## Fibonacci Sequence and the Golden Ratio

## Killian Rolland \& Hubert Villuendas



## Fibonacci Numbers \& Spiral

- $F_{n+2}=F_{n+1}+F_{n} \quad F_{0}=F_{1}=1$
- Spiral:



## $\qquad$

## Fibonacci and Pascal's Triangle

- Pascal's triangle : triangular array of the binomial coefficients.
- The sum of the coefficients of the $\mathrm{n}^{\text {th }}$ coefficients makes appear the $\mathrm{n}^{\text {th }}$ Fibonacci numbers.



## The Golden Ratio

- Unique positive solution of $x^{2}-x-1=0$
- limite des quotients


## Newton's method

- Newton's method consists in approaching the roots of a function by approximating the function with its tangents
- Used to approach the Golden Ratio as a root of

$$
f: x \mapsto x^{2}-x-1
$$

## Explicit Formula

- Using the Golden Ratio and the characteristic equation of the Fibonacci Sequence, we prove that:

$$
\frac{1}{\sqrt{5}}\left(\phi^{n}-\left(-\frac{1}{\phi}\right)^{n}\right)
$$

## Sources

- https://www.researchgate.net/ publication/334015286_Fibona cci_Numbers_and_Golden_Ratio_ in_Mathematics_and_Science
- https://www.hindawi.com/jour nals/jmath/2013/204674/

