EXERCISE SHEET 10 FROBENIUS AND RECIPROCITY LAW

Exercise 1. [Basic results]

Let L/K be a Galois extension of number fields with Galois group G. We fix \mathfrak{p} a maximal ideal of \mathcal{O}_K and \mathfrak{q} a prime ideal of \mathcal{O}_L above \mathfrak{p} .

(a) Recall the definition of the decomposition and inertia groups $D_{\mathfrak{q}}$ and $I_{\mathfrak{q}}$, and give their orders. If \mathfrak{q} is unramified, what is the Frobenius $(\mathfrak{q}, L/K)$? Describe these groups when \mathfrak{p} is totally ramified, totally split, or inert.

(b) Consider the tower of extensions $K \subset L^{D_{\mathfrak{q}}} \subset L^{I_{\mathfrak{q}}} \subset L$ and how the primes \mathfrak{p} , $\mathfrak{q} \cap L^{D_{\mathfrak{q}}}$ and $\mathfrak{q} \cap L^{I_{\mathfrak{q}}}$ split in it.

(c) Let K' be a subextension of L/K. Prove that $\mathfrak{q}' = \mathfrak{q} \cap K'$ is unramified above \mathfrak{p} if and only if $K' \subset L^{I_{\mathfrak{q}}}$ and \mathfrak{p} is totally split in K' if and only if $K' \subset L^{D_{\mathfrak{q}}}$.

(d) Prove that for every $g \in G$, $gD_{\mathfrak{q}}g^{-1} = D_{g(\mathfrak{q})}$ and $gI_{\mathfrak{q}}g^{-1} = I_{g(\mathfrak{q})}$. Deduce that $g(\mathfrak{q}, L/K)g^{-1} = (g(\mathfrak{q}), L/K)$.

Exercise 2. [Applications of the theory]

(a) Let K/\mathbb{Q} be a Galois extension with Galois group isomorphic to \mathfrak{A}_n , $n \geq 5$. Prove that for every unramified prime p, the number of primes of K above p is at least n.

(b) For any extension L/K of number fields and \mathfrak{p} a maximal ideal of \mathcal{O}_K , prove that there are subextensions K_D and K_I of L/K such that for a subextension K'of L/K, \mathfrak{p} is unramified (resp. totally split) in K' if and only if $K' \subset K_I$ (resp. $K' \subset K_D$).

(c) Deduce that if L and M are finite extensions of a number field K (in a common algebraic closure \overline{K}), then for every maximal ideal \mathfrak{p} of \mathcal{O}_K , \mathfrak{p} is unramified in L and M if and only if it is unramified in LM. Prove the same equivalence for \mathfrak{p} totally split.

(d) With the same notations as in Exercise 1, assume that \mathfrak{p} is totally ramified in every strict subextension K' of L/K. Prove that it is totally ramified in L unless G is cyclic of prime order.

(e) With the same notations again, assume that \mathfrak{p} is unramified in every strict subextension K' of L/K. Prove that \mathfrak{p} is unramified in L unless G admits a nontrivial minimal subgroup for inclusion. In this case, prove that such a subgroup is cyclic of prime order p and that G is a p-group.

Exercise 3. Application of the reciprocity law for cyclotomic fields

Let $n \ge 3$ and $p \equiv 1 \mod n$ a prime, such that 2 is a *n*-th power modulo *p*. We fix $K = \mathbb{Q}(\zeta_p)$.

(a) Prove that there is a unique subfield $F \subset K$ such that $[F : \mathbb{Q}] = n$.

(b) As usual, we identify $\operatorname{Gal}(K/\mathbb{Q})$ to $(\mathbb{Z}/p\mathbb{Z})^*$ via the cyclotomic character. How can we see the groups $\operatorname{Gal}(K/F)$ and $\operatorname{Gal}(F/\mathbb{Q})$ through this identification ? (c) Using the relationship between the Frobenius $(2, F/\mathbb{Q})$ and $(2, K/\mathbb{Q})$, prove that the prime 2 is totally split in F.

(d) Assume there exists $y \in \mathcal{O}_F$ such that $F = \mathbb{Z}[y]$. How does the minimal polynomial of y split modulo 2? Derive a contradiction.

(e) Apply this result for p = 31.