Families of Klingen-Eisenstein series and p-adic doubling method

Alexei PANCHISHKIN
Institut Fourier, Université Grenoble-1
B.P.74, 38402 St.-Martin d'Hères, FRANCE with Siegfried BOECHERER (University of Mannheim, GERMANY)

28th Journées Arithmétiques July 1-5, 2013
Thursday, July 4th
DLST - Amphi D2, 14.30-14.50

Geometric constructions of distributions for Klingen-Eisenstein series

will be explained staring from those for Siegel-Eisenstein series at any prime p.
Applications to the standard L-functions of Siegel modular forms are developped.
Generalized Fourier transform of the distributions on the space of symmetric matrices and matrix Gauss sums are used.
Axioms for p-adic doubling method are stated.
Geometric (group theoretic) and algebraic constructions for Eisenstein series
Let p be a prime, $k \geq 4$ then the Eisenstein series is an algebraic q-expansion

$$
E_{k}(z)=1+\frac{2}{\zeta(1-k)} \sum_{\substack{n \geq 1 \\ d \mid n}} d^{k-1} q^{n}, q=e^{2 \pi i z}, \operatorname{Im}(z)>0
$$

which is a modular form of weight k for the $\operatorname{group} \mathrm{SL}_{2}(\mathbb{Z})$, geometrically described as

$$
E_{k}(z)=\sum_{c, d}^{\prime}(c z+d)^{-k}=\sum_{\left.\gamma \in\left\{\begin{array}{c}
* * \\
0_{*}
\end{array}\right)\right\} \backslash \mathrm{SL}_{2}(\mathbb{Z})}(c z+d)^{-k}
$$

the summation runs through coprime paires (c, d) with $c \geq 0$, or $\gamma=\left(\begin{array}{ll}* & * \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$.

p-adic meromorphic continuation of Eisenstein series

is described using the p-regular part of the zeta value
$\zeta^{*}(1-k)=\zeta(1-k)\left(1-p^{k-1}\right)$ as

$$
E_{k}^{*}(z)=1+\frac{2}{\zeta^{*}(1-k)} \sum_{\substack{n \geq 1 \\ d \mid n, p \nmid d}} d^{k-1} q^{n}
$$

where the Fourier coefficients are p-adic meromorphic with finite number of poles. These coefficients belong to the quotion field $\mathcal{L}=\operatorname{uoot}\left(\mathbb{Z}_{p}[[t]]\right)$ of the Iwasawa algebra of the variable $t=(1+p)^{k}-1($ for $k \bmod p-1$ fixed) such objects are called pseudo-measures due to John Coates; they are uniquely determined by the infinite number of values for $k \geq 4$. Both parts of the algebraic-geometric equality

$$
E_{k}^{*}(z)=1+\frac{2}{\zeta^{*}(1-k)} \sum_{\substack{n \geq 1 \\ d n, p \nmid d}} d^{k-1} q^{n}=\left(1-p^{k-1}\right)\left(E_{k}(z)-p^{k-1} E_{k}(p z)\right) .
$$

p-adic meromorphic continuation for Siegel-Eisenstein series (see [Yale] (arXiv: 1204.3878)) can be also constructed using the Weierstrass preparation theorem. These series are modular forms for the Siegel modular group $\Gamma_{n}=\operatorname{Sp}_{2 n}(\mathbb{Z})$ of degree n.

Duality and General strategy of p-adic constructions

For any Dirichlet character $\chi \bmod p^{\vee}$ consider Shimura's
"involuted" Siegel-Eisenstein series assuming their absolute convergence (i.e. $k>m+1$):

$$
E_{k}^{*}(\chi, z)=\sum_{(c, d) / \sim} \chi(\operatorname{det}(c)) \operatorname{det}(c z+d)^{-k}=\sum_{0<h \in B_{m}} a_{h}(k, \chi) q^{h} .
$$

The two sides of the equality produce dual approaches: geometric and algebraic. The Fourier coefficients can be computed by Siegel's method via the singular series

$$
\begin{align*}
& a_{h}\left(E_{k}^{*}(\chi, z)\right) \tag{1}\\
& =\frac{(-2 \pi i)^{m k}}{2^{\frac{m(m-1)}{2}} \Gamma_{m}(k)} \sum_{\mathfrak{R} \bmod 1} \chi(\nu(\Re)) \nu(\Re)^{-k} \operatorname{det} h^{k-\frac{m+1}{2}} e_{m}(h \Re)
\end{align*}
$$

The orthogonality relations $\bmod p^{v}$ produce two families of distributions (notice that terms in the RHS are invariant under sign changes, and (3) is algebraic after multiplying by the factor in (1)):

$$
\begin{align*}
& \frac{1}{\varphi\left(p^{v}\right)} \sum_{\chi \bmod p^{v}} \bar{\chi}(b) \sum_{(c, d) / \sim} \frac{\chi(\operatorname{det}(c))}{\operatorname{det}(c z+d)^{k}}=\sum_{\substack{(c, d) / \sim \\
\operatorname{det}(c)=b \bmod p^{v}}} \frac{\operatorname{sgn}(\operatorname{det}(c))^{k}}{\operatorname{det}(c z+d)^{k}} \tag{2}\\
& \frac{1}{\varphi\left(p^{v}\right)} \sum_{\chi \bmod p^{v}} \bar{\chi}(b) \sum_{\Re \bmod 1} \frac{\chi(\nu(\Re)) e_{m}(h \Re)}{\nu(\Re)^{k}}=\sum_{\substack{\mathfrak{R} \bmod 1 \\
\nu(\Re) \equiv b \bmod p^{v}}} \frac{e_{m}(h \Re) \operatorname{sgn} \nu(\Re)^{k}}{\nu(\Re)^{k}} \tag{3}
\end{align*}
$$

Distributions for Klingen-Eisenstein series and
 Siegel-Eisenstein series

Fix a Siegel cusp eigenform $f=\sum_{T} a_{T} q^{T} \in S_{k}^{r}\left(\Gamma^{r}\right)$, where T runs through half-integral positive symmetric matrices.
For $k>m+r+1$ and $m \geq r$ then the Klingen - Eisenstein series is defined as the following absolutely convergent series

$$
E_{k}^{m, r}(z, f, \chi)=\sum_{\gamma \in \Delta_{m, r} \cap \Gamma_{m} \backslash \Gamma_{m}} \chi\left(\operatorname{det}\left(d_{\gamma}\right)\right) f\left(\omega^{(r)}(\gamma z)\right) j(\gamma, z)^{-k}
$$

with $z \in \mathbb{H}^{m}, \omega(z)^{(r)}$ being the upper left corner of z of size $r \times r$, $\gamma=\left(\begin{array}{ll}a_{\gamma} & b_{\gamma} \\ c_{\gamma} & d_{\gamma}\end{array}\right)$ and $\Delta_{m, r}$ denotes the set of elements in Γ_{m} having the form $\left(\begin{array}{cc}* & * \\ 0_{m-r, m+r} & *\end{array}\right)[\mathrm{KI}]$.
There exist several constructions of Λ-adic Klingen-Eisenstein series for $r=1, m=2$ (see Section 5 of [PaSE] with Koji Kitagawa (Hokkaido University), [Gue0] for vector-valued case, Section 11 of [MC]....
Modular distributions were constructed coming from the Klingen-Eisenstein series on the symplectic group $G=\mathrm{GSp}_{2 m}(m>r)$ These distributions take values in a space of Λ-adic Siegel modular forms and defines a \mathcal{L}-adic Siegel modular form where \mathcal{L} denotes the field of fractions of the Iwasawa algebra $\Lambda=\mathbb{Z}_{p}[[T]]$.

Boecherer-Garrett-Shimura identity (pull-back formula)

 Let $D(s, f, \chi)$ be the standard zeta function of $f \in \mathcal{S}_{k}^{r}(\Gamma)$ as above (with local factors of degree $2 r+1$) and χ be a Dirichlet character. Then the essential fact for our construction is the Boecherer-Garrett-Shimura identity:$$
\Lambda(k, \chi) D(k-r, f, \eta) E_{k}^{m, r}(z, f, \chi)=\left\langle f(w), E_{k}^{m+r}(\operatorname{diag}[z, w])\right\rangle
$$

Here $\Lambda(k, \chi)$ is a product of special values of Dirichlet L-functions and Γ-functions, η is a certain Dirichlet character, E_{k}^{m+r} a Siegel-Eisenstein series, $(z, w) \in \mathbb{H}_{m} \times \mathbb{H}_{r}$ (see [Boe85], [Shi95, (7.4), p.572]).

The p-adic construction is based on the fact the Fourier coefficients of the series $E_{k}^{m+r}(\operatorname{diag}[z, w])$ produce p-adic measures (the Siegel-Eisenstein measure).

Key ingredients of a general construction $(r \geq 1, m \geq r)$

- Siegel-Eisenstein distributions generalizing those in [Yale]

$$
E_{k, b, p^{v}}^{m+r}=\sum_{\substack{(c, d) \\ \operatorname{det} c \equiv b \bmod p^{v}}} \operatorname{det}(c z+d)^{-k}
$$

These are functions on the Siegel upper half plane

$$
\mathbb{H}_{m+r}=\left\{z={ }^{t} z \in M_{m+r}(\mathbb{C}) \mid \operatorname{Im}(z)>0\right\}
$$

of degree $m+r,(c, d)$ runs over equivalence classes of all coprime symmetric couples, that is $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ runs over equivalence classes of $\Gamma=\Gamma^{m+r}$ modulo the Siegel parabolic $P=\left(\begin{array}{ll}* & * \\ 0 & *\end{array}\right)$.

- Higher twists $E_{k}^{m+r}\left(\chi_{1}, \chi_{2}\right)$ of Siegel-Eisenstein distributions constructed as in [BP11]. These are certain functions on $(Z, \tau) \in \mathbb{H}_{m} \times \mathbb{H}_{r}$

Key ingredients of our construction (continued)

- Pull-back formula

$$
\begin{aligned}
& \left\langle E_{k}^{m+r}\left(\chi_{1}, \chi_{2}\right)(Z, \tau), f(\tau)\right\rangle_{\tau} \\
& =c_{\chi_{1}, \chi_{2}, m, r} D\left(f, \chi_{1,2}, k-r\right) E_{k}^{m, r}\left(f, \chi_{1}, \chi_{2}\right)
\end{aligned}
$$

representing the Klingen-Eisenstein series $E_{k}^{m, r}\left(f, \chi_{1}, \chi_{2}\right)$ on $Z \in \mathbb{H}_{m+r}$, where $D\left(f, \chi_{1,2}, s\right)$ denotes the standard L-function of f with a certain Dirichlet character $\chi_{1,2}$ attached to f, χ_{1}, χ_{2}. In particular, we describe explicitely the series $E_{k}^{m, r}\left(f, \chi_{1}, \chi_{2}\right)$.

- Canonical projection of the Klingen-Eisenstein distributions defined by the integrals produces the following family:

$$
\left(\chi_{1}, \chi_{2}, f\right) \mapsto \Phi_{\chi_{1}, \chi_{2}, f}(Z)=\left\langle E_{k}^{m+r}\left(\chi_{1}, \chi_{2}\right)(Z, \tau), f_{0}(\tau)\right\rangle_{\tau}
$$

in a fixed-level finite-dimensional subspace using the $U_{0}(p)$-operator of degree $n=m+r$ and a non-zero eigenvalue $\alpha_{0}(p)$ of $U_{0}(p)$, as in [PaTV] and in [BP06]. Here $f_{0}(\tau)$ denotes an eigenfunction of $U_{0}(p)$ associated to f.

Axioms for p-adic doubling method in the case $m=r$,

$n=2 m$
Next we axiomatize a general p-adic doubling method (see [Boe-Schm], ...) using a family of functions

$$
\mathcal{F}_{\chi}: \mathbb{H}_{2 m} \rightarrow \mathbb{C}
$$

(in place of the Siegel series of degree $m+r$ in the above construction) where χ runs through primitive characters $\chi \bmod p^{v}$.
We use the exterior twist

$$
\underbrace{\sum_{X \in \mathbb{Z}^{m, n} \bmod p^{v}} \phi(X) \mathcal{F}_{\chi}\left(\begin{array}{cc}
z_{1} & \frac{X}{N} \\
\frac{X^{t}}{N} & z_{4}
\end{array}\right)}_{g_{\chi}\left(z_{1}, z_{4}\right)}
$$

which will be of Haupttypus of level $p^{2 v}$ (with respect to z_{1} and z_{4}). Here $\phi(X)$ is a certain function with a spherical property, represented by a matrix Gauss sum.
As a result we interpolate the following integrals. Let us fix two cusp forms f_{1}, f_{2} and consider

$$
\chi \mapsto \int_{\Gamma_{0}\left(p^{2 v}\right) \backslash \mathbb{H}} \int f_{1,0}, f_{2,0} \overline{g_{\chi}\left(z_{1}, z_{4}\right)} d z_{1} d z_{4} \in \mathbb{C}
$$

to get p-adic interpolation and to use $U_{0}^{2 v}$ (in z_{1} and z_{4}) to get finite dimensional space.

Proving congruences using Fourier expansion

$$
\mathcal{F}_{\chi}=\sum_{T} a(T, \chi) \exp (2 \pi i \operatorname{tr}(T Z))
$$

then

$$
\begin{aligned}
\left.\left.g_{\chi}\left(z_{1}, z_{4}\right)\right|^{z_{1}} U\left(p^{j}\right)\right|^{z_{4}} U\left(p^{j}\right) & =\sum_{T_{1}, T_{4}} c_{j}\left(T_{1}, T_{4}, \chi\right) \exp \left(2 \pi i \operatorname{tr}\left(T_{1} z_{1}+T_{4} z_{4}\right)\right. \\
c_{j}\left(T_{1}, T_{4}, \chi\right) & =\sum_{\chi} a\left(\left(\begin{array}{cc}
p^{j} T_{1} & T_{2} \\
T_{2} N & p^{j} T_{4}
\end{array}\right), \chi\right)
\end{aligned}
$$

(this is a finite sum because of the semi positivity of T).
If $r \geq 1$

$$
\begin{aligned}
& c_{j}\left(T_{1}, T_{4}, \chi\right)=\frac{1}{p^{r}} \sum_{\substack{\chi \\
\text { conductor }(x) \leq p^{r}}} a\left(\left(\begin{array}{cc}
p^{n-r} T_{1} & T_{2} \\
T_{2} N & p^{n-r} T_{4}
\end{array}\right), \chi\right) \\
& \sum_{\substack{x \in \mathbb{Z}(n, r) \\
\bmod p^{v}}} \phi(X) \exp \left(\operatorname{tr} 2 \pi i \frac{1}{p^{v}} T_{2} X\right)
\end{aligned}
$$

must satisfy certain congruences
Result: p-adic interpolation of the integrals

$$
\alpha_{f_{1}}^{-2 v} \alpha_{f_{2}}^{-2 v} \int_{\Gamma_{0}\left(p^{2 v}\right) \backslash \mathbb{H}} \int f_{1,0}, f_{2,0} \overline{g_{\chi}\left(z_{1}, z_{4}\right)} d z_{1} d z_{4} \in \mathbb{C}
$$

Special cases and problems

- To study the case of the theta series

$$
\Theta_{S} \mapsto \Theta_{S, \chi}=\underbrace{\sum_{X} \chi(\operatorname{det} X) \exp (2 \pi i \operatorname{tr}(S[X] Z))}_{\text {a possibility }}
$$

- To state axioms for p-adic pull back formula for starting with a family of functions

$$
\mathcal{F}_{\chi}: \mathbb{H}_{m+r} \rightarrow \mathbb{C}
$$

where χ runs through primitive characters $\chi \bmod p^{v}$

- To define a general exterior twist

$$
\underbrace{\sum_{X \in \mathbb{Z}^{m, n}}(* *) \mathcal{F}_{\chi}\left(\begin{array}{cc}
z_{1} & \frac{X}{N} \\
\frac{X^{t}}{N} & z_{4}
\end{array}\right)}_{g_{\chi}\left(z_{1}, z_{4}\right)}
$$

which will be of Haupttypus of level $p^{2 v}$ of degree $r+m$.

Why study L-values attached to modular forms?

A popular proceedure in Number Theory is the following:

Construct a generating function $f=\sum_{n=0}^{\infty} a_{n} q^{n}$
$\in \mathbb{C}[[q]]$ of an arithmetical function $n \mapsto a_{n}$, for example $a_{n}=p(n)$

Example (Hardy-Ramanujan)

$$
\begin{aligned}
& p(n)=\frac{e^{\pi \sqrt{2 / 3(n-1 / 24)}}}{4 \sqrt{3} \lambda_{n}^{2}} \\
& +O\left(e^{\pi \sqrt{2 / 3(n-1 / 24)}} / \lambda_{n}^{3}\right) \\
& \lambda_{n}=\sqrt{n-1 / 24}
\end{aligned}
$$

Compute f via modular forms, for example

$$
\begin{aligned}
& \sum_{n=0}^{\infty} p(n) q^{n} \\
& =(\Delta / q)^{-1 / 24}
\end{aligned}
$$

$$
\uparrow
$$

Good bases, finite dimensions, many relations and identities ...

Values of L-functions, (complex and p-adic), periods, congruences, ...

Other examples: Birch and Swinnerton-Dyer conjecture, L-values attached to modular forms, Wiles's proof of Fermat's Last
Theorem,... (see [Ma-Pa05])

Generalities about p-adic L-functions

There exist two kinds of L-functions

- Complex-analytic L-functions (Euler products)
- p-adic L-functions (Mellin transforms L_{μ} of p-adic measures)

Both are used in order to obtain a number (L-value) from an automorphic form. Usually such a number is algebraic (after normalization) via the embeddings

$$
\overline{\mathbb{Q}} \hookrightarrow \mathbb{C}, \quad \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_{p}=\hat{\overline{\mathbb{Q}}}_{p} .
$$

How to define and to compute p-adic L-functions? We use Mellin transform of a \mathbb{Z}_{p}-valued distribution μ on a profinite group

$$
Y=\lim _{\overleftarrow{i}} Y_{i}, \mu \in \operatorname{Distr}\left(Y, \mathbb{Z}_{p}\right)=\mathbb{Z}_{p}[[Y]]=\lim _{\overleftarrow{i}} \mathbb{Z}_{p}\left[Y_{i}\right]=: \Lambda_{Y}
$$

(the Iwasawa algebra of Y).

$$
L_{\mu}(x)=\int_{Y} x(y) d \mu, \quad x \in X_{Y}=\operatorname{Hom}_{\text {cont }}\left(Y, \mathbb{C}_{p}^{*}\right)
$$

(the Mellin transform of μ on Y).
A general idea (J.-P. Serre [Se73]) is to construct p-adic L-functions directly from Fourier coefficients of modular forms.

References

圊 Boecherer S．，Über die Funktionalgleichung automorpher L－Funktionen zur Siegelschen Modulgruppe．J．reine angew． Math． 362 （1985）146－168
圊 Boecherer S．，Über die Fourier－Jacobi Entwicklung Siegelscher Eisensteinreihen．I．II．，Math．Z． 183 （1983）21－46； 189 （1985）81－100．
（R）Boecherer，S．，Panchishkin，A．A．，Admissible p－adic measures attached to triple products of elliptic cusp forms，Documenta Math．Extra volume ：John H．Coates＇Sixtieth Birthday（2006）， 77－132．
囯 Boecherer，S．，Panchishkin，A．A．，p－adic Interpolation of Triple L－functions：Analytic Aspects．Dans ：Automorphic Forms and L－functions II ：Local Aspects．（Contemporary Mathematics， Volume of the conference proceedings in honor of Gelbart 60th birthday）－David Ginzburg，Erez Lapid，and David Soudry， Editors，AMS，BIU，2009， 313 pp，pp．1－41．
(Roecherer, S., Panchishkin, A.A., Higher Twists and Higher Gauss Sums, , Vietnam Journal of Mathematics 39 :3 (2011) 309-326
Boecherer, S., and Schmidt, C.-G., p-adic measures attached to Siegel modular forms, Ann. Inst. Fourier 50, N 5, 1375-1443 (2000).

嗇 Boecherer, S., and Schulze-Pillot, R., Siegel modular forms and theta series attached to quaternion algebras, Nagoya Math. J., 121(1991), 35-96.

E- Guerzhoy, P. A p-adic family of Klingen - Eisenstein series Comment. Math. Univ. St. Pauli (Rikkyo journal) 49 2000, pp.1-13
Re Klingen H., Zum Darstellungssatz für Siegelsche Modulformen. Math. Z. 102 (1967) 30-43
(-inanin, Yu.I. and Panchishkin, A.A., Introduction to Modern Number Theory, Encyclopaedia of Mathematical Sciences, vol. 49 (2nd ed.), Springer-Verlag, 2005, 514 p.

囯 Panchishkin，A．，Admissible Non－Archimedean standard zeta functions of Siegel modular forms，Proceedings of the Joint AMS Summer Conference on Motives，Seattle，July 20－August 2 1991，Seattle，Providence，R．I．，1994，vol．2， 251 － 292
（1）Panchishkin，A．A．，On the Siegel－Eisenstein measure and its applications，Israel Journal of Mathemetics，120，Part B（2000） 467－509．
Panchishkin，A．A．，Two variable p－adic L functions attached to eigenfamilies of positive slope，Invent．Math．v．154，N3 （2003），pp．551－615
目 Panchishkin，A．A．，Analytic constructions of p－adic L－functions and Eisenstein series，to appear in the Proceedings of the Conference＂Automorphic Forms and Related Geometry， Assessing the Legacy of I．I．Piatetski－Shapiro（23－27 April， 2012，Yale University in New Haven，CT）＂

囦 Serre，J．－P．，Formes modulaires et fonctions zêta p－adiques， Modular functions of one variable，III（Proc．Internat．Summer

School, Univ. Antwerp, 1972) 191-268, Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973.
(1. Shimura G., Eisenstein series and zeta functions on symplectic groups, Inventiones Math. 119 (1995) 539-584
圊 Skinner, C. and Urban, E. The Iwasawa Main Cconjecture for GL(2).
http://www.math.jussieu.fr/~urban/eurp/MC.pdf

