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Fermat’s method of inûnite descent studies the solutions to diophantine equations by
constructing, from a given solution of a diophantine equation, a smaller solution, and
ultimately deriving a contradiction. In order to formalize the intuitive notion of ‘‘size’’ of
an algebraic solution of a diophantine equation, Northcott (1950) and Weil (1951) have
introduced the notion of height of an algebraic point of an algebraic variety deûned over
a number ûeld and established their basic functorial properties, using the decomposition
theoremofWeil (1929). _e heightmachine is now an important tool inmodern diophantine
geometry.

_e advent of arithmetic intersection theory with Arakelov (1974) and, above all, its
extension in any dimension by Gillet & Soulé (1990) (‘‘Arakelov geometry’’) has led
Faltings (1991) to extend the concept further by introducing the height of a subvariety, de-
ûned in pure analogy with its degree, replacing classical intersection theory with arithmetic
intersection theory. _is point of view has been developed in great depth by Bost et al
(1994) and Zhang (1995a).
Although I shall not use it in these notes, I also mention the alternative viewpoint

of Philippon (1991) who deûnes the height of a subvariety as the height of the coeõcients-
vector of its ‘‘Chow form’’.

_e viewpoint of adelic metrics introduced in Zhang (1995b) is strengthened by the
introduction of Berkovich spaces in this context, based on Gubler (1998), and leading to
the deûnition by Chambert-Loir (2006) of measures at all places analogous to product of
Chern forms at the archimedean place.
We then present the equidistribution theorem of Szpiro et al (1997) and its extension

by Yuan (2008).
Finally, we use these ideas to explain the proof of Bogomolov’s conjecture, follow-

ing Ullmo (1998); Zhang (1998).
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1. Arithmetic intersection numbers

1.1. — Let X be a proper �at scheme over Z. For every integer d ⩾ 0, let Zd(X ) be the
group of d-cycles on X : it is the free abelian group generated by integral closed subschemes
of dimension d.

Remark (1.2). — Let f ∶ X → Spec(Z) be the structural morphism. By assumption, f is
proper so that the image of an integral closed subscheme Z ofX is again an integral closed
subscheme of Spec(Z). _ere are thus two cases:

(1) Either f (Z) = Spec(Z), in which case we say that Z is horizontal;
(2) Or f (Z) = {(p)} for some prime number p, in which case we say that Z is vertical.

_eorem (1.3). — Let n = dim(X ) and let L1, . . . ,Ln be hermitian line bundles on X .
_ere exists a unique family of linear maps:

d̂eg (ĉ1(L1) . . . ĉ1(Ld) ∣ ⋅) ∶ Zd(X ) → R,

for d ∈ {0, . . . , n} satisfying the following properties:
(1) For every integer d ∈ {0, . . . , n}, every integral closed subscheme Z of X such that

dim(Z) = d, every integer m ≠ 0 and every regular meromorphic(1) section s ofL m
d ∣Z , one

has

(1.3.1) m d̂eg (ĉ1(L1) . . . ĉ1(Ld) ∣ Z)

= d̂eg (ĉ1(L1) . . . ĉ1(Ld−1) ∣ div(s)) + ∫
Z(C)

log ∥s∥−1 c1(L1) . . . c1(Ld).

(2) For every closed point z ofX , viewed as a integral closed subscheme of dimension d = 0,
one has

(1.3.2) d̂eg (Z) = log(Card(κ(z))).

Moreover, these maps are multilinear and symmetric in the hermitian line bundles L1, . . . ,Ln

and only depend on their isomorphism classes in P̂ic(X ).

(1)that is, deûned over a dense open subscheme of Z
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Remark (1.4). — _is theorem should be put in correspondence with the analogous ge-
ometric result for classical intersection numbers. Let F be a ûeld and let X be a proper
scheme over F, let n = dim(X) and let L1, . . . , Ln be line bundles over X. _e degree
deg(c1(L1) . . . c1(Ld) ∣ Z) of an d-cycle Z in X is characterized by the relations:

(1) It is linear in Z;
(2) If d = 0 and Z is a closed point z whose residue ûeld κ(Z) is a ûnite extension of F,

and deg(Z) = [κ(Z) ∶ F];
(3) If Z is an integral closed subscheme of X of dimension d, m a non-zero integer, s a

regular meromorphic section of Lm
d , then

(1.4.1) m deg(c1(L1) . . . c1(Ld) ∣ Z) = deg(c1(L1) . . . c1(Ld−1) ∣ div(s)).
_e additional integral that appears in the arithmetic degree takes into account the fact that
Spec(Z) does not behave as a proper variety.

Example (1.5). — Assume that Z is vertical and lies over a maximal ideal (p) of Spec(Z).
_en Z is a proper scheme over Fp the following formula

d̂eg (ĉ1(L1) . . . ĉ1(Ld) ∣ Z) = deg (c1(L1) . . . c1(Ld) ∣ Z) log(p)
follows from the inductive deûnition and shows that the height pairing corresponds to
classical intersection theory.

Example (1.6). — Assume that d = 1 and that Z is horizontal, so that Z is the Zariski-
closure in X of a closed point z ∈ XQ. Let F = κ(z) and let oF be its ring of integers;
by properness of X , the canonical morphism Spec(F) → X with image z extends to a
morphism εz ∶ Spec(oF) →X , whose image is Z. _en

(ĉ1(L ∣ Z) = d̂eg(ε∗zL ).

Proposition (1.7). — Let f ∶ X ′ →X be a generically ûnite morphism of proper �at schemes
over Z, let Z be an integral closed subscheme ofX and let d = dim(Z).

(1) If dim( f (Z)) < d, then

(ĉ1( f ∗L1) . . . ĉ1( f ∗Ld) ∣ Z) = 0;

(2) Otherwise, dim(Z) = d and

(ĉ1( f ∗L1) . . . ĉ1( f ∗Ld) ∣ Z) = (ĉ1(L1) . . . ĉ1(Ld) ∣ f∗(Z)) ,

where f∗(Z) = [κ(Z) ∶ κ( f (Z))] f (Z) is a d-cycle on X .

Remark (1.8). — Let n = dim(X ) and assume that X is regular. As the notation sug-
gest rightly, the arithmetic intersection theory of Gillet & Soulé (1990) allows another
deûnition of the real number d̂eg (ĉ1(L1) . . . ĉ1(Ln) ∣ X ) as the arithmetic degree of the
0-dimensional arithmetic cycle ĉ1(L1) . . . ĉ1(Ln) ∈ ĈH0(X ).

In fact, while the theory of Gillet & Soulé (1990) imposes regularity conditions on X ,
the deûnition of arithmetic product of classes of the form ĉ1(L ) requires less stringent
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conditions; in particular, the regularity of the generic ûber XQ is enough. More generally,
for every birational morphism f ∶ Z′ → Z such that Z′Q is regular, one has

d̂eg (ĉ1(L1) . . . ĉ1(Ln) ∣ Z) = d̂eg (ĉ1( f ∗L1) . . . ĉ1( f ∗Ln) ∣ Z′) .

2. _e height of a variety

2.1. — Let X be a proper Q-scheme and let L be a line bundle on X. _e important case is
when the line bundle L is ample, an assumption which will o�en be implicit below; in that
case, the pair (X , L) is called a polarized variety.

2.2. — Let X be a proper �at scheme over Z and let L be a hermitian line bundle
on X such that XQ = X andLQ = L. Let Z be a closed integral subscheme of X and let
d = dim(Z). Let Z be the Zariski-closure of Z in X ; it is an integral closed subscheme
ofX and dim(Z ) = d + 1.

Deûnition (2.3). — _e degree and the height of Z relative to L are deûned by the formulas
(provided degL (Z) ≠ 0).

degL (Z) = deg(c1(L )d ∣ Z)(2.3.1)

hL (Z) = d̂eg (ĉ1(L
d+1) ∣ Z ) /(d + 1)degL (Z).(2.3.2)

Note that the degree degL (Z) is computed on X, hence only depends on L. Moreover,
the condition that degL (Z) ≠ 0 is satisûed (for every Z) when L is ample on X.

Proposition (2.4). — Let f ∶ X ′ →X be a generically ûnite morphism of proper �at schemes
over Z, let Z be a closed integral subscheme ofX ′

Q and let d = dim(Z). Assume that L is
ample on X and that dim( f (Z)) = d. _en f ∗L is ample on Z and

h f ∗L (Z) = hL ( f (Z)).

Proof. — _is follows readily from proposition 1.7 and its analogue for geometric degrees.
Indeed, when one compares formula (2.3.2) for Z and for f (Z), both the numerator and
the denominator get multiplied by [κ(Z) ∶ κ( f (Z))].

Example (2.5). — For every x ∈ X(Q), let [x] denote its Zariski closure in X. _e function
X(Q) → R given by x ↦ hL ([x]) is a height function relative to the line bundleLQ on X.

Example (2.6). — Let us assume that X is an abelian variety over a number ûeld F, with
everywhere good reduction, and let X be an oF-abelian scheme such that XQ = X. Let
o be the origin of X and let εo ∶ Spec(oF) →X be the corresponding section. Let L be a
line bundle on X with a trivialisation ℓ of L∣o. _ere exists a unique line bundleL on X
such that LQ = L and such that the given trivialisation of L∣o extends to a trivialisation of
ε∗oL . Moreover, for every embedding σ ∶ F ↪ C the theory of Riemann forms on complex
tori endows Lσ with a canonical metric ∥⋅∥σ whose curvature form c1(Lσ , ∥⋅∥σ) is invariant
by translation and such that ∥ℓ∥σ = 1; this is in fact the unique metric possessing these two
properties. We let L be the hermitian line bundle on X so deûned.
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_e associated height function will be denoted by ĥL: it extends the Néron–Tate height
from X(Q) to all integral closed subschemes.
Assume that L is even, that is [−1]∗L ≃ L. _en [n]∗ ≃ Ln2 for every integer n ⩾ 1, and

this isomorphism extends to an isomorphism of hermitian line bundles [n]∗L ≃ L
n2

.
Consequently, for every integral closed subscheme Z of X, one has the following relation

(2.6.1) ĥL([n](Z)) = n2ĥL(Z).
Assume otherwise that L is odd, that is [−1]∗L ≃ L−1. _en [n]∗ ≃ Ln for every integer n ⩾

1; similarly, this isomorphism extends to an isomorphismof hermitian line bundles [n]∗L ≃
L

n
. Consequently, for every integral closed subscheme Z of X, one has the following

relation
(2.6.2) ĥL([n](Z)) = nĥL(Z).

Proposition (2.7). — Let X ′ be a proper �at scheme over Z such that X ′
Q = X; let L ′ be a

hermitian line bundle on X ′ such that L ′
Q = L. Assume that L is ample. _en there exists a

real number c such that
∣hL (Z) − hL ′(Z)∣ ⩽ c

for every integral closed subscheme Z of X.

Proposition (2.8). — Let us assume that L is ample. For every real number B, the set of
integral closed subschemes Z of X such that degL(Z) ⩽ B and hL (Z) ⩽ B is ûnite.

_e case of closed points is Northcott’s theorem, and the general case is due to Bost
et al (1994).

3. Adelic metrics

3.1. — Let S = {2, 3, . . . ,∞} be the set of places ofQ.
Each prime number p is identiûed with the p-adic absolute value on Q, normalized

by ∣p∣p = 1/p; these places are said to be ûnite. We denote by Qp the completion of Q
for this p-adic absolute value and ûx an algebraic closure Qp of Qp. _e p-adic absolute
value extends uniquely to Qp; the corresponding completion is denoted by Cp: this is an
algebraically closed complete valued ûeld.

_e archimedean place is represented by the symbol∞, and is identiûed with the usual
absolute value on Q; it is also called the inûnite place. For symmetry of notation, we may
writeQ∞ = R and C∞ = C, the usual ûelds of real and complex numbers.

3.2. — Let X be a proper scheme over Q. Let v ∈ S be a place ofQ.
Assume v = ∞. _en we set Xan

∞ = X(C∞)/F∞, the set of complex points of X modulo
the action of complex conjugation F∞.
Assume now that v = p is a ûnite place. _en we set Xan

p to be the analytic space
associated by Berkovich (1990) to the Qp-scheme Xp = XQp . It is a compact metrizable
topological space, locally contractible (in particular locally arcwise connected). _ere is a
canonical continuousmap X(Cp) → Xan

p ; it identiûes the (totally discontinuous) topological
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space X(Cp)/Gal(Cp/Qp) with a dense subset of Xan
p . It is endowed with a sheaf in local

rings OXan
p
; for every open subsetU of Xan

p , every holomorphic function f ∈ OXan
p
(U) admits

an absolute value ∣ f ∣ ∶ U → R+.
We gather all places to gather and consider the topological space Xad = ∐v∈S Xan

v , coprod-
uct of the family (Xan

v )v∈S . By construction, a function φ on Xad consists in a family (φv)v∈S ,
where φv is a function on Xan

v , for every v ∈ S.

3.3. — Let L be a line bundle on X; it induces a line bundle Lanv on Xan
v for every place v.

A continuous v-adic metric on Lanv is the datum, for every open subset U of Xan
v and

every section s on Lanv on U , one is given a continuous function ∥s∥ ∶ U → R+, subject to
the requirements:

(1) For every subset V of U , one has ∥s∣V∥ = ∥s∥ ∣V ;
(2) For every holomorphic function f ∈ OXan

v (U), one has ∥ f s∥ = ∣ f ∣ ∥s∥.
If L and M are line bundles on X equipped with v-adic metrics, then L−1 and L ⊗ M

admit natural v-adic metrics, and the canonical isomorphism L−1 ⊗ L ≃ OX is an isometry.
_e trivial line bundle OX admits a canonical v-adic metric for which ∥ f ∥ = ∣ f ∣ for every

local section of OX . More generally, for every v-adic metric ∥⋅∥ on OX , φ = log ∥1∥−1 is a
continuous function on Xan

v , and any v-adic metric on OX is of this form. _e v-adically
metrized line bundle associated with φ is denoted by OX(φ).

If L is a line bundle endowed with an v-adic metric and φ ∈ C (Xan
v ,R), we denote by

L(φ) the v-adically metrized line bundle L⊗OX(φ). Explicitly, its v-adic metric is that of L
multiplied by e−φ.

Example (3.4). — Let X be a proper �at scheme over Z such that XQ = X, let d be a
positive integer and let L be a line bundle on X such that LQ = Ld . Let us show that this
datum endows L with an p-adic metric, for every ûnite place p ∈ S.

Let thus ûx a primenumber p. _ere exists a canonical specializationmap, Xan
p →X ⊗ZFp;

it is anticontinuous. For every open subset U ⊂ X ⊗Z Fp, let ]U [ be the preimage ofU .
_ere exists a unique continuous metric on Lanp such that for every open subschemeU

of X ⊗Z Zp and every basis ℓ of L on U , one has ∥ℓ∥ ≡ 1 on ]U ⊗ Fp[. Explicitly, if s
is a section of Lanp on an open subset U of ]U ⊗ Fp[, there exists a holomorphic function
f ∈ OXan

p
(U) such that sd = f ℓ and ∥s∥ = ∣ f ∣1/d on U .

Such p-adic metrics are called algebraic.

3.5. — An adelic metric on L is the datum, for every place v ∈ S, of a v-adic metric on
the line bundle Lanv on Xan

v , subject to the additional requirement that there exists a model
(X ,L ) of (X , L) inducing the given p-adic metric for all but ûnitely many prime p.

If L andM are line bundles on X equipped with adelic metrics, then L−1 and L⊗M admit
natural adelic metrics, and the canonical isomorphism L−1 ⊗ L ≃ OX is an isometry.

_e trivial line bundle OX admits a canonical adelic metric for which ∥ f ∥ = ∣ f ∣ for every
local section ofOX . More generally, for every adelic metric ∥⋅∥ on OX , and every place v ∈ S,
then φv = log ∥1∥−1v is a continuous function on Xan

v , and is identically zero for all but ûnitely
many places v; in other words, the function φ = (φv) ∈ C (Xad,R) has compact support.
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Conversely, any adelic metric on OX is of this form; _e adelically metrized line bundle
associated with φ is denoted by OX(φ).

If L is a line bundle endowed with an adelic metric and φ ∈ Cc(Xan
v ,R), we denote by

L(φ) the adelically metrized line bundle L ⊗OX(φ). Explicitly, for every place v, its v-adic
metric is that of L multiplied by e−φv .

Remark (3.6). — Let (X ,L ) and (X ′,L ′) be twomodels of the polarized variety (X , L).
Since X is ûnitely presented, there exists a dense open subscheme U of Spec(Z) such
that the isomorphism XQ = X = X ′

Q extends to an isomorphism XU ≃ X ′
U . _en,

up to shrinking U , we may assume that the isomorphism LQ = L = L ′
Q extends to an

isomorphism LU ≃ L ′
U . In particular, for every prime number p such that (p) ∈ U , the

p-adic norms on L induced by L andL ′ coincide.

3.7. — Let Pic(Xad) be the abelian group of isometry classes of line bundles on X endowed
with adelic metrics. It ûts into an exact sequence

(3.7.1) Γ(X ,O×
X) → Cc(Xad,R) → Pic(Xad) → Pic(X) → 0.

_e morphism on the le� is given by u ↦ (log∣u∣−1v )v∈S . It is injective up to torsion, as a
consequence of Kronecker’s theorem: if ∣u∣v = 1 for every place v, then there exists m ⩾ 1
such that um = 1. Its image is the kernel of the morphism C (Xad,R) → Pic(X); indeed, an
isometryOX(φ) → OX(ψ) is given by an element u ∈ Γ(X ,O×

X) such that ψv + log∣u∣−1v = φv ,
for every place v ∈ S.
We denote by ĉ1(L) the isometry class in Pic(X) of an adelically metrized line bundle

on X.

Remark (3.8). — Let D be an eòective Cartier divisor on X and let OX(D) be the corre-
sponding line bundle; let sD be its canonical section. Assume that OX(D) is endowed with
an adelic metric.

Let v ∈ S be a place ofQ. _e function log ∥sD∥−1v is a continuous function on Xan
v ∣D∣,

and is called a v-adic Green function for D. For every open subscheme U of X and any
equation f of D on U , gD + log∣ f ∣v extends to a continuous function on Uan

v . Conversely,
this property characterizes v-adic Green functions for D.

_e family gD = (gD,v) is called an adelic Green function for D.

Lemma (3.9) (Chambert-Loir & Thuillier (2009), prop. 2.2)
Let X be a proper �at integral scheme over Z, let L be a hermitian line bundle on X . Let

X = XQ and let L = LQ, endowed with the algebraic adelic metric associated with (X ,L ).
Assume that X is integrally closed in its generic ûber (for example, that it is normal).

_en the canonical map Γ(X ,L ) → Γ(X , L) is injective and its image is the set of
sections s such that ∥s∥v ⩽ 1 for every ûnite place v ∈ S.

Equivalently, eòective Cartier divisors onX correspond to v-adic Green functions which
are nonnegative at all ûnite places v.
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Proof. — Injectivity follows from the fact that X is �at, so that X is schematically dense
in X . Surjectivity is a generalization of the fact that an integrally closed domain is the
intersection of its prime ideals of height 1.

3.10. — Let ∥⋅∥ and ∥⋅∥′ be two adelic metrics on L. For every place v, the ratio of these
metrics is a continuous function on Xan

v , and we let

δv(∥⋅∥ , ∥⋅∥′) = sup
x∈Xan

v

∣log ∥⋅∥′

∥⋅∥ (x)∣ .

Since Xan
v is compact, this is a nonnegative real number. Moreover, for all but ûnitely many

places v, it is equal to 0.
We then deûne the distance between the two given adelic metrics by

δ(∥⋅∥ , ∥⋅∥′) = ∑
v∈S
δv(∥⋅∥′ , ∥⋅∥).

(It may be inûnite.)
_e set of adelic metrics on a given line bundle L is a real aõne space, its underlying

vector space is the subspaceCc(Xad,R) ofC (Xad,R) = ∏v C (Xan
v ,R) consisting of families

(φv) such that φv ≡ 0 for all but ûnitely many places v ∈ S.
_e space Cc(Xad,R) is the union of the subspaces CU(Xad,R) of functions with (com-

pact) support above a given ûnite set U of places of S. We thus endow it with its natural
inductive limit topology.

Example (3.11) (Algebraic dynamics, Zhang (1995b)). — Let X be a proper Q-scheme,
let f ∶ X → X be a morphism, let L be a line bundle on X such that f ∗L ≃ Lq, for some
integer q ⩾ 2. We ûx such an isomorphism ε. _e claim is that there exists a unique adelic
metric on L for which the isomorphism ε is an isometry.

Let us ûrst ûx a place v and prove that there is a unique v-adic metric on L for which
ε is an isometry. To that aim, let us consider, for any v-adic metric ∥⋅∥ on L, the induced
v-adic metric on f L and transfer it to Lq via ε. _is furnishes a v-adic metric ∥⋅∥ f on L such
that ε is an isometry from (L, f ∗ ∥⋅∥) to (L, ∥⋅∥ f )q, and it is the unique v-adic metric on L
satisfying this property. Within the real aõne space of v-adic metrics on L, normed by the
distance δv , and complete, the self-map ∥⋅∥ ↦ ∥⋅∥ f is contracting with Lipschitz constant 1/q.
Consequently, the claim follows from Picard’s theorem.

We also note that there exists a dense open subscheme U of Spec(Z), a model (X ,L )
of (X , L) over U such that f ∶ X → X extends to a morphism φ ∶ X → X and the iso-
morphism ε ∶ f ∗L ≃ Lq extends to an isomorphism φ∗L ≃ L q, still denoted by ε. _is
implies that for every ûnite place p above U , the canonical v-adic metric is induced by the
model (X ,L ).
Consequently, the family (∥⋅∥v) of v-adic metrics on L for which ε is an isometry is an

adelic metric.
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4. Arithmetic ampleness

Deûnition (4.1). — Let X be a proper scheme over Z and let L be a hermitian line bundle
on X . One says that L is relatively ample if there exists an embedding φ ∶ X ↪ PN

Z , a metric
with positive curvature on OPN(1) and an integer d ⩾ 1 such that L

d ≃ OPN(1).

5. Positivity

Deûnition (5.1). — Let X be a proper scheme over Z and let L be a hermitian line bundle
on X . One says that L is relatively semipositive if:

(1) For every vertical integral curve C on X , one has degL (C) ⩾ 0;
(2) For every holomorphic map f ∶ D→X (C), the curvature of f ∗L is semipositive.

IfL is relatively semipositive, then LQ is nef.

Proposition (5.2). — Let X be a proper scheme over Q; let L0, . . . , Ld be line bundles on X.
Let X ,X ′ be proper �at schemes over Z such that X = XQ = X ′

Q, let L0, . . . ,Ld (resp.
L ′

0 , . . . ,L ′
d ) be semipositive hermitian line bundles on X (resp. X ′) such that L j,Q =

L ′
j,Q = L j; We write L0, . . . , Ld (resp. L′0, . . . , L′d) for the corresponding adelically metrized

line bundles on X. _en

∣ d̂eg (ĉ1(L ′
0) . . . ĉ1(L ′

d) ∣ Z) − d̂eg (ĉ1(L0) . . . ĉ1(Ld) ∣ Z) ∣

⩽
d

∑
j=0
δ j(L j, L′j)deg (c1(L0) . . . ĉ1(L j) . . . c1(Ld) ∣ Z) ,

where the factor c1(L j) is omitted in the jth term.

Proof. — We ûrst reduce to the case whereX = X ′ is normal. Moreover, by homogeneity,
we also assume that (L j)Q = (L ′

j )Q for every j. We then write

d̂eg (ĉ1(L ′
0) . . . ĉ1(L ′

d) ∣ Z) − d̂eg (ĉ1(L0) . . . ĉ1(Ld) ∣ Z)

=
d

∑
j=0
d̂eg (ĉ1(L ′

0) . . . ĉ1(L ′
j−1)(ĉ1(L ′

j ) − ĉ1(L j))ĉ1(L j+1) . . . ĉ1(Ld) ∣ Z)

and bound the jth term as follows. Let s j be the regular meromorphic section of OX =
L ′

j ⊗ (L j)−1 corresponding to 1. By deûnition, one has

d̂eg (ĉ1(L ′
0) . . . ĉ1(L ′

j−1)(ĉ1(L ′
j ) − ĉ1(L j))ĉ1(L j+1) . . . ĉ1(Ld) ∣ Z)

= d̂eg (ĉ1(L ′
0) . . . ĉ1(L ′

j−1)ĉ1(L j+1) . . . ĉ1(Ld)(ĉ1(L ′
j ) − ĉ1(L j)) ∣ Z)

= d̂eg (ĉ1(L ′
0) . . . ĉ1(L ′

j−1)ĉ1(L j+1) . . . ĉ1(Ld) ∣ div(s j∣Z))

+ ∫
Z(C)

log ∥s j∥
−1
c1(L ′

0) . . . c1(L ′
j−1)c1(L j+1) . . . c1(Ld).
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Moreover, all components of div(s j∣Z) are vertical. For every j ∈ {0, . . . , d} and every v ∈ S,
let δ j,v = δv(L j, L′j) (this is zero for all but ûnitely many places v). Using the assumption
that ∣log ∥s j∥v ∣ ⩽ δv(L j, L′j) for every place v ∈ S, the normality assumption on X implies
that

div(s j) ⩽ ∑
p∈S {∞}

δ j,p(log p)−1[Z ⊗ Fp].

Since the line bundles Lk andL ′
k are semipositive, this implies the bound

d̂eg (ĉ1(L ′
0) . . . ĉ1(L ′

j−1)ĉ1(L j+1) . . . ĉ1(Ld) ∣ div(s j∣Z))

= ∑
p
deg (c1(L ′

0) . . . c1(L ′
j−1)c1(L j+1) . . . c1(Ld) ∣ div(s j∣Z)) log p

⩽ ∑
p
δ j,p deg (c1(L ′

0) . . . c1(L ′
j−1)c1(L j+1) . . . c1(Ld) ∣ [Z ⊗ Fp])

⩽ (∑
p
δ j,p)deg (c1(L0) . . . c1(L j−1)c1(L j+1) . . . c1(Ld) ∣ Z) .

Similarly, the curvature forms c1(Lk) and c1(L′k) are semipositive, so that the upper bound
log ∥s j∥

−1 ⩽ δ j,∞ implies

∫
Z(C)

log ∥s j∥
−1
c1(L ′

0) . . . c1(L ′
j−1)c1(L j+1) . . . c1(Ld)

⩽ δ j,∞∫
Z(C)

c1(L ′
0) . . . c1(L ′

j−1)c1(L j+1) . . . c1(Ld)

⩽ δ j,∞ deg (c1(L0) . . . c1(L j−1)c1(L j+1) . . . c1(Ld) ∣ Z) .

Adding these contributions, we get one of the desired upper bound, and the other follows
by symmetry.

Deûnition (5.3). — An adelic metric on a line bundle L on X is said to be semipositive if it is
a limit of a sequence of semipositive algebraic adelic metrics on L.

Let Pic+(X) be the set of all isometry classes of line bundles endowed with a semipositive
metric. It is submonoid of Pic(X); moreover, its image in Pic(X) is the set of isomorphism
classes of all nef line bundles on X.

Corollary (5.4). — Let Z be an integral closed subscheme of X, let d = dim(Z). _e arithmetic
degree maps extends uniquely to a continuous function Pic+(X)d+1 → R. _is extension is
multilinear and symmetric.

Proof. — _is follows from proposition 5.2 and from the classical extension theorem of
uniformly continuous maps.

Deûnition (5.5). — Let X be a projectiveQ-scheme and let L be a line bundle on X. An adelic
metric on L is said to be admissible if there exists two line bundles endowed with semipositive
adelic metrics, M1 and M2, such that L ≃ M1 ⊗M2

−1.
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More generally, we say that a v-adic metric on L is admissible if it is the v-adic component
of an adelic metric on L _e set of all adelically metrized line bundles on X is denoted
by Picint(X); it is the subgroup generated by Pic+(X).
By construction, the arithmetic intersection product extends by linearity to Picadm(X).

We use the notation d̂eg(ĉ1(L0) . . . ĉ1(Ld) ∣ Z) for the arithmetic degree of a d-dimensional
integral closed subscheme Z of X with respect to admissible adelically metrized line bundles
L0, . . . , Ld .

_is gives rise to a natural notion of height parallel to that given in deûnition 2.3.

Example (5.6). — Let us retain the context and notation of example 3.11. Let us moreover
assume that L is ample and let us prove that the canonical adelic metric on L is semipositive.
We make the observation that if ∥⋅∥ is an algebraic adelic metric on L induced by a

relatively semipositive hermitian line bundle L on a proper �at model X of X, then
the metric ∥⋅∥ f is again relatively semipositive. Indeed, the normalization of X in the
morphism f ∶ X → X furnishes a proper �at schemeX ′ over Z such that X ′

Q = X and a
morphism φ ∶ X ′ →X that extends f . _en φ∗L is a relatively semipositive hermitian
line bundle on X ′, model of Ld , which induces the algebraic adelic metric ∥⋅∥ f on L.

Starting from a given algebraic adelic metric induced by a relatively semipositive model
(for example, a relatively ample one), the proof of Picard’s theorem invoked in example 3.11
proves that the sequence of adelic metrics obtained by the iteration of the operator ∥⋅∥ ↦ ∥⋅∥ f
converges to the unique ûxed point. Since this iteration preserves algebraic adelic metrics
induced by a relatively semipositive model, the canonical adelic metric on L is semipositive,
as claimed.
For a generalization of this construction, see theorem 4.9 of Yuan & Zhang (2017).

6. Measures

Deûnition (6.1). — Let X be a projective Q-scheme. A function φ ∈ C (Xad,R) is said to be
admissible if the adelically metrized line bundle OX(φ) is admissible.

More generally, we say that a function φv ∈ C (Xan
v ,R) is admissible if it is the v-adic

component of an admissible family φ = (φv). _e set Cadm(Xad,R) of admissible families
(φv) is a real subspace of Cc(Xad,R). One has an exact sequence
(6.1.1) Γ(X ,O×

X) → Cadm(Xad,R) → Picadm(X) → Pic(X) → 0
analogous to (3.7.1)

Proposition (6.2) (Gubler, 1998, theorem 7.12). — For every place v ∈ S, the subspace
Cadm(Xan

v ,R) is dense in C (Xan
v ,R).

_e space Cadm(Xad,R) of admissible functions is dense in Cc(Xad,R).
Proof. — Observe that Xan

v is a compact topological space. By corollary 7.7 and lemma 7.8
of Gubler (1998), the subspace of Cadm(Xan

v ,R) corresponding to algebraic v-adic metrics
on L separates points and is stable under sup and inf. _e ûrst part of the proposition thus
follows from Stone’s density theorem.
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_e second part follows from the ûrst one and a straightforward argument.

_eorem (6.3). — Let v be a place of S. Let Z be an integral closed subscheme of X, let
d = dim(Z), let L1, . . . , Ld be admissible adelically metrized line bundles on X.

(1) _ere exists a unique measure c1(L1) . . . c1(Ld)δZ on Xad such that

∫
Xan
v

φ0c1(L1) . . . c1(Ld)δZ = (ĉ1(OX(φ0))ĉ1(L1) . . . ĉ1(Ld) ∣ Z)

for every compactly supported admissible function φ0 on Xad.
(2) _is measure is supported on Zad; its total mass is equal to

∫
Xan
v

c1(L1) . . . c1(Ld)δZ = deg(c1(L1) . . . c1(Ld) ∣ Z).

If L1, . . . , Ld are semipositive, then this measure is is nonnegative.
(3) _e induced map Picadm(X)d →M (Xad) is d-linear and symmetric.
(4) Every admissible function is integrable for this measure.

Proof. — Let us ûrst assume that L1, . . . , Ld are semipositive. It then follows from the
deûnition of the arithmetic intersection degrees that the map

φ0 ↦ (ĉ1(OX(φ0))ĉ1(L1) . . . ĉ1(Ld) ∣ Z)

is a positive linear form on Cadm(Xad,R). By the density theorem, it extends uniquely to
a positive linear form on Cc(Xad,R), which then corresponds to an inner regular, locally
ûnite, positive Borel measure on Xad.

_e rest of the theorem follows from this.

Remark (6.4). — (1) At archimedean places, the construction of the measure
c1(L1) . . . c1(Ld)δZ shows that it coincides with the measure deûned by Bedford &
Taylor (1982) and Demailly (1985).

(2) At ûnite places, it has been ûrst given in Chambert-Loir (2006). By approxima-
tion, the deûnition of the measure in the case of a general semipositive p-adic metric is
then deduced from the case of algebraic metrics, given by a model (X ,L ), the mea-
sure c1(L1) . . . c1(Ld)δZ on Xan

p has ûnite support. Let us describe it when Z = X and the
model X (the general case follows). For each component Y of X ⊗ Fp, there exists a
unique point y ∈ Xan

p whose specialization is the generic point of Y . _e contribution of
the point y to the measure is then equal to

mY deg(c1(L) . . . c1(L) ∣ Y ),

where mY is the multiplicity of Y in the special ûber, that is, the length of the ideal (p) at
the generic point of Y .

Example (6.5). — Let X be an abelian variety of dimension d over a number ûeld F. Let L
be an ample line bundle equipped with a canonical adelic metric; let us then describe the
measure c1(L)d on Xan

v , for every place v ∈ S. For simplicity, we assume that F = Q.
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(1) First assume v = ∞. _en Xan
∞ is the quotient, under complex conjugation, of the

complex torus X(C), and the canonical measure on Xan
∞ is the direct image of the unique

Haar measure on X(C) with total mass deg(c1(L)d ∣ X).
(2) _e situation is more interesting in the case of a ûnite place p.
If X has good reduction at p, that is, if it extends to an abelian schemeX over Zp, then

the canonical measure is supported at the unique point of Xan
p whose specialization is the

generic point ofX ⊗ Fp.
Let us assume, on the contrary, that X has (split) totally degenerate reduction. In this

case, the uniformization theory of abelian varieties shows that Xan
p is the quotient of a

torus (Gm
d)an by a lattice Λ. _e deûnition of (Gm

d)an shows that this analytic space
contains a canonical d-dimensional real vector space V , and V/Λ is a real d-dimensional
torus S(Xan

p ) contained in Xan
p , sometimes called its skeleton. Gubler (2007) has shown

that the measure c1(L)d on Xan
p coincides with the Haar measure on S(Xan

p ) with total mass
deg(c1(L)d ∣ X).

_e general case is a combination of these two cases.

Remark (6.6). — At ûnite places, the theory described in this section deûnes measures
c1(L1) . . . c1(Ld)δZ without deûnining the individual components c1(L1), . . . , c1(Ld), δZ .

In Chambert-Loir & Ducros (2012), we propose a theory of real diòerential forms
and currents on Berkovich analytic spaces that allows a more satisfactory analogy with the
theory at complex spaces. In particular, we provide an analogue of the Poincaré–Lelong
equation, and a semipositive metrized line bundle possesses a curvature current (curvature
form in the ‘‘smooth’’ case) whose product can be deûned and coincides with the measure.

7. Volumes

7.1. — Let X be a proper Q-scheme and let L be a line bundle endowed with an adelic
metric.

_e Riemann-Roch space H0(X , L) is a ûnite dimensional Q-vector space. For every
place v ∈ S, we endow it with a v-adic semi-norm:

∥s∥v = ∑
x∈Xan

v

∥s(x)∥

for s ∈ H0(X , L). If X is reduced, then this is a norm; let then Bv be its unit ball.
Let A be the ring of adeles of Q and let µ be a Haar measure on H0(X , L) ⊗ A. _en

∏v∈S Bv has ûnite positive volume in H0(X , L)A, and one deûnes

(7.1.1) χ(X , L) = − log(µ(H0(X , L) ⊗A/H0(X , L))
∏v µ(Bv)

) .

_is does not depend on the choice of the Haar measure µ.
One also deûnes

(7.1.2) Ĥ0(X , L) = {s ∈ H0(X , L) ; ∥s∥v ⩽ 1 for all v ∈ S}.
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_is is a ûnite set. We then let
(7.1.3) ĥ0(X , L) = log (Card(Ĥ0(X , L))) .

Lemma (7.2). — One has
χ(X , L) ⩽ ĥ0(X , L).

Proof. — _is follows from the adelic version of Minkowski’s ûrst theorem of Bombieri &
Vaaler (1983).

7.3. — _e volume and the χ-volume of L are deûned by the formulas

v̂ol(X , L) = lim sup
n→∞

ĥ0(X , Ln)
nd+1/(d + 1)!(7.3.1)

v̂olχ(X , L) = lim sup
n→∞

χ(X , Ln)
nd+1/(d + 1)! .(7.3.2)

One thus has the inequality

(7.3.3) v̂olχ(X , L) ⩽ v̂ol(X , L).
In fact, it has been independently shown by Yuan (2009) and Chen (2010) that the

volume is in fact a limit.
_e relation between volumes and heights follows from the following result.

Lemma (7.4). — (2) Assume that L is big. _en, for every real number t < v̂olχ(X , L)/(d +
1) vol(X , L), the set of closed points x ∈ X such that hL(x) ⩽ t is not dense for the Zariski
topology.

Proof. — Consider the adelically metrized line bundle L(−t), whose metric at the
archimedean place has been multiplied by e t . It follows from ahe deûnition of the χ-volume
that

v̂olχ(X , L(−t)) = v̂olχ(X , L) − (d + 1)t vol(X , L).
Indeed, for every ûnite place p, changing L to L(−t) does not modify the balls Bp in
H0(X , Ln) ⊗Q Qp, while it dilates it by the ratio ent at the archimedean place, so that its
volume is multiplied by ent dim(H0(X ,Ln)).
Consequently,

v̂ol(X , L(−t)) ⩾ v̂ol
χ
(X , L(−t)) ⩾ v̂ol

χ
(X , L) − (d + 1)t vol(X , L) > 0.

In particular, there exists an integer n ⩾ 1 and a nonzero section s ∈ H0(X , Ln) such that
∥s∥p ⩽ 1 for all ûnite places p, and ∥s∥

∞
⩽ e−nt. Let now x ∈ X be a closed point that is not

contained in ∣div(s)∣; one then has

hL(x) = ∑
v∈S
∫

Xan
v

log ∥s∥−1/nv δv(x) ⩾ t,

whence the lemma.
(2)Is there a version for v̂ol?
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_eorem (7.5). — Assume that L is semipositive. _en one has

(7.5.1) v̂ol(X , L) = v̂olχ(X , L) = d̂eg (ĉ1(L)d+1 ∣ X) .

_is is the arithmetic Hilbert–Samuel formula, due to Gillet & Soulé (1988); Bismut
& Vasserot (1989) when XQ is smooth and the adelic metric of L is algebraic. Abbes &
Bouche (1995) later gave an alternative proof. In the given generality, the formula is a
theorem of Zhang (1995a,b).

_eorem (7.6). — (1) _e function L ↦ v̂ol(X , L) extends uniquely to a continuous func-
tion on the real vector space Pic(X) ⊗Q R.

(2) If v̂ol(X , L) > 0, then v̂ol is diòerentiable at L.
(3) If L is semipositive, then v̂ol and v̂olχ are diòerentiable at L, with diòerential

M ↦ (d + 1) d̂eg(ĉ1(L)d ĉ1(M) ∣ X).
[Add indications and references.]

8. Equidistribution

_emain result of this section is the equidistribution theorem 8.4. It has been ûrst proved
in the case v = C by Szpiro et al (1997), under the assumption that the given archimedean
metric is smooth and has a strictly positive curvature form, and the general case is due
to Yuan (2008). However, our presentation derives it from a seemingly more general result,
lemma8.2, whose proof, anyway, closely follows their methods. Note that for the application
to Bogomolov’s conjecture in §9, the initial theorem of Szpiro et al (1997) is suõcient.

Deûnition (8.1). — Let X be a proper Q-scheme, let L be a big line bundle on X endowed
with an admissible adelically metric. Let (xn) be a sequence of closed points of X.

(1) One says that (xn) is generic if for every strict closed subscheme Z of X, the set of all
n ∈ N such that xn ∈ Z is ûnite; in other words, this sequence converges to the generic point
of X.

(2) One says that (xn) is small (relative to L) if

hL(xn) → hL(X).

Lemma (8.2). — Let X be a proper Q-scheme, let d = dim(X), let L be a semipositive
adelically metrized line bundle on X such that L is big. Let (xn) be a generic sequence of
closed points of X which is small relative to L. For every line bundle M on X endowed with an
admissible adelic metric, one has

lim
n→∞

hM(xn) =
d̂eg(ĉ1(L)d ĉ1(M) ∣ X)

degL(X) − d
d + 1

hL(X)deg(c1(L)
d−1c1(M) ∣ X)

degL(X)2 .

Proof. — Since L is ample, Lt⊗M is ample for every large enough integer t, and the classical
Hilbert-Samuel formula implies that

1
td

vol(X , Lt ⊗M) = deg(c1(L)d ∣ X) + dt−1 deg(c1(L)d−1c1(M) ∣ X) +O(t−2)
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when t →∞. Since L is semipositive and L is ample, the main inequality of Yuan (2008)
implies that

1
td+1

v̂ol
χ
(X , Lt ⊗M) ⩾ v̂ol

χ
(X , L) + (d + 1)t−1 d̂eg(ĉ1(L)d ĉ1(M) ∣ X) +O(t−2).

Consequently, when t →∞, one has

v̂olχ(X , L
t ⊗M)

(d + 1) vol(X , Lt ⊗M) ⩾ t
v̂olχ(X , L)

(d + 1) vol(X , L)+

+ (d + 1) d̂eg(ĉ1(L)
d ĉ1(M) ∣ X)

deg(c1(L)d ∣ X)

− d d̂eg(ĉ1(L)
d+1 ∣ X)

deg(c1(L)d ∣ X)
deg(c1(L)d−1c1(M) ∣ X)

deg(c1(L)d ∣ X) +O(1/t).

In order to apply the inequality

lim inf
n

hL
t
⊗M

v̂olχ(X , L
t ⊗M)

(d + 1) vol(X , Lt ⊗M) ,

we observe that
lim inf

n
hL

t
⊗M = t lim hL(xn) + t lim inf

n
hM(xn).

When t →∞, we then obtain

lim inf
n

hM(xn) ⩾ (d + 1) d̂eg(ĉ1(L)
d ĉ1(M) ∣ X)

deg(c1(L)d ∣ X)

− d d̂eg(ĉ1(L)
d+1 ∣ X)

deg(c1(L)d ∣ X)
deg(c1(L)d−1c1(M) ∣ X)

deg(c1(L)d ∣ X) .

Applying this inequality for M
−1 shows that lim supn hM(xn) is bounded above by its

right hand side. _e lemma follows.

8.3. — Let X be a proper Q-scheme. Let v ∈ S be a place ofQ.
Let x ∈ X be a closed point. Let F = κ(x); this is a ûnite extension of Q, and there are

exactly [F ∶ Q] geometric points on X(Cv) whose image is x, permuted by the Galois group
Gal(Cv/Qv). We consider the corresponding ‘‘probability measure’’ in X(Cv), giving mass
1/[F ∶ Q] to each of these geometric points, and let δv(x) be its image under the natural
map X(Cp) → Xan

v .
By construction, δv(x) is a probability measure on Xan

v with ûnite support, a (rigid)
point of Xan

v being counted proportionaly to the number of its li�ings to a geometric point
supported by x.

_eorem (8.4). — Let X be a proper Q-scheme, let d = dim(X), let L be a semipositive
adelically metrized line bundle on X such that L is big. Let (xn) be a generic sequence of closed
points of X which is small relative to L. _en for each place v ∈ S, the sequence of measures
(δv(xn)) on Xan

v converges to the measure c1(L)d/deg(c1(L)d ∣ X).
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Proof. — Let µL denote the probability measure c1(L)d/degL(X) on Xan
v and let f ∈

C (Xan
v ,R) be an admissible function, extended by zero to an element of Cadm(Xad,R).

We apply lemma 8.2 to the metrized line bundle M = OX( f ). For every closed point x ∈ X,
one has

hM(x) = ∫
Xan
v

f δv(x).

Moreover,
d̂eg(ĉ1(L)d ĉ1(M) ∣ X) = 1

degL(X) ∫Xan
v

f c1(L)d .

It thus follows from lemma 8.2 that

lim
n→∞∫Xan

v

f δv(xn) =
1

degL(X) ∫Xan
v

f c1(L)d .

_e case of an arbitrary continuous function on Xan
v follows by density.

9. _e Bogomolov conjecture

9.1. — Let X be an abelian variety over a number ûeld F and let L be a line bundle on X
trivialized at the origin. Let us ûrst explain how the theory of canonical adelic metrics allows
to extend the Néron–Tate height to arbitrary integral closed subschemes. For alternative
and independent presentations, see Philippon (1991), Gubler (1994), Bost et al (1994).

If L is even ([−1]∗L ≃ L), then it admits a unique adelic metric for which the canonical
isomorphism [n]∗L ≃ Ln2 is an isometry, for every integer n. Similarly, if L is odd ([−1]∗L ≃
L−1), then it admits a unique adelic metric for which the canonical isomorphism [n]∗L ≃ Ln

is an isometry, for every integer n. In general, one can write L2 ≃ (L ⊗ [−1]∗L) ⊗ (L ⊗
[−1]∗L−1), as the sum of an even and an odd line bundle, and this endows L with an adelic
metric. _is adelic metric is called the canonical adelic metric on L (compatible with the
given trivialization at the origin).

If L is ample and even, then the canonical adelic metric on L is semipositive. _is implies
that the canonical adelic metric of an arbitrary even line bundle is admissible.
Assume that L is odd. Fix an even ample line bundle M. Up to extending the scalars,

there exists a point a ∈ X(F) such that L ≃ τ∗aM ⊗ M−1, where τa is the translation by a
on X. _en there exists a unique isomorphism L ≃ τ∗aM ⊗M−1 ⊗M−1

a which is compatible
with the trivialization at the origin, and this gives rise to an isometry L ≃ τ∗aM⊗M

−1⊗M
−1
a .

In particular, the adelic metric of M is admissible. In fact, it follows from a construction
of Künnemann that it is even semipositive, see Chambert-Loir (1999).

9.2. — In particular, let us consider an ample even line bundle L on X endowed with a
canonical adelic metric. _is furnishes a height

hL(Z) = d̂eg(ĉ1(L)d+1 ∣ Z)
(d + 1)deg(c1(L)d ∣ Z) ,

for every integral closed subscheme Z of X, where d = dim(Z).
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In fact, if (X ,L ) is any model of (X , L), one has
hL(Z) = lim

n→+∞
n−2hL ([n](Z)),

which shows the relation of the point of view of adelic metrics with Tate’s deûnition of the
Néron–Tate height, initially deûned on closed points. _is formula also implies that hL is
nonnegative.

More generally, if Z is an integral closed subscheme of XF , we let hL(Z) = hL([Z]),
where [Z] is its Zariski-closure in X (more precisely, the smallest closed subscheme of X
such that [Z]F contains Z).

Lemma (9.3). — _e induced height function hL ∶ X(F) → R is a positive quadratic form. It
induces a positive deûnite quadratic form on X(F)⊗R. In particular, a point ∈ X(F) satisûes
hL(x) = 0 if and only if x is a torsion point.

Proof. — For I ⊂ {1, 2, 3}, let pI ∶ X3 → X be the morphism given by pI(x1, x2, x3) = ∑i∈I xi .
_e cube theorem asserts that the line bundle

D3(L) = ⊗
∅≠I⊂{1,2,3}

(p∗I L)(−1)
Card(I)−1

on X3 is trivial, and admits a canonical trivialisation. _e adelic metric of L endows it
with an adelic metric which satisûes [2]∗D3(L) ≃ D3(L)4, hence is the trivial metric. _is
implies the following relation on heights:

hL(x + y + z) − hL(y + z) − hL(x + z) − hL(x + y) + hL(x) + hL(y) + hL(z) ≡ 0

on X(F)3. Consequently,
(x , y) ↦ hL(x + y) − hL(x) − hL(y)

is a symmetric bilinear form on X(F). Since it is even, hL is a quadratic form on X(F).
Since L is ample, hL is bounded from below. _e formula hL(x) = hL(2x)/4 then implies

that hL is nonnegative. By what precedes, it induces a positive quadratic form on X(F)R.
Let us prove that it is in fact positive deûnite. By deûnition, it suõces that its restriction

to the subspace generated by ûnitely many points x1, . . . , xm ∈ X(F) is positive deûnite. Let
E be a ûnite extension of F such that x1, . . . , xm ∈ X(E). On the other hand, Northcott’s
theorem implies that for every real number t, the set of (a1, . . . , am) ∈ Zm such that hL(a1x1+
⋅ ⋅ ⋅ + amxm) ⩽ t is ûnite. One deduces from that the asserted positive deûniteness.

Deûnition (9.4). — A torsion subvariety of XF is a subvariety of the form a + Y, where
a ∈ X(F) is a torsion point and Y is an abelian subvariety of XF .

_eorem (9.5). — a) Let Z be an integral closed subscheme of XF . One has hL(Z) = 0 if
and only if Z is a torsion subvariety of XF .
b) Let Z be an integral closed subscheme of XF which is not a torsion subvariety. _ere

exists a positive real number δ such that the set

{x ∈ Z(F) ; hL(x) ⩽ δ}
is not Zariski-dense in ZF .
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Assertion a) has been independently conjectured by Philippon (1991, 1995) and Zhang
(1995b). Assertion b) has been conjectured by Bogomolov (1980) in the particular case
where Z is a curve of genus g ⩾ 2 embedded in its jacobian variety; for this reason, it is
called the ‘‘generalized Bogomolov conjecture’’. _e equivalence of a) and b) is a theorem
of Zhang (1995b). In fact, the implication b)⇒a) follows from theorem 7.5 and lemma 7.4.

_eorem 9.5 has been proved by Zhang (1998), following a breakthrough of Ullmo
(1998) who treated the case of a curve embedded in its jacobian; their proof makes use of the
equidistribution theorem. Soon a�er, David & Philippon (1998) gave an alternative proof;
when Z is not a translate of an abelian subvariety, their proof provides a positive lower
bound for hL(Z) (in a)) as well as an explicit real number δ (in b)) which only depends on
the dimension and the degree of Z with respect to L.
As a corollary of theorem 9.5, one obtains a new proof of theManin–Mumford conjecture

in characteristic zero, initially proved by Raynaud (1983).

Corollary (9.6). — Let X be an abelian variety over an algebraically closed ûeld of character-
istic zero, let Z be an integral closed subscheme of X which is not a torsion subvariety. _en
the set of torsion points of X which are contained in Z is not Zariski-dense in X.

Proof. — A specialization argument reduces to the case where X is deûned over a number
ûeld F. In this case, the torsion points of X are deûned over F and are characterized by the
vanishing of their Néron–Tate height relative to an(y) ample line bundle L on X. It is thus
clear that the corollary follows from theorem 9.5, b).

9.7. — _e proof of theorem 9.5, b), begins with the observation that the statement does
not depend on the choice of the ample line L on X. More precisely, ifM is another symmetric
ample line bundle on X endowed with a canonical metric, then there exists an integer a ⩾ 1
such that La⊗M

−1 is ample, as well as M
a⊗L

−1. Consequently, hL ⩾ a−1hM and hM ⩾ a−1hL.
From these two inequalities, one deduces readily that the statement holds for L if and only
if it holds for M.
For a similar reason, if f ∶ X′ → X is an isogeny of abelian varieties, then the statements

for X and X′ are equivalent. Let indeed Z be an integral closed subvariety of XF and let Z′
be an irreducible component of f −1(Z). _en Z is a torsion subvariety of XF if and only if
Z′ is a torsion subvariety of X′

F
. On the other hand, the relation h f ∗L(x) = hL( f (x)) shows

that h f ∗L has a strictly positive lower bound on Z′ outside of a strict closed subset E′ if and
only if hL has a strictly positive lower bound on Z outside of the strict closed subset f (E′).

9.8. — Building on that observation, one reduces the proof of the theorem to the case
where the stabilizer of Z is trivial.

Let indeed X′′ be the neutral component of this stabilizer and let X′ = X/X′′; this is
an abelian variety. By Poincaré’s complete reducibility theorem, there exists an isogeny
f ∶ X′ × X′′ → X. _is reduces us to the case where X = X′ × X′′ and Z = Z′ × X′′, for some
integral closed subscheme Z′ of X′

F
. We may also assume that L = L

′ ⊠ L
′′. It it then clear

that the statement for (X′, Z′) implies the desired statement for (X , Z).
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Lemma (9.9). — Assume that dim(Z) > 0 and that its stabilizer is trivial. _en, for every
large enough integer m ⩾ 1, the morphism

f ∶ Zm → Xm−1
F , (x1, . . . , xm) ↦ (x2 − x1, . . . , xm − xm−1)

is birational onto its image but not ûnite.

Proof. — For x ∈ Z(F), write Zx = Z ∩ (Z − x). Let x = (x1, . . . , xm) be an F-point
of Zm. _en a point y = (y1, . . . , ym) ∈ Z(F)m belongs to the ûber of x if and only if
y2 − y1 = x2 − x1, . . . , that is, if and only if, y1 − x1 = y2 − x2 = ⋅ ⋅ ⋅ = ym − xm. _is identiûes
f −1( f (x)) with the intersection Zx1 ∩ . . . ⋅ ⋅ ⋅ ∩ Zxm . If m is large enough and x1, . . . , xm are
well chosen, this intersection is equal to stabilizer of Z in XF , hence is reduced to a point.
_is shows that the morphism f is generically injective.

On the other hand, the preimage of the origin (o, . . . , o) contains the diagonal of Zm,
which has strictly positive dimension by hypothesis.

9.10. — For the proof of theorem 9.5, b), we now argue by contradiction and assume the
existence of a generic sequence (xn) in Z(F) such that hL(xn) → 0.

Having reduced, as explained above, to the case where the stabilizer of Z is trivial, we
consider an integer m ⩾ 1 such that the morphism f ∶ Zm → Xm−1

F
is birational onto its

image, but not ûnite.
Since the set of strict closed subschemes of Z is countable, one can construct a generic

sequence (yn) in Zm where yn is of the form (xi1 , . . . , xim). One has hL(yn) → 0, where, by
abuse of language, we write hL for the height on Xm induced by the adelically metrized line
bundle L ⊠ . . . L on Xm. _is implies that hL(Z) = 0, hence the sequence (yn) is small.
For every integer n, let zn = f (yn). By continuity of a morphism of schemes, the sequence

(zn) is generic in f (Zm). Moreover, we deduce from the quadratic character of the Néron–
Tate height hL that hL(zn) → 0. In particular, hL( f (Zm)) = 0, and the sequence (zn) is
small.
Fix an archimedean place σ of F. Applied to the sequences (yn) and (zn), the equidistri-

bution theorem 8.4 implies the following convergences:

lim
n→∞

δσ(yn) ∝ c1(L ⊠ ⋅ ⋅ ⋅ ⊠ L)m dim(Z)δZm

lim
n→∞

δσ(zn) ∝ c1(L ⊠ ⋅ ⋅ ⋅ ⊠ L)dim( f (Zm))δ f (Zm),

where, by ∝, I mean that both sides are proportional. (_e proportionality ratio is the
degree of Zm, resp. of f (Zm), with respect to the indicated measure.) Since f (yn) = zn, we
conclude that the measures

f∗c1(L ⊠ ⋅ ⋅ ⋅ ⊠ L)m dim(Z)δZm and c1(L ⊠ ⋅ ⋅ ⋅ ⊠ L)dim( f (Zm))δ f (Zm)

on f (Zm) are proportional.
Recall that the archimedean metric of L has the property that it is smooth and that its

curvature form c1(L) is a smooth positive (1, 1)-form on Xσ(C). Consequently, on a dense
smooth open subscheme of f (Zm) above which f is an isomorphism, both measures are
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given by diòerential forms, which thus coincide there. We can pull back them to Zm by f
and obtain a proportionality of diòerential forms

c1(L ⊠ ⋅ ⋅ ⋅ ⊠ L)m dim(Z) ∝ f ∗c1(L ⊠ ⋅ ⋅ ⋅ ⊠ L)m dim(Z)

on Zσ(C)m. At this point, the contradiction appears: the diòerential form on the le� is
strictly positive at every point, while the one on the right vanishes at every point of Zm

σ (C)
at which f is not smooth.

_is concludes the proof of theorem 9.5.

Remark (9.11). — _e statement of 9.5 can be asked in more general contexts that allow
for canonical heights. _e case of toric varieties has been proved by Zhang (1995a), while
in that case the equidistribution result is ûrst due to Bilu (1997). _e case of semiabelian
varieties is due to David & Philippon (2002), by generalization of their proof for abelian
varieties; I had proved in Chambert-Loir (1999) the equidistribution result for almost-split
semi-abelian varieties, but the general case is still open.

_e general setting of algebraic dynamics (X , f ) is unclear. For a polarized dynamical
system as in 3.11, the obvious and natural generalization proposed in Zhang (1995b) asserts
that subvarieties of height zero are exactly those whose forward orbit is ûnite. However,
Ghioca and Tucker have shown that it does not hold; see Ghioca et al (2011) for a
possible rectiûcation. _e case of dominant endomorphisms of Pn

1 is a recent theorem
of Ghioca et al (2017).
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