Exercise sheet 1

Number fields

Exercise 1.

Let $K=\mathbb{Q}[\sqrt{2}, \sqrt{3}]$.
(a) Find $\alpha \in \mathbb{C}$ such that $K=\mathbb{Q}(\alpha)$.
(b) Give the values of all different embeddings $K \hookrightarrow \mathbb{C}$ at $\sqrt{2}$ and $\sqrt{3}$, and the trace and norm of $\sqrt{2}$ and $\sqrt{3}$ over \mathbb{Q}.

Exercise 2. [Norm on a number field]
Let K be a number field.
(a) For every $\alpha \in K$, prove that $\alpha=0 \Longleftrightarrow N_{K / \mathbb{Q}}(\alpha)=0$. If $\alpha \in \mathcal{O}_{K}$, prove that $N_{K / \mathbb{Q}}(\alpha) \in \mathbb{Z}$. Is it an equivalence ?
(b) Prove that the units of \mathcal{O}_{K} are exactly the $\alpha \in \mathcal{O}_{K}$ such that $N_{K / \mathbb{Q}}(\alpha)= \pm 1$.
(c) Prove that for $\alpha \in \mathcal{O}_{K}$, if $N_{K / \mathbb{Q}}(\alpha)$ is a prime number, then α is irreducible in \mathcal{O}_{K}. Is it an equivalence ?

Exercise 3. [Discriminant]

(a) For $P \in \mathbb{Q}[X]$ irreducible of degree d and α a root of $P, K=\mathbb{Q}(\alpha)$, prove that

$$
\operatorname{disc}\left(1, \alpha, \cdots, \alpha^{d-1}\right)=(-1)^{d(d-1) / 2} N_{K / \mathbb{Q}}\left(P^{\prime}(\alpha)\right)
$$

(b) Let $d \in \mathbb{Z} \backslash\{0,1\}$ and $K=\mathbb{Q}(\sqrt{d})$. Compute $\operatorname{disc}(1, \sqrt{d})$.
(c) For $P=X^{3}+a X+b \in \mathbb{Q}[X]$ irreducible on \mathbb{Q} and α a root of P, compute $\operatorname{disc}\left(1, \alpha, \alpha^{2}\right)$.

Exercise 4. [Taussky's theorem]

Let K be a number field of degree n.
We denote by $\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ a basis of K over \mathbb{Q}, and by $\sigma_{1}, \cdots, \sigma_{n}$ the embeddings $K \hookrightarrow \mathbb{C}$, numbered so that the r first ones are the real embeddings and for every $i \in\{r+1, \cdots, r+s\}, \overline{\sigma_{i}}=\sigma_{i+s}$.
(a) Recall the proof of the matrix equality

$$
\left(\operatorname{Tr}_{K / \mathbb{Q}}\left(\alpha_{i} \alpha_{j}\right)\right)_{i, j}={ }^{t} M M, \quad M=\left(\sigma_{i}\left(\alpha_{j}\right)\right)_{i, j}
$$

(b) Prove there is an invertible matrix $R \in M_{n}(\mathbb{R})$ such that the $r+s$ first rows of $R M$ are real and the s last ones are pure imaginary.
(c) Define D the diagonal matrix whose first $r+s$ diagonal coefficients are 1 and the last s coefficients are i. Prove that $D R M$ is real, and deduce that ${ }^{t} M M$ is congruent (over \mathbb{R}) to $D^{-1 t} R^{-1} R^{-1} D^{-1}$.
(d) Prove that $D^{-1 t} R^{-1} R^{-1} D^{-1}$ is of the shape

$$
\left(\begin{array}{cc}
B_{1} & 0 \\
0 & -B_{2}
\end{array}\right)
$$

with B_{1} and B_{2} positive definite real symmetric matrices of respective sizes $r+s$ and s.
(e) Prove that the signature of the trace forme over K is $(r+s, s)$. What is the sign of the discriminant of K ?

Exercise 5. [Diophantine approximation]

(a) For any $x \in \mathbb{R}$ and any integer $M \geq 1$, use the pigeonhole principle to prove that there exists $(p, q) \in \mathbb{Z}^{2}$ with $1 \leq q \leq M$ such that $|q x-p|<1 / M$.
(b) Use it to prove that for any $x \notin \mathbb{Q}$, there are infinitely many rational numbers p / q such that $|x-p / q|<1 / q^{2}$ (Dirichlet's approximation theorem).
(c) Prove that the number $\sum_{k=0}^{+\infty} 1 / 2^{k!}$ is transcendental.

