Fibonacci Sequence and the Golden Ratio

Killian Rolland & Hubert Villuendas

Introduction

- Leonardo Fibonacci
- Liber Abaci (1202)
 - Growth of a rabbit population

Fibonacci Numbers & Spiral

 $F_{n+2} = F_{n+1} + F_n$ $F_0 = F_1 = 1$ Spiral:

Appearance in Nature

- Flowers Shapes
- Shells Shapes

Fibonacci and Pascal's Triangle

• Pascal's triangle: triangular array of the binomial coefficients.

• The sum of the coefficients of the nth coefficients makes appear the nth Fibonacci numbers.

The Golden Ratio

- Unique positive solution of $x^2 x 1 = 0$
- limite des quotients

Explicit Formula

Using the Golden Ratio and the characteristic equation of the Fibonacci Sequence, we prove that:

$$\frac{1}{\sqrt{5}} \left(\phi^n - \left(-\frac{1}{\phi} \right)^n \right)$$

Newton's method

- Newton's method consists in approaching the roots of a function by approximating the function with its tangents
- Used to approach the Golden Ratio as a root of $f: x \mapsto x^2 - x - 1$

Sources

- https://www.researchgate.net/ publication/334015286_Fibona cci_Numbers_and_Golden_Ratio_ in_Mathematics_and_Science
- https://www.hindawi.com/jour nals/jmath/2013/204674/