EXERCISE SHEET 4
 Quadratic residues and class groups

Exercise 1. [Quadratic reciprocity for the prime 2]
We define $G=e^{i \pi / 4}+e^{-i \pi / 4}$ for p an odd prime number.
(a) Prove that $G=\sqrt{2}$, and deduce that $G \cdot 2^{(p-1) / 2} \equiv e^{i \pi p / 4}+e^{-i \pi p / 4} \bmod p$ (in which number ring ?).
(b) Use this equality to obtain the value of $2^{(p-1) / 2}$ modulo p in terms of the congruence of p modulo 8 .
(c) Give finally the formula for the Legendre symbol $\left(\frac{2}{p}\right)$.

Exercise 2. [Jacobi symbol]

For $a \in \mathbb{Z}$ and $b=\prod_{i} p_{i}^{r_{i}}$ coprime (and the latter being odd and positive), one defines the Jacobi symbol of a modulo b by

$$
\left(\frac{a}{b}\right):=\prod_{i}\left(\frac{a}{p_{i}}\right)^{r_{i}} .
$$

(a) Give an example for which $\left(\frac{a}{b}\right)=1$ but a is not square modulo b.
(b) Prove that $\left(\frac{a}{b}\right)$ only depends on the congruence class of a modulo b, and is multiplicative in a and in b.
(c) Compute $\left(\frac{-1}{b}\right)$ and $\left(\frac{2}{b}\right)$ in terms of the congruence classes of b modulo 4 and 8.
(d) Prove that for every a, b positive, odd and coprime, one has the same reciprocity formula

$$
\left(\frac{a}{b}\right)\left(\frac{b}{a}\right)=(-1)^{(a-1)(b-1) / 4}
$$

as for the Legendre symbol.
(e) Use it to devise an algorithm to compute efficiently the Jacobi symbol (hence also the Legendre symbol).
(f) Compute the Jacobi symbols $\left(\frac{7}{15}\right),\left(\frac{12}{43}\right),\left(\frac{13}{53}\right),\left(\frac{10}{99}\right)$.

Exercise 3. [Jacobi symbol and quadratic fields]
Fix $d \in \mathbb{Z}, d \neq 0,1$ squarefree and $K=\mathbb{Q}(\sqrt{d})$.
(a) Recall how an odd prime p decomposes in K in terms of the Legendre symbol $\left(\frac{d}{p}\right)$.
(b) If d is odd, use the reciprocity formula to write it in terms of the Jacobi symbol $\left(\frac{p}{d}\right)$ and the congruence of p modulo 4 .
(c) Use similar arguments in the cases $p=2$ or d even.
(d) Give a complete description of the situation for some d, e.g. $d=-15,-7,6,11$.

Exercise 4. [Computation of some class groups]

Fix $d \in \mathbb{Z}, d \neq 0,1$ squarefree and $K=\mathbb{Q}(\sqrt{d})$.
(a) With the usual \mathbb{Z}-basis of \mathcal{O}_{K}, compute the constant G appearing in the proof of finiteness of the class group (depending on the congruence of d modulo 4 and the sign of d).
(b) Recall why $\mathrm{Cl} \mathcal{O}_{K}$ is generated by the prime ideals \mathfrak{p} such that $N(\mathfrak{p}) \leq G$.
(c) Deduce that for $d=-2,-3,-7$, the ring \mathcal{O}_{K} is principal.
(d) Now, we fix $K=\mathbb{Q}(\sqrt{6})$. Prove that $(2, \sqrt{6})$ is the unique prime ideal above 2 and that it is not principal. Prove the same for $(3, \sqrt{6})$, and that $(2, \sqrt{6})(3, \sqrt{6})$ is principal.
(e) Prove that the prime numbers 7 and 11 are inert in $\mathbb{Q}(\sqrt{6})$, while 5 is totally split.
(f) Using all these considerations, prove that the class group of $\mathbb{Z}[\sqrt{6}]$ is $\mathbb{Z} / 2 \mathbb{Z}$.

