EXERCISE SHEET 7
 Quadratic forms and discrete subgroups

Exercise 1. [Class groups and quadratic forms with positive discriminant]
Let K be a quadratic field with discriminant $D>0$. The group $\mathrm{Cl}^{+}\left(\mathcal{O}_{K}\right)$ is the group of (fractional) ideals up to strict equivalence: two ideals I and J are said strictly equivalent if $I=z J$ for some $z \in K^{*}$ such that $N_{K / \mathbb{Q}}(\alpha)>0$.

Define $\alpha=\frac{\sqrt{D}}{2}$ if $D \equiv 0 \bmod 4$ and $\alpha=\frac{1+\sqrt{D}}{2}$ if $D \equiv 1 \bmod 4$.
For I a nonzero fractional ideal of K and (u, v) a \mathbb{Z}-basis of I (direct with respect to $(1, \alpha)$), define $q_{u, v}(x, y)=N_{K / \mathbb{Q}}(u x+v y) / N(I)$ for all $x, y \in \mathbb{Z}$.
(a) Prove that it is a binary quadratic form of discriminant D, whose proper equivalence class does not depend of the choice of (u, v).
(b) Prove that for any $z \in K^{*}$ such that $N_{K / \mathbb{Q}}(z)>0$, with the previous notations, $(z u, z v)$ is a direct \mathbb{Z}-basis of $z I$. Deduce that the morphism $\mathrm{Cl}^{+}\left(\mathcal{O}_{K}\right) \rightarrow \mathrm{Cl}(D)$ is well-defined.
(c) Build the inverse morphism $\mathrm{Cl}(D) \rightarrow \mathrm{Cl}^{+}\left(\mathcal{O}_{K}\right)$ as in the case $D<0$.

Exercise 2. [Reduced quadratic forms for positive discriminants]
Fix $D>0$ a nonsquare discriminant. A form (a, b, c) with discriminant D is reduced if

$$
|\sqrt{D}-2| a|\mid<b<\sqrt{D}
$$

(a) Prove that if (a, b, c) is reduced, then $a c<0, b>0$ and $|a|$ and b are smaller than \sqrt{D}. Separating between the cases $a<0$ and $a>0$, prove also that $|c|<\sqrt{D}$.
(b) Prove that (a, b, c) is reduced if and only if (c, b, a) is.

For integers $c \neq 0, b \in \mathbb{Z}$, define $r=r(b, c)$ the unique integer such that $r \equiv-b$ $\bmod 2 c$, and $-|c|<r \leq|c|($ if $|c|>\sqrt{D})$ or $\sqrt{D}-2|c|<r<\sqrt{D}($ if $|c|<\sqrt{D})$.

The reduction operator ρ on forms (a, b, c) of discriminant D is then defined by

$$
\rho(a, b, c)=\left(a^{\prime}, b^{\prime}, c^{\prime}\right):=\left(c, r(b, c), \frac{r(b, c)^{2}-D}{4 c}\right) .
$$

(c) Prove that $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ is still of discriminant D and that $\left|c^{\prime}\right| \leq|c| / 2$ if $|c|>\sqrt{D}$.
(d) Prove that after finitely many iterations starting from a form (a, b, c), one has $\left|c^{\prime}\right|<\sqrt{D}$. Prove that after one more iteration, we have

$$
\sqrt{D}-2\left|a^{\prime}\right|<b^{\prime}<\sqrt{D}, \quad \max \left(\left|a^{\prime}\right|, b,\left|c^{\prime}\right|\right)<\sqrt{D} .
$$

(e) Use if necessary one more iteration to prove that one finally gets a reduced form.
(f) Prove finally that ρ sends reduced forms to reduced forms.

Exercise 3. [Closed subgroups of \mathbb{R}^{n}]
The aim of this exercise is to describe all the closed topological subgroups G of \mathbb{R}^{n}.
(a) For $n=1$, describe all the possible groups G.
(b) Assume now that $G \subset \mathbb{R}^{n}$ is not discrete, prove that 0 is an accumulation point of G.
(c) Deduce that there is a sequence $\left(g_{k}\right)_{k \in \mathbb{N}}$ of nonzero elements of G such that $g_{k} /\left\|g_{k}\right\|$ converges towards a point e of the unit sphere.
(d) Fix $t \neq 0$ a real number and $\varepsilon>0$. Prove that there exists $k \in \mathbb{N}$ such that $\left\|g_{k}\right\| \leq \varepsilon / 2$ and $\left\|g_{k} /\right\| g_{k}\|-e\| \leq \varepsilon /(2|t|)$. Prove that there is an integer $m \in \mathbb{N}$ such that $\left\|m g_{k}-t e\right\| \leq \varepsilon$. Deduce that $\mathbb{R} e$ is included in G.
(e) Use this to prove by induction on the dimension n that for every closed topological subgroup G of \mathbb{R}^{n}, if W is the largest vector subspace contained in G and $\pi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} / W$ the canonical projection, $G=\pi^{-1}\left(G^{\prime}\right)$ where G^{\prime} is a discrete subgroup of \mathbb{R}^{n} / W.
(f) Use this criterion to prove that a subgroup G of \mathbb{R}^{n} is dense if and only if there is no nonzero linear form ℓ on \mathbb{R}^{n} such that $\ell(G) \subset \mathbb{Z}$.
(g) Use this lemma to prove that for any $\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{R}^{n}$, its image in $\mathbb{R}^{n} / \mathbb{Z}^{n}$ generates a dense subgroup of $\mathbb{R}^{n} / \mathbb{Z}^{n}$ if $1, a_{1}, \cdots, a_{n}$ are \mathbb{Q}-linearly independent.

