Exercise sheet 9

Fundamental units, Galois correspondence, and cyclotomic fields
Exercise 1. [Continued fractions]
Let $d>1$ be a squarefree integer and $K=\mathbb{Q}(\sqrt{d})$.
Compute the first terms of the continued fraction expansion for \sqrt{d} and deduce the fundamental unit of \mathcal{O}_{K}^{*} for $d=6,7,10,11$.

Exercise 2. [Some results on cyclotomic fields]
(a) For any odd $n \geq 3$, count the number of quadratic subfields of $\mathbb{Q}\left(\zeta_{n}\right)$ in terms of $(\mathbb{Z} / n \mathbb{Z})^{*}$ (begin with the prime case).
(b) Prove that for every $m, n \geq 1, \mathbb{Q}\left(\zeta_{m}\right) \cdot \mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}\left(\zeta_{\ell}\right)$ where ℓ is the lcm of m and n. Prove next that $\mathbb{Q}\left(\zeta_{m}\right) \cap \mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}\left(\zeta_{d}\right)$ where d is the gcd of m and n.
(c) (Gauss-Wantzel) We admit that the numbers of \mathbb{C} constructible with straightedge and compass are exactly the numbers α such that there is a number field K containing α and a tower of subfields

$$
\mathbb{Q}=K_{0} \subset \cdots \subset K_{n}=K
$$

where for every $i \in\{0, \cdots, n-1\},\left[K_{i+1}: K_{i}\right]=2$.
Prove that a primitive n-th root of unity is constructible with straightedge and compass if and only if

$$
n=2^{k} p_{1} \cdots p_{r}
$$

where the p_{i} 's are pairwise distincts Fermat prime number (i.e. prime numbers of the shape $2^{2^{m}}+1$.).
(d) For any $n \geq 1$ and any prime p, let α be such that $n=p^{\alpha} n^{\prime}$ with n^{\prime} coprime to p. Describe the ramification and inertia indices of p in $\mathbb{Q}\left(\zeta_{n}\right)$ in terms of the order of n^{\prime} in $(\mathbb{Z} / p \mathbb{Z})^{*}$.

Exercise 3.

The goal of this exercise is to prove that for every $n>1$, there is infinitely many prime numbers $p \equiv 1 \bmod n$ (the weak case of Dirichlet's theorem).
(a) Prove that it is enough to prove that for every $n>2$, there is at least one prime number $p \equiv 1 \bmod n$. This is what we will do now.
(b) Let Φ_{n} be the n-th cyclotomic polynomial. Prove that for every $n>2$, $\left|\Phi_{n}(n)\right|>1$ and that $\Phi_{n}(n)$ divides $n^{n}-1$.
(c) Let p be a prime divisor of $\Phi_{n}(n)$. Prove that it is prime to n, let t be the order of n in $(\mathbb{Z} / p \mathbb{Z})^{*}$.
(d) Prove that t divides n and that if $t<n$ then $\Phi_{n}(n)$ divides $\left(n^{n}-1\right) /\left(n^{t}-1\right)$. Deduce that $t=n$ and $p \equiv 1 \bmod n$.

