## EXERCISE SHEET 8

Geometry of numbers and the group of units
Exercise 1. [Minkowski bound]
(a) Let $K$ be a number field of degree $d$, discriminant $D_{K}$ and with $r_{1}$ real and $r_{2}$ pairs of conjugate complex embedding. Recall the Minkowski bound $G$.
(b) Deduce that $\left|D_{K}\right| \geq 2$ unless $K=\mathbb{Q}$.
(c) Give the Minkowski bound when $K=\mathbb{Q}(\sqrt{d})$ is a quadratic field. Deduce that $\mathcal{O}_{K}$ is principal for $d=-11,-7,5,13$.

Exercise 2. [Quadratic fields with class number 1]
Let $d<0$ a squarefree integer and $K=\mathbb{Q}(\sqrt{d})$.
(a) If $d \equiv 2,3 \bmod 4$, prove that for every prime number $p<|d|$, there is no $\alpha \in \mathcal{O}_{K}$ of norm $p$. Deduce that $\mathcal{O}_{K}$ is principal if and only if $\left(\frac{d}{p}\right)=-1$ for every such prime $p$ (with the Minkowski bound for the converse).
(b) Prove a similar statement for $p<|d| / 4$ in the case $d \equiv 1 \bmod 4$.

## Exercise 3. [Rabinowitz's theorem]

We fix $q \geq 2$ such that $q$ and $4 q-1$ are squarefree, and $K=\mathbb{Q}(\sqrt{1-4 q})$, $\theta=(1+\sqrt{1-4 q}) / 2$. Define also $P(X)=X^{2}+X+q$.
(a) For every $x, y \in \mathbb{Q}$, compute $N_{K / \mathbb{Q}}(x+\theta y)$ and deduce that if for $z \in \mathcal{O}_{K}$, $p=N_{K / \mathbb{Q}}(z)$ is prime, then $p \geq q$.
(c) For $a \in\{0, \cdots, q-2\}$ such that $P(a)$ is not prime, prove there exists a prime number $p \leq q-1$ such that $P(a)=0 \bmod p$.
(d) Assume $\mathcal{O}_{K}$ is principal. For $a \in\{0, \cdots, q-2\}$, use that $P(a)=N_{K / \mathbb{Q}}(a+\theta)$ to prove that $P(a)$ must be prime.
(e) Conversely, assume that $P(a)$ is prime for every $a \in\{0, \cdots, q-2\}$. Prove that every prime $p<q$ is inert in $\mathcal{O}_{K}$, in particular principal. Deduce with Minkowski's bound that $\mathcal{O}_{K}$ is principal. Can we improve the hypothesis on the $a$ 's ?

Exercise 4. [Diverse results]
(a) Let $K$ be a number field. For any integer $m \geq 1$, recall why $\mathcal{O}_{K} / m \mathcal{O}_{K}$ is finite and deduce there are finitely many ideals of $\mathcal{O}_{K}$ of norm at most $m$.
(b) Let $M \in M_{n}(\mathbb{R})$ with strictly positive diagonal coefficients and strictly negative coefficients elsewhere, whose lines all have sum zero. For $X \in \operatorname{Ker} M$, by considering its coordinate of maximal modulus, prove that $X \in \operatorname{Vect}^{t}(1, \cdots, 1)$. Deduce that $M$ has rank exactly $n-1$ and that all the determinants of its minors of size $n-1$ are equal up to sign.
(c) Let $K$ be a number field, $r_{1}$ its number of real embeddings and $r_{2}$ its number of pairs of complex conjugate embeddings. Consider a basis $\left(u_{1}, \cdots, u_{r_{1}+r_{2}-1}\right) \in \mathcal{O}_{K}^{*}$ whose images by Log generate a basis of the lattice $\log \mathcal{O}_{K}^{*}$ of the hyperplane $H$ of zero sum of coordinates in $\mathbb{R}^{n}$.

By adding a vector orthonormal to $H$ in $\mathbb{R}^{n}$ to $\log \mathcal{O}_{K}^{*}$, prove that

$$
\operatorname{vol}\left(\log \mathcal{O}_{K}^{*}\right)=\sqrt{r_{1}+r_{2}} \cdot R_{K}
$$

Exercise 5. [Fundamental units]
(a) Let $d>0$ such that $d \equiv 2,3 \bmod 4$ and $K=\mathbb{Q}(\sqrt{d})$.

Consider $x=a+b \sqrt{d} \in \mathcal{O}_{K}$. Prove that $x \in \mathcal{O}_{K}^{*}$ if and only if $a^{2}-d b^{2}= \pm 1$, which we assume now.
(b) Assume that $x \neq\{ \pm 1\}$. Prove that amongst $x, x^{-1},-x,-x^{-1}$, one of these satisfies $a>0, b>0$. We rename it $x$, and define $a_{n}, b_{n}$ by

$$
a_{n}+b_{n} \sqrt{d}=(a+b \sqrt{d})^{n} .
$$

(c) By studying the growth of these sequences, prove that $x$ is the fundamental unit if and only if $b>0$ is the smallest integer such that $d b^{2}+1$ or $d b^{2}-1$ is a square $a^{2}$.
(d) Compute the fundamental units for $d=2,3,6,7,10,11$.
(e) For $d>0$ such that $d \equiv 1 \bmod 4$, adapt the arguments and the method.

