Cours
Ecole dété 2017

Slops and distribution of paints
Plan
I) ffeights and desentultion

1) Adelic molucs
2) Arekelov haigho
3) Equidistubution
$4] \frac{\text { tcoumulating subsets }}{\text { seops }}$
II) Seopes, freeness
4) Definiteon
5) Proputies
6) Fenst escamples $\left(\mathbb{P}^{n}, \mathbb{P}^{1} \times \mathbb{P}^{1}\right)$
7) Accumulating sets (rational curves firiations)
8) Gpen questions

III Racal destibution

1) Mc Kennon et Roth aprosamation
2) Locally accumulating subsets
3) lesing seges.

Mg aim in ther lectines is to esglain why s think the slops à la Base, which were intiraduced in the le diver of Eric GAuDRON, might be a cential tool to study the distibution of rational pomis of bounded height on Fana-lik varicties

Slopes and distribution of points
I Sleights and distributions

1) CAdmic mora

In these Talks, I am going lis use heights given by an adelic mothy, with is the analog of a Priemannian metric in the adolic setting Let me explain this notion and fix my notations Natation

IK is a number fid ed,
$\operatorname{Val}(\mathbb{K})$ the set of glaces of $\mathbb{K}$
For $w \in \operatorname{Val}(\mathbb{K})$, $\mathbb{K}_{w}$ is the completion and $v \in \operatorname{Val}(\mathbb{U})$ restidion of $w$

$$
\left.1 \cdot\right|_{w}: \mathbb{K}_{w} \longrightarrow \mathbb{R}_{\geqslant 0}
$$

given by

$$
|x|_{w}=\left|N_{1 K_{w} / 0-v}(x)\right|_{v}
$$

which is the multilyen fool vo th J Haar measure $d x_{w}$ Haw measure on $1 \mathrm{~K}_{w}$
nomalyed by

$$
\left\{\begin{array}{l}
\int_{G_{w}} d x w=1 \text { if w whrametire } \\
d x_{w}=\text { Lobregue measure if } \mathbb{K}_{w} \simeq \mathbb{R} \\
d x_{w}=2 d x d y \text { if } \mathbb{K}_{w} \simeq \mathbb{T}
\end{array}\right.
$$

We have

$$
d(\lambda x)_{w}=|\lambda|_{w} d x_{w}
$$

and the product formula

$$
\forall \lambda \in \mathbb{K}^{*}, \prod_{w \in \operatorname{Vel}^{2}(\mathbb{K})}|\lambda|=1
$$

is a nice voricty/K that is smooth, projective and geometrically integral.
Definition
Let $\pi: ~ E \rightarrow V$ be a vector bundle on $V$ In these talks a (Classical) adelic nom on $E$ is a family $\left(\|\cdot\|_{w}\right)_{w} \in V C(I K)$ of continuo mays

$$
\|\cdot\|_{w}: E\left(K_{w}\right) \rightarrow \mathbb{R}_{\geqslant 0}
$$

such that
(i) if $w$ is reltrametric, $\forall x \in V\left(K_{w}\right)$
$11 \cdot \|_{w} . E_{x}$ is an ultramstur
norm witt values in in ( $1.1 w$ )
(ii) if $\mathbb{K}_{w} \sim \mathbb{K}, \forall x \in V\left(\mathbb{K}_{w}\right)$
$\|\cdot\|_{w_{E_{x}}}$ is endidean
(iii) if $K_{w} \xrightarrow{\sim} \mathbb{C}, \forall x \in U\left(\mathbb{K}_{w}\right)$
$\exists h_{x}$ positive definite hamition form on $E_{x}$ such that

$$
\|g\|_{w}=h_{x}(y) \text { for } y \in E_{x} \text {. }
$$

(iv) Ia model $e / v$ of $E$ lover $G_{s}$ fo some finite $S \subset \operatorname{Vaid}(\mathbb{K})$ such that $\forall w \in \operatorname{Val}(\mathbb{K})-S, \forall x \in V\left(\sigma_{w}\right)$,

$$
\varepsilon_{x}=\left\{\left.y \in E_{x}\right|^{w}\|y\|_{w} \leqslant 1\right\}
$$

We call adelic metre on $V$ an adelic nom on TV.

Examples
the point of using this type of metrias is that you may do the usual consturdions

1) direct sums $E \oplus F$, tensor product $E \otimes F$ and exterior porluct ' $\Lambda^{k} E$
(if $w$ is archimedean and $\left(e_{1}, \ldots, e_{n}\right)$ an orthonormal basis on $E_{x}$ for $\|.\|_{w}$ then $\left(e_{i} 1 \rightarrow \Lambda e_{i k}\right)_{i}$ an orthonormal basis of $N^{k} E$ ) $i_{1}<-a_{k}^{i s}$ or the dual $E^{V}$
In particular an adele metic on $V$ defines an adelic norm on $\omega_{V}^{-1}=\Lambda^{n} T V$ where $n=\operatorname{dim}(V)$.
2) we con define pull-backs for moyhioms $\phi \cdot x \rightarrow y$
of nice voridies $/ \mathbb{K}$.
3) If $V=\operatorname{Sjec}(\mathbb{K}) E=\mathbb{K}$ vedor space equipped with an adelic norm ( $\left.\|\cdot\|_{w}\right)_{w} \in V_{0}$ ak)
$\varepsilon=\left\{y \in E \mid \forall\right.$ ultrametricv $\left.\|y\|_{v} \leq 1\right\}$
is a projedive GIK module of rank
$r=\operatorname{dim}(E)$
If $r=1$, by the produd formula

$$
\prod_{w \in V_{a}(n)}\|g\|_{w}
$$

is constant for $y \in E-\{0\}$
So we can ilene

$$
\operatorname{teg}(E)=-\sum_{w \in \operatorname{Vol}(K)} \log \|y\|_{w}
$$

Let Pic (Syec(K)) be the set of isomoyhisms lass of Ane bundles with an addic nom on see (KK) then we get an exad reguence

$$
0 \rightarrow \operatorname{Pic}\left(\operatorname{Sec}\left(\theta_{\|}\right)\right) \rightarrow \operatorname{Pic}_{i}(\operatorname{Sec}(\mathbb{K})) \xrightarrow{\operatorname{deg}} \mathbb{R} \rightarrow 0
$$

For arbitrary rank $\Omega$ we may define

$$
\operatorname{deg}(E)=\operatorname{lag}\left(n^{r} E\right)
$$

2) Ctrakelon heights

Definition
Or any vedor bundle E/V equipped with an addic norm, the corresponding
logarithmic height is defined by

$$
\begin{aligned}
& \ell_{E}: V(\mathbb{K}) \rightarrow \mathbb{R} \\
& x \mapsto \operatorname{deg}\left(E_{x}\right)
\end{aligned}
$$

In food $E_{x}=$ wull-bade of $E$ by $x: \operatorname{Spc}(\mathbb{K}) \rightarrow V$.
The esgonential height is $H_{E}=\operatorname{sop}$ o $h_{E}$
Remark

$$
\text { If } r=r k(E) \quad h_{E}=h h^{n} E=h_{\operatorname{det}}(E) \text { : }
$$

so we do not get more then the height (Effing by line bundle.
Example

$$
\begin{aligned}
& \forall w \in \operatorname{Val}(K) \quad\|\cdot\|_{w:} \mid K_{w}^{N+1} \rightarrow \mathbb{R}_{\geq 0} \\
&\left.\left(x_{0},-\right)^{x}\right) \mapsto \max _{0 \leq i \leq n}\left|x_{i}\right|_{w}
\end{aligned}
$$

The tautological line brindle $G_{\mathbb{p}}(-2) \rightarrow \mathbb{P}_{\mathbb{K}}^{N}$ may be des-cribed as follows.

$$
\text { If } x \in \mathbb{P}^{N}\left(\mathbb{K}_{w}\right), G(-1)_{x} \text { is the }
$$

lime conesponding $t_{0} x$ in $K_{w}^{N+1}$
by restiding 11 . "n to chase rene sue get an debbie nom ( $11 . H_{w}$ ) w $\operatorname{cvol}(\mathbb{K})$ on $G_{p^{N}}(-1)$ and by duality on $G_{\mathbb{P}^{N}(1)}(1)$.

$$
\begin{aligned}
& \text { If }\left(x_{0}, \tau_{N}\right) \in \mathbb{K}_{N}^{N+1} \\
& y=\left(x_{0},-, x_{n}\right) \in G(-1) \\
& H_{G(-1)}(x)=\prod_{w \in V a l(K)}\|y\|_{w}^{-1}
\end{aligned}
$$

so $H_{O G)}(x)=\prod_{w \in V_{\sigma l}(\mathbb{K})} v y \|_{w}$
Sf $\mathbb{K}=\mathbb{Q}$ and $x_{0},-x_{N}$ are coprime integons, then $\left\|\left(x_{0},-, x_{N}\right)\right\|_{v}=1$ for $v \neq \infty$ and we get

$$
H_{G(1)}(x)=\max _{0 \leq i \leq N}\left|x_{i}\right|
$$

which is the naive height on the propedive space
Notation
For any height $H: V(\mathbb{K}) \rightarrow \mathbb{R} \geqslant 0 / W \subset V(\mathbb{K})$ and $B \geqslant 0$ we consider the set

$$
W_{H \leq B}=\{P \in V(\mathbb{K}) \mid H(P) \leq B\}
$$

which we want to study as B goes lo $\infty^{t y}$
Illustration
of fer w fidines $\mathbb{P}_{a}^{2} \quad \mathbb{P}_{a}^{1} \times \mathbb{P}_{a}^{1} \quad S_{a}^{2}$

# Diophantine statistics 

Emmanuel Peyre<br>Université de Grenoble Alpes

19/6/2017

## Projective plane



$$
\left\{[x: y: 1] \in \mathbf{P}^{2}(\mathbf{Q})|H(x: y: 1)<40,|x| \leqslant 1 \text { and }| y \mid \leqslant 1\right\}
$$

## The hyperboloid of one sheet



$$
\left\{P=[x: y: z: t] \in \mathbf{P}^{3}(\mathbf{Q})|H(P) \leqslant 50,|x| \leqslant 1\right.
$$

$$
|y| \leqslant 1, z=1 \text { and } x y=z t\}
$$

## The sphere



$$
\left\{P=[x: y: z: t] \in \mathbf{P}^{3}(\mathbf{Q}) \mid H(P) \leqslant B \text { and } x^{2}+y^{2}+z^{2}=t^{2}\right\}
$$



$$
Y^{+} Z^{2}=X^{3}-X
$$



Proposition
If $L$ is big, then there escistr $U \subset V$ dense open subset for Zariski topology such that
$\forall B \in \mathbb{R} \geqslant 0, U(\mathbb{K})_{H \leq B}$ is finite
Proof
Since $L$ is big $3 M>0$ and $U \subset V$ such that the rational map

$$
\begin{aligned}
& \text { rational map } \text { map }^{\text {dual }} \\
& V \cdots \mathbb{P}\left(H^{\circ}\left(V, L^{V M}\right) \simeq \mathbb{T}_{1 K} N\right.
\end{aligned}
$$

is an immersion on $V$ (write $L=F+M$,
Feffective and $M$ ample and $U=V$-bose lows of $F$ )
By North colt', theorem
$\# \mathbb{P}^{N}(\mathbb{K})_{H \leq B}$ is finite.
A notional question is the dependance of the height on the choices of the metric:
Pron
Let $H$ and ' $H$ ' be defined by norms on a line bundle $L$ then $H / H^{\prime}$ is bounded:

$$
\exists 0<c<c^{\prime}, \forall x \in V(k) \quad c<\frac{H^{\prime}(x)}{H(x)}<c^{\prime}
$$

Proof

$$
\begin{aligned}
& \frac{\|\cdot\|_{w}^{\prime}}{\|\cdot\| w}: \underbrace{\left.\mathbb{P}(L) \| K_{w}\right)}_{\text {compact }} \rightarrow \mathbb{R}_{>0} \text { continuoses, thus bounded } \\
& \text { and } \equiv 1 \text { for almost all } w .
\end{aligned}
$$

3) Equidistiebution

During these ledurres, Is will concentrate on the distribution of the points of bounded height:
a) Basic example: $\mathbb{P}^{n} k$

What da we mean by distribution

Question
Let $\mathbb{P}^{n}\left(\mathbb{T}_{\mathbb{K}}\right)=\prod_{w \in V a l(\mathbb{K})} \mathbb{P}^{n}\left(\mathbb{K}_{w}\right)$ and $f: \mathbb{P}^{n}\left(\mathbb{T}_{\mathbb{K}}\right) \rightarrow \mathbb{R}$ be a continuous function

$$
\text { Woes } S_{B}(f)=\frac{\sum_{x \in \mathbb{P}^{n}(k)_{+1 \leq B}} f(x)}{\# \mathbb{P}^{n}(\mathbb{K})_{H \leqslant B}}
$$

The answer is positive
Proposition

$$
\frac{\text { elton }}{S_{B}(f)} \xrightarrow[B \rightarrow+\infty]{ } \int_{\mathbb{P}^{n}\left(\mathbb{R}_{k}\right)} f \mu_{\mathbb{P}^{n}}
$$

where $\pi_{p^{n}}=\prod_{w \in V_{\text {val }}(\mathbb{k})^{1 \mu}}{ }^{\mu}$
for bordian measure $a)_{w}$ defined by

- if $w$ is non-orchimedean:

$$
\begin{aligned}
& \text { For } \pi_{k}: \mathbb{P}^{n}\left(\mathbb{K}_{w}\right) \rightarrow \mathbb{P}^{n}\left(O_{w}\left(m_{w}^{a}\right)\right. \\
& \mu_{w}\left(\pi_{l}^{-1}(x)\right)=\frac{\# x}{\# \mathbb{P}^{n}\left(O_{w}\left(m_{w}^{l}\right)\right.} \text { natural } \\
& \text { counting measure }
\end{aligned}
$$

- if $w$ is archimedean
for $\pi: \mathbb{K}_{w}^{n+1}-\{0\} \rightarrow \mathbb{P}^{n}\left(\mathbb{K}_{w}\right)$

$$
\mu_{w}(u)=\frac{V_{o l}\left(\pi^{-1}(u) \wedge B_{\|\cdot\|_{w}}(1)\right)}{V_{o l}\left(B_{\|\cdot\|_{w}}(1)\right)} .
$$

Remark

$$
\text { If } W \subset \mathbb{P}^{n}\left(\mathbb{H}_{k}\right) \text { is such that } \omega_{p_{n}}(\partial W)=0
$$

then then implies that

$$
\frac{\#\left(W \cap \mathbb{P}^{n}(\mathbb{K})\right)_{H \leq B}}{\# \mathbb{P}^{n}(\mathbb{K})_{H \leq B}} \underset{B \rightarrow+\infty}{ } \omega_{\mathbb{P}}^{n}(W) \text {. }
$$

Sketch of the proof for $1 K=Q$
Cake a abel in $\mathbb{R}^{n} \hookrightarrow \mathbb{P}^{n}(\mathbb{R}), x_{0} \in \mathbb{P}^{n}(\mathbb{U} M \mathbb{Z})$ We want to estimate

$$
\#\left\{x \in \mathbb{P}^{\eta}(a) \mid H(x) \leqslant B, x \in C, x=x_{0}(\bmod M)\right\}
$$

$$
\begin{aligned}
& =0 \text { othenrise }
\end{aligned}
$$

Ene gets

$$
\begin{aligned}
& \frac{1}{2} \operatorname{Vol}\left(\pi^{-1}(e) \cap B_{1 \cdot \cdot u_{\infty}}(1)\right) \times \underbrace{\frac{\left.\eta_{i \mid M}^{\left(1-\frac{1}{p n+1}\right.}\right)^{-1}}{M^{n+1}}}_{1} \varphi(M) \frac{1}{\zeta_{\mathbb{Q}^{n+1}}^{(n+1)}} B^{n+1}+\text { error term } \\
& \square \\
& =\frac{1}{\# \mathbb{P}^{m}\left(\mathbb{Z}_{(112)}\right)}
\end{aligned}
$$

b) Addelic measure

By choosing different norms, and thus different heights on $\mathbb{P}^{m}(\mathbb{2})$, one realizes that the measures which give the asymptotic distribution as $B \rightarrow+\infty$ may be directly defined from the adelic nom on $\omega_{v}{ }^{-1}$, escadly as a Riemannion metric defines a volume form. Moreover this construction ayfios to any nice varidy equipped with an adelic otic
Construction
$V$ nice variety with $V(K) \neq \phi$.
Let $\left(\|\cdot\|_{w}\right)_{w \in V_{a l}(K K)}$ be an addie norm on $\omega_{V}^{-1}$.
The formula for change of variables assures that the local measure

$$
\left\|\frac{\partial}{\partial x_{1}} n-a \frac{\partial}{\partial x_{n}}\right\|_{w} d x_{1, w} d x_{2}, w-d x_{n} w
$$

where $\left(x_{1},-x_{n}\right):{ }_{n}^{\Omega} \rightarrow \mathbb{K}_{w}^{n}$ is a local
system of coordinates does not depend on the choice
of coordinates; so, by glueing, it defines a measure $\omega_{w o}$ on $V\left(K_{w}\right)$, $\pi_{w}=\frac{1}{\omega_{w}\left(V\left(K_{w}\right)\right)} \omega_{w}$ is a probability measure

For $\mathbb{P}^{n}$ it gives che righter disstibution.
Loss it work in other cases? alone precisely:
Definition
The counting measure on $V$ with bound $B$ is defined by
For $W \subset V(\mathbb{K}) \quad 1^{W} \neq \varnothing>\delta_{S_{x}}$ Dirac measure at $x$

$$
\delta_{W_{H \leq B}}=\frac{1}{\# W_{H \leq B}} \sum_{x \in W_{H \leq B}} \delta_{x} \text { Dirac measure at } x
$$

Goer optimistic quation

$$
\begin{aligned}
& \text { Does } \delta_{V(K)} \underbrace{\text { neablaly }}_{H \in B} \underset{B \rightarrow+\infty}{ } \mathbb{N}_{V} \text { ? (NE) } \\
& \text { (that is } \int_{V\left(T_{\mathbb{K}}\right)} f \delta_{V(\mathbb{K})} \overrightarrow{(H \leq B}{ }_{\theta \rightarrow+\infty} \int_{V\left(\mathbb{F}_{(K)}\right)} f \mathbb{N}_{V} \text { for any continuous } f: V\left(\mathbb{T _ { k }}\right) \rightarrow \mathbb{R} \text { ) }
\end{aligned}
$$

Gov- pessimistic question
Is there any case besides $\mathbb{P}^{n}$ where this holds?
Theovern
If $V=G / P$ where $P$ is a parabolic subgroup of $G$ then (NE) is true.

Idea of proof
Use harmonic analysis on $G / P\left(\mathbb{H}_{\mathbb{K}}\right)$ and arty hanglonsts work on Eisenstein series. ©

Example
Any quadric with $Q\left(\mathbb{F}_{\mathbb{K}}\right)$ is such
a homogeneous spaces. I
What about higher degrees?
Theorem $[\in$ Birch $]$
Let $V \subset \mathbb{P}^{n}$ be a smooth hyposenface of olegree $d$ with $V\left(\mathbb{H}_{\|}\right) \neq \phi$ and $n \geqslant 2^{d}$, then $(N E)$ is true

Remark
It also applies to smooch complete intersection of sufficiently big dimension (with respect to the degrease)

First problem

So
(NE) $\Rightarrow$ weak aprescimation $\Rightarrow V(\mathbb{K})$ Zariski dense Let res assume that rational pints are Zoriaki dense (We could reduce to that case by considering the Zaniski dosune of the rational pints)
$\frac{\text { Assumption }}{V(K)}$
$V C(K)$ is Zoriski cense
then there is a well known obstruction to weak oproximation
Braver-Manin olestrudion to WA
$w_{k}$ consider $\operatorname{Br}(\mathbb{H})=H^{2}\left(\operatorname{Gal}(\mathbb{L} / H), G_{m}\right)$
Then dos field theory give embedilings
so that
Brawer grown

For V we may consider the cohomolagical brawer group

$$
B_{2}(U)=H_{l e t}^{2}\left(V, G_{m}\right)
$$

Then we may define a coubling

$$
\begin{aligned}
& B_{2}(U) \times V\left(\mathbb{H}_{k}\right) \rightarrow \mathbb{Q} / 2 \\
& \left(\alpha, \quad\left(P_{w}\right)_{w \in \text { beck }}\right) \mapsto \sum_{w \in b_{0}(1 k)} \operatorname{in}_{w} \underbrace{\left.\alpha\left(P_{w}\right)\right)}_{\in B_{2}\left(1 K_{w}\right)} \\
& \text { nay be seen as a map }
\end{aligned}
$$

which may be seen as a map

If $P \in V(\mathbb{K})$, the foot that the previous sequence is a complex implies that $\eta_{p}=0$
In fact, by a continuity argument, one may prove that

$$
\overline{V(\mathbb{K})} \subset V\left(\mathbb{B}_{\mathbb{K}}\right)^{B_{2}}=\left\{p \in V\left(\mathbb{R}_{\mathbb{K}}\right) \mid \eta_{p}=0\right\}
$$

Assume that

$$
B_{\Omega}(U) / \operatorname{im}\left(B_{2}(\mathbb{K})\right) \text { is finite }
$$

then

$$
V\left(\mathbb{F}_{k}\right)^{B e} \subset V\left(\mathbb{H}_{k}\right) \text { is dosed } \& \text { open }
$$

Definition

$$
\frac{i_{e ́ c}^{e n}}{\mathbb{N}_{V}^{B_{2}}}(w)=\frac{N\left(w \cap V\left(\mathbb{F}_{k}^{B_{k}}\right)\right)}{N\left(V\left(\mathbb{F}_{\| k}^{B_{2}}\right)\right)}
$$

Grtémistic question
Dos

$$
\delta_{V(K)_{H \leq B}} \frac{w^{B a k l y}}{B \rightarrow+N} \mathbb{N}_{V}^{B 2} ? \quad \text { (LNE) }
$$

Then we sue into the problem of
4) Accumulating subsets

Support ( $\lim _{B \rightarrow+\infty} \delta_{V(K)}$ ) is much smaller than $\overline{V(K)!}$ Let me give your a fern Hescomples $^{B \rightarrow+i}$

At sanders case is
a) Che plane blown up in one point

$$
\begin{aligned}
V \leadsto & \mathbb{P}_{Q}^{e} \times \mathbb{P}_{Q}^{1} \quad x v=g u \\
& {[x \cdot v: z][a: v] } \\
\pi= & P_{1}, \quad P_{0}=(0: 0: 1) \quad E=\pi_{-1}\left(P_{0}\right) \xrightarrow{P_{2}} \mathbb{P}_{Q}^{1}, \quad U=V-E \stackrel{\pi}{\leftrightarrows} \leftrightarrows \mathbb{P}_{a}^{2}-\left\{p_{0}\right)
\end{aligned}
$$

As height we may take the map

$$
\begin{aligned}
H: V(Q) & \rightarrow \mathbb{R}>0 \\
(P, Q) & \longmapsto H_{G_{p}(1)}(P)^{2} H_{G_{p l}(1)}(Q)
\end{aligned}
$$

it corregonds to a norm on $\omega_{V}$ ?
Proposition (Sire, BatyRev \& Mann,$P$.)

$$
\begin{aligned}
& \# E(Q)_{H \leq B} \sim \frac{2}{B \rightarrow+\infty} B^{\xi_{Q}(2)} \\
& \# U(Q))_{H \leq B} \sim \frac{8}{33_{Q}(2)^{2}} B \log (B)
\end{aligned}
$$

So There much more points on the exceptional line E
Remark

$$
\# U(Q)_{H S B}=O\left(E(Q)_{H \leq B}\right) \text { and, in fact, }
$$

Prop

$$
\sum_{U(\mathbb{C})_{H \leq B}} \frac{w_{B \rightarrow+\infty}}{e_{B \rightarrow+\infty}} \mathbb{N}_{V}
$$

It may seem counter intriilive that by removing point, we get a measure with larger support. But this is preaidly the reason for which we should remove the a cumulating subset
Remark
If $\delta_{W} \longrightarrow \mathbb{N}_{V}$ then for any subvoricty $F \subset V$

$$
\#(W \cap F(Q))_{H \leq B}^{H \leq B}=\theta\left(\# W_{H \leqslant B}\right) \text { since } \pi_{V}\left(F\left(\mathbb{F}_{Q} S\right)=0\right.
$$

So any sulescheme with a shictly positive contubution to the number of points has to be removed to get equidestrubution.
Question
Can we find $U \subset V$ oo that

$$
S_{U(a)_{H \leq B}} \xrightarrow[B \rightarrow+\infty]{ } N_{V}^{B_{h}} \text { ? }
$$

Again the answer is negative:
$\frac{\text { b) Che counter-example of Batyrev and Eochinhel }}{\text { We consider the hepersurface }}$
We consider the hypersurface
$V \subset \mathbb{P}_{Q}^{9} \times \mathbb{P}_{Q}^{3}$ defined by the equation:

$$
\sum_{i=0}^{3} x_{i} y_{i}^{3}=0
$$



$$
\pi=p_{1}: V \xrightarrow{p_{1}} \mathbb{P}_{a}^{3} \text { for } x=\left[x_{0}:-x_{s}\right] \in \mathbb{P}^{3}(a), \prod_{i=0}^{3} x_{i} \neq 0 \text {, }
$$

$V_{x}=\pi^{-n}(x)$ is a smooth cubic surface $>27$ lines

$$
U_{x}=V_{x}-27 \text { lines }
$$

So the expected result for this surface is
For $U_{\text {open }} U_{x} \quad U \neq 0$

$$
\# \cup(Q)_{H \leqslant B B \rightarrow+\infty} \sim C_{x} B \log (B)^{r_{x}-1}
$$

where $t_{x}=\pi k\left(\operatorname{Pic}\left(U_{x}\right)\right) \in\{1,2,3,4\}$
In particular $r k\left(P_{i c}\left(V_{x}\right)\right)=4$ if $x_{i} x_{i}$ are cubes But, by defachets the over

$$
P_{i c}(V) \rightrightarrows P_{i c}\left(\mathbb{P}_{a}^{3} \times \mathbb{P}_{a}^{3}\right)=\mathbb{Z}^{2}
$$

che initial conjecture of Marin for $V$ predided:

$$
\# V(Q)_{H \leqslant B} \sim_{B \rightarrow+\infty}^{\sim} C B \log (B)
$$

So each fibre with a picard gray of rank
bigger than the generic one contains to many pants
Bet $\forall \cup$ open dense in $V,\left\{x \mid U \cap V_{x} \neq \phi\right.$ and ak $\left.\left(P_{c}\left(V_{x}\right)\right)>1\right\}$
is infinite.
We are confronted with a then accumulating subset.
Definition
Let $V$ be a nice varidy / IK
a subset $W \subset V(I K)$ is said to be thin, if there exist $\varphi: X \rightarrow V$ moxpism of vorictico such that
(i) $\varphi$ is generically finite
(ii) $Y$ admits no rational section
(iii) $W \subset \operatorname{Im}(\varphi)$

Remarks

$$
\text { (i) E deific curve } \underset{E(a) / 2}{\frac{\|}{P}} \mathrm{P} \longrightarrow E
$$

So E (a) is chin!
(ii) Sleeve

$$
\begin{aligned}
& U \quad V_{x} \text { is thin } \\
& \left\{x \mid \operatorname{sk}\left(P_{i c}\left(V_{x}\right)\right)>1\right\}
\end{aligned}
$$

(iii) We may assume that $\varphi$ is proper. $\varphi\left(X\left(\Pi_{Q}\right)\right) \subset V\left(\mathbb{H}_{Q}\right)$ dosed subset and under mild hypotheses

$$
\mu_{v}\left(\varphi\left(x\left(\mathbb{A}_{a}\right)\right)\right)=0
$$

c) The example of C. Le Rudulier
$V=$ Hill $^{2}\left(\mathbb{P}_{Q}^{2}\right)$ Hilbert scheme of points of degree 2 in $\mathbb{P}_{Q}^{2} ; \quad Y=\operatorname{Sym}^{2}\left(\mathbb{P}_{Q}^{2}\right)=\left(\mathbb{P}_{Q}^{2}\right)^{2} / \mathbb{F}_{2}>\Delta$

$$
\underset{\downarrow}{ } \underset{\Delta_{f}}{ }\left(\mathbb{P}_{f}^{2}\right)^{2}
$$

$$
\stackrel{\downarrow}{\checkmark} \xrightarrow{\Delta_{f} y^{g}} \text { Blowing up of } \Delta
$$

$$
\begin{aligned}
& U_{0}=V-f^{-1}(\Delta) \\
& M=f^{-1}\left(g\left(\mathbb{P}^{2}(a)^{2}\right)\right) \cap U^{0}(a) \text { Zariski dense thin subset }
\end{aligned}
$$

Theorem (C. Le Rudulier)

$$
\begin{aligned}
& \frac{\# M_{H \leq B}}{\# U_{0}(Q)_{H \leqslant B}} \xrightarrow[B \rightarrow+\infty]{ } c>0 \\
& \text { But } \forall F \underset{\text { zoinki dosed }}{C V} \#(F(Q) \cap M)_{H \leq B}=\theta\left(U_{0}(Q)_{H \leq B}\right)
\end{aligned}
$$

$S_{0} M$ is a thin subset which is not the union of a cumulating cord subsets but which is an obstudion to equidistribution nevertheless.
Condusion (s ofor)
In all known cores, if $\omega_{v}^{\prime \prime}$ is big (enough) $\exists W=V(Q)-T$, $T$ thin subset

$$
\delta_{W_{H \leqslant B}} \longrightarrow k_{V}
$$

Problem
Llow can you desc orle T?

II Slopes à la Bort

1) Definition

Set me give the description of slopes Tam going to use:
a) Slopes of an adelic vector bunclle/spec(k)

Definition (Reminder)
Let $E$ be a $\mathbb{K}$-vedor spae of dimension $n$ equipped with

- $\Lambda \subset E$ projedive $G_{I K}$ - modules of constant rook $n$
- for $w \in \operatorname{Vol}(\mathbb{K})$, complex

$$
\|\cdot\|_{w}: E w=E \otimes \|_{w} \rightarrow \mathbb{R}_{\geq 0}
$$

given by a hermition form

- for real wo
$\|\cdot\|_{w:}: E_{w}-\mathbb{R}_{30}$ euclickon norm

$$
\operatorname{deg}(E)=\operatorname{tog}^{20}\left(\Lambda^{n} E\right)
$$

Example

$$
\mathbb{K}=a
$$

$\Lambda$ = subgroey of $E$ generated by a basis of $E$
$\|\cdot\|: E_{\mathbb{R}}=E \otimes_{Q} \mathbb{R} \rightarrow \mathbb{R}_{\geqslant 0}$ euclidean

$$
\operatorname{deg}^{\mathbb{R}}(E)=-\log (\operatorname{Vol}(E / \Lambda))
$$

Definition
$\tau$ cudideon volume
For F CE subspace comes equipped will $\Lambda_{p}=\Lambda \cap F$ and the restidion of the nouns Define the Newton polygon as
$P(E)=$ Comex hull $\{(\operatorname{dim}(F), \hat{\operatorname{deg}}(F))$ for Foulospoa of $E\}$
Pidune

$P(E)$ is bounded from above so we con define

$$
\begin{aligned}
& m_{E}:[0, n] \longrightarrow \mathbb{R} \\
& m_{E}(x)=\max \{y \in \mathbb{R} \mid(x, y) \in P(E)\}
\end{aligned}
$$

This function is concave and affine in each segment

$$
[i, i+1]
$$

The slopes of $E$ are defined as

$$
\mu_{i}(E)=m_{E}(i)-m_{E}(i-1)
$$

for $i \in\{1, \sim, n\}$ these numbers are the slope of the affine pieces of the graph of $m_{\bar{E}}$

Remark
(i) By construction,

$$
\mu_{n}(E) \leqslant \mu_{n-1}(E) \leqslant \cdots \leqslant \mu_{1}(E)
$$

Note that the inequality is not slr rid in general!
(ii) $\operatorname{deg}(E)=\sum_{k=1}^{n} \mu_{k}(E)$.
b) Slopes on variety, freeness

Definition

- E vector bender on nice $V / \mathbb{K}, n=\operatorname{dim}(V)$
 For $x \in V(\mathbb{K}), \quad \mu_{i}^{E}(x)=\mu_{i}\left(E_{x}\right)$.
- If $V$ is equipped with an adelic metric

$$
\mu_{i}(x)=\mu_{i}\left(T_{x} V\right)
$$

Remark
(i) $\mu_{n}(x) \leqslant \mu_{n-1}(x) \leqslant \cdots \leqslant \mu_{1}(x)$
(ii) $\operatorname{deg}\left(T_{x} V\right)=\sum_{k=1}^{n} \mu_{i}(x)$.

$$
\text { bet } \operatorname{deg}\left(T_{x} V\right)=\operatorname{keg}\left(\left(\omega_{V}^{-1}\right)_{x}\right)=h(x)=\log (H(x))
$$

where $H$ is a height relative to ouv"1
Thus these slops give us information bey and the haightofx (iii) $\mu_{n}(x) \leqslant \frac{h(x)}{n} \leqslant \mu_{1}(x)$.

Definition
che freeness of a point $x$ is defined by

$$
l(x)=\left\{\begin{array}{l}
n \frac{\mu_{n}(x)}{h(x)} \text { if } \mu_{n}(x)>0 \\
0 \text { otherwise. }
\end{array}\right.
$$

Remarks
(i) $l(x) \in[0,1]$
(ii) $\ell(x)=0 \Leftrightarrow \mu_{\text {min }}(x)=\mu_{n}(x) \leqslant 0$
(iii)

$$
\begin{aligned}
l(x)=1 & \Leftrightarrow \mu_{1}(x)=R_{2}(x)=\cdots=R_{n}(x) \\
& \Leftrightarrow T_{x} V \text { is semi. stable. }
\end{aligned}
$$

$\mathrm{cg} . \mathbb{Z}^{n} \subset \mathbb{R}^{n}$ with caul ardideon shucino
$\because \because$ hexagonal latria in $\mathbb{R}^{2}$
More generally for 2 dimensional lattices
Ur to rescaling fundamental domain

$$
\hat{1} \cong a(\mathbb{Z}+\mathbb{Z} \tau) \text { with }\left\{\begin{array}{l}
\operatorname{Re}(\tau) \in[-1,1],|\tau| \geqslant 1 \\
\hat{E} \approx \hat{c} \\
\operatorname{Im}(\tau)>0
\end{array}\right.
$$

1 semi_stable

$$
\Leftrightarrow \operatorname{Im}(\tau) \leq 1
$$

(iv) far a curve $l(x) \equiv 1$.
(v) For a surface $S / Q$

$$
\begin{array}{rlrl}
S(\mathbb{Q}) & \mapsto \mathbb{R}_{20} & S(Q) & \longrightarrow H P / P S L_{2}(z) \\
x & \longmapsto f(x) & x & \longmapsto\left[\tau_{x}\right] \quad \tau_{x} \text { as above }
\end{array}
$$

$$
l(x)=\left\{\begin{array}{l}
1 \text { if } \operatorname{Im}\left(T_{x}\right) \leqslant 1 \\
\left.1-\frac{\log \operatorname{Im}\left(\tau_{x}\right)}{\log H(x)} \text { if in }\right] 0,1[ \\
0 \text { othenvise. }
\end{array}\right.
$$

2) Properties

First it is crucial to cenderstand how this freeness of mine defends on the choice of metric Lemma

Let $\varphi: E \rightarrow F$ be a moyhism of rector bundles and let $\left(\|\cdot\|_{w}\right)_{w \in V_{N}(k)}\left(r e p\right.$. $\left.\left(\|\cdot\|_{w}^{\prime}\right)_{w \in V a l(k)}\right)$ be an addie nom on E (reap F) then there exists a family $\left(\lambda_{w}\right)_{w \in V_{0}}$ (It) such that
(i) $\forall w \in V_{b l}(\mathbb{K}), \forall x \in V\left(K_{w}\right), \forall g \in E(x)$

$$
\|\varphi(g)\|_{w} \leqslant \lambda_{w}\|g\|_{w}
$$

(ii) $\left\{w-1 \lambda_{w} \neq 1\right\}$ is finite.

Sketch of proof

- $\mathbb{P}(E)$ : projedere brindle of lines in $E$

$$
\dot{\varphi}: \mathbb{P}(E) \rightarrow \mathbb{P}(F)
$$

We may consida for $w \in V_{a l}(K)$

$$
\begin{aligned}
& \mathbb{P}(E)\left(\mathbb{K}_{w}\right) \longrightarrow \mathbb{R}_{\geqslant 0} \text { continuous } \\
& \quad \mathbb{K}_{w} y \longmapsto \frac{\|(y)\|_{w}}{\|y\|_{w}}
\end{aligned}
$$

thus bounded from above.

- for almost all w-, any $x$ in V( $K_{w}$ )

$$
\varphi\left(\left\{y \in E(x)\left\|_{x}\right\|_{w} \leqslant 1\right\}\right) \subset\left\{y \in F(x) \mid\|y\|_{w}^{\prime} \leqslant 1\right\}
$$

because $\|\cdot\|_{w}$ and $\|\cdot\|_{w}$ are defined by model of $E$ and $F$ for almoner all $w$. I

Remark
In portiacer, if $\left(\|\cdot\|_{w}\right)_{w \in V_{a l}((k)}$ and $\left(\|\cdot\| \|_{w}\right)_{w \in \text { vel (k) }}$ are metrics steen
(i) $\frac{\|\cdot\|_{w}^{\prime}}{\|\cdot\| w}$ is bounded for any $w \in V_{a}(I k)$
(ii) $\|\cdot\|\left\|_{w}^{\prime}=\right\| . \|_{w}$ for almost all $w$.

Thus

$$
\forall x \in V(I K), \forall F \subset T_{x} V, \quad\left|\operatorname{deg}(F)-\hat{\operatorname{deg}}^{\prime}(F)\right|<C
$$

Corollary 1
Let $\mu_{i}$ and $\mu^{\prime}$; be the dope defined by two metics /V
(1) $\left|\mu_{i}-\mu_{i}^{\prime}\right|$ is bounded;
(ii) $\left|l^{\prime}(x)-l(x)\right|<\frac{c}{h(x)}$ when $h(x)>0$.

Notation
The notion of slopes in the geometric setting over the field of rational fractions in one voridle mas be described as follows
$\varphi: \mathbb{P}^{1} \rightarrow V$ mouphism of variety
By the decomposition of vedor loundles on $\mathbb{P}^{1}$

$$
\varphi^{*}(T V) \geq \bigoplus_{i=1}^{n} G\left(a_{i}\right) \text { with } a_{1} \geqslant \cdots \geqslant a_{n}
$$

$$
\mu_{i}(\varphi)=a_{i} \quad \operatorname{deg}_{\omega_{i}}(\varphi)=\sum_{i=1}^{n} \mu_{i}(\varphi)
$$

and

$$
l(\varphi)=\left\{\begin{array}{l}
n a_{n} / \operatorname{deg}_{a_{v}}(\varphi) \text { if } a_{n}>0 \\
0 \text { otherwise }
\end{array}\right.
$$

Remakes
(i) $l(\varphi) \in[0,1] \cap Q$
(ii) $l(\varphi)>0 \Leftrightarrow \varphi$ is vary free.

Proh
Let $\varphi: \mathbb{P}^{1} \longrightarrow V, V$ equipd with an adblic molice

$$
l(\varphi(x)) \underset{\text { as }}{\longrightarrow} \xrightarrow{\longrightarrow}(x) \rightarrow+\infty)
$$

Proof
pull wack of thenom nown for died sums

$$
\text { soges } \mu_{i}(P(x)) \text { sloges } \mu_{i}^{\prime}(x)=a_{i} h_{o(x)}(x)
$$

so if $a_{n} \geq 0$

$$
\left|l(\varphi(x))-\frac{a_{n} n}{\sum a_{i}}\right|<\frac{c \varphi}{h_{6(1)}(x)} \text {. }
$$

and

$$
l(\varphi(x))=0 \text { if } a_{n}<0 \text { excort for a finite \# of } x . \square
$$

3) Exfiat comutations
a) In the projedive pace

Proposition

$$
\begin{aligned}
\text { Set } x & \in \mathbb{P}^{n}(\mathbb{K}) \\
\quad l(x) & =\frac{n}{n+1}+\min _{F}\left(\frac{-n \operatorname{deg}(F)}{\operatorname{codin}_{E}(F) h(x)}\right)
\end{aligned}
$$

where $F$ goes over the suppaces $F_{f} E$ sud dhat $x \in \mathbb{P}(F)$
8heth of rroof
Let $D \subset E$ be the line coversonding to a

$$
T_{x} \mathbb{P}_{1 k}^{n} \cong D^{v} \otimes E / D^{v} \otimes D
$$

giving a bijedto

$$
\begin{aligned}
& \{F \mid \text { DCFFE }\} \rightarrow \text { sulespaces of } T_{x} \mathbb{P}_{1 k}^{n} \\
& 1=\longmapsto D^{v} \otimes+/ D^{v} \otimes
\end{aligned}
$$

and $\operatorname{deg}\left(D^{v} \otimes F / \frac{\left.D^{v} \otimes D\right)}{\approx \mathbb{Z}}=\operatorname{deg}\left(D^{v} \otimes F\right)-\operatorname{deg}(\mathbb{K})\right.$

$$
\begin{aligned}
& =\operatorname{deg}(F)-\operatorname{dim}(F) \operatorname{deg}(D)-\operatorname{deg}(\mathbb{\operatorname { d e g }}) \\
& h(x)=-(n+1) \operatorname{deg}(D)-\operatorname{deg}(\mathbb{\operatorname { d e g }}) \\
& \operatorname{\operatorname {seg}} \mathrm{gt} \\
& \mu_{n}(x)=-\operatorname{deg}(D)+\min _{F}\left(-\frac{\operatorname{deg}}{\operatorname{codim}(F)}\right) \\
& \quad l(x)=\frac{n}{n+1}+\min \left(\frac{-n \operatorname{deg}(F)}{\operatorname{codim}(F) h(x)}\right)
\end{aligned}
$$

Corollary

$$
\ell(x) \geqslant \frac{n}{n+1}
$$

Remark
(i) Let us fisc $F \subset E$

$$
\text { Then } \quad l(x) \underset{h(x) \rightarrow+\infty}{\longrightarrow} \frac{n}{n+1}
$$

(ii) $3 \subset>0$

$$
\begin{aligned}
& \#\left\{x \in \mathbb{P}^{n}(\mathbb{k}) \mid H(x) \leqslant B \& l(x) \leqslant 1-\eta\right\}<C B^{1-\eta} \\
& \left(\text { and } \#\left\{x \in \mathbb{P}^{n}(\mathbb{K}) \mid H(x) \leqslant B\right\} \sim C\left(\mathbb{P}_{k}^{n}\right) B\right)
\end{aligned}
$$

which means that this number is negligible

But even on a homogeneous op ace the
freeness can be small:
$\frac{4]\left(\mathbb{P}^{1}\right)^{n}}{\text { Proposition }}$

$$
\begin{aligned}
& \text { Let } \underline{x}=\left(x_{1},-, x_{n}\right) \in \mathbb{P}^{1}(\mathbb{k})^{n} \\
& \text { then } n \text { min } h\left(x_{i}\right)
\end{aligned}
$$

$$
l(x)=\frac{n \min _{1 \in i \leq n} h\left(x_{i}\right)}{\sum_{1 \leq i \leq n} h\left(x_{i}\right)}
$$

Proof

$$
T_{\underline{x}}\left(\mathbb{P}_{\mathbb{k}}^{1}\right)^{n}=\oplus_{i=1}^{n} T_{x_{i}} \mathbb{P}_{1 k}^{1} \text { each is of dimension 1 }
$$

Sa for $\sigma \in \mathcal{F}_{n}$ such that

$$
h\left(x_{\sigma(1)}\right) \geqslant h\left(x_{\sigma(2)}\right) \geqslant \ldots \geqslant h\left(x_{\sigma(n)}\right)
$$

we get $\mu_{i}(\underline{x})=h\left(x_{G(i)}\right)$. B
Corollary

$$
\begin{aligned}
& \text { For any } \varepsilon>0 \\
& \quad \begin{array}{l}
\#\left\{x \in \mathbb{P}^{1}(\mathbb{K})^{n} \mid H(x) \leqslant B \& l(x) \geqslant \varepsilon\right\} \\
\#\left\{\underline{x} \in \mathbb{P}^{1}(K)^{n} \mid H(x) \leqslant B\right\} \\
\text { with } C_{\varepsilon}=1-O(\varepsilon) .
\end{array} C_{\varepsilon}>0
\end{aligned}
$$

Sketch of the proof
We consider the maps

$$
\begin{aligned}
& \underline{h}: \mathbb{P}^{1}(\mathbb{K})^{n} \longrightarrow \mathbb{R}^{n} \geqslant 0, \stackrel{s}{\longrightarrow} \mathbb{R}_{\geqslant 0} \\
&\left(x_{1},-, x_{n}\right) \longmapsto \\
&\left(h\left(x_{1}\right),-, a\left(x_{n}\right)\right) \\
&\left(y_{1},-, y_{n}\right) \longmapsto \sum_{i=1}^{n} y_{i} \\
& H(\underline{x})=s(\underline{h}(\underline{x}))
\end{aligned}
$$

Then using the formula

$$
\#\left\{x \in \mathbb{P}^{1}(\mathbb{K}) \mid H(x) \leqslant B\right\}=C\left(\mathbb{P}_{1 k}^{1}\right) B+G\left(B^{1 / 2} \log B\right)
$$

and partial integration one gels converges to

$$
V_{\varepsilon} \times n!\text { and }\left(V_{\varepsilon}-\frac{1}{n!}\right)=O(\varepsilon)_{\square}
$$

Remark
In particular the number of points with freeness $<\varepsilon$ is not negligible!

Let us now go back to the accumulating subvorictic ts we shall see rational points in accumulating subvericties seem to have a small freeness which would mean that the freeness might be a coitsion to distinguish between good point and bad pints
4) Accumulating subset

En surfaces accumulating subset ave given as rational curve of low degree
Proposition

