Exercise sheet 6

BINARY QUADRATIC FORMS AND MIDTERM REVISIONS

The exercises 4 to 7 are, with some added questions, taken from midterms and exams from the previous years.

Exercise 1. [Computation of Cl(D)]

Using Gauss' theorem on reduced forms with negative discriminant, compute Cl(D) for D = -11, -19, -20, -23, -24.

Exercise 2. [Reduction algorithm for negative discriminant]

Let q = (a, b, c) be a positive quadratic form with discriminant D < 0. We will here explain the algorithm to obtain its reduced form.

(a) Prove that a > 0 and c > 0.

(b) If c < a, use proper equivalence to reduce to the case $c \ge a$.

(c) If |b| > a, use proper equivalence to reduce to the case $|b| \le a$. How does this reduction behave with respect to the hypothesis c < a? Does this process terminate ?

(d) Assume we obtain after proper equivalence a form with $a \leq b \leq a \leq c$. If b = -a, prove one can reduce to b = a.

(e) If c = a, prove one can reduce to $b \ge 0$.

(f) Reduce the forms (3,3,2) and (4,5,3).

Exercise 3. [Reduction of forms with square discriminants]

Let $k \in \mathbb{N}^*$ and $D = k^2$.

(a) For a form q of discriminant D, find a nontrivial solution of q(x, y) = 0.

(b) Deduce that $q \stackrel{+}{\sim} (0, k, c')$ for some $c' \in \{0, \dots, k-1\}$.

Exercise 4. [Prime numbers represented by quadratic forms]

Consider the quadratic form q = (8, 5, 1).

(a) Give the reduced positive form properly equivalent to q. Are there other reduced positive forms with the same discriminant?

(b) Prove that every prime number $p \equiv 1 \mod 7$ is represented by q.

(c) Which other prime numbers are represented by q?

Exercise 5. [Real cyclotomic fields]

Consider $p \geq 3$ a prime number, $\zeta_p = e^{2i\pi/p}$ and $K = \mathbb{Q}(\zeta_p)$.

(a) Prove that the family of ζ^i , $1 \leq i \leq (p-1)/2$ or $1 \leq -i \leq (p-1)/2$ is a \mathbb{Z} -basis of \mathcal{O}_K .

(b) Defining $F = \mathbb{Q}(\zeta_p)^+ = \{ x \in K, |\overline{x} = x \}$, prove that

$$F = \mathbb{Q}(\cos(2\pi/p)).$$

(c) Prove that \mathcal{O}_F is the \mathbb{Z} -algebra generated by $2\cos(2\pi/p)$.

(d) Write the decomposition in prime ideals of $p\mathcal{O}_F$.

Exercise 6. [A principality criterion]

Let $p \equiv 3 \mod 4$ prime and $K = \mathbb{Q}(\zeta_p)$.

(a) For $F = \mathbb{Q}(\sqrt{-p})$, recall why $F \subset K$. Prove that for $n \in \mathbb{Z}$, if $n = N_{K/\mathbb{Q}}(x)$ for some $x \in \mathcal{O}_K$, then $n = |z|^2$ for some $z \in \mathcal{O}_F$.

(b) Let $\ell \equiv 1 \mod p$ be a prime number. Prove that \mathcal{O}_K contains an ideal of norm ℓ .

(c) If \mathcal{O}_K is principal, deduce that ℓ is represented by the quadratic form $x^2 + xy + (1+p)/4y^2$.

(d) Prove that for p = 23, \mathcal{O}_K is not principal.

Exercise 7. [Diophantine equations and class numbers]

Let d < 0 be an even squarefree integer and $K = \mathbb{Q}(\sqrt{d})$. We assume there exists $(x, y) \in \mathbb{Z}^2$ such that

$$y^2 = x^5 + d.$$

(a) Prove that x, y are odd and coprime, and that $x \ge 3$.

(b) Prove that the ideals $(y + \sqrt{d})$ and $(y - \sqrt{d})$ are coprime.

(c) Prove that there is an ideal I of \mathcal{O}_K such that $(y + \sqrt{d}) = I^5$.

(d) Assume now that $|\operatorname{Cl}(\mathcal{O}_K)|$ is not divisible by 5. Prove that there are $a, b \in \mathbb{Z}$ such that

$$a^{5} + 10a^{3}b^{2}d + 5ab^{4}d^{2} = y,$$

$$5a^{4}b + 10a^{2}b^{3}d + b^{5}d^{2} = 1.$$

(e) Prove that a is odd, $b = \pm 1$ and $5a^4 + 10a^2d + b^5d^2 = \pm 1$. Reducing this equality modulo 8, deduce a contradiction, therefore 5 divides $|\operatorname{Cl}(\mathcal{O}_K)|$.

(f) Prove that for d = -74, -194, the class number of \mathcal{O}_K is divisible by 5.

(g) Prove that the equations $y^2 = x^5 - 2$ and $y^2 = x^5 - 6$ do not have solutions $x, y \in \mathbb{Z}$.