to \widehat{\operatorname{CH}}^1(X).$$

To prove Proposition 5 we consider the commutative diagram with exact rows

where $a(\varphi)$ is the trivial line bundle on X equipped with the norm such that $||1|| = \exp(\varphi)$, $\zeta(\overline{L}) = L$, $a'(\varphi) = (0, -\log |\varphi|^2)$ and $\zeta(Z, g) = Z$. Since c_1 is an isomorphism the same is true for \hat{c}_1 .

3.3 Products

3.3.1

Denote by $\widehat{\operatorname{CH}}^p(X)_{\mathbb{Q}}$ the tensor product $\widehat{\operatorname{CH}}^p(X) \underset{\mathbb{Z}}{\otimes} \mathbb{Q}$.

Theorem 3. When $p \ge 0$ and $q \ge 0$ there is an intersection pairing

$$\widehat{\operatorname{CH}}^{p}(X) \otimes \widehat{\operatorname{CH}}^{q}(X) \longrightarrow \operatorname{CH}^{p+q}(X)_{\mathbb{Q}} \\
x \otimes y \longmapsto x \cdot y$$

It makes $\underset{p\geq 0}{\oplus} \widehat{\operatorname{CH}}^p(X)_{\mathbb{Q}}$ a commutative graded \mathbb{Q} -algebra.

Let $\zeta : \widehat{\operatorname{CH}}^p(X) \to \operatorname{CH}^p(X)$ be the map sending the class of (Z, g) to the class of Z, and let $\omega : \widehat{\operatorname{CH}}^p(X) \to A^{pp}(X)$ be the map sending (Z, g) to $dd^cg + \delta_Z$. Then

$$z(x \cdot y) = z(x) \, z(y)$$

and

$$\omega(x\cdot y)=\omega(x)\,\omega(y)\,.$$

3.3.2

To prove Theorem 3, let $y = (Y, g_Y) \in \widehat{Z}^p(X)$ and $z = (Z, g_Z) \in \widehat{Z}^q(X)$.

We first define a cycle $Y \cap Z$. For this we assume that the restrictions $Y_{\mathbb{Q}}$ and $Z_{\mathbb{Q}}$ of Y and Z to the generic fiber $X_{\mathbb{Q}}$ meet properly, i.e. the components of $|Y_{\mathbb{Q}}| \cap |Z_{\mathbb{Q}}|$ have codimension p + q (the moving lemma allows one to make this hypothesis). It follows that there exists a well defined intersection cycle $Y_{\mathbb{Q}} \cdot Z_{\mathbb{Q}} \in Z^{p+q}(X_{\mathbb{Q}})$, supported on the closed set $|Y_{\mathbb{Q}}| \cap |Z_{\mathbb{Q}}|$. Let

$$CH_Y^p(X) = \ker(CH^p(X) - CH^p(X - Y))$$

be the Chow group with supports in Y, and $\operatorname{CH}_{\operatorname{fin}}^p(X)$ the Chow group with supports in finite fibers of X. There is a canonical map

$$\operatorname{CH}_Y^p(X) = \operatorname{CH}_{\operatorname{fin}}^p(X) \oplus Z^p(X_{\mathbb{Q}})$$

One can define an intersection paring

$$\operatorname{CH}^p_Y(X) \otimes \operatorname{CH}^q_Z(X) \to \operatorname{CH}^{p+q}_{Y \cap Z}(X)_{\mathbb{Q}}.$$

One method to do so ([1], [2], [5]) is to interpret $\operatorname{CH}_Y^p(X)_{\mathbb{Q}}$ as the subspace of $K_0^Y(X)_{\mathbb{Q}}$ where the Adams operations ψ^k act by multiplication by k^p $(k \ge 1)$, and to use the tensor product

$$K_0^Y(X) \otimes K_0^Z(X) \to K_0^{Y \cap Z}(X)$$

We let $Y \cap Z \in CH_{fin}^{p+q}(X)_{\mathbb{Q}} \oplus Z^{p+q}(X_{\mathbb{Q}})_{\mathbb{Q}}$ be the image of

$$[Y] \otimes [Z] \in \operatorname{CH}^p_Y(X) \otimes \operatorname{CH}^p_Z(X)$$

by the maps

$$\operatorname{CH}^p_Y(X) \otimes \operatorname{CH}^q_Z(X) \to \operatorname{CH}^{p+q}_{Y \cap Z}(X)_{\mathbb{Q}} \to \operatorname{CH}^{p+q}_{\operatorname{fin}}(X)_{\mathbb{Q}} \oplus Z^{p+q}(X)_{\mathbb{Q}}.$$

Next we define a Green current for $Y \cap Z$. For this we write

$$dd^c g_Y + \delta_Y = \omega_Y$$

and

$$dd^c g_Z + \delta_Z = \omega_Z \,,$$

and we let

$$g_Y * g_Z = \delta_Y g_Z + g_Y \omega_Z \,.$$

However $g_Y \delta_Z$, being a product of currents, is not well defined a priori. But g_Y is defined up to the addition of a term $\partial(u) + \overline{\partial}(v)$ and one shows that g_Y can be chosen to be an L^1 -form on $X(\mathbb{C}) - Y(\mathbb{C})$, with restriction an L^1 -form η on $Z(\mathbb{C}) - Z(\mathbb{C}) \cap Y(\mathbb{C})$. We let $g_Y \delta_Z$ be the current defined by η on $Z(\mathbb{C})$ (see above Example 1) in §2.9):

$$g_Y \, \delta_Z(\omega) = \int_{Z(\mathbb{C}) - (Z(\mathbb{C}) \cap Y(\mathbb{C}))} \eta \, \omega \, d\omega$$

To prove that $g_Y * g_Z$ is a Green current for $Y \cap Z$ we proceed formally:

$$dd^{c}(g_{Y} * g_{Z}) = dd^{c}(\delta_{Y} g_{Z}) + dd^{c}(g_{Y} \omega_{Z})$$

$$= \delta_{Y} dd^{c}(g_{Z}) + dd^{c}(g_{Y}) \omega_{Z}$$

$$= \delta_{Y}(\omega_{Z} - \delta_{Z}) + \omega_{Y} - \delta_{Y}) \omega_{Z}$$

$$= \omega_{Y} \omega_{Z} - \delta_{Y} \delta_{Z}$$

$$= \omega_{Y} \omega_{Z} - \delta_{Y \cap Z}.$$

We refer to [2] for the justification of this series of equalities.

3.4 Functoriality

Let $f: X \to Y$ be a morphism.

Theorem 5. For every $p \ge 0$ there is a morphism

$$f^*: \widehat{\operatorname{CH}}^p(Y) \to \widehat{\operatorname{CH}}^p(X)$$

If the restriction of f to $X(\mathbb{C})$ is a smooth map of complex manifolds, there are morphisms

$$f_*: \widehat{\operatorname{CH}}^p(X) \to \widehat{\operatorname{CH}}^{p+\dim(Y)-\dim(X)}(Y).$$

Both f^* and f_* are compatible to ζ and ω . Furthermore

$$f^*(x \cdot y) = f^*(x) \cdot f^*(y)$$

and

$$f_*(x \cdot f^*(y)) = f_*(x) \cdot y \,.$$

3.5 Heights and intersection numbers

3.5.1

Let X be a projective regular flat scheme over \mathbb{Z} and $Y \subset X$ a closed integral subscheme. We assume that X is equidimensional of dimension d and $\operatorname{codim}_X(Y) = p$. One can then define as follows a morphism

$$\int_Y:\widehat{\operatorname{CH}}^{d-p}(Y)\to \mathbb{R}\,.$$

First, assume that X = Y and that $x \in \widehat{CH}^d(X)$ is the class of (Z, g_Z) where Z is a zero-cycle and $g_Z \in D^{d-1,d-1}(X(\mathbb{C}))$. The cycle Z is then a finite sum

$$Z = \sum_{\alpha} n_{\alpha} \, y_{\alpha}$$

where y_{α} is a closed point with finite residue field $k(y_{\alpha})$, and there exist currents u and v such that $\eta_Z = g_Z + \partial(u) + \overline{\partial}(v)$ is smooth. By definition

$$\int_X x = \sum_{\alpha} n_{\alpha} \log \# \left(k(y_{\alpha}) \right) - \frac{1}{2} \int_{X(\mathbb{C})} \eta_Z \,.$$

In general we let g_Y be a Green current for Y in $X(\mathbb{C})$, and $y = (Y, g_Y)$. If $x \in \widehat{\operatorname{CH}}^{d-p}(Y)$ we have $x \cdot y \in \widehat{\operatorname{CH}}^d(X)$ and we define

$$\int_Y x = \int_X x \cdot y - \frac{1}{2} \int_{X(\mathbb{C})} \omega(x) g_Y.$$

One checks that this number is independent on the choice of g_Y .

Theorem 5. The height of Y is

$$h_{\overline{L}}(Y) = \int_{Y} \widehat{c}_1(\overline{L})^{d-p}.$$

3.5.2

To prove Theorem 5 we shall check that the two properties in Theorem 1 hold true for the number $\int_Y \widehat{c}_1(\overline{L})^{d-p}$.

When p = d, Y is a closed point y and, if x is the class of (y, 0) in $\widehat{\operatorname{CH}}^d(X)$, we have

$$\int_X x = \log \# k(y) = h_{\overline{L}}(Y) \,.$$

Assume dim(Y) > 0. Let g_Y be a Green current for Y and $y = (Y, g_Y)$. Close a rational section s of L on Y, and an extension \tilde{s} of s to X. Then

$$\widehat{c}_1(\overline{L}) = (\operatorname{div}(\widetilde{s}), -\log \|\widetilde{s}\|^2).$$

If $x = \widehat{c}_1(\overline{L})^{d-p-1}$ we get, from the definition of \int_Y ,

(8)
$$\int_{Y} x \,\widehat{c}_1(\overline{L}) = \int_{X} x \,\widehat{c}_1(\overline{L}) \, y - \frac{1}{2} \int_{X(\mathbb{C})} \omega(x \,\widehat{c}_1(\overline{L})) \, g_Y$$

But

$$\begin{aligned} x \cdot \widehat{c}_1(\overline{L}) \cdot y &= x \cdot (\operatorname{div}(\widetilde{s} \mid Y), -\log \|\widetilde{s}\|^2 * g_Y) \\ &= x \cdot (\operatorname{div}(s), -\log \|\widetilde{s}\|^2 \, \delta_Y + c_1(\overline{L}) \, g_Y) \,. \end{aligned}$$

If $x =: \widehat{c}_1(\overline{L})^{d-p-1}$ is the class of (Z, g_Z) , we get

(9)
$$x \cdot \widehat{c}_1(\overline{L}) \cdot y = (Z \cdot \operatorname{div}(s), \omega(x)(-\log \|\widetilde{s}\|^2 \delta_Y + c_1(\overline{L}) g_Y) + g_Z \delta_{\operatorname{div}(s)}).$$

Since

$$\int_X (Z \cdot \operatorname{div}(s), g_Z \,\delta_{\operatorname{div}(s)}) = \int_{\operatorname{div}(s)} x$$

we deduce from (9) that

(10)
$$\int_X x \cdot \widehat{c}_1(\overline{L}) \cdot y = \int_{\operatorname{div}(s)} x - \frac{1}{2} \int_{Y(\mathbb{C})} \omega(x) \log \|s\|^2 + \frac{1}{2} \int_{X(\mathbb{C})} \omega(x) c_1(\overline{L}) g_Y.$$

Since $\omega(x \, \widehat{c}_1(\overline{L})) = \omega(x) \, c_1(\overline{L}_{\mathbb{C}})$, (8) and (10) imply that

$$\int_{Y} \widehat{c}_1(\overline{L})^{d-p} = \int_{\operatorname{div}(s)} \widehat{c}_1(\overline{L})^{d-p-1} - \frac{1}{2} \int_{Y(\mathbb{C})} c_1(\overline{L})^{d-p-1} \log \|s\|.$$

q.e.d.

References

- Gillet, H., Soulé, C.: Intersection theory using Adams operations, *Inven*tiones Math. 90,1987,243-277.
- [2] Gillet, H., Soulé, C.: Arithmetic intersection theory. Inst. Hautes études Sci. Publ. Math. 72 (1990), 93–174.
- [3] Bost, J.-B.; Gillet, H.; Soulé, C.: Heights of projective varieties and positive Green forms. J. Am. Math. Soc. 7, No.4, 903-1027 (1994)
- [4] Faltings, G.: Diophantine approximation on abelian varieties, Ann. of Math. (2) 133 (1991), no. 3, 549–576.
- [5] Soulé, C., Abramovich, D., Burnol, J.-F. and Kramer, J.: Lectures on Arakelov Geometry. Cambridge University Press 1991.