next up previous contents index
suivant: Examples of representations of monter: Floating point representation. précédent: Digits   Table des matières   Index

Representation by hardware floats

A real is represented by a floating number d, that is

d = 2$\scriptstyle \alpha$*(1 + m),    0 < m < 1, -210 < $\displaystyle \alpha$ < 210

If $ \alpha$ > 1 - 210, then m $ \geq$ 1/2, and d is a normalized floating point number, otherwise d is denormalized ( $ \alpha$ = 1 - 210). The special exponent 210 is used to represent plus or minus infinity and NaN (Not a Number). A hardware float is made of 64 bits: Examples of representations of the exponent: Remark: 2-52 = 0.2220446049250313e - 15


next up previous contents index
suivant: Examples of representations of monter: Floating point representation. précédent: Digits   Table des matières   Index
giac documentation written by Renée De Graeve and Bernard Parisse