## EXERCISE SHEET 6 <br> Binary quadratic forms and midterm revisions

The exercises 4 to 7 are, with some added questions, taken from midterms and exams from the previous years.

Exercise 1. [Computation of $\mathrm{Cl}(D)$ ]
Using Gauss' theorem on reduced forms with negative discriminant, compute $\mathrm{Cl}(D)$ for $D=-11,-19,-20,-23,-24$.

Exercise 2. [Reduction algorithm for negative discriminant]
Let $q=(a, b, c)$ be a positive quadratic form with discriminant $D<0$. We will here explain the algorithm to obtain its reduced form.
(a) Prove that $a>0$ and $c>0$.
(b) If $c<a$, use proper equivalence to reduce to the case $c \geq a$.
(c) If $|b|>a$, use proper equivalence to reduce to the case $|b| \leq a$. How does this reduction behave with respect to the hypothesis $c<a$ ? Does this process terminate ?
(d) Assume we obtain after proper equivalence a form with $a \leq b \leq a \leq c$. If $b=-a$, prove one can reduce to $b=a$.
(e) If $c=a$, prove one can reduce to $b \geq 0$.
$(f)$ Reduce the forms $(3,3,2)$ and $(4,5,3)$.
Exercise 3. [Reduction of forms with square discriminants]
Let $k \in \mathbb{N}^{*}$ and $D=k^{2}$.
(a) For a form $q$ of discriminant $D$, find a nontrivial solution of $q(x, y)=0$.
(b) Deduce that $q \stackrel{ \pm}{\sim}\left(0, k, c^{\prime}\right)$ for some $c^{\prime} \in\{0, \cdots, k-1\}$.

Exercise 4. [Prime numbers represented by quadratic forms]
Consider the quadratic form $q=(8,5,1)$.
(a) Give the reduced positive form properly equivalent to $q$. Are there other reduced positive forms with the same discriminant?
(b) Prove that every prime number $p \equiv 1 \bmod 7$ is represented by $q$.
(c) Which other prime numbers are represented by $q$ ?

Exercise 5. [Real cyclotomic fields]
Consider $p \geq 3$ a prime number, $\zeta_{p}=e^{2 i \pi / p}$ and $K=\mathbb{Q}\left(\zeta_{p}\right)$.
(a) Prove that the family of $\zeta^{i}, 1 \leq i \leq(p-1) / 2$ or $1 \leq-i \leq(p-1) / 2$ is a $\mathbb{Z}$-basis of $\mathcal{O}_{K}$.
(b) Defining $F=\mathbb{Q}\left(\zeta_{p}\right)^{+}=\{x \in K, \mid \bar{x}=x\}$, prove that

$$
F=\mathbb{Q}(\cos (2 \pi / p)) .
$$

(c) Prove that $\mathcal{O}_{F}$ is the $\mathbb{Z}$-algebra generated by $2 \cos (2 \pi / p)$.
(d) Write the decomposition in prime ideals of $p \mathcal{O}_{F}$.

Exercise 6. [A principality criterion]
Let $p \equiv 3 \bmod 4$ prime and $K=\mathbb{Q}\left(\zeta_{p}\right)$.
(a) For $F=\mathbb{Q}(\sqrt{-p})$, recall why $F \subset K$. Prove that for $n \in \mathbb{Z}$, if $n=N_{K / \mathbb{Q}}(x)$ for some $x \in \mathcal{O}_{K}$, then $n=|z|^{2}$ for some $z \in \mathcal{O}_{F}$.
(b) Let $\ell \equiv 1 \bmod p$ be a prime number. Prove that $\mathcal{O}_{K}$ contains an ideal of norm $\ell$.
(c) If $\mathcal{O}_{K}$ is principal, deduce that $\ell$ is represented by the quadratic form $x^{2}+x y+(1+p) / 4 y^{2}$.
(d) Prove that for $p=23, \mathcal{O}_{K}$ is not principal.

Exercise 7. [Diophantine equations and class numbers]
Let $d<0$ be an even squarefree integer and $K=\mathbb{Q}(\sqrt{d})$. We assume there exists $(x, y) \in \mathbb{Z}^{2}$ such that

$$
y^{2}=x^{5}+d .
$$

(a) Prove that $x, y$ are odd and coprime, and that $x \geq 3$.
(b) Prove that the ideals $(y+\sqrt{d})$ and $(y-\sqrt{d})$ are coprime.
(c) Prove that there is an ideal $I$ of $\mathcal{O}_{K}$ such that $(y+\sqrt{d})=I^{5}$.
(d) Assume now that $\left|\mathrm{Cl}\left(\mathcal{O}_{K}\right)\right|$ is not divisible by 5 . Prove that there are $a, b \in \mathbb{Z}$ such that

$$
\begin{aligned}
a^{5}+10 a^{3} b^{2} d+5 a b^{4} d^{2} & =y \\
5 a^{4} b+10 a^{2} b^{3} d+b^{5} d^{2} & =1
\end{aligned}
$$

(e) Prove that $a$ is odd, $b= \pm 1$ and $5 a^{4}+10 a^{2} d+b^{5} d^{2}= \pm 1$. Reducing this equality modulo 8 , deduce a contradiction, therefore 5 divides $\left|\mathrm{Cl}\left(\mathcal{O}_{K}\right)\right|$.
(f) Prove that for $d=-74,-194$, the class number of $\mathcal{O}_{K}$ is divisible by 5 .
$(g)$ Prove that the equations $y^{2}=x^{5}-2$ and $y^{2}=x^{5}-6$ do not have solutions $x, y \in \mathbb{Z}$.

