suivant: 2d graph for Maple
monter: Graph of a function
précédent: 3-d graph with rainbow
Table des matières
Index
4-d graph.
plotfunc represents a complex expression E
(such that re(E) is not identically 0 on the discretisation mesh)
by the surface z=abs(E) where arg(E) defines the color
from the rainbow. This gives an easy way to
see the points having the same argument.
Note that if re(E)==0 on the discretisation mesh,
it is the surface z=E/i that is represented with rainbow colors
(cf 2.2.3).
The first argument of plotfunc is E,
the remaining arguments are the same
as for a real 3-d graph (cf 2.2.2).
Input :
plotfunc((x+i*y)^
2,[x,y])
Output :
A graph 3D of z=abs((x+i*y)^
2 with the same color for
points having the same argument
Input :
plotfunc((x+i*y)^
2x,[x,y], display=filled)
Output :
The same surface but filled
We may specify the range of variation of x and y and the number of
discretisation points, input :
plotfunc((x+i*y)^
2,[x=-1..1,y=-2..2], nstep=900,display=filled)
Output :
The specified part of the surface with x between -1 and 1, y between -2 and 2 and with 900 points
suivant: 2d graph for Maple
monter: Graph of a function
précédent: 3-d graph with rainbow
Table des matières
Index
giac documentation written by Renée De Graeve and Bernard Parisse