Arithmetic intersection

C. SOULE*

1 Definition of the height

Let X be a regular projective flat scheme over Z, and L an hermitian line
bundle over X. For every integral closed subset Y C X we shall define a real
number hz (Y), called the (Faltings) height of Y ([4]). For this we need a few
preliminaries.

1.1 Algebraic preliminaries
1.1.1 Length

Let A be a noetherian (commutative and unitary) ring, and M an A-module of
finite type.

There exists a filtration
(1) M=MyDM DMy>D...OM,=0
such that M; 1 # M; and M;/M; 1 = A/p;, where p; is a prime ideal, 0 < i <

r—1.

Definition. M has finite length when there exists a filtration as (1) above
where, for all i, p; a maximal ideal in A.

Lemma 1 (Jordan-Holder). If M has finite length,  does not depend on
the choice of the filtration (1) with p; maximal. We call this number the length
of M and denote it £(M) € N.

Lemma 2. Let
0-M —-M-—>M'—0

be an exact sequence of A-modules of finite type. Then

UMY = (M) + 6(M").

The proofs of Lemma 1 and Lemma 2 are left to the reader.
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1.1.2 Order

Let A be as above. The dimension of A is
dim(A4) = max{n\3 a chain of prime ideals pg C p1 C p2... C o, C A,

with ©; # pit1}-
Let A be an integral ring of dimension 1, and a € A, a # 0.

Lemma 3. A/aA has finite length.

Proof. Let
P C...Con

a maximal chain in A/aA, with §; # Pi+1, and ¢ : A — A/aA the projection.
Let p; = o~ 1(i). We get a chain

90 C...C pon

with g; # p;11. Since A is integral, (0) is a prime ideal. And pg # (0) since g
contains a. We conclude that

dim(A/aA) < dim(A) — 1.

Since dim(A) = 1 this implies that every prime ideal of A/aA is maximal.
Therefore A/aA has finite length.
q.e.d.

Let A be as in Lemma 3 and K = frac(A) the field of fractions of A. If
x € K we define, if © = a/b,

orda(z) = 6(A/aA) — L(A/bA) € Z.

Lemma 4. i) ord(z) does not depend on the choice of a and b.
ii) orda(zy) = orda(x) + ord 4(y).

The proof of Lemma 4 is left to the reader.

Example. Assume A is local (i.e. A has only one maximal ideal M) and regular
(i.e. dim A = dim(M/M?)). When dim(A) = 1, K has a discrete valuation

v: K —ZU{c0},

A = {z € K such that v(a) > 0}
and ords(z) = n iff v € M™ and x ¢ M" 1. Therefore

orda(z) = v(x).



1.1.3 Divisors

Let X be a ncetherian scheme and Ox the sheaf of functions on X.

Definition. A line bundle on X is a locally free O x-module L of rank one.

In other words L is a sheaf of abelian groups on X with a map
w:0x xL—L

such that there exists an open cover
xX=J Ua
(03

such that
o L(U,) ~0(U,)

e i on L(U,) is the multiplication.

Assume now that X is integral (for every open subset U C X, O(U) is
integral). Let n € X be the generic point.

Definition. A rational section of L is an element s € L,,.

Let Z'(X) be the free abelian group spanned by the closed irreducible sub-
sets Y C X of codimension one. We call Z!(X) the group of divisors of X.

If s € L, is a rational section, its divisor is defined as

div(s) = Zny[Y] € Z4(X),
Y
where ny is computed as follows. If Y C X has codimension 1 and Y = {y} is
integral, the ring A = Ox 4 is local, integral, of dimension 1. Its fraction field is
K =O0Ox,.
Choose an isomorphism L, ~ A, hence L, ~ K. If s € L, — {0} = K*, we let
ny = orda(s)

(we shall also write ny = ordy (s)).

One can prove that ny does not depend on choices, and ny = 0 for almost
allY.

Example. Let K be a number field and X = Spec (Og). Giving L amounts to
give
A=L(X),



a projective Ox-module of rank one. If s € A, s # 0, we have a decomposition
A/Oks ~ H (Ok /")
© prime

where ng, = ordo,, (s), hence

div(s) = 3 nglg).

1.2 Analytic preliminaries
Let X be an analytic smooth manifold over C, and Ox a, the sheaf of holomor-

phic functions on X.

Definitions. i) An holomorphic line bundle on X is a locally free Ox an-module
of rank one.

ii) A metric || - || on L consists of maps

Lz) AL R,

for any x, where L(x) = L, /M, is the fiber at z. We ask that
o [[Asl = [Allls]l if A € C;
o ||s|| =0iff s =0;

e Let U C X be an open subset and s a section of L over U vanishing

nowhere; then the map
z — ||s(z)|®

is C°.

We write L = (L, || - |)).
Denote by A™(X) the C-vector space of C* differential forms of degree n
on X. Recall that A™(X) decomposes as

AM(X) = @ API(X),
p+q=n
where AP?(X) consists of those differential forms which can be written locally
as a sum of forms of type

’U,dZil/\.../\dZip/\del/\.../\dzjq

where u is a C'*° function, dzo = dzo +1dy, and dZy = dxy — i dYq.

The differential
d: A"(X) — A"M(X)



is a sum d = & + 0 where
0: AP(X) — A”H’q(X)

and B
0: AP1(X) — A”’qH(X) .

We have @2 = 9° = d2 = 0 and we let

9-0
d° =
4mi’
so that B
. 00
dd =5

Lemma 4. Let L = (L,|| - ||) be an analytic line bundle with metric. There
exists a smooth form B
a(L) € AM(X)

such that, if U C X is an open subset and s € I'(U, L) is such that s(z) # 0 for
every x € U, B
cr(L)y = — dd°log ||| .

Proof. Let s’ € I'(U, L) be another section such that s(z) # 0 when z € U.
We need to show that
(2) —dd°log ||s'||> = —dd°log ||s||> in AY™(U).

There exists f € T'(U, Ox,, ) such that

s =fs.
We get
—ddlog||s'||> = — dd®log ||s||*> — dd®log | f|*.
But _ __ _
d0log|f|* =0 [f—i—af} :—5@ =0,
rf f
and (2) follows. q.e.d.

The form ¢; (L) is called the first Chern form of L.



1.3 Heights

Let X be a regular, projective, flat scheme over Z. We denote by X (C) the set
of complex points of X, an analytic manifold.

Definition. An hermitian line bundle on X is a pair L = (L, || - ||), where L is
a line bundle on X and || - || is a metric on the holomorphic line bundle
We also assume that || - || is invariant by the complex conjugaison

Fo : X(C) = X(C).

Let L be an hermitian line bundle on X. We let

C1(L) = Cl(zC) S Al’l(X((C)) .

Theorem 1. There is a unique way to associate to every integral closed subset
Y C X a real number
ht (Y)eR

in such a way that:

i) If dim(Y) = 0, i.e. when Y = {y} where y € X is a closed point, we let
k(y) = Ox,,/Mx y be the residue field. Then k(y) is finite and

hz (Y) = log # (k(y)) -

i) If dim(Y) > 0, let s be a rational section of L over Y. If
divy (s) = Z Ne Yo
[e%

then
(V) = Y nahp (Vo) = [ g sl en(T)m YO,
a Y (C)

2 Existence of the height

2.1 Resolutions

To prove Theorem 1, we first need to make sense of the integral in ii). For that
we use Hironaka’s resolution theorem.

Theorem 2 (Hironaka). Let X be a scheme of finite type over C, and Z C X
a proper closed subset of X such that X — Z is smooth. Then there exists a
proper map

T X =X



such that:

i) X is smooth;

i) X -7 1(2) = X — Z;

iii) 771(Z) is a divisor with normal crossings.

In the situation of ii) in Theorem 1, we apply Theorem 2 to X = Y (C), and
to the union Z = div(s) U Y(C)"®& of the support of div(s) and the singular

locus of Y(C). Let 7 : Y — Y (C) be the resolution of Y(C), d the dimension of
Y (C) and w € A%(Y(C) — Z). Then we define

[ oglsll = [ og | s)17 (o).
Y (C) Y

To see that the integral converges choose local coordinates z1, ..., zq of Y such
that
7 (s) = 27 u,

with v invertible. Therefore
log [|7*(s)|| = nlog|z1| + «,

with oo C*°, and

d
7™ (w) :,BHdzidEi,

i=1

with S C*°. Since

g €
/ log(z)dzdz = / log(r) rdrdf < +o0,
0 0
the integral converges.

2.2

By induction on dim(Y"), the unicity of Ay (Y') is clear.

Example. Let K be a number field and X = Spec (Og). If ¥ is the set of
complex embeddings of K we have

X(©C) = H Spec (C).

oEX

To give L = (L, || - ||) amounts to give a pair A = (A, - ||,) where A = L(X)
is a projective Og-module of rank one and, for any o € &, || - ||, is a metric on
A ® C ~ C such that

[ Foo ()| Facoo = [l lo -



If s € A, s+# 0, we have

div(s Z ng [p

and

hp (X) =Y nglog(Np) = > logllo(s)]ls,

3] ceX

where Np = # (0/p).
Since

£/0s = [[(u/6™)

)

we get

> nglog(Np) =log # (A/Os).

)

Lemma 6. iz (X) does not depend on the choice of s.

Proof. Let
d(s) = log # (A/Os) = > " log |0 (s)], -

oeX
If s/ € A, s’ #0, we have

with f € K*. Therefore

= va( log(Np) — Z log ||o(f
©

[

by the product formula.

2.3

q.e.d.

Let us prove Theorem 1 when Y has dimension one and Y is horizontal, i.e. Y

maps surjectively onto Spec (Z). We have then

Y ={y},

where y is a closed point in X ® Q. The residue field K = k(y) is a number
Z

field and
Y = Spec(R)

where R is an integral ring with fraction field K. Denote by R the integral

closure of R in K (i.e. R = Og) and let

7:Y =Spec(R) =Y



be the projection. If
SEF(KL>_{O}7

7*(s) e (Y, 7*L) — {0}.
We shall prove that
(3) d(s) = d(m"(s)).

By 2.2 this will imply that d(s) is independent of the choice of s. To prove (3)
we first notice that

Y(C)=Y(C) = [] Spec(C),

oEX
hence
(4) > logslle =Y log|lw*(s)llo -
oEY gEYD

Next we consider the commutative diagram

0
0 0 K

0 R—> =1L L/Rs —=0

0 R—" -1 L/R5——=0

0 K’ R/R L/L K" 0
0 0 0

where § = 7*(s) € L = 7*(L).

By diagram chase we get

#K=#K'.

On the other hand, for any prime ideal p in Ok, we have

)+ ()



since Z@ =L, ® ﬁp and L and L are locally trivial. This implies
Rp

#K/ — #K//
and # K = # K"'. Therefore
(5) #(L/Rs)=#(L/Rs).

The assertion (3) follows from (4) and (5).

When dim(Y) = 1 and Y is vertical i.e. its image in Spec(Z) is a closed
point of finite residue field k, Theorem 1 is proved by considering a resolution

Y 5 Y.

The proof is the same as in the case Y is horizontal, the product formula being
replaced by the equality

S valf) [k(z) k] = 0
zeY

for any f € k(Y)*. Indeed,
log# k(z) = [k(z) : k]log # k.

24

Assume from now on that dim(Y") > 2, with ¥ C X a closed integral subscheme,
Y ={y}. f s€ Ly, s #0,

div(s) = Zna Y, .

Lemma 7. There exists t € Ly such that, for every «, the restriction of ¢ to
Y., is not zero.

Proof. Let Y, = {y}. The ring

R= lm O(U)

Jas.t.yo €U

is semi-local, i.e. it has finitely many maximal ideals M, o € A. Let
I={) Ma
a€cA

be the radical of R, and
A= @ L{U).
Jas.t.yo €U

10



Note that, for every «,
R, = Oy,

a

and, for every pair a # 3
Mo + Mg =R.

Since L is locally trivial

A R/T=][(A®0,,)/Ma > ]]Oy./Ma=R/I.

[}

Denote by ¢t € A an element such that its class in A ® R/I maps to 1 € R/I by
the above isomorphism. The module

M =A/Rt
is such that M = IM. Therefore, by Nakayama’s lemma, M = 0. Since
A=Rt,
for every a € A the restriction of ¢ to Y, does not vanish. q.e.d.

2.5

Given s and t as above we write
div(s) = Z N Yo
(e}

and

diV(t) = Z mp Zﬂ s
B
with Zg # Y, for all 8 and . Consider

div(s) - div(t) = Y nadiv(t| Ya)

and
div(t) - div(s) = Y _mpdiv(s | Zs).
B

These are cycles of codimension two in Y.

Proposition 1. We have

div(s) - div(t) = div(¢) - div(s).

The proof of Proposition 1 will be given later.

11



Assume dim Y (C) = d, and define
d(s) = hy (div(s)) — / log ||s]| ¢1 (L)% .
Y (C)

By induction hypothesis we have

d(s) = > nahg(div(ty,))

— n 0, clidflf 0 sclid
> Q/Ya(c)lgtn (@) /Y(C)lgn ler(D)
=y (div(s) - div(?)) — I(s, 1)

where

Ya(C)

I5.)= Y [ dogllla@+ [ o leelsl @
- Y(C

Proposition 2. I(s,t) = I(t,s).

From Proposition 1 and Proposition 2 we deduce that d(s) = d(t) when
div(s) and div(t) are transverse. When s and s’ are two sections of L there
exists a section t such that div(s) and div(¢) (resp. div(s’) and div(¢)) are
transverse. Therefore

and Theorem 1 follows.

2.6
To prove Proposition 1 we write

div(s) - div(t) = Z nw [W]

w
with codimy (W) = 2. Let W = {w} and
R =0y, .

Since Ly, ~ Oy, one can assume that ¢ (resp. s) corresponds to a € R (resp.
b € R). Since R is integral and a # 0, we know from the proof of Lemma 3
that, if A= R/a R,

dim(4) <dim(R)-1=1.

Let b € A be the image of b and let § C A be a minimal prime ideal of A. The
inverse image o C R of { is a minimal nontrivial prime ideal. Since a € p we
have a R = p and b ¢ p, otherwise div(t) is not prime to div(s). Hence b ¢ p.

12



Furthermore b does not divide zero in A. Otherwise there exists a minimal
prime ideal p D a R such that b divides zero in R/p. Since b # 0 and R is
integral, we get a contradiction.

Since b does not divide zero we have dim(A/b) < dim(A) — 1. But dim(A) <
1. Therefore dim(A) = 1 and dim(A/b) = 0. It follows that A/b has finite
length. If {a,b) C R is the ideal spanned by a and b, A/b = R/(a,b). We shall
prove that
nw = L(R/{a,b)).

2.7

Let A be as above and let M be an A-module of finite type. If x € A we have
an exact sequence

(6) 0— Mlz] - M =25 M — M/zM —0.
If M[z] and M/x M have finite length we define

e(x, M) =L(M/xM)—{(M[z]) € Z.

Lemma 7. i) M[b] and M/bM have finite length.
i)
e, M)= > La,(My)e (b A/p).

wCA
© minimal

iii)

e(b, A/p) = L(A/(p+bA)).

Proof of i) and ii). Note that both sides in ii) are additive in M. Therefore
we can assume that M = A/q where ¢ is a prime ideal. We distinguish two
cases:

a) If ¢ is maximal, for any minimal prime ideal p we have M,, = 0. Therefore
£(M) is finite. From Lemma 2 and (6) we conclude that

e(b,M)=0.

b) Assume ¢ = p is minimal. If ’ # p is any prime ideal different from o we
have
My =0.

Therefore the right hand side reduces to one summand and i) holds. Further-
more

la, (M) =1

and B B
e(b,M) =e(b,A/p)

13



so ii) is true.

To prove iii) it is also enough to check the case M = A/p. We saw that

b¢ o and A/gp is integral, therefore M[b] = 0.
On the other hand
dim(A/(p +bA)) < dim(4/p) —1=0.

Therefore B
e(b, A/p) = L(A/(p + bA)).

2.8
We shall apply Lemma 7 to

M=A=R/aR.

Let p be a minimal prime in A and Y C |div(s)| the corresponding component
of the support of div(s). We have

la,(Ay) =orda,(a) = ordy(s)

and
U(A/(p +bA)) = ordw (t}y) -

Lemma 7 iii) says that

e(b,A) =nyw .

But b does not divide zero, so
e(b,A) = ((R/(a,b)) .

Therefore ny = ¢(R/{a,b)). Since {(a,b) = (b, a) we conclude that

div(s) - div(t) = an[W] = div(¢) - div(s).
w
This ends the proof of Proposition 1.

2.9

We shall now prove Proposition 2. For this we need some more analytic prelim-
inaries. Let X be a smooth complex compact manifold of dimension d.

Definition. A current T € DP?(X) is a C-linear form
T:APId=X) - C

which is continuous for the Schwartz’ topology.

14



Examples. 1) Ifn e L'(X) ® API(X) is an integrable differential, n defines
Co°(X)

n<w>:/XnAw.

2) If Z =3 ng Zy is a cycle of codimension p on X, it defines a Dirac current
«

0z € DPP(X) by the formula

5Z(W):%:"a/zawa

where the integrals converge by Hironaka’s theorem.
We can derivate a current T' € DP4(X) by the formulae

a current by the formula

0T (w) = (—1)PT ! T(Gw)
and 7 7
0T (w) = (—1)PT 1 T(Jw).
By the Stokes formula we get a commutative diagram
DPI(X) i> DPH"](X)
U U
Ara(x) 25 Artla(x)

and idem for @ and d = 9 + 9.

Proposition 3 (Poincaré-Lelong). Let L be an hermitian line bundle on
X and s a meromorphic section of L. Then we have the following formula in
DY1(X)

(7) dd®(—log [|s[|*) + Saiv(s) = e1(L).

2.10

To prove Proposition 3 let Z = |div(s)| be the support of the divisor of s. By
Theorem 2, there exists a birational resolution

X 5 X
where m=1(Z) has local equation 2; ...z, = 0. Therefore

ny

T (s) = 2"zt

locally. If Proposition 3 holds for 7*(L) and 7*(s), by applying 7. we get (7).
So we can assume that X = X. By additivity we can assume that

a) |Isl| = |z

15



or
b) log [s|| = p € C*=(X).

In case b) div(s) = 0 and (7) is true by definition of ¢; (L) (Lemma 4). In case
a) we have to show that, for every differerntial form w, with compact support

in U,
7/ log|zl|2ddc(w):/ w.
U |z1]|=¢

But, by Stokes’ theorem, we have

— lim log |21 | dd°(w)
e—0 ‘21‘25
= lim log |z1] d°w + lim dlog|z[*dw.
e—0 ‘Zl‘:s e—0 ‘21‘26

The first summand vanishes and, applying Stokes’ theorem again,

lim dlog|z1[*d°w = — lim dlog |z1|* dw
e—0 |21|25 e—0 ‘21‘26
= lim d®log|z1|? w — lim dd°log |z |*w.
e—0 |21|=E e—0 |Zl‘25
The second summand vanishes and, taking polar coordinates z; = r1 e, we
get
: do
d®log|z1|? = -
27
and
. d b /
lim —w= w.
e—=0 |21|:E 27T Z1:O
q.e.d.
2.11

Coming back to Proposition 2 we consider the current
Ts,t = 5div(s) lOg ||t||2 + log HSH2 a (Z) .

Then -
I(s,t) = Ty (e (L)1) /2.

Proposition 3 implies
Ty = (c1(L) + dd®log ||s]|*) log [|¢]|* + log [|s]|* e1 (L)

at least formally: we have to make sense of the product of currents (dd¢log ||s||?) log ||2||2.
By Stokes’ theorem we have (at least formally)

dd°(T\) Ty = d(d°(T1) Ts) + d°(T1) d(T3)
d(d°(T1) Ty) + d°(Ty d Tp) — Ty d°d(T) .

16



Since d°d = —dd® and d(c; (L)) = d°(c1 (L)1) = 0 we get
2I(s,t) = Tt (c1 (L)1) = Ty o (er (L)1) = 21I(1, ).

q.e.d.

2.12 The height of the projective space

Let N > 1 be an integer and PV the N-dimensional projective space over Z.
The tautological line bundle O(1) on PV is a quotient of the trivial vector bundle
of rank N + 1

O = 0(1) = 0.

We equip ON 1 with the trivial metric and O(1) with the quotient metric.

Proposition 4. The height of PV is

1L &g
hom P =522 —

Eod
i
o
3
I
N

Proof of Proposition 4. Let s be the section of O(1) defined by the ho-
mogeneous coordinate Xo. Then div(s) = PN+ and we get, from Theorem 1

ii),
WE) =Y - [ g s
PN(C)

where dp is the probability measure on PV (C) invariant under rotation by U (N
1). If dv is the probability measure on the sphere SV *! invariant under U (N +

1) we have
/ log |s|| dy: = / log [ Xo| dv
PN (C) S2N+1

and Proposition 4 follows from

Lemma 8.

N
2w

N | =

/ log | Xo| dv =
S2N+1

3 Arithmetic Chow groups

3.1 Definition

Let X be a regular projective flat scheme over Z and p > 0 an integer. Let
Z?(X) be the group of codimension p cycles on X.

17



Definition. A Green currentfor Z € ZP(X) is areal current g € DP~1P=1(X(C))
such that F% (g) = (=1)P~1 g and

dd°g+ 6z =w

is a smooth form w € APP(X(C)).
We let EP(X) be the group generated by pairs (Z,g), Z € ZP(X), g Green
current for Z, with (Z1,91) + (Z2,92) = (Z1 + Zs2, g1 + g2)-

Examples. i) Let Y C X be a closed irreducible subset with codimx(Y) =
p—1,and f € k(Y) a rational function on Y. Define log |f|? € DP~1P~1(X(C))
by the formula

(log |[2)(w) = /Y o oslfte

(which makes sense by Theorem 2). We may think of f as a rational section of
the trivial line bundle on Y. Therefore Poincaré-Lelong formula (Proposition
3) reads

dd®(=log | f|*) + daiv() = 0.

Hence the pair
div(f) = (div(f), ~log /[
is an element of ZP(X).
ii) Given u € DP=2P=1(X(C)) and v € DP~1P~2(X (C)) we have

dd°(du + dv) =0,

so (0,0u+ dv) € ZP(X).

We let ]%’L(X) C ZP(X) be the subgroup generated by all elements &1\\/(]”)
and (0,0u + 0v).

Definition. The arithmetic Chow group of codimension p of X is the quotient

CH' (X) = ZP(X)/RP(X) .

3.2 Example

Let ].SI\C(X ) be the group of isometric isomorphism classes of hermitian line
bundles on X, equipped with the tensor product.

IL=(L]-|) e Isl\c(X) and if s # 0 is a rational section of L we let
div(s) = (div(s), — log [[s]?) € Z"(X)
(Proposition 3), and we define

a(I) e CH (X)

18



to be the class of &1\\7(3) It does not depend on the choice of s: if s’ is another
section of L we have

s=Ffs
with f € k(X). Therefore

div(s') — div(s) = div(f) € R} (X).

Proposition 5. The map ¢; induces a group isomorphism
—~ /\1
¢; : Pic(X) —» CH (X).
To prove Proposition 5 we consider the commutative diagram with exact

rows

(X(©))

(X(©))

where a(y) is the trivial line bundle on X equipped with the norm such that
|11]] = exp(e), (L) = L, a’(¢) = (0, —log |¢|?) and ((Z,g) = Z. Since ¢ is an
isomorphism the same is true for ¢;.

% Pie(X) — > Pie(X) —= 0

f

L>6—ﬁl(X) L>CH1(X) —0

0——=(C>

0——=(C>®

3.3 Products

3.3.1

Denote by aﬁp(X)@ the tensor product aﬁp(X) ® Q.
zZ

Theorem 3. When p > 0 and ¢ > 0 there is an intersection pairing

CH'(X)®CH'(X) — CH'M(X)q
rTRY +—— T-Y

It makes ¢ @p(X )o a commutative graded Q-algebra.
20

Let ¢ : éﬁp(X) — CHP(X) be the map sending the class of (Z, g) to the class
of Z, and let w : Gﬁp(X) — APP(X) be the map sending (Z, g) to dd°g + 7.
Then
2z -y) = 2(2) 2(y)
and
w(z-y) =w@)w(y) .
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3.3.2

To prove Theorem 3, let y = (Y, gy ) € EP(X) and z = (Z,9z) € 2‘1(X).

We first define a cycle Y N Z. For this we assume that the restrictions Yg
and Zg of Y and Z to the generic fiber Xg meet properly, i.e. the components
of |Yg| N |Zg| have codimension p + ¢ ( the moving lemma allows one to make
this hypothesis). It follows that there exists a well defined intersection cycle
Yo - Zg € ZPT1(Xg), supported on the closed set [Yg| N |Zg|. Let

CH?, (X) = ker(CHP(X) — CHP(X — Y))

be the Chow group with supports in Y, and CHf_(X) the Chow group with
supports in finite fibers of X. There is a canonical map

CHY (X) = CHE, (X) & 27(Xq).
One can define an intersection paring
CHY, (X) ® CHY(X) — CHYTY, (X)g

One method to do so ([1], [2], [5]) is to interpret CH}, (X)g as the subspace of
K} (X)q where the Adams operations 1* act by multiplication by k? (k > 1),
and to use the tensor product

Ky (X)® K¢(X) — K¢"4(X).
We let Y N Z € CHEHY(X)g @ ZP19(Xg)qg be the image of
Y] ®[Z] € CHY(X) ® CHL(X)
by the maps
CHY (X) © CHY(X) — CHEH, (X)g — CHEF(X)g @ Z749(X)g .
Next we define a Green current for Y N Z. For this we write
dd° gy + oy = wy

and
dd“ gz + 6z =wz,
and we let
gy *9z =0y gz + gy wz .
However gy dz, being a product of currents, is not well defined a priori. But gy
is defined up to the addition of a term d(u) 4+ d(v) and one shows that gy can
be chosen to be an L!-form on X (C) — Y (C), with restriction an L!-form 7 on

Z(C) — Z(C)NY(C). We let gy 6z be the current defined by n on Z(C) (see
above Example 1) in §2.9):

gy 0z(w) :/ nw.
Z(C)—(Z(C)nY (C))
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To prove that gy * gz is a Green current for Y N Z we proceed formally:

dd“(gy * gz) = dd°(éy gz)+ dd°(gy wz)
= Jy dd®(gz) +dd°(gy)wz
Sy (wz —0z) + wy — dy) wz

wy wz — 0y 0z

= wywz —dynz.

We refer to [2] for the justification of this series of equalities.

3.4 Functoriality
Let f: X — Y be a morphism.

Theorem 5. For every p > 0 there is a morphism
v AP —=p
ff:CH (Y) = CH (X).
If the restriction of f to X(C) is a smooth map of complex manifolds, there are
morphisms

— ——p+dim(Y)—dim(X
fo: CHV(X) — CRr ) =dmt) gy

Both f* and f, are compatible to ¢ and w. Furthermore
[ia-y) =) (y)
and
felz- f7(y) = ful@) -y
3.5 Heights and intersection numbers

3.5.1

Let X be a projective regular flat scheme over Z and ¥ C X a closed in-
tegral subscheme. We assume that X is equidimensional of dimension d and
codimx (Y) = p. One can then define as follows a morphism

.CH (V) 5 R.
Y

——d
First, assume that X =Y and that 2 € CH (X) is the class of (Z, gz) where
7 is a zero-cycle and gz € D4~14=1(X(C)). The cycle Z is then a finite sum

Z:Znaya
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where y,, is a closed point with finite residue field k(y, ), and there exist currents
u and v such that nz = gz + 9(u) + 0(v) is smooth. By definition

Jor =D ot v~ [ e

©

In general we let gy be a Green current for Y in X(C), and y = (Y, gy). If
—d- ——d
x € CH p(Y) we have z -y € CH (X) and we define

1
/xz/x-y—a/ w(z) gy
Y b's X(C)

One checks that this number is independent on the choice of gy .

Theorem 5. The height of Y is

3.5.2

To prove Theorem 5 we shall check that the two properties in Theorem 1 hold
true for the number [, ¢ (L)*7P.

—d
When p =d, Y is a closed point y and, if = is the class of (y,0) in CH (X),
we have

[ o= 1o k() = ().

Assume dim(Y) > 0. Let gy be a Green current for Y and y = (Y, gy).
Close a rational section s of L on Y, and an extension s of s to X. Then

(L) = (div(3), — log [s]|*)

If z =21 (L) P~! we get, from the definition of [y,

a(L) = x¢ (L 1 w(ze (L
(¥ [ram= [ sa@y—g [ weamo.
But
pa@)y = o (@vE] V), ~log 3+ gv)

= - (div(s), —log ||3]|* 6y + c1(L) gy ) -
If x =: ¢ (L) P! is the class of (Z, gz), we get

(9) x - /C\l(f) Yy = (Z . div(s),w(aﬁ)(— log H§H2 oy + Cl(Z) gy) + 39z 6div(s)) .

/ (Z . diV(S)agZ 5div(s)) = / €z
x div(s)

22
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we deduce from (9) that

P 1 1 _
(10) / a:~cl(L)-y=/ x—f/ w(a:)log||5|\2+f/ w(@)er(T) gy -
X divis)  2Jy @ 2 Jx@©

Since w(x ¢ (L)) = w(x) c1(Le), (8) and (10) imply that

_ _ 1 _
/a(L)H :/ STyt - 7/ (D) log 3] .
1% div(s) 2 Jy

q.e.d.
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