
Arithmetic intersection

C. Soulé∗

1 Definition of the height

Let X be a regular projective flat scheme over Z, and L an hermitian line
bundle over X. For every integral closed subset Y ⊂ X we shall define a real
number hL (Y ), called the (Faltings) height of Y ([4]). For this we need a few
preliminaries.

1.1 Algebraic preliminaries

1.1.1 Length

Let A be a nœtherian (commutative and unitary) ring, and M an A-module of
finite type.

There exists a filtration

(1) M = M0 ⊃M1 ⊃M2 ⊃ . . . ⊃Mr = 0

such that Mi+1 6= Mi and Mi/Mi+1 = A/℘i, where ℘i is a prime ideal, 0 ≤ i ≤
r − 1.

Definition. M has finite length when there exists a filtration as (1) above
where, for all i, ℘i a maximal ideal in A.

Lemma 1 (Jordan-Hölder). If M has finite length, r does not depend on
the choice of the filtration (1) with ℘i maximal. We call this number the length
of M and denote it `(M) ∈ N.

Lemma 2. Let
0→M ′ →M →M ′′ → 0

be an exact sequence of A-modules of finite type. Then

`(M) = `(M ′) + `(M ′′) .

The proofs of Lemma 1 and Lemma 2 are left to the reader.

∗CNRS et IHES, Le Bois-Marie, 35 route de Chartres, 91440 Bures-sur-Yvette, France
soule@ihes.fr

1



1.1.2 Order

Let A be as above. The dimension of A is

dim(A) = max{n\∃ a chain of prime ideals ℘0 ⊂ ℘1 ⊂ ℘2 . . . ⊂ ℘n ⊂ A,

with ℘i 6= ℘i+1} .

Let A be an integral ring of dimension 1, and a ∈ A, a 6= 0.

Lemma 3. A/aA has finite length.

Proof. Let
℘0 ⊂ . . . ⊂ ℘n

a maximal chain in A/aA, with ℘i 6= ℘i+1, and ϕ : A → A/aA the projection.
Let ℘i = ϕ−1(℘i). We get a chain

℘0 ⊂ . . . ⊂ ℘n

with ℘i 6= ℘i+1. Since A is integral, (0) is a prime ideal. And ℘0 6= (0) since ℘0

contains a. We conclude that

dim(A/aA) ≤ dim(A)− 1 .

Since dim(A) = 1 this implies that every prime ideal of A/aA is maximal.
Therefore A/aA has finite length.

q.e.d.

Let A be as in Lemma 3 and K = frac(A) the field of fractions of A. If
x ∈ K we define, if x = a/b,

ordA(x) = `(A/aA)− `(A/bA) ∈ Z .

Lemma 4. i) ordA(x) does not depend on the choice of a and b.

ii) ordA(xy) = ordA(x) + ordA(y).

The proof of Lemma 4 is left to the reader.

Example. Assume A is local (i.e. A has only one maximal idealM) and regular
(i.e. dimA = dim(M/M2)). When dim(A) = 1, K has a discrete valuation

v : K → Z ∪ {∞} ,

A = {x ∈ K such that v(a) ≥ 0}

and ordA(x) = n iff x ∈Mn and x /∈Mn+1. Therefore

ordA(x) = v(x) .
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1.1.3 Divisors

Let X be a nœtherian scheme and OX the sheaf of functions on X.

Definition. A line bundle on X is a locally free OX -module L of rank one.

In other words L is a sheaf of abelian groups on X with a map

µ : OX × L→ L

such that there exists an open cover

X =
⋃
α

Uα

such that

• L(Uα) ' O(Uα)

• µ on L(Uα) is the multiplication.

Assume now that X is integral (for every open subset U ⊂ X, O(U) is
integral). Let η ∈ X be the generic point.

Definition. A rational section of L is an element s ∈ Lη.

Let Z1(X) be the free abelian group spanned by the closed irreducible sub-
sets Y ⊂ X of codimension one. We call Z1(X) the group of divisors of X.

If s ∈ Lη is a rational section, its divisor is defined as

div(s) =
∑
Y

nY [Y ] ∈ Z1(X) ,

where nY is computed as follows. If Y ⊂ X has codimension 1 and Y = {y} is
integral, the ring A = OX,y is local, integral, of dimension 1. Its fraction field is

K = OX,η .

Choose an isomorphism Ly ' A, hence Lη ' K. If s ∈ Lη − {0} = K∗, we let

nY = ordA(s)

(we shall also write nY = ordY (s)).

One can prove that nY does not depend on choices, and nY = 0 for almost
all Y .

Example. Let K be a number field and X = Spec (OK). Giving L amounts to
give

Λ = L(X) ,

3



a projective OK-module of rank one. If s ∈ Λ, s 6= 0, we have a decomposition

Λ/OKs '
∏

℘ prime

(OK/℘
n℘)

where n℘ = ordO℘(s), hence

div(s) =
∑
℘

n℘ [℘] .

1.2 Analytic preliminaries

Let X be an analytic smooth manifold over C, and OX,an the sheaf of holomor-
phic functions on X.

Definitions. i) An holomorphic line bundle on X is a locally free OX,an-module
of rank one.

ii) A metric ‖ · ‖ on L consists of maps

L(x)
‖·‖−−−→ R+

for any x, where L(x) = Lx/Mx is the fiber at x. We ask that

• ‖λs‖ = |λ| ‖s‖ if λ ∈ C;

• ‖s‖ = 0 iff s = 0;

• Let U ⊂ X be an open subset and s a section of L over U vanishing
nowhere; then the map

x 7−→ ‖s(x)‖2

is C∞.

We write L = (L, ‖ · ‖).
Denote by An(X) the C-vector space of C∞ differential forms of degree n

on X. Recall that An(X) decomposes as

An(X) =
⊕
p+q=n

Apq(X) ,

where Apq(X) consists of those differential forms which can be written locally
as a sum of forms of type

u d zi1 ∧ . . . ∧ d zip ∧ d zj1 ∧ . . . ∧ d zjq

where u is a C∞ function, d zα = d xα + i d yα and d zα = d xα − i d yα.

The differential
d : An(X)→ An+1(X)
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is a sum d = ∂ + ∂ where

∂ : Apq(X)→ Ap+1,q(X)

and
∂ : Apq(X)→ Ap,q+1(X) .

We have ∂2 = ∂
2

= d2 = 0 and we let

dc =
∂ − ∂
4π i

,

so that

ddc =
∂ ∂

2π i
.

Lemma 4. Let L = (L, ‖ · ‖) be an analytic line bundle with metric. There
exists a smooth form

c1(L) ∈ A1,1(X)

such that, if U ⊂ X is an open subset and s ∈ Γ(U,L) is such that s(x) 6= 0 for
every x ∈ U ,

c1(L)|U = − ddc log ‖s‖2 .

Proof. Let s′ ∈ Γ(U,L) be another section such that s(x) 6= 0 when x ∈ U .
We need to show that

(2) − ddc log ‖s′‖2 = − ddc log ‖s‖2 in A11(U) .

There exists f ∈ Γ(U,OXan
) such that

s′ = fs .

We get
− ddc log ‖s′‖2 = − ddc log ‖s‖2 − ddc log |f |2 .

But

∂ ∂ log |f |2 = ∂

[
∂ f

f
+
∂ f

f

]
= − ∂ ∂ (f)

f
= 0 ,

and (2) follows. q.e.d.

The form c1(L) is called the first Chern form of L.
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1.3 Heights

Let X be a regular, projective, flat scheme over Z. We denote by X(C) the set
of complex points of X, an analytic manifold.

Definition. An hermitian line bundle on X is a pair L = (L, ‖ · ‖), where L is
a line bundle on X and ‖ · ‖ is a metric on the holomorphic line bundle

LC = L|X(C) .

We also assume that ‖ · ‖ is invariant by the complex conjugaison

F∞ : X(C)→ X(C) .

Let L be an hermitian line bundle on X. We let

c1(L) = c1(LC) ∈ A1,1(X(C)) .

Theorem 1. There is a unique way to associate to every integral closed subset
Y ⊂ X a real number

hL (Y ) ∈ R

in such a way that:

i) If dim(Y ) = 0, i.e. when Y = {y} where y ∈ X is a closed point, we let
k(y) = OX,y/MX,y be the residue field. Then k(y) is finite and

hL (Y ) = log # (k(y)) .

ii) If dim(Y ) > 0, let s be a rational section of L over Y . If

divY (s) =
∑
α

nα Yα ,

then

hL (Y ) =
∑
α

nα hL (Yα)−
∫
Y (C)

log ‖s‖ c1(L)dimY (C).

2 Existence of the height

2.1 Resolutions

To prove Theorem 1, we first need to make sense of the integral in ii). For that
we use Hironaka’s resolution theorem.

Theorem 2 (Hironaka). Let X be a scheme of finite type over C, and Z ⊂ X
a proper closed subset of X such that X − Z is smooth. Then there exists a
proper map

π : X̃ → X
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such that:

i) X̃ is smooth;

ii) X̃ − π−1(Z)
∼−−→ X − Z;

iii) π−1(Z) is a divisor with normal crossings.

In the situation of ii) in Theorem 1, we apply Theorem 2 to X = Y (C), and
to the union Z = div(s) ∪ Y (C)sing of the support of div(s) and the singular

locus of Y (C). Let π : Ỹ → Y (C) be the resolution of Y (C), d the dimension of
Y (C) and ω ∈ Add(Y (C)− Z). Then we define∫

Y (C)

log ‖s‖ω =

∫
Ỹ

log ‖π∗(s)‖π∗(ω) .

To see that the integral converges choose local coordinates z1, . . . , zd of Ỹ such
that

π∗(s) = zn1 u ,

with u invertible. Therefore

log ‖π∗(s)‖ = n log |z1|+ α ,

with αC∞, and

π∗(ω) = β

d∏
i=1

d zi d zi ,

with β C∞. Since∫ ε

0

log(z) d z d z =

∫ ε

0

log(r) r dr dθ < +∞ ,

the integral converges.

2.2

By induction on dim(Y ), the unicity of hL (Y ) is clear.

Example. Let K be a number field and X = Spec (OK). If Σ is the set of
complex embeddings of K we have

X(C) =
∐
σ∈Σ

Spec (C) .

To give L = (L, ‖ · ‖) amounts to give a pair Λ = (Λ, ‖ · ‖σ) where Λ = L(X)
is a projective OK-module of rank one and, for any σ ∈ Σ, ‖ · ‖σ is a metric on
Λ⊗

σ
C ' C such that

‖F∞(x)‖F∞◦σ = ‖x‖σ .
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If s ∈ Λ, s 6= 0, we have

div(s) =
∑
℘

n℘ [℘]

and
hL (X) =

∑
℘

n℘ log(N℘)−
∑
σ∈Σ

log ‖σ(s)‖σ ,

where N℘ = # (O/℘).

Since
Λ/Os =

∏
℘

(O℘/℘
n℘)

we get ∑
℘

n℘ log(N℘) = log # (Λ/Os) .

Lemma 6. hL (X) does not depend on the choice of s.

Proof. Let
d(s) = log # (Λ/Os)−

∑
σ∈Σ

log ‖σ(s)‖σ .

If s′ ∈ Λ, s′ 6= 0, we have
s′ = f s

with f ∈ K∗. Therefore

d(s′)− d(s) =
∑
℘

v℘(f) log(N℘)−
∑
σ∈Σ

log ‖σ(f)| = 0

by the product formula. q.e.d.

2.3

Let us prove Theorem 1 when Y has dimension one and Y is horizontal, i.e. Y
maps surjectively onto Spec (Z). We have then

Y = {y} ,

where y is a closed point in X ⊗
Z
Q. The residue field K = k(y) is a number

field and
Y = Spec (R)

where R is an integral ring with fraction field K. Denote by R̃ the integral
closure of R in K (i.e. R̃ = OK) and let

π : Ỹ = Spec (R̃)→ Y
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be the projection. If
s ∈ Γ(Y, L)− {0} ,

π∗(s) ∈ Γ(Ỹ , π∗L)− {0} .

We shall prove that

(3) d(s) = d(π∗(s)) .

By 2.2 this will imply that d(s) is independent of the choice of s. To prove (3)
we first notice that

Y (C) = Ỹ (C) =
∐
σ∈Σ

Spec (C) ,

hence

(4)
∑
σ∈Σ

log ‖s‖σ =
∑
σ∈Σ

log ‖π∗(s)‖σ .

Next we consider the commutative diagram

0

��
0

��

0

��

K

��
0 // R

s //

��

L //

��

L/R s //

��

0

0 // R̃
s̃ //

��

L̃ //

��

L̃/R s̃ //

��

0

0 // K ′ // R̃/R //

��

L̃/L //

��

K ′′ //

��

0

0 0 0

where s̃ = π∗(s) ∈ L̃ = π∗(L).

By diagram chase we get

#K = #K ′ .

On the other hand, for any prime ideal ℘ in OK , we have

#

(
L̃

L

)
℘

= #

(
R̃

R

)
℘
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since L̃℘ = L℘ ⊗
R℘

R̃℘ and L and L̃ are locally trivial. This implies

#K ′ = #K ′′

and #K = #K ′′. Therefore

(5) # (L/R s) = # (L̃/R̃ s) .

The assertion (3) follows from (4) and (5).

When dim(Y ) = 1 and Y is vertical i.e. its image in Spec (Z) is a closed
point of finite residue field k, Theorem 1 is proved by considering a resolution

π : Ỹ → Y .

The proof is the same as in the case Y is horizontal, the product formula being
replaced by the equality ∑

x∈Ỹ

vx(f) [k(x) : k] = 0

for any f ∈ k(Y )∗. Indeed,

log # k(x) = [k(x) : k] log # k .

2.4

Assume from now on that dim(Y ) ≥ 2, with Y ⊂ X a closed integral subscheme,
Y = {y}. If s ∈ Ly, s 6= 0,

div(s) =
∑
α

nα Yα .

Lemma 7. There exists t ∈ Ly such that, for every α, the restriction of t to
Yα is not zero.

Proof. Let Yα = {yα}. The ring

R = lim−→
∃α s.t. yα∈U

O(U)

is semi-local, i.e. it has finitely many maximal ideals Mα, α ∈ A. Let

I =
⋂
α∈Λ

Mα

be the radical of R, and
Λ = lim−→

∃α s.t. yα∈U
L(U) .
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Note that, for every α,
RMα = Oyα

and, for every pair α 6= β
Mα +Mβ = R .

Since L is locally trivial

Λ⊗R/I =
∏
α

(Λ⊗Oyα)/Mα '
∏
α

Oyα/Mα = R/I .

Denote by t ∈ Λ an element such that its class in Λ⊗R/I maps to 1 ∈ R/I by
the above isomorphism. The module

M = Λ/R t

is such that M = IM . Therefore, by Nakayama’s lemma, M = 0. Since

Λ = R t ,

for every α ∈ A the restriction of t to Yα does not vanish. q.e.d.

2.5

Given s and t as above we write

div(s) =
∑
α

nα Yα

and
div(t) =

∑
β

mβ Zβ ,

with Zβ 6= Yα for all β and α. Consider

div(s) · div(t) =
∑
α

nα div(t | Yα)

and
div(t) · div(s) =

∑
β

mβ div(s | Zβ) .

These are cycles of codimension two in Y .

Proposition 1. We have

div(s) · div(t) = div(t) · div(s) .

The proof of Proposition 1 will be given later.
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Assume dimY (C) = d, and define

d(s) = hL (div(s))−
∫
Y (C)

log ‖s‖ c1(L)d .

By induction hypothesis we have

d(s) =
∑
α

nα hL (div(t|Yα))

−
∑
α

nα

∫
Yα(C)

log ‖t‖ c1(L)d−1 −
∫
Y (C)

log ‖s‖ c1(L)d

= hL (div(s) · div(t))− I(s, t)

where

I(s, t) =
∑
α

nα

∫
Yα(C)

log ‖t‖ c1(L)d−1 +

∫
Y (C)

log ‖s‖ c1(L)d .

Proposition 2. I(s, t) = I(t, s).

From Proposition 1 and Proposition 2 we deduce that d(s) = d(t) when
div(s) and div(t) are transverse. When s and s′ are two sections of L there
exists a section t such that div(s) and div(t) (resp. div(s′) and div(t)) are
transverse. Therefore

d(s) = d(t) = d(s′)

and Theorem 1 follows.

2.6

To prove Proposition 1 we write

div(s) · div(t) =
∑
W

nW [W ]

with codimY (W ) = 2. Let W = {w} and

R = OY,w .

Since Lw ' OY,w one can assume that t (resp. s) corresponds to a ∈ R (resp.
b ∈ R). Since R is integral and a 6= 0, we know from the proof of Lemma 3
that, if A = R/aR,

dim(A) ≤ dim(R)− 1 = 1 .

Let b ∈ A be the image of b and let ℘ ⊂ A be a minimal prime ideal of A. The
inverse image ℘ ⊂ R of ℘ is a minimal nontrivial prime ideal. Since a ∈ ℘ we
have aR = ℘ and b /∈ ℘, otherwise div(t) is not prime to div(s). Hence b /∈ ℘.
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Furthermore b does not divide zero in A. Otherwise there exists a minimal
prime ideal ℘ ⊃ aR such that b divides zero in R/℘. Since b 6= 0 and R is
integral, we get a contradiction.

Since b does not divide zero we have dim(A/b) ≤ dim(A)−1. But dim(A) ≤
1. Therefore dim(A) = 1 and dim(A/b) = 0. It follows that A/b has finite
length. If 〈a, b〉 ⊂ R is the ideal spanned by a and b, A/b = R/〈a, b〉. We shall
prove that

nW = `(R/〈a, b〉) .

2.7

Let A be as above and let M be an A-module of finite type. If x ∈ A we have
an exact sequence

(6) 0→M [x]→M
×x−−−→M →M/xM → 0 .

If M [x] and M/xM have finite length we define

e(x,M) = `(M/xM)− `(M [x]) ∈ Z .

Lemma 7. i) M [b] and M/bM have finite length.

ii)

e(b,M) =
∑
℘⊂A

℘minimal

`A℘(M℘) e (b, A/℘) .

iii)
e(b, A/℘) = `(A/(℘+ bA)) .

Proof of i) and ii). Note that both sides in ii) are additive in M . Therefore
we can assume that M = A/q where q is a prime ideal. We distinguish two
cases:

a) If q is maximal, for any minimal prime ideal ℘ we have M℘ = 0. Therefore
`(M) is finite. From Lemma 2 and (6) we conclude that

e(b,M) = 0 .

b) Assume q = ℘ is minimal. If ℘′ 6= ℘ is any prime ideal different from ℘ we
have

M℘′ = 0 .

Therefore the right hand side reduces to one summand and i) holds. Further-
more

`A℘(M℘) = 1

and
e(b,M) = e(b, A/℘)
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so ii) is true.

To prove iii) it is also enough to check the case M = A/℘. We saw that
b /∈ ℘ and A/℘ is integral, therefore M [b] = 0.

On the other hand

dim(A/(℘+ bA)) ≤ dim(A/℘)− 1 = 0 .

Therefore
e(b, A/℘) = `(A/(℘+ bA)) .

q.e.d.

2.8

We shall apply Lemma 7 to

M = A = R/aR .

Let ℘ be a minimal prime in A and Y ⊂ |div(s)| the corresponding component
of the support of div(s). We have

`A℘(A℘) = ordA℘(a) = ordY (s)

and
`(A/(℘+ bA)) = ordW (t|Y ) .

Lemma 7 iii) says that
e(b, A) = nW .

But b does not divide zero, so

e(b, A) = `(R/〈a, b〉) .

Therefore nW = `(R/〈a, b〉). Since 〈a, b〉 = 〈b, a〉 we conclude that

div(s) · div(t) =
∑
W

nW [W ] = div(t) · div(s) .

This ends the proof of Proposition 1.

2.9

We shall now prove Proposition 2. For this we need some more analytic prelim-
inaries. Let X be a smooth complex compact manifold of dimension d.

Definition. A current T ∈ Dpq(X) is a C-linear form

T : Ad−p,d−q(X)→ C

which is continuous for the Schwartz’ topology.
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Examples. 1) If η ∈ L1(X) ⊗
C∞(X)

Apq(X) is an integrable differential, η defines

a current by the formula

η(ω) =

∫
X

η ∧ ω .

2) If Z =
∑
α
nα Zα is a cycle of codimension p on X, it defines a Dirac current

δZ ∈ Dpp(X) by the formula

δZ(ω) =
∑
α

nα

∫
Zα

ω ,

where the integrals converge by Hironaka’s theorem.

We can derivate a current T ∈ Dpq(X) by the formulae

∂ T (ω) = (−1)p+q+1 T (∂ ω)

and
∂ T (ω) = (−1)p+q+1 T (∂ ω) .

By the Stokes formula we get a commutative diagram

Dpq(X)
∂−−→ Dp+1,q(X)

∪ ∪
Apq(X)

∂−−→ Ap+1,q(X)

and idem for ∂ and d = ∂ + ∂.

Proposition 3 (Poincaré-Lelong). Let L be an hermitian line bundle on
X and s a meromorphic section of L. Then we have the following formula in
D1,1(X)

(7) ddc(− log ‖s‖2) + δdiv(s) = c1(L) .

2.10

To prove Proposition 3 let Z = |div(s)| be the support of the divisor of s. By
Theorem 2, there exists a birational resolution

π : X̃ → X

where π−1(Z) has local equation z1 . . . zk = 0. Therefore

π∗(s) = zn1
1 . . . znkk

locally. If Proposition 3 holds for π∗(L) and π∗(s), by applying π∗ we get (7).

So we can assume that X = X̃. By additivity we can assume that

a) ‖s‖ = |z1|
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or

b) log ‖s‖ = ρ ∈ C∞(X).

In case b) div(s) = 0 and (7) is true by definition of c1(L) (Lemma 4). In case
a) we have to show that, for every differerntial form ω, with compact support
in U ,

−
∫
U

log |z1|2 ddc(ω) =

∫
|z1|=ε

ω .

But, by Stokes’ theorem, we have

− lim
ε→0

∫
|z1|≥ε

log |z1|2 ddc(ω)

= lim
ε→0

∫
|z1|=ε

log |z1| dc ω + lim
ε→0

∫
|z1|≥ε

d log |z1|2 dc ω .

The first summand vanishes and, applying Stokes’ theorem again,

lim
ε→0

∫
|z1|≥ε

d log |z1|2 dc ω = − lim
ε→0

∫
|z1|≥ε

dc log |z1|2 dω

= lim
ε→0

∫
|z1|=ε

dc log |z1|2 ω − lim
ε→0

∫
|z1|≥ε

ddc log |z1|2 ω .

The second summand vanishes and, taking polar coordinates z1 = r1 e
iθ1 , we

get

dc log |z1|2 =
d θ1

2π
and

lim
ε→0

∫
|z1|=ε

d θ1

2π
ω =

∫
z1=0

ω .

q.e.d.

2.11

Coming back to Proposition 2 we consider the current

Ts,t = δdiv(s) log ‖t‖2 + log ‖s‖2 c1(L) .

Then
I(s, t) = Ts,t(c1(L)d−1)/2 .

Proposition 3 implies

Ts,t = (c1(L) + ddc log ‖s‖2) log ‖t‖2 + log ‖s‖2 c1(L)

at least formally: we have to make sense of the product of currents (ddc log ‖s‖2) log ‖t‖2.
By Stokes’ theorem we have (at least formally)

ddc(T1)T2 = d(dc(T1)T2) + dc(T1) d(T2)

= d(dc(T1)T2) + dc(T1 d T2)− T1 d
cd(T2) .

16



Since dcd = −ddc and d(c1(L)d−1) = dc(c1(L)d−1) = 0 we get

2I(s, t) = Ts,t(c1(L)d−1) = Tt,s(c1(L)d−1) = 2I(t, s) .

q.e.d.

2.12 The height of the projective space

Let N ≥ 1 be an integer and PN the N -dimensional projective space over Z.
The tautological line bundle O(1) on PN is a quotient of the trivial vector bundle
of rank N + 1

ON+1
PN → O(1)→ 0 .

We equip ON+1
PN with the trivial metric and O(1) with the quotient metric.

Proposition 4. The height of PN is

h
O(1)

(PN ) =
1

2

N∑
k=1

k∑
m=1

1

m
.

Proof of Proposition 4. Let s be the section of O(1) defined by the ho-
mogeneous coordinate X0. Then div(s) = PN+1 and we get, from Theorem 1
ii),

h(PN ) = h(PN−1)−
∫
PN (C)

log ‖s‖ dµ

where dµ is the probability measure on PN (C) invariant under rotation by U(N+
1). If dv is the probability measure on the sphere S2N+1 invariant under U(N+
1) we have ∫

PN (C)

log ‖s‖ dµ =

∫
S2N+1

log |X0| dv

and Proposition 4 follows from

Lemma 8. ∫
S2N+1

log |X0| dv =
1

2

N∑
m=1

1

m
.

3 Arithmetic Chow groups

3.1 Definition

Let X be a regular projective flat scheme over Z and p ≥ 0 an integer. Let
Zp(X) be the group of codimension p cycles on X.
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Definition. A Green current for Z ∈ Zp(X) is a real current g ∈ Dp−1,p−1(X(C))
such that F ∗∞(g) = (−1)p−1 g and

ddc g + δZ = ω

is a smooth form ω ∈ App(X(C)).

We let Ẑp(X) be the group generated by pairs (Z, g), Z ∈ Zp(X), g Green
current for Z, with (Z1, g1) + (Z2, g2) = (Z1 + Z2, g1 + g2).

Examples. i) Let Y ⊂ X be a closed irreducible subset with codimX(Y ) =
p−1, and f ∈ k(Y ) a rational function on Y . Define log |f |2 ∈ Dp−1,p−1(X(C))
by the formula

(log |f |2)(ω) =

∫
Y (C)

log |f |2 ω

(which makes sense by Theorem 2). We may think of f as a rational section of
the trivial line bundle on Y . Therefore Poincaré-Lelong formula (Proposition
3) reads

ddc(− log |f |2) + δdiv(f) = 0 .

Hence the pair

d̂iv(f) = (div(f),− log |f |2)

is an element of Ẑp(X).

ii) Given u ∈ Dp−2,p−1(X(C)) and v ∈ Dp−1,p−2(X(C)) we have

ddc(∂ u+ ∂ v) = 0 ,

so (0, ∂ u+ ∂ v) ∈ Ẑp(X).

We let R̂p(X) ⊂ Ẑp(X) be the subgroup generated by all elements d̂iv(f)
and (0, ∂ u+ ∂ v).

Definition. The arithmetic Chow group of codimension p of X is the quotient

ĈH
p
(X) = Ẑp(X)/R̂p(X) .

3.2 Example

Let P̂ic(X) be the group of isometric isomorphism classes of hermitian line
bundles on X, equipped with the tensor product.

If L = (L, ‖ · ‖) ∈ P̂ic(X) and if s 6= 0 is a rational section of L we let

d̂iv(s) = (div(s),− log ‖s‖2) ∈ Ẑ1(X)

(Proposition 3), and we define

ĉ1(L) ∈ ĈH
1
(X)
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to be the class of d̂iv(s). It does not depend on the choice of s: if s′ is another
section of L we have

s′ = f s

with f ∈ k(X). Therefore

d̂iv(s′)− d̂iv(s) = d̂iv(f) ∈ R̂1(X) .

Proposition 5. The map ĉ1 induces a group isomorphism

ĉ1 : P̂ic(X)→ ĈH
1
(X) .

To prove Proposition 5 we consider the commutative diagram with exact
rows

0 // C∞(X(C))
a // P̂ic(X)

ĉ1
��

ζ // Pic(X)

c1

��

// 0

0 // C∞(X(C))
a′ // ĈH

1
(X)

ζ′ // CH1(X) // 0

where a(ϕ) is the trivial line bundle on X equipped with the norm such that
‖1‖ = exp(ϕ), ζ(L) = L, a′(ϕ) = (0,− log |ϕ|2) and ζ(Z, g) = Z. Since c1 is an
isomorphism the same is true for ĉ1.

3.3 Products

3.3.1

Denote by ĈH
p
(X)Q the tensor product ĈH

p
(X)⊗

Z
Q.

Theorem 3. When p ≥ 0 and q ≥ 0 there is an intersection pairing

ĈH
p
(X)⊗ ĈH

q
(X) −→ CHp+q(X)Q
x⊗ y 7−→ x · y

It makes ⊕
p≥0

ĈH
p
(X)Q a commutative graded Q-algebra.

Let ζ : ĈH
p
(X)→ CHp(X) be the map sending the class of (Z, g) to the class

of Z, and let ω : ĈH
p
(X) → App(X) be the map sending (Z, g) to ddcg + δZ .

Then
z(x · y) = z(x) z(y)

and
ω(x · y) = ω(x)ω(y) .
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3.3.2

To prove Theorem 3, let y = (Y, gY ) ∈ Ẑp(X) and z = (Z, gZ) ∈ Ẑq(X).

We first define a cycle Y ∩ Z. For this we assume that the restrictions YQ
and ZQ of Y and Z to the generic fiber XQ meet properly, i.e. the components
of |YQ| ∩ |ZQ| have codimension p + q ( the moving lemma allows one to make
this hypothesis). It follows that there exists a well defined intersection cycle
YQ · ZQ ∈ Zp+q(XQ), supported on the closed set |YQ| ∩ |ZQ|. Let

CHp
Y (X) = ker(CHp(X)− CHp(X − Y ))

be the Chow group with supports in Y , and CHp
fin(X) the Chow group with

supports in finite fibers of X. There is a canonical map

CHp
Y (X) = CHp

fin(X)⊕ Zp(XQ) .

One can define an intersection paring

CHp
Y (X)⊗ CHq

Z(X)→ CHp+q
Y ∩Z(X)Q .

One method to do so ([1], [2], [5]) is to interpret CHp
Y (X)Q as the subspace of

KY
0 (X)Q where the Adams operations ψk act by multiplication by kp (k ≥ 1),

and to use the tensor product

KY
0 (X)⊗KZ

0 (X)→ KY ∩Z
0 (X) .

We let Y ∩ Z ∈ CHp+q
fin (X)Q ⊕ Zp+q(XQ)Q be the image of

[Y ]⊗ [Z] ∈ CHp
Y (X)⊗ CHp

Z(X)

by the maps

CHp
Y (X)⊗ CHq

Z(X)→ CHp+q
Y ∩Z(X)Q → CHp+q

fin (X)Q ⊕ Zp+q(X)Q .

Next we define a Green current for Y ∩ Z. For this we write

ddc gY + δY = ωY

and
ddc gZ + δZ = ωZ ,

and we let
gY ∗ gZ = δY gZ + gY ωZ .

However gY δZ , being a product of currents, is not well defined a priori. But gY
is defined up to the addition of a term ∂(u) + ∂(v) and one shows that gY can
be chosen to be an L1-form on X(C)− Y (C), with restriction an L1-form η on
Z(C) − Z(C) ∩ Y (C). We let gY δZ be the current defined by η on Z(C) (see
above Example 1) in §2.9):

gY δZ(ω) =

∫
Z(C)−(Z(C)∩Y (C))

η ω .
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To prove that gY ∗ gZ is a Green current for Y ∩ Z we proceed formally:

ddc(gY ∗ gZ) = ddc(δY gZ) + ddc(gY ωZ)

= δY dd
c(gZ) + ddc(gY )ωZ

= δY (ωZ − δZ) + ωY − δY )ωZ

= ωY ωZ − δY δZ
= ωY ωZ − δY ∩Z .

We refer to [2] for the justification of this series of equalities.

3.4 Functoriality

Let f : X → Y be a morphism.

Theorem 5. For every p ≥ 0 there is a morphism

f∗ : ĈH
p
(Y )→ ĈH

p
(X) .

If the restriction of f to X(C) is a smooth map of complex manifolds, there are
morphisms

f∗ : ĈH
p
(X)→ ĈH

p+dim(Y )−dim(X)
(Y ) .

Both f∗ and f∗ are compatible to ζ and ω. Furthermore

f∗(x · y) = f∗(x) · f∗(y)

and
f∗(x · f∗(y)) = f∗(x) · y .

3.5 Heights and intersection numbers

3.5.1

Let X be a projective regular flat scheme over Z and Y ⊂ X a closed in-
tegral subscheme. We assume that X is equidimensional of dimension d and
codimX(Y ) = p. One can then define as follows a morphism∫

Y

: ĈH
d−p

(Y )→ R .

First, assume that X = Y and that x ∈ ĈH
d
(X) is the class of (Z, gZ) where

Z is a zero-cycle and gZ ∈ Dd−1,d−1(X(C)). The cycle Z is then a finite sum

Z =
∑
α

nα yα
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where yα is a closed point with finite residue field k(yα), and there exist currents
u and v such that ηZ = gZ + ∂(u) + ∂(v) is smooth. By definition∫

X

x =
∑
α

nα log # (k(yα))− 1

2

∫
X(C)

ηZ .

In general we let gY be a Green current for Y in X(C), and y = (Y, gY ). If

x ∈ ĈH
d−p

(Y ) we have x · y ∈ ĈH
d
(X) and we define∫

Y

x =

∫
X

x · y − 1

2

∫
X(C)

ω(x) gY .

One checks that this number is independent on the choice of gY .

Theorem 5. The height of Y is

hL(Y ) =

∫
Y

ĉ1(L)d−p .

3.5.2

To prove Theorem 5 we shall check that the two properties in Theorem 1 hold
true for the number

∫
Y
ĉ1(L)d−p.

When p = d, Y is a closed point y and, if x is the class of (y, 0) in ĈH
d
(X),

we have ∫
X

x = log # k(y) = hL(Y ) .

Assume dim(Y ) > 0. Let gY be a Green current for Y and y = (Y, gY ).
Close a rational section s of L on Y , and an extension s̃ of s to X. Then

ĉ1(L) = (div(s̃),− log ‖s̃‖2) .

If x = ĉ1(L)d−p−1 we get, from the definition of
∫
Y

,

(8)

∫
Y

x ĉ1(L) =

∫
X

x ĉ1(L) y − 1

2

∫
X(C)

ω(x ĉ1(L)) gY .

But

x · ĉ1(L) · y = x · (div(s̃ | Y ),− log ‖s̃‖2 ∗ gY )

= x · (div(s),− log ‖s̃‖2 δY + c1(L) gY ) .

If x =: ĉ1(L)d−p−1 is the class of (Z, gZ), we get

(9) x · ĉ1(L) · y = (Z · div(s), ω(x)(− log ‖s̃‖2 δY + c1(L) gY ) + gZ δdiv(s)) .

Since ∫
X

(Z · div(s), gZ δdiv(s)) =

∫
div(s)

x
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we deduce from (9) that

(10)

∫
X

x · ĉ1(L) ·y =

∫
div(s)

x− 1

2

∫
Y (C)

ω(x) log ‖s‖2 +
1

2

∫
X(C)

ω(x) c1(L) gY .

Since ω(x ĉ1(L)) = ω(x) c1(LC), (8) and (10) imply that∫
Y

ĉ1(L)d−p =

∫
div(s)

ĉ1(L)d−p−1 − 1

2

∫
Y (C)

c1(L)d−p−1 log ‖s‖ .

q.e.d.
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