Exercise sheet 3

DECOMPOSITION INTO PRODUCT OF PRIME IDEALS

Exercise 1. [The quadratic case]

Let $d \neq 0,1$ be a squarefree integer and $K=\mathbb{Q}(\sqrt{d})$. As the case $d \neq 1 \bmod 4$ has been done in class, we assume here that $d=1 \bmod 4$.
(a) Give an element $\alpha \in K$ such that $\mathbb{Z}[\alpha]=\mathcal{O}_{K}$. What is its minimal polynomial P over \mathbb{Q} ?
(b) For every prime number p, determine the factorisation of P modulo p. Deduce the factorisation of $p \mathcal{O}_{K}$ as a product of prime ideals of \mathcal{O}_{K}.
(c) What are the prime numbers who ramify in \mathcal{O}_{K} ? Split in \mathcal{O}_{K} ? Are inert in \mathcal{O}_{K} ?

Exercise 2. [Sum and product of ideals]
Let A be a Dedekind ring and I, J two (nonzero) ideals of A.
(a) Prove that for every nonzero prime ideal \mathfrak{p} of A, the power of \mathfrak{p} appearing in the decomposition of I is exactly the maximal integer n such that $I \subset \mathfrak{p}^{n}$.
(b) Give the decompositions of $I J, I \cap J$ and $I+J$ in terms of the decompositions of I and J.
(c) Deduce that $I J=(I+J) I \cap J$.

Exercise 3. [Resultant and discriminant]
Let A be a commutative ring and

$$
P=\sum_{k=0}^{m} a_{k} X^{k}, \quad Q=\sum_{\ell=0}^{n} b_{\ell} X^{\ell} \in A[X]
$$

of respective degrees m and n. The resultant of P, Q, denoted by $\operatorname{Res}(P, Q)$, is the determinant of the $(m+n)$-matrix

$$
\left(\begin{array}{cccccccc}
a_{m} & 0 & \cdots & 0 & b_{n} & 0 & \cdots 0 & \\
a_{m-1} & a_{m} & \ddots & \vdots & \vdots & b_{n} & \ddots & \vdots \\
\vdots & a_{m-1} & \ddots & 0 & \vdots & & \ddots & 0 \\
\vdots & \vdots & \ddots & a_{m} & b_{1} & & & b_{n} \\
a_{0} & & & a_{m-1} & b_{0} & \ddots & \vdots & \vdots \\
0 & \ddots & & \vdots & 0 & \ddots & b_{1} & \vdots \\
\vdots & \ddots & a_{0} & \vdots & \vdots & \ddots & b_{0} & b_{1} \\
0 & \cdots & 0 & a_{0} & 0 & \cdots & 0 & b_{0}
\end{array}\right)
$$

Prove that this is the determinant of $(S, T) \mapsto P S+Q T$ from $A_{n-1}[X] \times A_{m-1}[X]$ to $A_{m+n-1}[X]$ for well-chosen bases of these spaces.
(a) Prove that if $\varphi: A \rightarrow B$ is a ring morphism,

$$
\operatorname{Res}(\varphi(P), \varphi(Q))=\varphi(\operatorname{Res}(P, Q))
$$

for the induced morphism $\varphi: A[X] \rightarrow B[X]$ (acting term by term), if $\operatorname{deg} \varphi(P)=m$ and $\operatorname{deg} \varphi(Q)=n$. What happens if $\operatorname{deg} \varphi(P)=m \operatorname{but} \operatorname{deg} \varphi(Q)<n$?
(b) We assume here that A is an integral domain and fix $K=\operatorname{Frac} A$. Prove that $\operatorname{Res}(P ; Q)$ is the determinant of the multiplication by \bar{Q} in the K-vector space $K[X] /(P)$. Deduce that for every nonconstant $P, Q, R \in A[X]$,

$$
\operatorname{Res}(P, Q R)=\operatorname{Res}(P, Q) \operatorname{Res}(P, R)
$$

and that if

$$
P=a \prod_{i=1}^{m}\left(X-\alpha_{i}\right), \quad Q=b \prod_{j=1}^{n}\left(X-\beta_{j}\right),
$$

then

$$
\operatorname{Res}(P, Q)=a^{n} b^{m} \prod_{i=1}^{m} \prod_{j=1}^{n}\left(\alpha_{i}-\beta_{j}\right)
$$

When is it zero ?
(c) For a number field $K=\mathbb{Q}(\alpha)$ such that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$, if $P \in \mathbb{Z}[X]$ is the minimal polynomial of α over \mathbb{Q}, prove that

$$
\operatorname{disc} K= \pm \operatorname{Res}\left(P, P^{\prime}\right)
$$

(d) Deduce that a prime number p is ramified in \mathcal{O}_{K} if and only if p divides disc K (it is actually true even if \mathcal{O}_{K} is not monogenous).

Exercise 4. [Valuations on Dedekind rings]
Let A be a Dedeking ring and $K=\operatorname{Frac} A$.
For every nonzero prime \mathfrak{p} ideal of A and every nonzero $a \in A$, define $v_{\mathfrak{p}}(a)$ as the power of \mathfrak{p} appearing in the decomposition of $a A$.
(a) Prove that for every nonzero $a, b \in A$ with $a+b \neq 0, v_{\mathfrak{p}}(a+b) \geq \min \left(v_{\mathfrak{p}}(a), v_{\mathfrak{p}}(b)\right)$ and $v_{\mathfrak{p}}(a b)=v_{\mathfrak{p}}(a)+v_{\mathfrak{p}}(b)$.
(b) Deduce that $v_{\mathfrak{p}}$ extends to a group morphism from K^{*} to \mathbb{Z}. One also define by convention $v_{\mathfrak{p}}(0)=+\infty$.
(c) For the prime number p below \mathfrak{p} (i.e. $\mathfrak{p} \cap \mathbb{Z}=p \mathbb{Z}$), what is $v_{\mathfrak{p}}(p)$?
(d) Prove the approximation lemma: for every distincts nonzero prime ideals $\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{r}$ of A, every $x_{1}, \cdots, x_{r} \in A$ and every $n_{1}, \ldots, n_{r} \in \mathbb{N}$ there exists $x \in A$ such that $v_{\mathfrak{p}_{i}}\left(x-x_{i}\right) \geq n_{i}$ for all $i \in\{1, \cdots, r\}$.
(e) Prove that for every $x \in K, x$ belongs to A if and only if $v_{\mathfrak{p}}(x) \geq 0$ for every nonzero prime ideal \mathfrak{p} of A.

Exercise 5. [Dedekind rings and factorization]
Let A be an integral domain.
(a) Assume that every nonzero ideal of A has a unique decomposition into a product of maximal ideals of A. Prove that every nonzero prime ideal of A is maximal, and that A is noetherian.
(b) Using the previous exercise on valuations (which only needs the decomposition exhibited as before), prove that A is integrally closed by arguing on the \mathfrak{p}-adic valuations of an element of Frac A integral over A. We have thus proved that A is a Dedekind domain.
(c) Assume here that A is both a Dedekind domain and a unique factorization domain. Prove that every nonzero prime ideal \mathfrak{p} of A contains some irreducible element $x_{\mathfrak{p}}$ of A, and prove that necessarily $\left(x_{\mathfrak{p}}\right)=\mathfrak{p}$. Deduce that A is a principal ideal domain.

