ExERCISE SHEET 2

Dedekind rings

Exercise 1. [Ring of integers of a biquadratic extension]
Let $m, n>1$ be two distinct squarefree integers congruent to 1 modulo 4 and $K=\mathbb{Q}(\sqrt{m}, \sqrt{n})$.
(a) Prove that $\alpha \in K$ is an algebraic integer if and only if its trace and norm relatively to $\mathbb{Q}(\sqrt{m})$ belong to $\mathcal{O}_{\mathbb{Q}(\sqrt{m})}$.
(b) By considering the relative traces, prove that all $\alpha \in \mathcal{O}_{K}$ is of the shape

$$
\alpha=\frac{a+b \sqrt{m}+c \sqrt{n}+d \sqrt{m n}}{4}, \quad a, b, c, d \in \mathbb{Z}, a \equiv b \equiv c \equiv d \bmod 2 .
$$

(c) For such an α, prove that up to an integer multiple of $(1+\sqrt{m})(1+\sqrt{n}) / 4$, it can be written as

$$
\alpha=\frac{a+b \sqrt{m}+c \sqrt{n}}{4}
$$

with a, b, c even numbers in \mathbb{Z}.
(d) After adding an integer multiple of $(1+\sqrt{n}) / 2$, deduce that an integral basis of \mathcal{O}_{K} is given by

$$
\left(1,\left(\frac{1+\sqrt{m}}{2}\right),\left(\frac{1+\sqrt{n}}{2}\right),\left(\frac{1+\sqrt{m}}{2}\right) \cdot\left(\frac{1+\sqrt{n}}{2}\right)\right) .
$$

Exercise 2. [Non-monogenous ring of integers]
Let $K=\mathbb{Q}(\alpha)$ with α a fixed root of $P(X)=X^{3}-X^{2}-2 X-8$.
(a) Prove that P is irreducible in $\mathbb{Q}[X]$ by showing that α cannot be an integer.
(b) For $\beta=\left(\alpha^{2}+\alpha\right) / 2$, prove that $\beta^{3}-3 \beta^{2}-10 \beta-8=0$ and deduce that $\beta \in \mathcal{O}_{K}$.
(c) Prove that $\operatorname{disc}\left(1, \alpha, \alpha^{2}\right)=-4 \cdot 503$ hence $\operatorname{disc}(1, \alpha, \beta)=-503$. Deduce that $(1, \alpha, \beta)$ is a \mathbb{Z}-basis of \mathcal{O}_{K}.
(d) Prove that for all $x \in \mathcal{O}_{K}, \operatorname{disc}\left(1, x, x^{2}\right)$ is even. Deduce $\mathcal{O}_{K} \neq \mathbb{Z}[x]$.

Exercise 3. [Ring of integers of cyclotomic fields]
Let p be a prime number, $m \in \mathbb{N}^{*}$ and $\zeta_{p^{m}}=e^{2 i \pi / p^{m}}$. The aim of this exercise is to compute the discriminant of $\mathbb{Q}\left(\zeta_{p^{m}}\right)$ and to prove that its ring of integers is $\mathbb{Z}\left[\zeta_{p^{m}}\right]$, as was done for the prime case in the lectures.
(a) Let $K=\mathbb{Q}(a)$ where a is an algebraic number whose minimal polynomial $P \in \mathbb{Z}[X]$ of degree n satisfies Eisenstein criterion for some prime p. Consider an element $x \in \mathcal{O}_{K} \cap \frac{1}{p} \mathbb{Z}[a]$. Write

$$
x=\frac{m_{0}+m_{1} a+\cdots+m_{n-1} a^{n-1}}{p}
$$

Prove that p divides a^{n} but not a^{n-1} (in \mathcal{O}_{K}), and use it by induction to prove that p divides m_{0}, \cdots, m_{n-1}. We have thus established that $\frac{1}{p} \mathbb{Z}[a] \cap \mathcal{O}_{K}=\mathbb{Z}[a]$.
(b) Under the same hypotheses, prove that the p-adic valuations of $\operatorname{disc}(K)$ and $\operatorname{disc}\left(1, a, \cdots, a^{n-1}\right)$ are the same.
(c) Consider the p^{m}-th cyclotomic polynomial $\Phi_{p^{m}}$. Prove that the polynomial $\Phi_{p^{m}}(X+1)$ satisfies Eisenstein criterion, and compute the discriminant of

$$
\left(1, \zeta_{p^{m}}, \cdots, \zeta_{p^{m}}^{p^{m}(p-1)-1}\right)
$$

(d) Use the previous questions to conclude that $\operatorname{disc}(K)= \pm p^{p^{m-1}(p m-m-1)}$ and $\mathcal{O}_{K}=\mathbb{Z}\left[\zeta_{p^{m}}\right]$.

Exercise 4. [Principal ideal domains and Dedekind domains]
Let A be an integral domain.
(a) Assume that A is a principal ideal domain. Recall why A is then noetherian and a unique factorisation domain. What can we say about the generators of prime (resp. maximal) ideals ?
(b) Prove that all unique factorisation domains are integrally closed. Deduce with question (a) that all principal ideal domains are Dedekind domains.
(c) Give an example of a (noetherian) unique factorisation domain which is not a Dedekind domain.

