EXERCISE SHEET 5
 Class groups and binary quadratic forms

Exercise 1. [Decomposition of prime numbers in the cyclotomic case]
Let $n \geq 3, \zeta_{n}=e^{2 i \pi / n}$ and $K=\mathbb{Q}\left(\zeta_{n}\right)$. The minimal polynomial of ζ_{n} is the n-th cyclotomic polynomial $\Phi_{n} \in \mathbb{Z}[X]$ and the ring of integers of $\mathbb{Q}\left(\zeta_{n}\right)$ is $\mathbb{Z}\left[\zeta_{n}\right]$.
(a) For p prime not dividing n, describe the factorisation of Φ_{n} modulo p.
(b) Deduce the shape of the decomposition of $p \mathcal{O}_{K}$ in terms of the congruence class of p modulo n.

Exercise 2.

Let K be a number field.
(a) Prove that for every ideal I of \mathcal{O}_{K}, there is a finite extension L of K for which $I \cdot \mathcal{O}_{L}$ is principal.
(b) Prove that there is a finite extension L of K such that for every ideal I of $\mathcal{O}_{K}, I \cdot \mathcal{O}_{L}$ is principal.

Exercise 3. [Second case of Fermat's last theorem]
We assume here that $p \geq 3$ is a regular prime number, and want to show that there is no solution to the equation in integers

$$
x^{p}+y^{p}=z^{p}
$$

where $p \mid z$ and x, y, z are pairwise coprime.
We assume there is such a solution (x, y, z) and will derive a contradiction.
(a) We define $\zeta=e^{2 i \pi / p}$. Recall why $(p)=(1-\zeta)^{p-1}$ is the decomposition of (p) into prime ideals in \mathcal{O}_{K}.
(b) Prove that p divides $x+y$ in \mathbb{Z}, hence that $(1-\zeta)^{p-1}$ divides $x+y$ in \mathcal{O}_{K}.
(c) Prove that $(1-\zeta)$ actually divides all the $x+\zeta^{i} y$ for $0 \leq i \leq p-1$.
(d) Prove that $(1-\zeta)^{2}$ does not divide any $x+\zeta^{i} y$ for $1 \leq i \leq p-1$.
(e) Obtain with the previous questions the equality of integral ideals

$$
\left(\frac{z}{(1-\zeta)^{p-1}}\right)^{p}=\left(\frac{x+y}{(1-\zeta)^{(p-1)^{2}}}\right) \prod_{i=1}^{p-1}\left(\frac{x+\zeta^{i} y}{1-\zeta^{i}}\right)
$$

where all the ideals on the right are pairwise coprime.
(f) Deduce, similarly as in the first case of Fermat's last theorem, that

$$
x+\zeta y=(1-\zeta) \alpha^{p} \zeta^{r} v
$$

with $\alpha \in \mathcal{O}_{K}, v \in \mathcal{O}_{F}^{*}$ where $F=\mathbb{Q}(\cos (2 \pi / p))$ and $r \in \mathbb{Z}$.
(g) Proceeding similarly again, establish that

$$
\zeta^{-r} \frac{x+\zeta y}{1-\zeta}-\zeta^{r} \frac{x+\zeta^{-1} y}{1-\zeta^{-1}} \in p \mathcal{O}_{K}
$$

(h) Prove that

$$
\frac{p}{1-\zeta}=1+\sum_{i=1}^{p-2}(p-1-i) \zeta^{i}
$$

and

$$
\frac{p}{1-\zeta^{-1}}=1+\sum_{i=1}^{p-2}(i+2-p) \zeta^{i}
$$

(i) Write $(x+\zeta y) /(1-\zeta)$ and $\left(x+\zeta^{-1} y\right) /\left(1-\zeta^{-1}\right)$ using the previous formulas. Separating between the cases $p^{2} \mid x+y$ and $p^{2} \nmid x+y$, find a contradiction.

Exercise 4. [Primitive forms and fundamental discriminants]
A quadratic form $q(x, y)=a x^{2}+b x y+c y^{2}$ is primitive if $\operatorname{gcd}(a, b, c)=1$. An integer $D \equiv 0,1 \bmod 4$ is a fundamental discriminant if every form with disriminant D is primitive.
(a) Prove that for every D, the quadratic form q_{D} is primitive.
(b) If $D \equiv 1 \bmod 4$, prove that D is a fundamental discriminant if and only if it is squarefree.
(c) If $D \equiv 0 \bmod 4$, prove that D is a fundamental discriminant if and only if $D / 4 \equiv 2,3 \bmod 4$ and $D / 4$ is squarefree.

Exercise 5. [Square discriminants]
Let $k \in \mathbb{N}^{*}$ and $D=k^{2}$.
(a) For a form q of discriminant D, find a nontrivial solution of $q(x, y)=0$.
(b) Deduce that $q \stackrel{+}{\sim}\left(0, k, c^{\prime}\right)$ for some $c^{\prime} \in\{0, \cdots, k-1\}$.

