EXERCISE SHEET 8 GEOMETRY OF NUMBERS AND THE GROUP OF UNITS

Exercise 1. [Minkowski bound]

(a) Let K be a number field of degree d, discriminant D_K and with r_1 real and r_2 pairs of conjugate complex embedding. Recall the Minkowski bound G.

(b) Deduce that $|D_K| \ge 2$ unless $K = \mathbb{Q}$.

(c) Give the Minkowski bound when $K = \mathbb{Q}(\sqrt{d})$ is a quadratic field. Deduce that \mathcal{O}_K is principal for d = -11, -7, 5, 13.

Exercise 2. [Quadratic fields with class number 1]

Let d < 0 a squarefree integer and $K = \mathbb{Q}(\sqrt{d})$.

(a) If $d \equiv 2,3 \mod 4$, prove that for every prime number p < |d|, there is no $\alpha \in \mathcal{O}_K$ of norm p. Deduce that \mathcal{O}_K is principal if and only if $\left(\frac{d}{p}\right) = -1$ for every such prime p (with the Minkowski bound for the converse).

(b) Prove a similar statement for p < |d|/4 in the case $d \equiv 1 \mod 4$.

Exercise 3. [Rabinowitz's theorem]

We fix $q \ge 2$ such that q and 4q - 1 are squarefree, and $K = \mathbb{Q}(\sqrt{1-4q})$, $\theta = (1 + \sqrt{1-4q})/2$. Define also $P(X) = X^2 + X + q$.

(a) For every $x, y \in \mathbb{Q}$, compute $N_{K/\mathbb{Q}}(x + \theta y)$ and deduce that if for $z \in \mathcal{O}_K$, $p = N_{K/\mathbb{Q}}(z)$ is prime, then $p \ge q$.

(c) For $a \in \{0, \dots, q-2\}$ such that P(a) is not prime, prove there exists a prime number $p \leq q-1$ such that $P(a) = 0 \mod p$.

(d) Assume \mathcal{O}_K is principal. For $a \in \{0, \dots, q-2\}$, use that $P(a) = N_{K/\mathbb{Q}}(a+\theta)$ to prove that P(a) must be prime.

(e) Conversely, assume that P(a) is prime for every $a \in \{0, \dots, q-2\}$. Prove that every prime p < q is inert in \mathcal{O}_K , in particular principal. Deduce with Minkowski's bound that \mathcal{O}_K is principal. Can we improve the hypothesis on the *a*'s ?

Exercise 4. [Diverse results]

(a) Let K be a number field. For any integer $m \ge 1$, recall why $\mathcal{O}_K/m\mathcal{O}_K$ is finite and deduce there are finitely many ideals of \mathcal{O}_K of norm at most m.

(b) Let $M \in M_n(\mathbb{R})$ with strictly positive diagonal coefficients and strictly negative coefficients elsewhere, whose lines all have sum zero. For $X \in \text{Ker } M$, by considering its coordinate of maximal modulus, prove that $X \in \text{Vect}^t(1, \dots, 1)$. Deduce that M has rank exactly n-1 and that all the determinants of its minors of size n-1 are equal up to sign.

(c) Let K be a number field, r_1 its number of real embeddings and r_2 its number of pairs of complex conjugate embeddings. Consider a basis $(u_1, \dots, u_{r_1+r_2-1}) \in \mathcal{O}_K^*$ whose images by Log generate a basis of the lattice Log \mathcal{O}_K^* of the hyperplane H of zero sum of coordinates in \mathbb{R}^n . By adding a vector orthonormal to H in \mathbb{R}^n to $\text{Log } \mathcal{O}_K^*$, prove that

$$\operatorname{vol}(\operatorname{Log} \mathcal{O}_K^*) = \sqrt{r_1 + r_2} \cdot R_K.$$

Exercise 5. [Fundamental units]

(a) Let d > 0 such that $d \equiv 2, 3 \mod 4$ and $K = \mathbb{Q}(\sqrt{d})$.

Consider $x = a + b\sqrt{d} \in \mathcal{O}_K$. Prove that $x \in \mathcal{O}_K^*$ if and only if $a^2 - db^2 = \pm 1$, which we assume now.

(b) Assume that $x \neq \{\pm 1\}$. Prove that amongst $x, x^{-1}, -x, -x^{-1}$, one of these satisfies a > 0, b > 0. We rename it x, and define a_n, b_n by

$$a_n + b_n \sqrt{d} = (a + b\sqrt{d})^n.$$

(c) By studying the growth of these sequences, prove that x is the fundamental unit if and only if b > 0 is the smallest integer such that $db^2 + 1$ or $db^2 - 1$ is a square a^2 .

(d) Compute the fundamental units for d = 2, 3, 6, 7, 10, 11.

(e) For d > 0 such that $d \equiv 1 \mod 4$, adapt the arguments and the method.