Séance du 20/01/10 avec M. LAFFONT

A. Polynômes, nombres de BERNOULLI.

g désigne l'application de \mathbb{R}^2 dans \mathbb{R} , définie par : $g(x, t) = \frac{xe^{xt}}{e^x - 1}$ si $x \neq 0$ et g(0, t) = 1.

- **1**. Démontrer que g est de classe C sur \mathbb{R}^2 et que pour tout $n \ge 1$, $\frac{\partial}{\partial t} \frac{\partial^n}{\partial x^n} g(x, t) = x \frac{\partial^n}{\partial x^n} g(x, t) + n \frac{\partial^{n-1}}{\partial x^{n-1}} g(x, t)$
- 2. Soit (B_n) la suite de fonctions de **R** vers **R**, définie par : $B_0 = 1$ et pour tout $n \ge 1$, $B_n(t) = \frac{\partial^n g}{\partial x^n}(0, t)$;
 - a. Vérifier que pour tout $n \ge 1$, $B_n' = n \ B_{n-1}$; En déduire que B_n est une fonction polynôme de degré n.
 - b. calculer $\int_0^1 g(x, t) dt$; en déduire que $\int_0^1 B_n(t)dt = 0$.
- 3. a. Soit (C_n) la suite de fonctions, définie par $C_n(t) = (-1)^n B_n (1-t)$, démonter que pour tout n, $C_n = B_n$.
 - $b. \ \ Soit\ bn=B_n\ (0)\ ,\ d\text{\'e}montrer\ que\ pour\ tout\ entier}\ \ n\ \geq\ 2\ ,\ bn=B_n\ (1)\ et\ que\ pour\ tout\ \ p\geq 1,\ \ b_{2p+1}=0\ \ .$
- **4**. a. Démontrer que pour tout réel t, la fonction $x \to g(x,t)$ est développable en série entière au voisinage de 0.
 - b. Démontrer que pour tout $n \ge 1$, $B_n(t) = t^n \frac{1}{n+1} \sum_{k=0}^{n-1} \binom{n+1}{k} B_k(t)$.
- 5. a. Déterminer B₁ et B₂.
 - b. Suivant les valeurs de n, étudier les variations de B_n sur [0; 1].

Jusqu'à la fin du sujet, f désigne une application d'un intervalle [a ; b] de $\mathbf R$ vers $\mathbf R$, de classe C^{∞}

B. Formule d' EULER MAC-LAURIN.

- 1. Soit h = b a
 - a. Démontrer que pour tout n≥1:

$$\int_{a}^{b} f(t)dt = \sum_{k=1}^{n} (-1)^{k-1} \frac{h^{k}}{k!} \left(B_{k}(1) f^{(k-1)}(b) - B_{k}(0) f^{(k-1)}(a) \right) + (-1)^{n} \frac{h^{n+1}}{n!} \int_{0}^{1} B_{n}(x) f^{(n)}(a+hx) dx.$$

b. En déduire que pour tout p≥1 :

$$\int_{a}^{b} f(t)dt = \frac{h}{2}(f(a) + f(b)) - \sum_{k=1}^{p} \frac{h^{2k}}{(2k)!} b_{2k} (f^{(2k-1)}(b) - f^{(2k-1)}(a)) + \frac{h^{2p+1}}{(2p)!} \int_{0}^{1} B_{2p}(x) f^{(2p)}(a+hx) dx.$$

- **2**. a. Démontrer que $\int_0^1 B_1(x) f'(a+hx) dx = -\frac{h}{2} \int_0^1 (B_2(x) b_2) f''(a+xh) dx$;
 - b. En déduire que : $\left| \int_{a}^{b} f(t) dt \frac{h}{2} (f(a) + f(b)) \right| \le \frac{h^{3} M_{2}}{12}$ où $M_{2} = \sup_{x \in [a,b]} \left| f''(x) \right|$.
- 3. a. Démontrer que $\int_0^1 B_{2p}(x) f^{(2p)}(a+hx) dx = \frac{h^2}{(2p+1)(2p+2)} \int_0^1 \left(B_{2p+2}(x) b_{2p+2} \right) f^{(2p+2)}(a+hx) dx$.
 - b. Soit $M_{2p+2} = \sup_{x \in [a,b]} |f^{(2p+2)}(x)|$, montrer que pour tout $p \ge 1$:

$$\left| \int_{a}^{b} f(t)dt - \frac{h}{2} (f(a) + f(b)) + \sum_{k=1}^{p} \frac{h^{2k}}{(2k)!} b_{2k} (f^{(2k-1)}(b) - f^{(2k-1)}(a)) \right| \leq \frac{h^{2p+3} M_{2p+2} |b_{2p+2}|}{(2p+2)!}.$$

C. Application : Méthodes des trapèzes, de Simpson, développements asymptotiques.

Pour tout $n \in \mathbb{N}^*$, soit $h = \frac{b-a}{n}$ et pour k entier compris entre 0 et n, soit $a_k = a + kh$.

On note $T_n(f) = \frac{b-a}{2n} \sum_{k=0}^{n-1} (f(a_{k+1}) + f(a_k))$ et $S_n(f) = \frac{b-a}{6n} \sum_{k=0}^{n-1} (f(a_k) + 4f(\frac{a_k + a_{k+1}}{2}) + f(a_{k+1}))$.

- **1.** Démontrer que pour tout $p \ge 1$: $\int_a^b f(t)dt = T_n(f) \sum_{k=1}^p \frac{(b-a)^{2k}b_{2k}}{n^{2k}(2k)!} (f^{(2k-1)}(b) f^{(2k-1)}(a)) + o(\frac{1}{n^{2p+1}})$.
- 2. Déterminer un majorant de $\left| \int_{a}^{b} f(t) dt T_{n}(f) \right|$.
- 3. Vérifier que $T_n(f) = \int_a^b f(t)dt + \frac{(b-a)^2[f'(b)-f'(a)]}{12n^2} \frac{(b-a)^4[f'''(b)-f'''(a)]}{720n^4} + o(\frac{1}{n^5})$.
- **4.** Montrer que $3 S_n(f) = 4 T_{2n}(f) T_n(f)$.
- 5. Déterminer le développement asymptotique de $S_n(f)$ à la précision de $\frac{1}{n^5}$.

D. Méthode de Simpson: majoration de l'erreur (autre approche).

Soit Φ l'application de $\mathbf{R}_3[X]$ dans \mathbf{R}^4 , définie par : $\Phi(p) = (p(a); p(\frac{a+b}{2}); p'(\frac{a+b}{2}); p(b))$.

- 1. Démontrer que Φ est une bijection ; en déduire l'existence d'une fonction polynôme p de degré inférieur ou égal à 3 telle que : p(a) = f(a), $p(\frac{a+b}{2}) = f(\frac{a+b}{2})$, $p'(\frac{a+b}{2}) = f'(\frac{a+b}{2})$, p(b) = f(b).
- **2.** Pour t appartenant à]a ;b[et différent de $\frac{a+b}{2}$, soit g_t la fonction définie sur [a ;b] par :

$$g_{t}(x) = f(x) - p(x) - \frac{f(t) - p(t)}{(t-a)(t-\frac{a+b}{2})^{2}(t-b)} (x-a)(x-\frac{a+b}{2})^{2}(x-b).$$

Démontrer qu'il existe $c \in [a;b]$ tel que $g_t^{(4)}(c) = 0$.

- **3.** En déduire que : pour tout $t \in [a;b]$, $|f(t)-p(t)| \le \frac{M_4}{4!}(t-a)(t-\frac{a+b}{2})^2(b-t)$ où $M_4 = \sup_{t \in [a;b]} |f^{(4)}(t)|$
- **4.** Démontrer que : $\left| \int_a^b f(t)dt \frac{b-a}{6} (f(a) + 4f(\frac{a+b}{2}) + f(b)) \right| \le \frac{M_4(b-a)^5}{2880}$
- **5.** Déterminer un majorant de $\left| \int_a^b f(t) dt S_n(f) \right|$.