$TD n^{o} 2$

Exercice 1.

Soit f la fonction définie sur \mathbb{R} par $f(t) = |\sin(t)|$.

- 1. Déterminer la série de Fourier de f.
- 2. Déterminer le nombre minimum d'harmonique nécessaire pour transmettre au moins 90% de la puissance du signal f.

Exercice 2.

En explicitant les fonctions qu'on utilise et traçant leurs courbes, montrer que pour tout $t \in [0, \pi]$:

$$\pi t - t^2 = \frac{\pi^2}{6} - \sum_{n=1}^{+\infty} \frac{\cos(2nt)}{n^2} = \frac{8}{\pi} \sum_{n=0}^{+\infty} \frac{\sin((2n+1)t)}{(2n+1)^3}.$$

Exercice 3.

On cherche à déterminer les fonctions f de classe \mathscr{C}^2 et 2π -périodiques qui vérifient sur \mathbb{R} l'équation différentielle $f'' = -e^{it}f$.

- 1. Justifier l'existence des coefficients de Fourier complexes $c_n(f)$ de f.
- 2. Justifier l'existence des coefficients de Fourier complexes $c_n(f'')$ de f'' et le fait que, pour tout $n \in \mathbb{Z}$,

$$c_n\left(f''\right) = -n^2 c_n(f).$$

Justifier par ailleurs que $c_n(f'') = -c_{n-1}(f)$.

3. En déduire que pour tout n < 0, $c_n(f) = 0$ et que, pour tout n > 0,

$$c_n(f) = \frac{c_0(f)}{(n!)^2}.$$

4. En déduire que les fonctions f qui conviennent sont toutes multiples d'une même fonction qu'on explicitera sous la forme d'une série trigonométrique.

Exercice 4.

Calculer les transformées de Fourier des fonctions suivantes

$$f_1(t) = \begin{cases} 1 & \text{si } t \in [1, 3] \\ 0 & \text{sinon} \end{cases} \qquad f_2(t) = \begin{cases} 0 & \text{si } t < 0 \\ e^{-\alpha t} & \text{si } t \ge 0 \end{cases} \qquad f_3(t) = \begin{cases} 0 & \text{si } t < 0 \\ t & \text{si } x \in [0, 1] \\ 1/t^2 & \text{si } t > 1 \end{cases}$$

Exercice 5. On note Λ la fonction triangle définie par

$$\Lambda(t) = \begin{cases} 1 - |t| & \text{si} & |t| < 1 \\ 0 & \text{sinon} \end{cases}.$$

- 1. Faire la représentation graphique de la fonction Λ .
- 2. Calculer la transformée de Fourier de la fonction Λ .
- 3. En déduire la valeur de l'intégrale :

$$\int_0^{+\infty} \frac{\sin^4(\pi x)}{\pi^4 x^4} dx$$

Exercice 6. Lien entre série de Fourier et transformée de Fourier

Soit f la fonction définie pour $t \in \mathbb{R}$ par

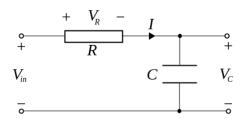
$$f(t) = \begin{cases} t & \text{si } t \in [-\pi, \, \pi] \\ 0 & \text{sinon.} \end{cases}$$

et soit g la fonction 2π -périodique impaire et définie sur $[0,\pi]$ par g(t)=t.

- 1. Tracer les graphes de f et g et comparer ces deux fonctions.
- 2. Calculer les coefficients de Fourier $c_n(g)$ de g pour tout $n \in \mathbb{Z}$.
- 3. Calculer la transformée de Fourier \hat{f} de f.
- 4. Comparer, pour $n \in \mathbb{Z}$, $\hat{f}(n)$ et $c_n(g)$.

Exercice 7. Circuit RC

On considère le circuit RC suivant : l'équation donnant $V_{\rm C}$ en fonction de $V_{\rm in}$ est



$$RCV_{\rm C}' + V_{\rm C} = V_{\rm in} \tag{E}$$

- 1. (facultatif) Retrouver l'équation en utilisant les lois classiques d'électroniques (loi des mailles, loi des nœuds, loi d'ohm, ...).
- 2. Calculer $\widehat{V_{\mathrm{C}}}$ en fonction de $\widehat{V_{\mathrm{in}}}$.
- 3. Pour $\alpha > 0$, calculer la transformée de Fourier de la fonction f_{α} définie par,

$$f_{\alpha}(t) = \begin{cases} 0 & \text{si } t < 0 \\ e^{-\alpha t} & \text{si } t \ge 0 \end{cases}$$

puis de la fonction f_{α} définie par,

$$g_{\alpha}(t) = \begin{cases} 0 & \text{si } t < 0 \\ te^{-\alpha t} & \text{si } t \ge 0 \end{cases}$$

4. Donne une solution de (E) lorsque $V_{\rm in} = g_{\alpha}$. On discutera en fonction de la valeur de α .