Processus stochastiques – Contrôle continu

13 avril 2016

1 Espérance conditionnelle

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé, et $\mathcal{F}_1 \subset \mathcal{F}_2$ des sous-tribus de \mathcal{F} . Soit X une variable aléatoire dans $L^2(\Omega, \mathcal{F}, \mathbb{P})$. Notons $X_1 = \mathbb{E}[X|\mathcal{F}_1]$ et $X_2 = \mathbb{E}[X|\mathcal{F}_2]$.

1. Montrer que

$$\mathbb{E}[(X - X_2)^2] + \mathbb{E}[(X_2 - X_1)^2] = \mathbb{E}[(X - X_1)^2].$$

Quel nom peut-on donner à cette relation?

2. On note $Var[X|\mathcal{F}_1] = \mathbb{E}[X^2|\mathcal{F}_1] - \mathbb{E}[X|\mathcal{F}_1]^2$. Montrer que

$$Var[X] = \mathbb{E}[Var[X|\mathcal{F}_1]] + Var[\mathbb{E}[X|\mathcal{F}_1]].$$

3. Soient $(Y_i)_{i\geq 1}$ une suite de variables aléatoires i.i.d. d'espérance μ et de variance σ^2 . Soit N une variable aléatoire à valeurs dans \mathbb{N} , indépendante des Y_i .

Soit $X = Y_1 + Y_2 + \ldots + Y_N$. Montrer que

$$Var[X] = \sigma^2 \mathbb{E}[N] + \mu^2 Var[N]$$

- 4. Application : on jette un dé équilibré, on note N le nombre de points obtenus, puis on jette une pièce de monnaie autant de fois que le dé indique de points. Soit X le nombre de "pile" obtenus.
 - (a) Quelle est la loi conditionnelle de X sachant N?
 - (b) Calculer $\mathbb{E}[X]$.
 - (c) Calculer Var[X].

2 Réversibilité

Soit $(X_n)_{n\geq 0}$ une chaîne de Markov irréductible sur un espace d'états E fini. On note sa matrice de transition $Q=(Q_{ij})_{i,j\in E}$. On rappelle que la chaîne possède une unique mesure de probabilité $\pi=(\pi_i)_{i\in E}$ sur E telle que $\pi Q=\pi$. On appelle π la mesure stationnaire de la chaîne. Soit $\mu=(\mu_i)_{i\in E}$ une mesure de probabilité sur E. On dit que μ est réversible par rapport à Q si

$$\mu_i \cdot Q_{ij} = \mu_j \cdot Q_{ji}$$
.

- 1. Montrer que si μ est réversible par rapport à Q alors μ est la mesure stationnaire de la chaîne. (Indication : Calculer $(\mu Q)_i$ pour $i \in E$.)
- 2. On considère la chaîne de Markov $(X_n)_{n\geq 0}$ sur $E=\{0,1,\ldots,N\}$ de matrice de transition

$$Q_{i,i+1} = p_i, \quad Q_{i,i-1} = q_i \quad \text{pour } i = 1, \dots, N-1$$

 $Q_{0,0} = q_0, \quad Q_{0,1} = p_0$
 $Q_{N,N} = p_N \quad Q_{N,N-1} = q_N$

avec $p_i + q_i = 1$ pour tout $i \in E$.

- (a) Dessiner le diagramme de transition de la chaîne, avec des flèches et les probabilités correspondantes.
- (b) Trouver la mesure stationnaire de la chaîne en cherchant une mesure réversible par rapport à Q.
- (c) Comment s'écrit la mesure stationnaire dans le cas où $p_i = p$ pour tout $i \in E$?
- 3. Soit G = (S, A) un graphe fini, connexe, non orienté, sans arête connectant un sommet à luimême, et sans arêtes multiples. S est l'ensemble de ses sommets et A l'ensemble de ses arêtes. On note $S_i = \{j \in S : \{i, j\} \in A\}$ l'ensemble des voisins du sommet i, et $d_i = |S_i|$ le degré du sommet i. Soit $(X_n)_{n\geq 0}$ la marche aléatoire simple sur G, autrement dit la chaîne de Markov de matrice de transition Q telle que pour tout $i \in S$:

$$Q_{ij} = \frac{1}{d_i}$$
 si $j \in S_i$ et 0 sinon.

(a) Montrer que la mesure stationnaire de $(X_n)_{n\geq 0}$ est donnée par $\pi=(\pi_i)_{i\in S}$ tel que

$$\pi_i = \frac{d_i}{2|A|}.$$

(Indication : Montrer que $\sum_{i \in E} d_i = 2|A|$.)

- (b) Application au "problème du cavalier" : on considère un échiquier (8x8 cases) et un cavalier qui, partant d'un coin de l'échiquier, effectue une marche aléatoire simple $(X_n)_{n\geq 0}$. Les mouvements autorisés sont uniquement les ceux du cavalier (incréments $(\pm 2, \pm 1)$ et $(\pm 1, \pm 2)$) qui restent sur l'échiquier.
 - i. Montrer que la marche du cavalier est irréductible, c'est-à-dire que pour toute paire de cases (i, j), il existe un $n \in \mathbb{N}$ tel que $\mathbb{P}_i(X_n = j) > 0$.
 - ii. Soit $T_i = \inf\{n \geq 1 : X_n = i\}$. Calculer le nombre moyen de pas que doit faire le cavalier avant de revenir à son point de départ, c'est-à-dire calculer $\mathbb{E}_i[T_i]$ pour i un coin de l'échiquier. (Indications : On rappelle que $\mathbb{E}_i[T_i] = 1/\pi_i$. Calculer les différents degrés des cases de l'échiquier pour les mouvements du cavalier.)