How to approximate Pi

I.Introduction:	II. First method with polygon:
	Approximate π with the perimeter of polygon
	$B D / C D=B A / A C$
But how to approximate π ? 2 methods	Fig. 2.1 : AD bissects BAC
Archimedes 250 BC. Geometric method	
	Eig. 2.2 Inscribed and circumscribed hexagons in the unit circle
6. Buffon 1733	$3<\pi<3.46$
Statistical method	Polygon's Perimeter $\approx \pi$

III. A second method with probability

I=needle's length d=lath width
$\mathbf{P}=$ probability of a needle fall on the cut (break) between two laths

Results: Georges Louis Leclerc de Buffon showed that $p=\left(21 / p i^{*} d\right)$

Find pi approximation:
-Throw n needles on the laths
-Call S the number of needles which cut the laths
$-p \approx \frac{s}{n}$
Here π is approximately equal to 2,675

IV. Conclusion

Buffon did his experiment with 2048 launches and found a value of Pi with a precision of 2 decimals.

For the Archimedes' method, a 96 -sided polygon give a value of pi with 2 decimals.
V. References
https://www.pcworld.com/articl e/191389/a-brief-history-ofpi.html
https://itech.fgcu.edu/faculty/cli ndsey/mhf4404/archimedes/

