EXERCISE SHEET 7 QUADRATIC FORMS AND DISCRETE SUBGROUPS

Exercise 1. [Class groups and quadratic forms with positive discriminant]

Let K be a quadratic field with discriminant D > 0. The group $\operatorname{Cl}^+(\mathcal{O}_K)$ is the group of (fractional) ideals up to strict equivalence: two ideals I and J are said strictly equivalent if I = zJ for some $z \in K^*$ such that $N_{K/\mathbb{Q}}(\alpha) > 0$.

Define $\alpha = \frac{\sqrt{D}}{2}$ if $D \equiv 0 \mod 4$ and $\alpha = \frac{1+\sqrt{D}}{2}$ if $D \equiv 1 \mod 4$. For *I* a nonzero fractional ideal of *K* and (u, v) a \mathbb{Z} -basis of *I* (direct with respect to $(1, \alpha)$), define $q_{u,v}(x, y) = N_{K/\mathbb{Q}}(ux + vy)/N(I)$ for all $x, y \in \mathbb{Z}$.

(a) Prove that it is a binary quadratic form of discriminant D, whose proper equivalence class does not depend of the choice of (u, v).

(b) Prove that for any $z \in K^*$ such that $N_{K/\mathbb{Q}}(z) > 0$, with the previous notations, (zu, zv) is a direct \mathbb{Z} -basis of zI. Deduce that the morphism $\mathrm{Cl}^+(\mathcal{O}_K) \to \mathrm{Cl}(D)$ is well-defined.

(c) Build the inverse morphism $\operatorname{Cl}(D) \to \operatorname{Cl}^+(\mathcal{O}_K)$ as in the case D < 0.

Exercise 2. [Reduced quadratic forms for positive discriminants]

Fix D > 0 a nonsquare discriminant. A form (a, b, c) with discriminant D is reduced if

$$|\sqrt{D} - 2|a|| < b < \sqrt{D}$$

(a) Prove that if (a, b, c) is reduced, then ac < 0, b > 0 and |a| and b are smaller than \sqrt{D} . Separating between the cases a < 0 and a > 0, prove also that $|c| < \sqrt{D}$. (b) Prove that (a, b, c) is reduced if and only if (c, b, a) is.

For integers $c \neq 0, b \in \mathbb{Z}$, define r = r(b, c) the unique integer such that $r \equiv -b$

mod 2c, and $-|c| < r \le |c|$ (if $|c| > \sqrt{D}$) or $\sqrt{D} - 2|c| < r < \sqrt{D}$ (if $|c| < \sqrt{D}$).

The reduction operator ρ on forms (a, b, c) of discriminant D is then defined by

$$\rho(a, b, c) = (a', b', c') := \left(c, r(b, c), \frac{r(b, c)^2 - D}{4c}\right).$$

(c) Prove that (a', b', c') is still of discriminant D and that |c'| < |c|/2 if $|c| > \sqrt{D}$.

(d) Prove that after finitely many iterations starting from a form (a, b, c), one has $|c'| < \sqrt{D}$. Prove that after one more iteration, we have

$$\sqrt{D} - 2|a'| < b' < \sqrt{D}, \quad \max(|a'|, b, |c'|) < \sqrt{D}.$$

(e) Use if necessary one more iteration to prove that one finally gets a reduced form.

(f) Prove finally that ρ sends reduced forms to reduced forms.

Exercise 3. [Closed subgroups of \mathbb{R}^n]

The aim of this exercise is to describe all the closed topological subgroups G of \mathbb{R}^n .

(a) For n = 1, describe all the possible groups G.

(b) Assume now that $G \subset \mathbb{R}^n$ is not discrete, prove that 0 is an accumulation point of G.

(c) Deduce that there is a sequence $(g_k)_{k\in\mathbb{N}}$ of nonzero elements of G such that $g_k/||g_k||$ converges towards a point e of the unit sphere.

(d) Fix $t \neq 0$ a real number and $\varepsilon > 0$. Prove that there exists $k \in \mathbb{N}$ such that $||g_k|| \leq \varepsilon/2$ and $||g_k/||g_k|| - e|| \leq \varepsilon/(2|t|)$. Prove that there is an integer $m \in \mathbb{N}$ such that $||mg_k - te|| \leq \varepsilon$. Deduce that $\mathbb{R}e$ is included in G.

(e) Use this to prove by induction on the dimension n that for every closed topological subgroup G of \mathbb{R}^n , if W is the largest vector subspace contained in G and $\pi : \mathbb{R}^n \to \mathbb{R}^n/W$ the canonical projection, $G = \pi^{-1}(G')$ where G' is a discrete subgroup of \mathbb{R}^n/W .

(f) Use this criterion to prove that a subgroup G of \mathbb{R}^n is dense if and only if there is no nonzero linear form ℓ on \mathbb{R}^n such that $\ell(G) \subset \mathbb{Z}$.

(g) Use this lemma to prove that for any $(a_1, \dots, a_n) \in \mathbb{R}^n$, its image in $\mathbb{R}^n/\mathbb{Z}^n$ generates a dense subgroup of $\mathbb{R}^n/\mathbb{Z}^n$ if $1, a_1, \dots, a_n$ are \mathbb{Q} -linearly independent.