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Abstract. The arithmetic Riemann–Roch theorem refines both
the algebraic geometric and differential geometric counterparts,
and it is stated within the formalism of Arakelov geometry. For
some simple Shimura varieties and automorphic vector bundles, the
cohomological part of the formula can be understood via the the-
ory of automorphic representations. Functoriality principles from
this theory may then be applied to derive relations between arith-
metic intersection numbers for different Shimura varieties. In this
lectures we explain this philosophy in the case of modular curves
and compact Shimura curves. This indicates that there is some
relationship between the arithmetic Riemann–Roch theorem and
trace type formulae, from which these functoriality principles are
derived.

1. Introduction

The Riemann–Roch formula in Arakelov geometry is a local-to-global
statement, that translates some arithmetic intersection numbers of her-
mitian vector bundles into cohomological invariants. In cases of arith-
metic relevance, such as Shimura varieties, it is natural to apply the the-
orem to automorphic vector bundles. According to general conjectures
(e.g. the Maillot-Rössler conjecture and the vast Kudla programme),
one expects the arithmetic intersection numbers to be related with log-
arithmic derivatives of L-functions. One may hope that the arithmetic
Riemann–Roch theorem provides a cohomological approach to settle
cases of this principle. In this geometric setting, the cohomological
side of the formula affords an automorphic translation, so that the the-
ory of automorphic representations may be of some use. Unfortunately
this approach has actually not been fruitful. In a parallel with the trace
formula, arithmetic intersection numbers seem to be analogue to the
geometric side, supposed to be easier to deal with than the spectral side,
itself analogous to the cohomological part of Riemann–Roch. However,
in the theory of automorphic forms, a fruitful idea has been to com-
pare trace formulae, in order to relate automorphic representations for
different groups. It is then tempting to combine these relations, when

2000 Mathematics Subject Classification. Primary: 14C40. Secondary: 11G18.



2 FREIXAS I MONTPLET

they exist, to relate as well arithmetic intersection numbers for dif-
ferent Shimura varieties. While this does not provide the evaluation
of these numerical invariants, it indicates some structural phenomenon
that goes beyond the conjectural predictions alluded to above, and that
has not been much explored. In these notes, we exemplify this “philos-
ophy” in the case of modular and Shimura curves. This is an excuse
to review the arithmetic Riemann–Roch theorem of Gillet–Soulé, as
well as a variant for modular curves (more generally, arithmetic sur-
faces with “cusps” and “elliptic fixed points”). Also, we explain in
the classical language of modular forms the content of the Jacquet–
Langlands correspondence. All these wonderfully combine to provide
a relation between arithmetic self-intersection numbers of sheaves of
modular forms on modular and Shimura curves.

2. Riemann–Roch theorem for arithmetic surfaces and
hermitian line bundles

2.1. Riemann–Roch formulae in low dimensions. As a matter of
motivation, we recall the statement of the Hirzebruch–Riemann–Roch
theorem for compact complex manifolds of dimensions 1 and 2 and line
bundles on them.

Let X be a compact Riemann surface and L a holomorphic line
bundle on X. To the line bundle L we can associate two integer valued
invariants. The first and easiest one is the degree degL. It is known
that L affords non-trivial meromorphic sections, and for such a section
s

degL = deg(div s) =
∑
p∈X

ordp(s).

The notation ordp(s) stands for the order of vanishing or pole of s at
the point p ∈ X. This sum is of course finite, and does not depend
on the particular choice of s by the residue theorem: the divisor of
any meromorphic function has degree zero. The second topological
invariant is the holomorphic Euler–Poincaré characteristic:

χ(X,L) = dimH0(X,L)− dimH1(X,L).

The coherent cohomology groups H0(X,L) and H1(X,L) are actually
finite dimensional C-vector spaces. They can be defined as Čech co-
homology. For later motivation, let us provide a geometric differential
interpretation of these spaces. Recall the Dolbeault complex of the
holomorphic line bundle L, given by the ∂ operator defining the holo-
morphic structure of L:

A0,0(X,L)
∂−→ A0,1(X,L).

If s ∈ A0,0(X,L) is a smooth section of L, and e is a holomorphic
trivialization of L on some analytic open subset U ⊂ X, then s = fe
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for some smooth function f on U and

∂s|U = (∂f)⊗ e ∈ A0,1(U,L).

The coherent cohomology of L may then be canonically identified with
Dolbeault cohomology:

H0(X,L) ' ker ∂, H1(X,L) ' A0,1(X,L)

Im ∂
.

The Riemann–Roch formula in this setting relates the numerical in-
variants we attached to L:

Theorem 2.1 (Riemann–Roch). The degree and Euler–Poincaré char-
acteristic of L are related by

χ(L) = degL+
1

2
deg TX ,

= degL+ 1− g

where TX is the holomorphic tangent bundle and g is the topological
genus of X.

The extension of the Riemann–Roch formula to higher compact com-
plex manifolds requires the theory of characteristic classes of holomor-
phic vector bundles. We won’t do this here, and we just state the
formula and its meaning in complex dimension 2. Hence, let X be a
compact complex manifold of dimension 2. Let L be a holomorphic
line bundle on X. Now the holomorphic Euler–Poincaré characteristic
is

χ(X,L) = dimH0(X,L)− dimH1(X,L) + dimH2(X,L).

In the usual formulation, this invariant is computed by the Hirzebruch–
Riemann–Roch formula, in terms of the characteristic classes as follows:

χ(X,L) =

∫
X

(ch(L) td(TX))(2)

The index 2 indicates that we only take the codimension 2 contribution
of this product of characteristic classes. This can be expanded in terms
of Chern classes as

χ(X,L) =

∫
X

{
c1(L)2 +

1

2
c1(TX) c1(L) +

1

12
(c1(TX)2 + c2(TX))

}
.

Let us assume for the sake of simplicity that X is projective. If L
and M are line bundles on X, we can find respective meromorphic
sections s and t whose divisors div s =

∑
imiDi and div t =

∑
j njEj

have smooth components and pairwise transversal intersections (one
implicitly invokes Bertini’s theorem for that). Then∫

X

c1(L) c1(M) =
∑
i,j

minj#(Di ∩ Ej).
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This explains the meaning of the first three terms in the Hirzebruch–
Riemann–Roch formula above, once we recall that for a vector bundle E
we have c1(E) = c1(detE). The last term involving c2(TX) is the Euler
number of X, related to the topological Euler-Poincaré characteristic
through

χtop(X,C) =
2∑
p=0

(−1)p dimHp(X,C) =

∫
X

c2(TX).

It is a sort of obstruction to the existence of non-vanishing global holo-
morphic vector fields.

Let us give an example of use of the Hirzebruch–Riemann–Roch for-
mula. Let X be a K3 surface. This is a simply connected compact
Kähler surface, whose canonical bundle ωX = ∧2Ω1

X is trivial (i.e. X
has a nowhere vanishing holomorphic 2-form). On the one hand, the
Hirzebruch–Riemann–Roch theorem applied to the trivial line bundle
OX gives

χ(X,OX) =
1

12

∫
X

(c1(TX)2 + c2(TX)) =
1

12

∫
X

c2(TX),

since c1(TX) = −c1(ωX) = 0. On the other hand, χ(X,OX) = 2.
Indeed, H0(X,OX) = C, H1(X,OX) = 0 by the Hodge decomposition
and simply connectedness (i.e. H1(X,C) = 0), and by Serre duality
and K3 assumption

H2(X,OX) ' H0(X,ωX)∨ ' H0(X,OX)∨ = C.

Hence we derive
∫
X
c2(TX) = 24, and therefore

χtop(X,C) = 24.

Again using the simply connectedness and the Hodge decomposition,
we infer from this equality

h1,1 = dimH1(X,Ω1
X) = 19.

Let us end this section with a question. Assume now that X is
the set of complex points of a proper flat scheme X over Z. Assume
as well that L is an invertible sheaf on X. The coherent cohomology
groups Hp(X,L) are Z-modules of finite type. As such, they have a
well-defined rank. By flat base change, the rank is computed after base
changing to C, and hence∑

p

(−1)p rankHp(X,L) =
∑
p

(−1)p dimHp(XC,LC)

can be obtained from the Hirzebruch–Riemann–Roch theorem. One
may wonder what additional information we can catch by making use
of the integral structure. The arithmetic Riemann–Roch theorem takes
this structure into account.
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2.2. Arithmetic intersections on arithmetic surfaces. Let
π : X→ SpecZ be an arithmetic surface, i.e. X is a regular scheme, flat
and projective over Z, of Krull dimension 2. The set of complex points
X(C) has the structure of a possibly non-connected Riemann surface,
equipped with an anti-holomorphic involution F∞ : X(C) → X(C) in-
duced by complex conjugation. Recall that a (smooth) hermitian line
bundle L over X consists in giving a line bundle L together with a
smooth hermitian metric on the associated holomorphic line bundle
LC on X(C), invariant under the natural action of F∞. For a pair of
hermitian line bundles L and M, we proceed to recall the construction
of their arithmetic intersection number

(L ·M) ∈ R,

to be compared with the geometric intersection number∫
X

c1(L) c1(M) ∈ Z

of two line bundles L,M on a projective complex surface X.
Let ` and m be non-trivial rational sections of L and M respectively,

such that div ` and divm are disjoint on the generic fiber XQ. It is
always possible to find such sections, by the projectivity assumption
on X. Let us write

div ` =
∑

miDi, divm =
∑

njEj.

The Di and Ej are pairwise generically disjoint. We define finite arith-
metic intersection numbers (Di · Ej)fin as follows. If Di is a vertical
divisor, hence a variety over Fp for some prime number p, then we put

(Di · Ej)fin = (deg c1(O(Ej)) ∩ [Di]) · log p.

hence we consider the degree of O(Ej) restricted to the projective curve
Di over Fp, weighter by log p. Assume now that Di is horizontal, and
let x ∈ Di ∩Ej be an intersection point. We denote by k(x) its (finite)
residue field. If f, g ∈ OX,x are local equations for Di and Ej, then the
local ring OX,x/(f, g) has finite length, and we put

(Di · Ej)fin, x = lg
OX,x

(f, g)
· log(#k(x)).

We define

(Di · Ej)fin =
∑

x∈Di∩Ej

(Di · Ej)fin, x.

Finally, we put

(`,m)fin =
∑
i,j

minj(Di · Ej)fin ∈ R.
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Next we introduce the archimedean contribution to the arithmetic in-
tersection pairing:

(`,m)∞ =

∫
X(C)

(− log ‖mC‖
i

2π
∂∂ log ‖`C‖2 − log ‖`C‖δdivmC)

=

∫
X(C)

(− log ‖mC‖c1(LC)− log ‖`C‖δdivmC) ∈ R,

where c1(LC) is the first Chern form of the hermitian line bundle LC.
The arithmetic intersection number of L and M is obtained by adding
the finite and archimedean intersection pairings above:

(L ·M) = (`,m)fin + (`,m)∞ ∈ R.
It can be easily checked, applying the product formula, that the con-
struction does not depend on the choice of sections `,m. Furthermore,
by Stokes’ theorem, the arithmetic intersection number is symmetric.
It also behaves bilinearly with respect to the tensor product of hermit-
ian line bundles. In the particular case L = M, the quantity (L ·L) is

also written (L
2
), and is called the arithmetic self-intersection number

of L. It actually equals, by definition, to the height of X with respect
to L, which is also denoted hL(X).

2.3. The determinant of cohomology and the Quillen metric.
Let X be a compact Riemann surface and L a line bundle on X. We
define the determinant of the cohomology of L as

detH•(X,L) = ∧topH0(X,L)⊗ ∧topH1(X,L)∨.

Recall that the cohomology H•(X,L) can be computed as the coho-
mology of the Dolbeault complex

A0,0(X,L)
∂−→ A0,1(X,L).

In particular, H0(X,L) can be realized inside A0,0(X,L). If the line
bundles TX and L are equipped with smooth hermitian metrics, one can
realize H1(X,L) inside A0,1(X,L) as well. For if ∂

∗
denotes the formal

adjoint of ∂ with respect to the functional L2 hermitian products on
A0,p(X,L), induced from the choices of metrics (i.e. 〈∂s, t〉 = 〈s, ∂∗t〉),
then

H1(X,L) ' ker ∂
∗
.

Through these realizations Hp(X,L) ⊂ A0,p(X,L), the cohomology
spaces inherit L2 hermitian products. The determinant of cohomology
detH•(X,L) carries an induced hermitian norm, called the L2 metric
and written hL2 or ‖ · ‖L2 . For the sake of completeness, let us just say
that the volume form µ needed for the L2 pairings is normalized to be,
locally in holomorphic coordinates z,

µ =
i

2π

dz ∧ dz
‖dz‖2

.
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Let us define ∆0,0

∂,L
= ∂

∗
∂ and ∆0,1

∂,L
= ∂∂

∗
. These are elliptic differ-

ential operators of second order, positive and essentially self-adjoint,
with discrete spectrum accumulating only to ∞. The construction of
the L2 metric involves only the 0 eigenspaces of these operators. The
Quillen metric instead involves the rest of the spectrum. Let us write

0 < λ1 ≤ λ2 ≤ . . .

for the strictly positive eigenvalues of ∆0,1

∂,L
(or equivalently ∆0,0

∂,L
), re-

peated according to multiplicities. We define the spectral zeta function

ζ0,1

∂,L
(s) =

∑
n

1

λsn
,

which can be shown to be absolutely convergent, hence holomorphic, for
Re(s) > 1. It can be meromorphically continued to the whole complex
plane, and s = 0 is a regular point. Actually, one proves asymptotic
expansions for the spectral theta function

θ(t) := tr(e
−t∆0,1

∂,L)− dim ker ∆0,1

∂,L
=
∑
n

e−tλn , t > 0,

as t→ +∞ and t→ 0+, that justify the Mellin transform identity

ζ0,1

∂,L
(s) =

1

Γ(s)

∫ ∞
0

θ(t)ts−1dt

and lead to the meromorphic continuation properties above. The zeta
regularized determinant of ∆0,1

∂,L
is then defined to be

det ∆0,1

∂,L
= exp

(
− d

ds
|s=0 ζ

0,1

∂,L
(s)

)
“ =

∏
n

λn”.

The Quillen metric is obtained by rescaling the L2 metric:

hQ := (det ∆0,1)−1hL2 .

Let now X → SpecZ be an arithmetic surface and L a hermitian
line bundle. Assume that TX(C) is endowed with a hermitian metric,
with the usual invariance property under the action of F∞. The groups
Hp(X,L) are Z-modules of finite rank, and by means of 2 term free
resolutions, one can define their determinants detHp(X,Z). These are
free Z-modules of rank 1. We put

detH•(X,L) = detH0(X,L)⊗ detH1(X,L)∨.

This construction commutes with base change, and in particular we can
endow detH•(X,L) with the Quillen metric after base changing to C.
We usually denote detH•(X,L)Q to indicate the resulting hermitian
line bundle over Z. Then we can attach to this object a numerical
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invariant called the arithmetic degree: if e is any basis of the Z-module
detH•(X,L)Q, then the arithmetic degree is

d̂eg detH•(X,L)Q = − log ‖e‖Q ∈ R.
Observe this is well-defined, since e is unique up to sign. The arithmetic
degree of the determinant of cohomology is the arithmetic counterpart
of the Euler–Poincaré characteristic in the complex geometric setting.

2.4. The arithmetic Riemann–Roch theorem of Gillet–Soulé.
Let π : X → SpecZ be an arithmetic surface, L a hermitian line bun-
dle and fix a F∞ invariant hermitian metric on TX(C). The arithmetic
Riemann–Roch formula of Gillet–Soulé computes the arithmetic degree

d̂eg detH•(X,L)Q in terms of arithmetic intersections, in a formally
analogous expression to the Hirzebruch–Riemann–Rcoh theorem in di-
mension 2. To state the theorem, we briefly need to discuss the relative
dualizing sheaf and the analogue of the Euler class.

Because the morphism π : X→ SpecZ is projective and X and SpecZ
are regular schemes, there is a relative dualizing line bundle ωX/Z. Its
complexification is dual to TX(C) and hence we can endow it with the
dual hermitian metric. The line bundle can be explicitly constructed
from any factorization

X �
� j //

""F
FF

FF
FF

FF
PNZ

p

��
SpecZ.

The immersion j is regular, and its conormal sheaf is thus a vector
bundle Nj on X. The relative cotangent bundle Ωp is a locally free
rank N vector bundle on PNZ . One can then prove

ωX/Z = det j∗Ωp ⊗ detNj

is a dualizing sheaf. Using the exact sequence

0 −→ N∨j −→ j∗Ωp −→ ΩX/Z −→ 0

and the theory of Bott–Chern secondary classes, one can define an
arithmetic second Chern class ĉ2(ΩX/Z). It is actually defined indepen-
dently of any metrized datum. Its arithmetic degree can be expressed
in terms of localized Chern classes

δπ = d̂eg ĉ2(ΩX/Z) =
∑
p

deg c
XFp
2 (ΩX/Zp) log p.

The localized classes c
XFp
2 (ΩX/Zp) ∈ CH2

XFp
(X) measure the bad reduc-

tion of π at p. If π is semi-stable, then its degree is the number of
singular points in the geometric fiber of π at p.

We can now state the arithmetic Riemann–Roch theorem of Gillet–
Soulé for hermitian line bundles on arithmetic surfaces.
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Theorem 2.2 (Gillet–Soulé). Let π : X → SpecZ be an arithmetic
surface, L a hermitian line bundle, and fix a F∞ invariant metric h on
TX(C). Endow the relative dualizing sheaf ωX/Z with the metric dual to
h. Then there is an equality of real numbers

12 d̂eg detH•(X,L)Q − δπ =(ω2
X/Z) + 6(L · L⊗ ω−1

X/Z)

− (2g − 2)#π0(X(C))

(
ζ ′(−1)

ζ(−1)
+

1

2

)
,

where g is the genus of any connected component of X(C).

A particular relevant case of the theorem is the arithmetic Noether
formula, obtained by specializing to L = OX the trivial hermitian line
bundle:

12 d̂eg detH•(X,O)Q − δπ =(ω2
X/Z)

− (2g − 2)#π0(X(C))

(
ζ ′(−1)

ζ(−1)
+

1

2

)
.

3. An arithmetic Riemann–Roch formula for modular
curves

3.1. The setting. A natural geometric situation of arithmetic interest
to which apply the arithmetic Riemann–Roch theorem, is the case of
integral models of compactified modular curves. Let X → SpecZ be
an arithmetic surface such that

X(C) =
⊔
j

(Γi\H ∪ {cusps}),

where the Γi ⊂ PSL2(R) are congruence subgroups (e.g. Γ0(N), Γ1(N)
or Γ(N)). In the arithmetic Riemann–Roch theorem, we need to fix a
hermitian metric on the holomorphic tangent bundle. In the present
setting, it could be tempting to choose a Poincaré type metric pro-
vided by the uniformization by H: if τ = x + iy is the usual complex
coordinate on the upper half plane, then the tensor

|dτ |2

(Im τ)2

defines a PSL2(R) invariant metric, and it is unique with this property,
up to a constant. However, the quotient metric on each factor Γi\H ∪
{cusps} has singularities. The obvious ones are at the cusps, where the
metric is not even defined. Also, the groups Γi may have fixed points on
H, producing conical type metric singularities on the quotient. Observe
these features are not specific of congruence subgroups, but this is a
general fact for fuchsian groups of the first kind, i.e. discrete subgroups
Γ of PSL2(R) such that Γ\H is a complex algebraic curve.

Let Γ be a fuchsian group of the first kind. The serious difficulty we
have to face happens at the level of spectral theory. Let us work with
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the Poincaré metric, and the trivial hermitian line bundle on Γ\H. The
corresponding laplace operator on A0,0(Γ\H) := A0,0(H)Γ is, up to a
constant, induced by the PSL2(R) invairant operator

−y2

(
∂

∂x2
+

∂

∂y2

)
.

This is an elliptic positive differential operator of order 2, essentially
self-adjoint (with respect to the natural L2 structure on A0,0(Γ\H)),
but it has discrete as well as continuous spectrum. Hence the definition
of the spectral zeta function and the regularized determinant do not
make sense. And even if we can find a sensible definition, the results
of Gillet–Soulé don’t automatically apply.

In this section we discuss a version of the arithmetic Riemann–Roch
theorem that applies to the previous setting and the trivial hermitian
line bundle (so it is actually a version of the arithmetic Noether for-
mula). We consider an arithmetic surface π : X → SpecOK over the
ring of integers of a number field K, together with generically disjoint
sections

σ1, . . . , σn : SpecOK → X,

such that

X(C) =
⊔

τ : K↪→C

(Γτ\H ∪ {σ1(τ), . . . , σr(τ)}),

and σr+1(τ), . . . , σn(τ) are elliptic fixed points of orders er+1, . . . , en ≥
2, respectively. The Poincaré hermitian metric induces a log-singular
metric on the Q-line bundle

ωX/OK
(
∑
i

(1− e−1
i )σi),

where we put ei = ∞ for i = 1, . . . , r (i.e. we declare the cusps have
infinite order). We will indicate the choice of this metric by an in-
dex “hyp”. Hence there is still a well-defined arithmetic intersection
number

(ωX/OK
(
∑
i

(1− e−1
i )σi)

2
hyp) ∈ R,

according to the formalism developed by Bost and Kühn, and later
generalized by Burgos–Kramer–Kühn to any dimension. This will be
the main numerical invariant on the right hand side of the arithmetic
Riemann–Roch formula. The need of twisting by the sections σi will
be compensated by a suitable “boundary” contribution.

3.2. Renormalized metrics (Wolpert metrics). Let Γ be a fuch-
sian group of the first kind, and endow the quotient Γ\H with the
metric induced by |dτ |2/(Im τ)2. We discuss the existence of canonical
coordinates at cusps and elliptic fixed points, that serve to renormalize
the singularities of the quotient metric.
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Recall that a cusp of Γ corresponds to a point in P1(R) with non-
trivial stabilizer under Γ. This stabilizer is conjugated in PSL2(R) to
the group generated by the translation τ 7→ τ + 1. It follows that for a
cusp p of Γ\H∪ {cusps}, there exists a holomorphic coordinate z such
that the hyperbolic metric tensor becomes

|dz|2

(|z| log |z|)2
.

The coordinate z is unique up to a constant of modulus one, and hence
the assignment

‖dz‖W,p = 1

is a well-defined hermitian metric on the holomorphic cotangent space
of X at p, ωX,p. In the theory of modular forms, this variable z is
usually denoted q, and appears in the so-called q-expansions (Fourier
series expansions).

Elliptic fixed points correspond to points in H whose stabilizer is
non-trivial. The stabilizer is then conjugated in PSL2(R) to a finite
group of rotations centered at i ∈ H. A neighborhood of an elliptic
fixed point q in Γ\H is thus isometric to a quotient D(0, ε)/µk, where
the disk is endowed with the hyperbolic metric |dw|2/(4(1 − |w|2)2)
and µk = 〈e2πi/k〉 acts by multiplication. This quotient can again be
identified to D(0, ε), via the map w 7→ z = wk. On the quotient, the
hyperbolic metric tensor becomes

|dz|2

4|z|2−2/k(1− |z|2/k)2
.

Again, such a coordinate is unique up to a factor of modulus one, and
the assignment

‖dz‖W,q = 1

defines a hermitian metric on ωX,q.
The renormalized hyperbolic metrics defined above for cusps and

elliptic fixed points were first introduced by Wolpert (in the case of
cusps). We call them Wolpert metrics.

Let now π : X→ SpecOK be an arithmetic surface and σ1, . . . , σn be
sections corresponding to elliptic fixed points of orders ei or cusps, as
before. For every section σi, the line bundle ψi := σ∗i (ωX/OK

) can be
endowed (after base change through K ↪→ C) with the corresponding
Wolpert metric. We indicate this choice of hermitian metric by an
index W . We define a Q-hermitian line bundle

ψW =
∑
i

(1− e−2
i )ψi,W .

The arithmetic degree of ψW is a measure of how far the transcendental
canonical coordinates just discussed are from being formal algebraic.
Actually, this can be used to construct heights on moduli spaces of
curves with marked points.
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3.3. A Quillen type metric. Let X = Γ\H ∪ {cusps} be a compact
Riemann surface, where Γ is a fuchsian group of the first kind. We
endow H with the hyperbolic metric, and we would like to define a
Quillen type metric on the determinant of the cohomology of the trivial
line bundle OX .

The L2 metric poses no problem. Indeed, there is a well-defined L2

metric on H0(X,OX) = C, given by taking ‖1‖2 as the volume, which
is finite. We normalize the volume form so that

‖1‖2 = 2g − 2 +
∑
i

(1− e−1
i ).

For H1(X,OX), we invoke the Serre duality isomorphism

H1(X,OX) ' H0(X,ωX)∨

and introduce the L2 scalar product on the latter given by

〈α, β〉 =
i

2π

∫
X

α ∧ β.

Let ∆hyp be the hyperbolic laplacian, acting on C∞(H)Γ as

∆hyp = −y2

(
∂

∂x2
+

∂

∂y2

)
.

The spectrum of ∆hyp can be classified into three types:

• cuspidal spectrum. It consists of eigenvalues λ > 0 whose eigen-
vectors are L2 functions (with respect to the hyperbolic volume
form) with vanishing Fourier coefficients at cusps. The cuspi-
dal spectrum constitutes a possibly finite discrete set.

• continuous spectrum. It arises from scattering theory. Let
Γ0 ⊂ Γ be the stabilizer of a cusp. We define a corresponding
Eisenstein series

E0(τ, s) =
∑

γ∈Γ0\Γ

Im(γτ)s,

which absolutely convergens for Re(s) > 1. It is not L2 with
respect to the hyperbolic measure, and satisfies

∆hypE0(τ, s) = s(1− s)E0(τ, s).

It can be shown that E0(τ, s) has a meromorphic continuation
to s ∈ C. Its residues are contained in the real interval (1/2, 1],
and s = 1 is a simple pole with constant residue. The points
on Re(s) = 1/2 are regular. Finally, if we put all the Eisenstein
series for all cusps in a vector E(τ, s), then there is a functional
equation

E(τ, s) = Φ(s)E(τ, 1− s),
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where Φ(s) is a square matrix with meromorphic function en-
tries, satisfying Φ(s)Φ(1−s) = id and such that Φ(s) is unitary
for Re(s) = 1/2. The matrix Φ(s) is called the scattering ma-
trix, and can be computed from the Fourier expansions of the
Eisenstein series at cusps. More precisely, if E1, . . . , Er are all
the Eisenstein series, then the Fourier expansion of Ei at the
j-th cusp has the form

ys + ϕij(s)y
1−s + ρij(τ, s),

where ρij is L2 for the hyperbolic measure. Then Φ(s) =
(ϕij(s)). Finally, the continuous spectrum is formed by 1/4+t2,
where t ∈ R.

• residual spectrum. It arises from residues of Eisenstein series.
If E0(τ, s) is an Eisenstein series with a pole at s0 ∈ (1/2, 1],
then

u(τ) = ress=s0 E0(τ, s)

is an L2, non-cuspidal, eigenfunction of ∆hyp, with eigenvalue
s0(1− s0). These constitute a finite set of eigenvalues.

The cuspidal spectrum and the residual spectrum together form the
discrete spectrum of ∆hyp. The spectral theorem asserts that for any
L2 function f on Γ\H, there is an expansion (valid in L2)

f(τ) =
∑
i

〈f, ϕj〉L2ϕj(τ)

+
∑
j

1

4π

∫ ∞
−∞
〈f, Ej(τ,

1

2
+ it)〉L2Ej(τ,

1

2
+ it)dt,

where ϕj are orthonormal L2 eigenfunctions for the discrete spectrum,
and the Ej(τ, s) constitute the finite set of Eisenstein series.

We introduce a spectral zeta function that takes into account both
the discrete spectrum {λn}n and the continuous spectrum. Let ϕ(s) =
det Φ(s) be the determinant of the scattering matrix.

Definition 3.1. We define the hyperbolic spectral zeta function by

ζhyp(Γ, s) =
∑
λn>0

1

λsn

− 1

4π

∫ ∞
−∞

ϕ′(1/2 + it)

ϕ(1/2 + it)
(1/4 + t2)−sdt+ 4s−1 tr(Φ(

1

2
)).

This expression is inspired by the spectral side of the Selberg trace
formula applied to a suitable test function. Actually, by means of the
Selberg trace formula, one can shown that ζhyp(s) is holomorphic for
Re(s) > 1 and has a meromorphic continuation to C. Moreover it is
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holomorphic at s = 0. We then define the zeta regularized determinant
of the hyperbolic laplacian

det ∆hyp,Γ = exp

(
− d

ds
|s=0 ζhyp(Γ, s)

)
.

Finally, we define a Quillen type metric by mimicking the usual defini-
tion:

hQ,hyp = (det ∆hyp,Γ)−1hL2 .

Remark 3.2. In the compact case, the Quillen metric thus defined
agrees with the known one up to an explicit constant. This is because
the Dolbeault laplacian on functions differs by a constant from the
scalar hyperbolic laplacian. For the sake of a cleaner presentation, we
decided to silence this normalization issue.

3.4. An arithmetic Riemann–Roch formula. Let π : X→ SpecOK

be an arithmetic surface, with geometrically connected fibers. We sup-
pose given sections σ1, . . . , σn, such that

X(C) =
⊔

τ : K↪→C

(Γτ\H ∪ {σ1(τ), . . . , σr(τ)}),

for some fuchsian groups of the first kind Γτ having σ1(τ), . . . , σr(τ) as
cusps and σr+1(τ), . . . , σn(τ) as elliptic fixed points of orders ei. For
the cusps we put ei =∞. We endow X(C) with the singular hyperbolic
metric.

Theorem 3.3 (Freixas–von Pippich). With the notations and assump-
tions as above, there is an equality of real numbers

12 d̂eg detH•(X,OX)Q − δ + d̂egψW =(ωX/OK
(
∑
i

(1− e−1
i )σi)

2
hyp)

− [K : Q]C(g, {ei}),

for some explicit constant C(g, {ei}) depending only on the genus g and
the orders ei (i.e. the type of the groups Γτ).

The proof of the theorem is long and technical, and combines basic
facts of arithmetic intersection theory, glueing properties of determi-
nants of laplacians, and explicit computations of determinants of lapla-
cians on “model” hyperbolic cusps and cones. The latter are inspired
by the physics literature. The explicit value of the constant is actually
relevant in some applications, but in these lectures we prefer to focus
on the rest of the terms of the arithmetic Riemann–Roch formula.

Remark 3.4. In later computations, we will appeal to a weak version
of the theorem, where instead of working with an arithmetic surface
over OK , we directly work with a smooth projective curve over K. The
consequence for the numerical invariants will be that they are then only
well defined modulo the Q vector space spanned by the real numbers
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log p, for p prime. Indeed, one may choose an auxiliary regular model
over OK and apply the theorem. The numerical invariants for two
different models differ by an element in Q⊗Z log |Q×| ↪→ R.

4. Modular and Shimura curves

4.1. Modular curves. Modular curves are moduli spaces of elliptic
curves, possibly with some extra structure. The point of departure is
the mapping

H −→ {elliptic curves}
τ 7−→ C/(Z + τZ).

It is known that every elliptic curve over C is isomorphic to a torus as
above. The isomorphism relation on such corresponds to the action of
PSL2(Z) on H. The quotient H/PSL2(Z) is the open modular curve,
whose points are thus in bijection with isomorphism classes of elliptic
curves over C. The j-invariant of elliptic curves defines a biholomorphic
map

H/PSL2(Z)
∼−→ C.

The cusp compactification of H/PSL2(Z) corresponds to C∪{∞}, hence
to P1

C. A holomorphic neighborhood of the cusp has holomorphic co-
ordinate q = e2πiτ , and it is best understood as parametrizing elliptic
curves in the form

C×/qZ.
It is thus reasonable to declare that the cusp q = 0 corresponds to the
torus C×. Or equivalently, to a so-called generalized elliptic curve: the
singular nodal genus one curve

P1
C/{0 ∼ ∞},

together with its multiplicative algebraic group structure when de-
prived from the singular point 0 ∼ ∞. This complex geometric pic-
ture can be formulated over SpecZ, and gives raise first to a Deligne-
Mumford stack M1, then to the coarse moduli scheme of generalized
elliptic curves P1

Z → SpecZ, with the cusp at ∞ as a section.
In these lectures we will be mostly interested in the moduli of elliptic

curves with a torsion point of exact order N , and slight variants. Fix
N ≥ 1 an integer. Over a general base scheme S, we consider elliptic
curves E → S (i.e. smooth proper schemes over S, with geometrically
connected fibers of dimension 1 and a relative group scheme structure)
together with a section P : S → E, generating a finite flat subgroup of
order N . The coarse moduli of elliptic curves with a point of order N
“classifies” such couples (E/S, P ) up to isomorphism. One can prove
that it defines a proper flat normal scheme Y1(N) over SpecZ, with
geometrically connected fibers of pure dimension 1. It is smooth over
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Z[1/N ]. Moreover, forgetting the point of order N defines a finite flat
morphism

j : Y1(N) −→ A1
Z ⊂ P1

Z.

One can define a compactification of Y1(N) by taking the integral clo-
sure of P1

Z with respect to the morphism j. The compactification ac-
tually affords a moduli interpretation as a coarse moduli scheme of
generalized elliptic curves. We won’t need this description. For our
purposes, it will be enough to know that X1(N) \ Y1(N) is a relative
Cartier divisor over Z, that becomes rational (i.e. given by sections)
over Spec[ζN ]. Finally, if N ≥ 5, then X1(N) is actually a fine moduli
scheme. In applications, we will stick to the restriction N ≥ 5, and we
will actually consider X1(N) and its variants as defined over Q.

It is easy to see from the moduli interpretation that Y1(N)(C) can
be uniformized as

Y1(N)(C) = H/Γ1(N),

where

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) | a− 1 ≡ c ≡ 0 mod N

}
,

or rather its image in PSL2(Z). When N ≥ 5, Γ1(N) has no torsion
and is actually identified with a fuchsian group.

For the purpose of defining Hecke operators later on, and in some
intermediary steps, we need a variant of the geometric objects above.
Instead of moduli of elliptic curves with a point of exact order N , we
add to the data a cyclic subgroup of order M prime to N . Namely,
we classify triples (E/S, P, C) where P is an S-point of order N of
E and C ⊂ E[M ] is a cyclic finite flat subgroup of order M . The
outcome is a proper, normal and flat scheme X1(N,M) over SpecZ,
with geometrically connected fibers and smooth over SpecZ[1/NM ].
Again, in applications we will actually consider it to be defined over
Q. Over the complex numbers, it can be presented as

(H ∪ P1(Q))/Γ1(N) ∩ Γ0(M),

where now

Γ0(M) =

{(
a b
c d

)
∈ SL2(Z) | c ≡ 0 mod M

}
.

We will write Γ1(N,M) = Γ1(N) ∩ Γ0(M).

4.2. Modular forms. Classically, a modular form of weight k for
Γ1(N) (or more generally Γ1(N,M)) is a holomorphic map

f : H −→ C,
such that

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for

(
a b
c d

)
∈ Γ1(N),
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that extends holomorphically to the cusps. For the cusp at ∞, this
condition is stated as follows. Since f(τ+1) = f(τ) by the equivariance
property above, f has a Fourier series expansion in q = e2πiτ

f(τ) =
∑
n∈Z

anq
n.

We require that an = 0 for n < 0. We moreover say that f is a cusp
form if a0 = 0. We will only need weight 2 cusp forms, so that in the
following we restrict to modular forms of even weight. These can be
best understood as differential forms on X1(N)(C). First observe that
the equivariance property of a modular form of weight 2k, say f , is
equivalent to the invariance of the tensor f(τ)dτ⊗k. In the coordinate
q, this tensor becomes ∑

n≥0

anq
n

(
1

2πi

dq

q

)⊗k
.

We thus see that modular forms are global holomorphic sections of the
sheaf

(ωX1(N)(cusps))⊗k,

and cusp forms are global holomorphic sections of the sheaf

ω⊗kX1(N)((k − 1) cusps).

We wrote cusps for the divisor of cusps. Typical notations are

M2k(Γ1(N)) = H0(X1(N)(C), (ωX1(N)(cusps))⊗k)

for the space of modular forms of weight 2k and

S2k(Γ1(N)) = H0(X1(N)(C), ω⊗kX1(N)((k − 1) cusps))

for the subspace of cusp forms.
The spaces of modular and cusp forms have rational and integral

structures provided by the rational and integral models of X1(N). In
particular, in weight 2, the space of cusp forms has a rational structure

S2k(Γ1(N),Q) := H0(X1(N)Q, ωX1(N)/Q).

It can be seen that this is exactly the Q-vector space of cusp forms with
rational Fourier coefficients (at all cusps). The same would be true for
any subfield of C, and this is known as the q-expansion principle. Due
to its relation to the arithmetic Riemann–Roch theorem for modular
curves, we will focus on this space from now on.

The space S2(Γ1(N),Q) has an action of the algebra of Hecke cor-
respondences and diamond operators. This is an algebra of endomor-
phisms of the Jacobian J1(N)/Q of X1(N,M), constructed as follows.
First, for the Hecke operators, let M be an integer prime to N . We
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introduce the auxiliary curve X1(N,M). There are two natural mor-
phisms from X1(N,M) to X1(N). The first one, that we call α, is just
forgetting the cyclic subgroup of order M . The second one is given by

β : (E/S, P, C) 7→ (E/C/S, P mod C),

where E/C is the well-defined quotient of the (possibly generalized)
elliptic curve E by the finite flat subgroup C, and P mod C is the
induced S-point of order N . In the language of correspondences, the
M -th Hecke operator TM is α∗ ◦ β∗. For the diamond operators, let
d ∈ (Z/NZ)×. There is an induced automorphism

〈d〉 : X1(N) −→ X1(N)

(E/S, P ) 7−→ (E/S, dP ).

The Hecke operators together with the diamond operators span a free
Z-subalgebra of finite type of EndQ(J1(N)), formed by pairwise com-
muting endomorphisms. It is called the Hecke algebra, and denoted
TN . By functoriality, the Hecke algebra acts on

H0(J1(N),Ω1
J1(N)/Q) ' H0(X1(N), ωX1(N)/Q).

The action of the Hecke algebra can also be described on Fourier ex-
pansions by well-known classical expressions that we won’t review here.
An analogous construction carries over to modular curves X1(N,M).
An important property that we can’t skip is that after extension scalars
to Q, spaces of cusp forms have bases of simultaneous eigenfunctions
for the Hecke algebra.

To conclude this section, we discuss the notion of d-new forms.
From a modular curve X1(N, d), there are several morphisms down to
X1(N, d′), for d′ | d, through which cusp forms can be pulled-backed.
The resulting cusp forms are called d-old. Let us fix d′ such a divisor.
For any divisor of d/d′, say m, we have a morphism

X1(N, d) −→ X1(N, d/m)

(E/S,C) 7−→ (E/C[m]/S,C/C[m]),

where as above we denote C[m] for the m-torsion part of C. Then,
since d′ divides d/m, we have a forgetful map

X1(N, d/m) −→ X1(N, d′)

(E/S,C) 7−→ (E/S,C[d′]).

By composing these two arrows, we obtain a so-called degeneracy mor-
phism depending both on d′ and m, and denoted γd′,m. In terms of the
degeneracy maps, the d-old subspace of S2(Γ1(N, d),Q) is

S2(Γ1(N, d),Q)d−old :=
∑
d′|d

∑
m|(d/d′)

γ∗d′,mS2(Γ1(N, d′),Q).



ARITHMETIC RIEMANN–ROCH AND JACQUET–LANGLANDS 19

Actually, the sum can be seen to be direct. The d-new quotient of
S2(Γ1(N, d),Q) is defined to be

S2(Γ1(N, d),Q)d−new := S2(Γ1(N, d),Q)/S2(Γ1(N, d),Q)d−old.

Actually, the Q-vector space of d-new forms can be realized inside
S2(Γ1(N, d),Q) in such a way that, with respect to the natural hermit-
ian structure on H0(X1(N, d), ωX1(N,d)/Q), we have

S2(Γ1(N, d),Q) = S2(Γ1(N, d),Q)d−new
⊥
⊕ S2(Γ1(N, d),Q)d−old.

4.3. Shimura curves and quaternionic modular curves. We con-
sider “compact” counterparts of modular curves, arising from arith-
metic quaternionic groups. Moduli theoretically, they classify abelian
surfaces with a faithful action of a maximal order in an indefinite
quaternion algebra over Q. They share many features with modu-
lar curves (integral models, Hecke operators, etc). They have the ad-
vantage of being automatically “compact”, and at the same time the
disadvantage of not having q-expansions, precisely due to the lack of
cusps.

Let B be an indefinite quaternion division algebra over Q, so that
B ⊗Q R is isomorphic to the matrix algebra M2(R). For every finite
prime p, the quaternion algebra B ⊗Q Qp is either a matrix algebra or
a division algebra. In the later case, we say that B is ramified at p.
The set of primes where B is ramified is finite and of even cardinality.
The discriminant of B is the product of all such primes, and is denoted
disc(B). Let N ≥ 1 be an integer prime to disc(B). We can choose
an order O in B (hence a subring providing a lattice in B), with the
following properties:

• for every p 6 | disc(B)N ,

O⊗ Zp
∼−→M2(Zp).

• for every p | N ,

O⊗ Zp
∼−→
{(

a b
c d

)
∈M2(Zp) | a− 1 ≡ c ≡ 0 mod N

}
.

• for every prime p | disc(B), O ⊗ Zp is a maximal order in
B ⊗Qp.

The analogue of the group Γ1(N) in this setting will be ΓB1 (N) := O×,1,
namely the subgroup of the units in O of reduced norm 1. Actually
the notation ΓB1 (N) is ambiguous in that it does not render the choice
of O explicit. The group ΓB1 (N) can be realized into SL2(R): take its
image under a fixed algebra isomorphism B⊗R 'M2(R). As a group
of fractional linear transformations of H, it is cocompact. Moreover, if
N ≥ 5 it is torsion free as well. The quotient

XB
1 (N) := H/ΓB1 (N)
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is thus a compact Riemann surface, and is called a Shimura curve. It
can be seen that its points are in bijective correspondence with complex
abelian surfaces A with a faithful action of a maximal order of B,
together with a level structure of type Γ1(N). We won’t make these
structures more explicit. It will suffice to say that the Shimura curve
XB

1 (N) has a smooth projective model over SpecZ[1/N disc(B)], and
in particular over Q. For N ≥ 5, we have again a fine moduli space.

The spaces of quaternionic modular forms are defined in analogy to
the classical modular forms. We are particularly interested in weight 2
quaternionic forms and their rational structures:

S2(ΓB1 (N),Q) = H0(XB
1 (N), ωXB

1 (N)/Q).

In contrast with modular curves, these rational structures can’t be read
in Fourier expansions, since there are no cusps at our disposal. Finally,
an algebra of Hecke operators can as well be defined in the quaternionic
setting, in a similar way as for modular curves. We won’t give further
details.

5. The Jacquet–Langlands correspondence and the
arithmetic Riemann–Roch theorem

The cohomological side of the arithmetic Riemann–Roch theorem
for modular (or Shimura) curves can be interpreted in terms of auto-
morphic forms. As we saw in the previous chapter, the global sections
of the canonical sheaf on a compactified modular curve correspond to
cusp forms of weight 2. Similarly, the holomorphic analytic torsion
is the contribution of the non-holomorphic modular forms, commonly
known as Maass forms. Both holomorphic and non-holomorphic mod-
ular forms can be seen as vectors in spaces of automorphic represen-
tations. One can thus expect that general principles in the theory of
(global) automorphic representations, combined with the arithmetic
Riemann–Roch theorem, can be useful for a better understanding of
some arithmetic intersection numbers. In these lectures we explain
the relationship between the arithmetic Riemann–Roch theorem and
the Jacquet–Langlands correspondence relating automorphic represen-
tations of GL2/Q to those of B×, for a division quaternion algebra B over
Q. We will however not enter into the details of automorphic repre-
sentations in order to keep the size of this course reasonable, and only
state the consequences we need in the classical language of modular
forms.

5.1. On the Jacquet–Langlands correspondence for weight 2
forms. We fix an integer N ≥ 1, and B an indefinite division quater-
nion algebra over Q, whose discriminant d = disc(B) is prime to N .
We deal with rational weight 2 cusp forms for Γ1(N, d) and rational
quaternionic modular forms for ΓB1 (N). Recall that the notation for
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the latter hides several choices of orders in B. Recall as well that the
spaces of such classical or quaternionic modular forms

S2(Γ1(N, d),Q) = H0(X1(N, d), ωX1(N,d)/Q),

S2(ΓB1 (N),Q) = H0(XB
1 (N), ωXB

1 (N)/Q),

come equipped with the action of the respective Hecke algebras.

Theorem 5.1 (Jacquet–Langlands, Faltings). There is a Q-linear and
Hecke equivariant isomorphism

H0(X1(N, d), ωX1(N,d)/Q)d−new
∼−→ H0(XB

1 (N), ωXB
1 (N)/Q),

compatible with the natural hermitian structures up to Q×.

Let us say some words about the proof of this theorem. First of all,
over Q, the spaces of weight 2 forms can be decomposed according to
characters of the Hecke algebra, themselves corresponding to spaces of
Hecke new eigenforms of some level dividing dN . These can be en-
coded in terms of automorphic representations with a given conductor
and central character (nebentypus). The global Jacquet–Langlands
correspondence actually establishes a “natural” bijection at the level
of automorphic representations. In this bijection the automorphic rep-
resentations of GL2/Q are restricted to be cuspidal. The correspondence
is compatible with its local version, and at primes dividing disc(B) it
relies on the theory of the Weil representation. At the other places,
the local correspondence is just the “identity”. One can derive from
this the behaviour of conductors and central characters through the
correspondence. The central character is preserved. In the direction
from B× to GL2/Q, the conductor gets multiplied by disc(B). In the
classical language, these facts are summarized in a Hecke equivariant
isomorphism as above, except that it is a priori only defined over Q.
The assertion of the field of definition being Q and the compatibility
with the hermitian structures requires the input of Faltings isogeny
theorem. The Jacquet–Langlands correspondence can actually be used
to relate the `-adic Tate modules of the abelian varieties J1(N, d)d−new

and JB1 (N). The d-new quotient J1(N, d)d−new of J1(N, d) is defined
in a similar way to S2(Γ1(N, d),Q). These abelian varieties are acted
upon by Hecke algebras. After decomposing the Jacobians into Hecke
isotypical components, one sees there is an isomorphism of Gal(Q/Q)-
modules

T`J1(N, d)d−new
∼−→ T`J

B
1 (N).

Then Faltings isogeny theorem implies that the jacobians above are
Q-isogenous, and this easily implies our claim. In this argument we
silenced some key steps, mostly the Galois representation attached to
a Hecke eigensystem (through the Eichler–Shimura construction) and
the compatibility with the Galois action.
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An immediate corollary of the theorem is the relation between arith-
metic degrees of modular forms:

Corollary 5.2. We have an identity in R/ log |Q×|

d̂eg H0(X1(N, d), ωX1(N,d)/Q)d−newL2 = d̂eg H0(XB
1 (N), ωXB

1 (N)/Q)L2 .

Some comments are in order. First of all, by the very definition of
the spaces of newforms, the equality of the statement is equivalent to

d̂eg H0(XB
1 (N), ωXB

1 (N)/Q)L2

=
∑
d′|d

µ(d′)σ(d/d′) d̂eg H0(X1(N, d′), ωX1(N,d′)/Q)L2 ,

where µ is the Möbius function and σ is the divisor counting function.
Second, if one works over SpecZ[1/Nd], thanks to the relation of the
quantities above to Faltings heihgts of Jacobians together with an ob-
servation due to Prasanna, one can refine the identity to an equality of
real numbers modulo log p′s, for p in a controlled finite set of primes
with a precise arithmetic meaning (a part from p | Nd, one has to take
into account Eisenstein primes).

Finally, it is immediate from the corollary and the volume computa-
tions for modular and Shimura curves that:

Corollary 5.3.

12 d̂eg detH•(XB
1 (N),OXB

1 (N))L2

= 12
∑
d′|d

µ(d′)σ(d/d′) d̂eg detH•(X1(N, d′),OX1(N,d′))L2

in R/ log |Q×|.

5.2. The Jacquet–Langlands correspondence for Maass forms.
We are now concerned with eigenspaces of the hyperbolic laplacian
acting on functions of modular and Shimura curves. Let λ > 0 be a
positive real number, and define

Vλ(Γ1(N, d)) = cuspidal eigenspace of ∆hypof eigenvalue λ.

Hence, this is a finite dimension complex vector space spanned by non-
holomorphic cusp forms, proper under the action of the hyperbolic
laplacian, with eigenvalue λ. In an analogous way to classical modular
forms, one can define an action of the Hecke algebra on Vλ(Γ1(N, d)).
The notion of d-new and d-old forms makes sense as well. The space
Vλ(Γ1(N, d)) is contained in the L2 functional space with respect to the
hyperbolic measure. There is an orthogonal decomposition

Vλ(Γ1(N, d)) = Vλ(Γ1(N, d))d−new
⊥
⊕ Vλ(Γ1(N, d))d−old.

Similarly we define spaces Vλ(Γ
B
1 (N)) for the quaternionic modular

group ΓB1 (N), with no need of any cuspidality condition.
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The theory of automorphic representations works as well to decom-
pose the spaces Vλ in irreducible modules for the action of the Hecke
algebra. The Jacquet–Langlands correspondence applies too: it actu-
ally makes no distinction between automorphic representations arising
from holomorphic modular forms or non-holomorphic ones.

Theorem 5.4. There is a Hecke equivariant isomorphism of finite di-
mensional complex vector spaces

Vλ(Γ1(N, d))d−new
∼−→ Vλ(Γ

B
1 (N)).

In particular, we have the relation

dimVλ(Γ
B
1 (N)) =

∑
d′|d

µ(d′)σ(d/d′) dimVλ(Γ1(N, d′)).

To relate spectral zeta functions, the consequence stated for the mul-
tiplicities of eigenspaces is the only we will need: the compatibility
with the action of Hecke algebras does not play a role in the arithmetic
Riemann–Roch theorem. Tow more pieces are needed. The spectral
zeta function in the modular curve a priori involves the residual spec-
trum and the scattering matrices of the vector of Eisenstein series (i.e.
the continuous spectrum), while for the Shimura curve there are no
such contributions. It turns our that the residual spectrum for con-
gruence subgroups is actually trivial: the only poles of the Eisenstein
series happen at s = 1. And the spectral zeta function requires only
strictly positive eigenvalues! For the scattering matrices, we have the
following fact:

Lemma 5.5. Denote by Φ(Γ, s) the scattering matrix for a fuchsian
group Γ, and ϕ(Γ, s) its determinant. Then we have∑

d′|d

µ(d′)σ(d/d′) tr(Φ(Γ1(N, d′), s) = 0,

∏
d′|d

ϕ(Γ1(N, d′), s)µ(d′)σ(d/d′) = 1.

The lemma follows from explicit computations of scattering matri-
ces, or simply by relating the cusps (and their stabilizers) for a group
Γ1(X, d′) with those coming from smaller levels through the degeneracy
mappings. By taking logarithmic derivatives on the second relation, we
find∑

d′|d

µ(d′)σ(d/d′)

∫ ∞
−∞

ϕ′(Γ1(N, d′), 1/2 + it)

ϕ(Γ1(N, d′), 1/2 + it)
(1/4 + t2)−sdt = 0.

Recall now the definition of the spectral zeta function (Definition 3.1).
The theorem and the lemma together imply:
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Theorem 5.6. Let ζhyp(Γ, s) be the hyperbolic spectral zeta function
for a fuchsian subgroup Γ. Then

ζhyp(ΓB1 (N), s) =
∑
d′|d

µ(d′)σ(d/d′)ζhyp(Γ1(N, d′), s).

In particular, for the regularized zeta determinants

det ∆hyp,ΓB
1 (N) =

∏
d′|d

(det ∆hyp,Γ1(N,d′))
µ(d′)σ(d/d′).

Together with Corollary 5.3 we obtain:

Corollary 5.7. There is an equality in R/ log |Q×|

12 d̂eg detH•(XB
1 (N),OXB

1 (N))Q

= 12
∑
d′|d

µ(d′)σ(d/d′) d̂eg detH•(X1(N, d′),OX1(N,d′))Q.

5.3. Relating arithmetic intersection numbers. The discussion of
the previous paragraphs easily leads to the following conclusion.

Theorem 5.8. Let N ≥ 5 and B an indefinite division quaternion
algebra of discriminant d coprime to B. There is a relation between
arithmetic intersection numbers

(ωX1(N)/Q(cusps)2
hyp)

degωX1(N)/Q(cusps)
=

(ω2
XB

1 (N)/Q,hyp
)

degωXB
1 (N)/Q

in R/Q log |Q×|,

where cusps is the reduced boundary divisor with support X1(N) \
Y1(N).

In the statement we wrote Q log |Q×| for the Q vector space spanned
by log |Q×|, namely Q⊗Z log |Q×|. As for arithmetic degrees of spaces
of cusp forms, the theorem can be refined to an equality of real numbers
up to some log p’s, for p running over a controlled finite set of primes.
The assumption N ≥ 5 is made to avoid the presence of elliptic fixed
points and simplify the discussion.

Let us say some words about the proof. First of all, by functorial-
ity properties of arithmetic intersection numbers, quotients as in the
statement of the theorem are independent of the level. In particular,
we have

(ωX1(N)/Q(cusps)2
hyp)

degωX1(N)/Q(cusps)
=

(ωX1(N,d′)/Q(cusps)2
hyp)

degωX1(N,d′)/Q(cusps)

for any d′ | d. These arithmetic intersection numbers appear in the
arithmetic Riemann-Roch theorem for the modular curves X1(N, d′),
up to a small detail: the cusp divisor cusps becomes rational only after
base changing to Q(ζN). Nevertheless, again by functoriality proper-
ties of arithmetic intersection numbers, the quotients above are also
invariant under extension of the base field. Therefore, we can work



ARITHMETIC RIEMANN–ROCH AND JACQUET–LANGLANDS 25

over Q(ζN) instead of Q and assume that cusps is formed by rational
points. Then, after Corollary 5.7 and the arithmetic Riemann–Roch
theorem for modular curves, we are reduced to showing that for every
cusp σ (written as a section for coherence of notations) of X1(N, d′) we
have

d̂eg σ∗(ωXB
1 (N,d′)/Q(ζN ))W = 0 in R/Q log |Q×|.

To simplify the exposition, we will proceed for the cusp at∞. Observe
we are allowed to increase the level N , by the previous remarks. It is
then known that for N big enough, the canonical sheaf of X1(N, d′) is
ample. We can then find a global section s of ω⊗k

XB
1 (N,d′)/Q(ζN )

that does

not vanish at the cusp ∞. Fix an embedding Q(ζN) ⊂ C. The Fourier
expansion of s at the cusp ∞ then looks like

s = (
∑
n≥0

anq
n)dq⊗k,

with an ∈ Q(ζN) and a0 6= 0. This is a consequence of the q-expansion
theorem, if we think of s as a modular form. Moreover, for any auto-
morphism τ of Q(ζN), the conjugate section sτ has q-expansion

sτ = (
∑
n≥0

τ(an)qn)dq⊗k.

By construction, the Wolpert norm of σ∗(dq) is 1. We thus see that

d̂eg σ∗(ωXB
1 (N,d′)/Q(ζN ))

⊗k
W = − log |NQ(ζN )/Q(a0)| = 0 in R/ log |Q×|,

and hence the claim. For the proof of the theorem to be complete, one
actually needs the precise value of the topological constant C(g, {ei}) in
the arithmetic Riemann–Roch theorem, and check the needed relations
between the constants for the groups Γ1(N, d′) and ΓB1 (N). We don’t
provide the details since this is deprived of any conceptual interest.
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