Devoir surveillé du lundi 22 mars 2010 (durée 2 heures).

Documents autorisés (à l'exclusion de tout autre document) : notes personnelles de cours et de travaux dirigés.

Exercice 1.

Soit $\Omega \subset \mathbb{R}^2$ un domaine borné de \mathbb{R}^2 de mesure de Lebesgue non nulle, $\mathcal{F} = \mathcal{B}(\Omega)$ la tribu des boréliens de Ω et \mathbb{P} la probabilité uniforme sur Ω . On associe à tout point $\omega = (x, y) \in \Omega$ ses coordonnées cartésiennes $X(\omega) = x$ et $Y(\omega) = y$.

- 1. On considère un domaine triangulaire $\Omega = \{(x,y) \in \mathbb{R}^2 : 0 \le y \le x \le 1\}$. Déterminer $\mathbb{E}[Y|X]$.
- 2. On considère un disque $\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$. Déterminer $\mathbb{E}[Y|X]$ et $\mathbb{E}[Y^2|X]$.
- 3. Soit Ω comme dans la question 2 et $\mathcal{G} = \{B \in \mathcal{F}; B \text{ est dénombrable ou } \Omega \setminus B \text{ est dénombrable } \}$. Est-ce une tribu? Si oui, déterminer $\mathbb{E}[X|\mathcal{G}]$ et $\mathbb{E}[Y|\mathcal{G}]$.

Exercice 2.

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et Γ un groupe fini de bijections \mathcal{F} -mesurables $\Omega \to \Omega$ d'inverses \mathcal{F} -mesurables. On suppose que la probabilité \mathbb{P} est invariante sous Γ , c'est-à-dire,

$$\mathbb{P}[\gamma(A)] = \mathbb{P}[A]$$
 pour tout $A \in \mathcal{F}$ et tout $\gamma \in \Gamma$.

- 1. Montrer que $\mathcal{G} = \{G \in \mathcal{F} : \gamma(G) = G \ \forall \gamma \in \Gamma\}$ est une sous-tribu de \mathcal{F} .
- 2. Montrer que, si X est une variable aléatoire réelle intégrable sur $(\Omega, \mathcal{F}, \mathbb{P})$, alors

$$\mathbb{E}[X|\mathcal{G}] = \frac{1}{\operatorname{card}(\Gamma)} \sum_{\gamma \in \Gamma} X \circ \gamma \quad \text{p.s.,}$$

où $\operatorname{card}(\Gamma)$ est le nombre d'élements du groupe Γ .

Exercice 3.

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace probabilisé et $\mathcal{G} \subset \mathcal{F}$ une sous-tribu de \mathcal{F} . On dit que deux variables aléatoires réelles X_1 et X_2 sont conditionnellement indépendantes par rapport à \mathcal{G} si pour tous boréliens $B_1, B_2 \in \mathcal{B}(\mathbb{R})$ on a

$$\mathbb{E}[1_{B_1}(X_1)1_{B_2}(X_2) \,|\, \mathcal{G}] = \mathbb{E}[1_{B_1}(X_1) \,|\, \mathcal{G}] \,\mathbb{E}[1_{B_2}(X_2) \,|\, \mathcal{G}] \quad \text{p.s.}.$$

Soit X_1 , X_2 et Y trois variables aléatoires réelles sur $(\Omega, \mathcal{F}, \mathbb{P})$ et $\sigma(Y)$ la tribu engendrée par Y. On suppose que X_2 admet des lois conditionnelles $q_{X_2|Y}(y, dx_2)$ sachant Y et $q_{X_2|(Y,X_1)}(y, x_1, dx_2)$ sachant (Y, X_1) . Montrer que X_1 et X_2 sont conditionnellement indépendantes par rapport à $\mathcal{G} = \sigma(Y)$ si et seulement si

$$q_{X_2|(Y,X_1)}(y,x_1,dx_2) = q_{X_2|Y}(y,dx_2) \quad \text{ pour } \mathbb{P}_{(Y,X_1)}\text{-presque tout } (y,x_1) \in \mathbb{R}^2,$$

où $\mathbb{P}_{(Y,X_1)}$ est la loi du couple (Y,X_1) .