Mixed Hodge Structures on Cohomology Jump Ideals

Periods, Shafarevich Maps and Applications University of Miami

Louis-Clément LEFÈVRE

Lycée Hoche, Versailles

February 1, 2023

Introduction

- X: smooth algebraic variety $/\mathbb{C}$ ($X \hookrightarrow \overline{X}$ proper) or: $X \hookrightarrow \overline{X}$ compact Kähler (X: quasi-Kähler) with complement a normal crossing divisor
- $x \in X$: base point
- $\pi_1(X,x)$: fundamental group, finitely presentable
- $G \subset GL(N)$: linear algebraic group $/\mathbb{C}$
- $\mathfrak{g} := \operatorname{Lie}(G) \subset \operatorname{End}(\mathbb{C}^N)$

General Topic

Study the topology of X via linear representations of $\pi_1(X,x)$ into G.

Moduli space of representations

$$\operatorname{Hom}(\pi_1(X,x),G) := \operatorname{Hom}_{\operatorname{Group}}(\pi_1(X,x),G(\mathbb{C})) \tag{1}$$

- + structure of affine scheme of finite type $/\mathbb{C}$
- = moduli space of representations ρ of $\pi_1(X,x)$ into G
- = moduli space of G-local systems V_{ρ} over X with a framing $V_{\rho,x} \simeq \mathbb{C}^N$ at x.

Cohomology jump loci

$$k, i \in \mathbb{Z}_{\geq 0}$$

$$\Sigma_k^i = \left\{ \rho : \pi_1(X, x) \longrightarrow G(\mathbb{C}) \mid \dim(H^i(X, V_\rho)) \ge k \right\} \subset \operatorname{Hom}(\pi_1(X, x), G) \quad (2)$$

closed subschemes.

Question : local and global structure of $\operatorname{Hom}(\pi_1(X,x),G)$ and the Σ_k^i \rightsquigarrow restrictions on the topology of X.

Examples of known results

$$G=\mathbb{C}^*$$
:

$$\operatorname{\mathsf{Hom}}(\pi_1(X,x),\mathbb{C}^*) \simeq (\mathbb{C}^*)^{b_1(X)} \times (\operatorname{finite}) \tag{3}$$

• Local structure: Esnault-Schechtman-Viehweg: X complement of an arrangement of hyperplanes, $G=\mathbb{C}^*$, at $\rho=1$, germ at ρ of $\Sigma^i_k\simeq$ germ at 0 of

$$\left\{\omega \in H^1(X,\mathbb{C}) \mid \dim H^i\Big(H(X,\mathbb{C}), \omega \wedge -\Big) \ge k\right\} \tag{4}$$

Generalizations of Dimca-Papadima-Suciu in rank N

- Irreducible components of Σ_k^i passing through ρ are sub-tori translated by torsion points (successive generalizations : Beauville, Green-Lazarsfeld, Arapura, Simpson, Budur-Wang, Budur-Rubió...)
- Esnault-Kerz (arithmetic methods), Budur-Wang, Lerer: X algebraic $/K \subset \mathbb{C}$, Σ_k^i is motivic: $T_\rho \operatorname{Hom}(\pi_1(X,x),\mathbb{C}^*) \subset H^1(X,\mathbb{C})$ sub-MHS and absolutely constructible \longrightarrow arithmetic properties, geometric origins.

Main object of study

$$\rho: \pi_1(X, x) \longrightarrow G(\mathbb{C}) \longleftrightarrow \text{point } \rho \in \text{Hom}(\pi_1(X, x), G)$$

Definition (Cohomology jump ideals)

- $\widehat{\mathcal{O}}_{\rho} = \text{completed local ring of Hom}(\pi_1(X, X), G) \text{ at } \rho$
- $\bullet \ J^i_k \subset \widehat{\mathcal{O}}_\rho = \text{ideal defining } \Sigma^i_k \text{ at } \rho$

Interest: for a local Artin algebra $A \ / \mathbb{C}$ (ex: $A = \mathbb{C}[t]/t^n$)

$$\mathsf{Def}(\rho)(A) := \mathsf{Hom}(\widehat{\mathcal{O}}_{\rho}, A) = \left\{ \widetilde{\rho} : \pi_1(X, x) \longrightarrow G(A) \mid \widetilde{\rho} = \rho \text{ over } G(\mathbb{C}) \right\} \quad (5)$$

 \rightsquigarrow deformation function $Def(\rho) : Art \longrightarrow Set$.

Similarly : $\mathsf{Def}_k^i(\rho) : A \mapsto \mathsf{Hom}(\widehat{\mathcal{O}}_\rho/J_k^i,A)$

Remark: everything is defined over $\mathbf{k} \subset \mathbb{C}$ if G, ρ are defined over \mathbf{k} .

Main result

Theorem (Eyssidieux-Simpson, 2008)

X compact, $V_{
ho}$ underlying a VHS: construction of a MHS on $\widehat{\mathcal{O}}_{
ho}$.

Theorem (L., 2019, 2020)

Extension to X non-compact, V_{ρ} underlying an admissible VMHS with unipotent monodromy at infinity.

Theorem (L., 2021)

The $J_k^i \subset \widehat{\mathcal{O}}_{\rho}$ are sub-MHS.

Tool: differential graded Lie algebras

X smooth, ρ fixed, over \mathbb{C} .

- \leadsto flat principal G-bundle P_{ρ} , adjoint bundle $\operatorname{ad}_{\rho} = P_{\rho} \times_{G} \mathfrak{g} \subset \mathcal{E} nd(V_{\rho})$.
- $\rightarrow L := \mathscr{E}^{\bullet}_{\mathcal{C}^{\infty}}(X, \operatorname{ad}_{\rho})$ equipped with $d : L^{i} \rightarrow L^{i+1}$ and $[-, -] : L^{i} \times L^{j} \rightarrow L^{i+j}$: differential graded Lie algebra.
- $\leadsto M := \mathscr{E}^{\bullet}_{\mathcal{C}^{\infty}}(X, V_{\rho})$ equipped with $d: M^i \to M^{i+1}$ and $L^i \times M^j \to M^{i+j}$: module over L.
- $+ \varepsilon_x : L \to \mathsf{ad}_{\rho,x} \simeq \mathfrak{g}$ augmentation at x

Deformation functors

L: any DG Lie algebra over $\mathbf{k} \rightsquigarrow \text{deformation functor Def}(L)$. For $(A, \mathfrak{m}) \in \mathbf{Art}$:

$$\mathsf{Def}(L)(A) := \left\{ \omega \in L^1 \otimes \mathfrak{m} \; \middle| \; d(\omega) + \frac{1}{2} [\omega, \omega] = 0 \right\} / \exp(L^0 \otimes \mathfrak{m}) \tag{6}$$

For (L, M) any DG Lie pair \leadsto sub-functors $\operatorname{Def}_k^i(L, M) \subset \operatorname{Def}(L)$: for $\omega \in \operatorname{Def}(L)(A) \leadsto$ differential $d_\omega := d \otimes \operatorname{id}_A + \omega$ on $M \otimes A$

 \rightsquigarrow jump ideals $J_k^i(M \otimes A, d_\omega) \subset A$

$$\longrightarrow \operatorname{Def}_{k}^{i}(L,M)(A) := \{ \omega \in \operatorname{Def}(L)(A) \mid J_{k}^{i}(M \otimes A, d_{\omega}) = 0 \}.$$

Theorem

- (Main principle) $L \to L'$ quasi-isomorphism of DG Lie algebras \Longrightarrow $\mathsf{Def}(L) \to \mathsf{Def}(L')$ isomorphism of deformation functors.
- (Goldman-Millson) Let $L_0 := \operatorname{Ker}(\varepsilon_{\mathsf{x}} : L \to \mathfrak{g}) \Longrightarrow \operatorname{Def}(L_0) \simeq \operatorname{Def}(\rho)$. $\Longrightarrow \widehat{\mathcal{O}}_{\rho}$ is determined by (L, ε) , up to quasi-isomorphism of L.
- (Budur-Wang) $(L, M) \rightarrow (L', M')$ quasi-isomorphism of DG Lie pairs \Longrightarrow $\operatorname{Def}_k^i(L, M) \rightarrow \operatorname{Def}_k^i(L', M')$ isomorphism; and here $\operatorname{Def}_k^i(L_0, M) \simeq \operatorname{Def}_k^i(\rho)$.

$\Longrightarrow J_k^i\subset\widehat{\mathcal{O}}_{ ho}$ is determined by (L,M,arepsilon), up to quasi-isomorphism of (L,M).

Examples:

- X compact Kähler manifold, G = GL(N), V_{ρ} polarized VHS (and $\operatorname{ad}_{\rho} \subset \mathcal{E} nd(V_{\rho})$ also VHS)
 - \implies (analytic methods) (L, M) is *formal*, i.e. quasi-isomorphic to (H(L), H(M)).
 - $\Longrightarrow \widehat{\mathcal{O}}_{\rho} \approx \text{complete local ring at 0 to the quadratic cone}$ $[\omega,\omega]=0\subset H^1(X,\operatorname{ad}_{\rho}).$
 - $\Longrightarrow J^i_k\subset\widehat{\mathcal{O}}_
 ho=$ ideal defining the ω s.t. $\dim H^i\Bigl(H(X,V_
 ho),\omega\Bigr)\geq k$.
- $G=\mathbb{C}^*$, ho=1 : the $\omega\in H^1(X,\mathbb{C})$ s.t. $\dim H^i(H(X,\mathbb{C}),\omega\wedge -)\geq k$

L_{∞} algebras

In our cases X: non-compact, there are MHS on cohomology with coefficients in a VMHS, also on H(L) and H(M), but... L may not be formal

Theorem (Derived deformation theory)

- H(L) has a structure of L_{∞} algebra, with maps $\ell_n: H(L)^{\otimes n} \to H(L)$ of degree 2-n, for all $n \geq 1$ ($\ell_1 = d = 0$, $\ell_2 = [-, -]$, ℓ_3 : Massey product),
- ullet L becomes quasi-isomorphic to H(L) as L_{∞} algebra.
- L is formal $\iff \ell_n = 0 \ \forall n > 2$.
- Any L_{∞} algebra has a deformation functor, invariant under quasi-isomorphisms: for $(A, \mathfrak{m}) \in \mathbf{Art}$

$$\mathsf{Def}(H(L))(A) := \left\{ \omega \in H^1(L) \otimes \mathfrak{m} \; \left| \; \sum_{n=1}^{+\infty} \frac{\ell_n(\omega, \dots, \omega)}{n!} = 0 \right. \right\} / homotopy$$
 (7)

And for the pair (L, M):

Theorem (Budur-Rubió)

H(M) has as structure of L_{∞} module over H(L), with maps

$$\mu_n: H(L)^{\otimes (n-1)} \otimes H(M) \to H(M)$$
 (8)

of degree 2-n, $n \ge 1$ ($\mu_1 = d_{H(M)} = 0$, $\mu_2 =$ action of H(L) on H(M)) and (L, M) becomes quasi-isomorphic as L_{∞} pair to (H(L), H(M)).

Any such L_{∞} pair has deformation functors, invariant under quasi-isomorphisms of the pair: $\omega \in \text{Def}(H(L))(A)$ defines a differential

$$d_{\omega} := \sum_{n \geq 1} \frac{1}{n!} (\mu_n \otimes A)(\omega, \dots, \omega, -)$$
 (9)

on $H(M) \otimes A$ and jump ideals $J_k^i(H(M) \otimes A, d_\omega) \subset A$, and

$$\mathsf{Def}_k^i(H(L),H(M))(A) := \Big\{ \omega \in \mathsf{Def}(H(L))(A) \mid J_k^i(H(M) \otimes A, d_\omega) = 0 \Big\}. \quad (10)$$

Come back to our problem:

Goal

ho: representation such that $V_{
ho}$ underlies a VMHS (\Rightarrow ad $_{
ho} \subset \mathcal{E}\mathit{nd}(V_{
ho})$ also), admissible

 $\Longrightarrow H(X, \operatorname{ad}_{\rho}), H(X, V_{\rho})$ have MHS on cohomology and with bracket, action, being morphisms of MHS.

Goal: $\hat{\mathcal{O}}_{\rho}$ has a MHS and J_k^i is a sub-MHS.

Problems:

- MHS exist only on the cohomology of (L, M) but the deformation functors depend on the entire (L, M) up to quasi-isomorphisms.
- Similarly: the Lie bracket and action maps over $\mathbb{Q} \subset \mathbb{R}$ exist only on the cohomology of L, M; the classical theories produce cochain complexes over \mathbb{Q} and \mathbb{C} , quasi-isomorphic to L, M, equipped with filtrations, forming the data of a mixed Hodge complex, inducing the MHS on cohomology.
 - \implies but we want algebras over $\mathbb Q$ commutative at the level of cochains (problem of rational homotopy theory) combined with Hodge theory.
- Deal with the augmentation ε_x : L may not have $H^0(L) = 0$ (Def(L) not pro-representable), but $Ker(\varepsilon_x)$ does.

How to get these

Recall the following from classical Hodge Theory:

Theorem

- (Deligne) X complex algebraic (or: quasi-Kähler) \Longrightarrow all groups $H^n(X,\mathbb{Q})$ have a MHS.
- (Saito) V: admissible VMHS over $X \subset \overline{X} \Longrightarrow$ each $H^n(X, V)$ has a MHS.

In this last case: $j: X \hookrightarrow \overline{X}$, $D = \overline{X} \setminus X$, the data $(Rj_*\mathbb{Q}_{\underline{X}}, \Omega_{\overline{X}}(\log D) \otimes V)$ forms a *mixed Hodge complex* (extend first V as \mathcal{C}^{∞} vector bundle)

And from Rational Homotopy Theory:

Theorem

• (Morgan, Hain) Construction of MHS on $\pi_n(X) \otimes \mathbb{Q}$.

This last constructions uses *multiplicative cochain complexes over* \mathbb{Q} that compute $H(X,\mathbb{Q})$, using algebras of rational polynomial forms on X.

Plan of proof

- Previous work \Longrightarrow construct (L,M) which is at the same time a DG Lie pair computing $(H(X,\operatorname{ad}_{\rho}),H(X,V_{\rho}))$, and equipped with filtrations, forming a mixed Hodge complex, inducing the MHS on cohomology. Components over $\mathbb{C}\colon \Omega_{\overline{X}}(\log D)\otimes\operatorname{ad}_{\rho}$ and $\Omega_{\overline{X}}(\log D)\otimes V_{\rho}$ Components over $\mathbb{Q}\colon$ rational polynomial forms with twisted coefficients Easy with the *Thom-Whitney resolution functors*.
- Recent work of Cirici-Sopena $\Longrightarrow (H(L), H(M))$ structure of L_{∞} pair with all higher operations being morphisms of MHS.
- The problem becomes linear algebra in finite-dimensional vector spaces equipped with MHS!
 - $\Longrightarrow \widehat{\mathcal{O}}_{
 ho}$ has a MHS (Maurer-Cartan equation with MHS)
- For A: MH Artin ring, $\omega \in \text{Def}(H(L))(A)$: MH Maurer-Cartan element (s.t. multiplication by ω is a morphism of MHS)
 - d_{ω} is a differential on $H(M) \otimes A$ compatible with MHS,
 - $J_k^i(H(M) \otimes A, d_\omega) \subset A$ is a sub-MHS,
 - $\Longrightarrow J_k^i \subset \widehat{\mathcal{O}}_{\varrho}$ is a sub-MHS.

Application to the global structure

- X: quasi-Kähler
- $G = \mathbb{C}^*$
- ullet W: admissible VMHS over X with unipotent monodromy at infinity

Consequences of splitting the weight filtration over \mathbb{C} :

Theorem (L., 2021)

The irreducible components of the relative cohomology jump loci

$$\Sigma_k^i(W) := \left\{ \rho : \pi_1(X, X) \longrightarrow \mathbb{C}^* \mid \dim(H^i(X, V_\rho \otimes W)) \ge k \right\}$$
 (11)

passing through 1 are sub-tori.

Budur-Wang 2020: case X algebraic, algebraic methods, local systems of geometric origin.