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1. Introduction

The Kontsevich–Zorich cocycle, introduced in [25], is a cocycle over the Teichmüller flow
on the moduli space of holomorphic (quadratic) differentials. The study of the dynamics
of this cocycle, in particular of its Lyapunov structure, has important applications to the
ergodic theory of interval exchange transformations (i.e.t.’s) and related systems such as
measured foliations, flows on translation surfaces and rational polygonal billiards (see the
article by H. Masur [5] in this handbook). The Kontsevich–Zorich cocycle is a continuous-
time version of a cocycle introduced by G. Rauzy [35] as a “continued fractions algorithm”
for i.e.t.’s and later studied byW. Veech, in his work on the unique ergodicity of the generic
i.e.t. [38], and A. Zorich [45,46] among others.

1.1. Deviation of ergodic averages and other applications

Zorich (see [44,46,47]) made the key discovery that typical trajectories of generic (ori-
entable) measured foliations on surfaces of higher genus (or equivalently of generic i.e.t.’s
with at least 4 intervals) deviate from the mean according to a power law with exponents
determined by the Lyapunov exponents of the cocycle.
In [45] he began a systematic study of the Lyapunov spectrum of the cocycle and con-

jectured, on the basis of careful numerical experiments, that all of its Lyapunov exponents
are non-zero and simple. He also observed that, as a consequence of the close connection
between the cocycle and the Teichmüller geodesic flow, the simplicity of the top exponent,
sometimes called the spectral gap property, is equivalent to the (non-uniform) hyperbolic-
ity of the Teichmüller flow, which had been proved earlier by W. Veech [40].
The applications of the Kontsevich–Zorich cocycle to the dynamics of i.e.t.’s and related

systems are not limited to the deviation of ergodic averages. The spectral gap property of
the cocycle also plays an important role in recent results of Marmi, Moussa and Yoccoz
[27,28] on the cohomological equation for generic i.e.t.’s, which improve on previous work
of the author [19].
In a different direction, A. Avila and the author [7] have recently shown that the posi-

tivity of the second exponent (for surfaces of higher genus) implies that almost every i.e.t.
which is not a rotation is weakly mixing and that the generic directional flow on the generic
translation surface of higher genus is weakly mixing as well. This result answers in the
affirmative a longstanding conjecture on the dynamics of i.e.t.’s. Special cases of the con-
jecture were earlier settled by A. Katok and A. Stepin [24] (for i.e.t.’s on 3 intervals) and
W. Veech [39] (for i.e.t.’s on any number of intervals, but with special combinatorics).

1.2. Renormalization for parabolic systems

The role of the Kontsevich–Zorich cocycle can be explained by the somewhat vague obser-
vation that it provides a renormalization dynamics for i.e.t.’s (and related systems). Such
systems provide fundamental examples of parabolic dynamics, which by definition is char-
acterized by sub-exponential (polynomial) divergence of nearby orbits.
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All systems with behavior intermediate between elliptic, characterized by no or “very
slow” divergence of nearby orbits, and hyperbolic, characterized by exponential divergence
of nearby orbits, can be roughly classified as parabolic. A classical example of parabolic
dynamics is the horocycle flow (on a surface of constant negative curvature). For i.e.t.’s
(and related systems) there is no infinitesimal divergence of orbits, but parabolic orbit
divergence is produced over time by the presence of singularities.
Key generic features of parabolic dynamics include unique ergodicity, polynomial devi-

ation of ergodic averages from the mean and presence of invariant distributional obstruc-
tions, which are not measures, to the existence of smooth solutions of the cohomological
equation. The elliptic, parabolic and hyperbolic paradigms are described in depth in the
survey by B. Hasselblatt and A. Katok [3] in this handbook.
Parabolic (and elliptic) systems are often studied by means of appropriate renormaliza-

tion schemes which enable to understand the dynamics of the generic system in a given
family through the study of an auxiliary hyperbolic system. The hyperbolic system (renor-
malization) can in turn be studied by means of the well-developed tools of hyperbolic
theory (Lyapunov exponents, invariant manifolds, Pesin theory, Lifschitz theory).
The Teichmüller flow and the Kontsevich–Zorich cocycle (and related systems such as

the Rauzy–Zorich induction [35,45] or Veech “zippered rectangles” flow [38] and the cor-
responding cocycles) provide an effective renormalization scheme for i.e.t.’s and related
systems.
Other well-known examples of renormalization include the classical Gauss map, which

renormalizes rotations of the circle, and the geodesic flow (on a surface of constant negative
curvature), which renormalizes the corresponding horocycle flow.
A tentative systematic approach to renormalization for a class of parabolic flows of

algebraic nature, called “pseudo-homogeneous” flows, which includes conservative flows
on surfaces, classical horocycle flows and nilflows in dimension 3, has been proposed by
the author in [20].

1.3. Contents

In this article we outline the author’s proof [21] of a substantial part of the Zorich conjec-
ture on the Lyapunov spectrum of the Kontsevich–Zorich cocycle.

ZORICH CONJECTURE. The Lyapunov exponents for the canonical absolutely continuous
invariant measure on any connected component of any stratum of the moduli space are all
non-zero and distinct.

In [21] we have proved that the exponents are all non-zero, hence the cocycle is by
definition non-uniformly hyperbolic. The full Zorich conjecture, which affirms that the
Lyapunov spectrum is simple, that is, all Lyapunov exponents are distinct, was left open
in [21] in genus higher than 3. A proof based on ideas different from ours has been recently
announced by A. Avila and M. Viana [8]. In this outline, we have chosen to restrict our-
selves to the proof of the positivity of the second exponent (Corollary 6.3) which is easier
to explain and already contains all the main ideas of our method. As we have mentioned
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above, this is the key property in applications to i.e.t.’s (deviations of ergodic averages,
weak-mixing). In passing we give a new, rather elementary, complete proof of the spectral
gap property (Theorem 2.2).
We then present a rather unexpected example of an SL(2,R)-invariant measure sup-

ported on a closed Teichmüller disk in genus 3 for which the second and the third Lyapunov
exponents are zero (Corollary 7.4). This example shows that (in genus greater than 3) the
Zorich conjecture does not hold for all SL(2,R)-invariant measures on the moduli space.
The significance of this conclusion is best understood in the perspective of the ergodic
theory of rational polygonal billiards. In fact, for the generic directional flow on a fixed
rational polygonal billiard the questions on deviation of ergodic averages and weak mix-
ing are wide open, except for special cases, as a consequence of the fact that holomorphic
differentials arising from rational billiards form a zero Lebesgue measure subset of the
moduli space (see the survey by H. Masur and S. Tabachnikov [6] in this handbook on the
dynamics of rational polygonal billiards).
Finally, we present the bulk of our proof of a representation theorem for Zorich cycles

(Theorem 8.2). The phase space of the Kontsevich–Zorich cocycle is a (orbifold) vector
bundle over the moduli space of holomorphic (quadratic) differentials on Riemann surfaces
with fiber at each holomorphic differential given by the real homology (or cohomology)
of the underlying Riemann surface. This bundle is sometimes called the real homology
(or cohomology) bundle. Zorich cycles (or cocycles) are the homology (or cohomology)
classes forming the invariant stable/unstable space of the Kontsevich–Zorich cocycle. For
a generic (holomorphic) quadratic differential, leaves of the horizontal/vertical measured
foliation “wind around a surface” deviating from a straight line (spanned by the Schwartz-
man’s asymptotic cycle) in the direction of Zorich cycles in the real homology of the sur-
face (see [44,47] or [48, Appendix D]).
We prove that Zorich cycles can be represented in terms of special closed currents on

the surface (in the sense of de Rham) related to the horizontal/vertical measured foliation,
called basic currents. Basic currents for measured foliations are in turn closely related to
invariant distributions appearing as obstructions to the existence of smooth solutions of
the cohomological equation for directional flows on translation surfaces or for i.e.t.’s [19,
27,28].

1.4. Organization

In Section 2 we review some background on the dynamics of the Teichmüller flow on the
moduli space of holomorphic (quadratic) differentials.
In Section 3 we give our definition of the Kontsevich–Zorich cocycle and state the main

theorem on its Lyapunov spectrum (Theorem 3.1).
In Section 4 we derive the variational formulas which describe the evolution of coho-

mology classes and their norms under the action of the cocycle (Lemmas 4.2 and 4.3).
In Section 5 bounds (upper and lower) on the second Lyapunov exponent are derived

from the variational formulas of Section 4. The upper bound is easily obtained and allows
us to immediately prove the spectral gap property (Theorem 2.2). The proof of the lower
bound is harder since there are subtle cancellations.
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Following [25] we take a harmonic analysis point of view (boundary behavior of har-
monic functions, Brownian motion) on the generic Teichmüller disk which happens to
be an isometric copy of the Poincaré disk. In concrete terms, we compute formulas for
the hyperbolic gradient and Laplacian of the norm of a (fixed) cohomology class along a
Teichmüller disk (Lemma 5.2). These formulas allow us to prove a lower bound for the
second exponent in terms of the lowest eigenvalue of a Hermitian form which represents
a ‘Hodge curvature’ of the real cohomology bundle. However, we have yet to prove that
such a bound is non-trivial, that is, strictly positive. In fact, the Hodge curvature is degen-
erate on a real analytic subvariety of codimension 2 of the moduli space of holomorphic
differentials.
In Section 6 we describe such a subvariety that we have called the determinant locus

since it coincides with the locus where the determinant of the Lie derivative of the clas-
sical period matrix along the Teichmüller flow vanishes (Lemma 6.1). The proof that the
second exponent is positive on all connected components of all strata of the moduli space
is reduced to the statement that no connected component of a stratum is contained in the
determinant locus (Theorem 6.2). The proof of this theorem, based on asymptotic formulas
for the period matrix and its Lie derivative near appropriate boundary points of the moduli
space, is only sketched here. The complete argument can be found in [21, Section 4].
In Section 7 we answer in the affirmative a question asked by W. Veech on whether

there exist Teichmüller disks entirely contained in the determinant locus. Our example
consists of a closed Teichmüller disk in genus 3 (in the stratum of holomorphic differentials
with 4 simple zeroes) generated by a non-primitive Veech surface obtained as a 2-sheeted
branched cover over the square torus with 4 branching points of order 2. Such a Veech
surface has appropriate symmetries, stable under the SL(2,R)-action, which imply that
the Hodge curvature has the minimal rank 1 (Theorem 7.3). It follows that of the 3 non-
negative exponents of the Kontsevich–Zorich cocycle only one (the trivial one) is non-zero
on the corresponding closed SL(2,R)-orbit (Corollary 7.4).
Finally, in Section 8 we prove the representation theorem for Zorich cycles. The proof

is based on the variational formulas of Section 4, on a Cheeger-type lower bound for the
smallest eigenvalue of the flat Laplacian on a translation surface, equivalent to a Poincaré
inequality for the appropriate Sobolev norms (Lemma 8.3), and on the logarithmic law for
geodesic in the moduli space of holomorphic (quadratic) differentials [31].

2. Elements of Teichmüller theory

In this section we recall a few definitions and results of Teichmüller theory which are
essential to understanding the material treated in later sections.
Let Tg,Qg be the Teichmüller spaces of complex (conformal) structures and of holo-

morphic quadratic differentials on a surface of genus g ! 1. The spaces Tg and Qg can be
roughly described as follows:

Tg := {complex (conformal) structures}/Diff+0 (M),

Qg := {holomorphic quadratic differentials}/Diff+0 (M), (1)
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where Diff+0 (M) is the group of orientation preserving diffeomorphisms of the surface
M which are isotopic to the identity (equivalently, it is the connected component of the
identity in the Lie group of all orientation preserving diffeomorphisms of M).
If g ! 2, the space Tg is topologically equivalent to an open ball of real dimension

6g−6. In fact, a theorem of L. Ahlfors, L. Bers and S. Wolpert states that Tg has a complex
structure holomorphically equivalent to that of a Stein (strongly pseudo-convex) domain
in C3g−3 [9, §6], or [32, Chapters 3, 4 and Appendix §6]. The space Qg of holomorphic
quadratic differentials is a complex vector bundle over Tg which can be identified to the
cotangent bundle of Tg . If g = 1, the Teichmüller space T1 of elliptic curves (complex
structures on T 2) is isomorphic to the upper half plane C+ and the Teichmüller space Q1
of holomorphic quadratic differentials on elliptic curves is a complex line bundle over T1
[32, Example 2.1.8].
LetRg ,Mg be themoduli spaces of complex (conformal) structures and of holomorphic

quadratic differentials on a surface of genus g ! 1. The spaces Rg andMg can be roughly
described as the quotient spaces:

Rg := Tg/Γg, Mg := Qg/Γg, (2)

where Γg denotes the mapping class group Diff+(M)/Diff+0 (M). If g = 1, the mapping
class group can be identified with the lattice SL(2,Z) which acts on the upper half plane
C+ in the standard way. The moduli space R1 := C+/SL(2,Z) is a non-compact finite
volume surface with constant negative curvature, called the modular surface. The moduli
spaceM1 can be identified to the cotangent bundle of the modular surface.
The Teichmüller (geodesic) flow is a Hamiltonian flow onMg , defined as the geodesic

flow with respect to a natural metric on Rg called the Teichmüller metric. Such a met-
ric measures the amount of quasi-conformal distortion between two different (equivalent
classes of) complex structures in Rg . In the higher genus case, the Teichmüller metric is
not Riemannian, but only Finsler (that is, the norm on each tangent space does not come
from an Euclidean product) and, as H. Masur proved, does not have negative curvature
in any reasonable sense [9, §3 (E)]. If g = 1, the Teichmüller metric coincides with the
Poincaré metric on the modular surface R1 [32, 2.6.5], in particular it is Riemannian with
constant negative curvature.
In order to obtain a more geometric description of the Teichmüller flow, we introduce

below a natural action of the Lie group SL(2,R) on Qg (see also [4, §1.4] or [5, §3], in
this handbook). This action is equivariant with respect to the action of the mapping class
group, hence it passes to the quotientMg .
A holomorphic quadratic differential q naturally defines two transverse measured foli-

ations (in the Thurston’s sense [37,17]), the horizontal foliation Fq and the vertical folia-
tion F−q :

Fq :=
{
Im

(
q1/2

)
= 0

}
, with transverse measure

∣∣Im
(
q1/2

)∣∣,

F−q :=
{
Re

(
q1/2

)
= 0

}
, with transverse measure

∣∣Re
(
q1/2

)∣∣. (3)

Vice versa, any pair (F ,F⊥) of transverse measure foliations determines a complex
structure and a holomorphic quadratic differential q such that F = Fq and F⊥ = F−q .
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Transversality for measured foliations is taken in the sense that F and F⊥ have a common
set Σ of (saddle) singularities, have the same index at each singularity and are transverse
in the standard sense onM \Σ . The set Σ of common singularities coincides with the set
Σq of zeroes of the holomorphic quadratic differential q ≡ (F ,F⊥).
The SL(2,R)-action on Qg is defined as follows. Every 2 × 2 matrix A ∈ SL(2,R)

acts naturally by left multiplication on the (locally defined) pair of real-valued 1-forms
(Im(q1/2),Re(q1/2)). The resulting (locally defined) pair of 1-forms defines a new pair
of transverse measured foliations, hence a new complex structure and a new holomorphic
quadratic differential A · q .
The Teichmüller flow Gt is given by the action of the diagonal subgroup diag(e−t , et )

on Qg (on Mg). In other terms, if we identify holomorphic quadratic differentials with
pairs of transverse measured foliations as explained above, we have:

Gt(Fq,F−q) :=
(
e−tFq, etF−q

)
. (4)

In geometric terms, the action of the Teichmüller flow on quadratic differentials induces
a one-parameter family of deformations of the conformal structure which consist in con-
tracting along vertical leaves (with respect to the horizontal length) and expanding along
horizontal leaves (with respect to the vertical length) by reciprocal (exponential) factors.
The reader can compare the definition in terms of the SL(2,R)-action with the analogous

description of the geodesic flow on a surface of constant negative curvature (such as the
modular surface). In fact, if g = 1 the above definition reduces to the standard Lie group
presentation of the geodesic flow on the modular surface: the unit sub-bundleM(1)

1 ⊂M1
of all holomorphic quadratic differentials of unit total area on elliptic curves can be iden-
tified with the homogeneous space SL(2,R)/SL(2,Z) and the geodesic flow on the mod-
ular surface is then identified with the action of the diagonal subgroup of SL(2,R) on
SL(2,R)/SL(2,Z).
We list below, following [41,25], the main structures carried by the Teichmüller

space Qg and by the moduli space Mg of quadratic differentials (see also [5, §2] and
[48, §4]):
(1) Mg is a (stratified) analytic space (orbifold); each stratum Mκ (corresponding to

fixing the multiplicities κ := (k1, . . . , kσ ) of the zeroes {p1, . . . , pσ } of the quadratic
differentials) is SL(2,R)-invariant and, in particular, Gt -invariant.

(2) The total area function A :Mg →R+,

A(q) :=
∫

M
|q|,

is SL(2,R)-invariant; hence the unit bundle M(1)
g := A−1({1}) and its strata

M(1)
κ :=Mκ ∩M(1)

g are SL(2,R)-invariant and, in particular, Gt -invariant.
LetMκ be a stratum of orientable quadratic differentials, that is, quadratic differ-

entials which are squares of holomorphic 1-forms. In this case, the natural numbers
(k1, . . . , kσ ) are all even.

(3) The stratum of squaresMκ has a locally affine structure modeled on the affine space
H 1(M,Σκ ;C), with Σκ := {p1, . . . , pσ }. Local charts are given by the period map
q→ [q1/2] ∈H 1(M,Σκ ;C).
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(4) The Lebesgue measure on the Euclidean space H 1(M,Σκ ;C), normalized so that
the quotient torus

H 1(M,Σκ ;C)/H 1(M,Σκ ;Z⊕ ıZ)

has volume 1, induces an absolutely continuous SL(2,R)-invariant measure µκ on
Mκ . The conditional measure µ

(1)
κ induced on M(1)

κ is SL(2,R)-invariant, hence
Gt -invariant.

The ergodic theory of the Teichmüller flow begins with the natural questions whether
the measure µ

(1)
κ has finite total mass and whether it is ergodic for the Teichmüller flow

on M(1)
κ . However, it was discovered by W. Veech [41] that M(1)

κ has in general several
connected components. M. Kontsevich and A. Zorich [26] have been able to obtain a com-
plete classification of the connected components of the strata. Taking this phenomenon into
account, the following result holds:

THEOREM 2.1 [30,40]. The total volume of the measure µ
(1)
κ on M(1)

κ is finite and the
Teichmüller geodesic flow Gt is ergodic on each connected component ofM(1)

κ .

Since the measure µ
(1)
κ has finite total mass, the Poincaré recurrence theorem applies.

This is the core of Masur’s proof [30] of the unique ergodicity for almost all i.e.t.’s and
measured foliations, a statement known as the Keane conjecture (see the article by H. Ma-
sur [5] in this handbook on the ergodic theory of measured foliations, i.e.t.’s and translation
surfaces).
Poincaré recurrence for a suitable “renormalization” flow (on the space of “zippered rec-

tangles”) is also the key idea of Veech’s proof of the Keane conjecture [38]. In [40] Veech
further investigated the ergodic theory of the Teichmüller flow and proved that the Teich-
müller flow is non-uniformly hyperbolic, in the sense that all of its Lyapunov exponents,
except one corresponding to the flow direction, are non-zero.
We recall that a Lyapunov exponent is the asymptotic exponential rate of expansion of

a (tangent) vector along the orbit of a point in the phase space of a dynamical system. The
Oseledec’sMultiplicative Ergodic Theorem [34,23] establishes their existence as appropri-
ately defined limits, for almost all points with respect to any ergodic invariant probability
measure. The theory of Lyapunov exponents for cocycles over (smooth) dynamical systems
is explained in [23, §S.1], and in the survey [1] in this handbook.
The Lyapunov spectrum (that is, the collection of Lyapunov exponents) of the Teich-

müller flow with respect to any ergodic invariant probability measure µ onM(1)
κ is known

to have symmetries. In fact, it can be written as follows [45, §5], [25, §7], [47, §2.3]:

2!
(
1+ λ

µ
2
)
! · · · !

(
1+ λµ

g

)
!

σκ−1︷ ︸︸ ︷
1= · · · = 1!

(
1− λµ

g

)

! · · · !
(
1− λ

µ
2
)
! 0!−

(
1− λ

µ
2
)
! · · · !−

(
1− λµ

g

)

!−1= · · · =−1︸ ︷︷ ︸
σκ−1

!−
(
1+ λµ

g

)
! · · · !−

(
1+ λ

µ
2
)
!−2. (5)
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By the ergodicity statement of Theorem 2.1, the non-uniform hyperbolicity of the Teich-
müller flow, proved by W. Veech in [40], can be formulated as follows:

THEOREM 2.2 [40]. Let µ denote the normalized absolutely continuous SL(2,R)-
invariant ergodic measure on any connected component C(1)

κ of a stratumM(1)
κ ⊂M(1)

g of
the moduli space of orientable holomorphic quadratic differentials of unit total area. The
non-negative number λµ

2 satisfies the inequality:

λ
µ
2 < λ

µ
1 = 1. (6)

M. Kontsevich and A. Zorich have interpreted the non-negative numbers

λ
µ
1 = 1! λ

µ
2 ! · · · ! λµ

g (7)

as Lyapunov exponents of a cocycle over the Teichmüller flow that will be described below.
This cocycle is obtained as the natural (fiber-wise linear) lift of the Teichmüller flow to an
appropriate vector bundle over the moduli space. The non-negative Lyapunov exponents
of the Kontsevich–Zorich cocycle turn out to be exactly the numbers in (7).
In this paper we discuss the Lyapunov spectrum and the Oseledec’s splitting of this co-

cycle. In particular, we give a new elementary proof of the inequality (6) for any ergodic
probability measure on a stratum of orientable holomorphic quadratic differentials (The-
orem 5.1) and we outline the proof of the inequality λ

µ
2 > 0, when µ is the normalized

absolutely continuous SL(2,R)-invariant ergodic measure on any connected component
of a stratum of the moduli space of orientable holomorphic quadratic differentials (Corol-
lary 6.3).

3. The Kontsevich–Zorich cocycle

M. Kontsevich (and A. Zorich) [25] have introduced a (multiplicative) ‘renormalization’
cocycle over the Teichmüller geodesic flow. This cocycle is a continuous-time version of
a cocycle introduced by G. Rauzy [35] as a “continued fractions algorithm” for i.e.t.’s,
and later studied by W. Veech, in his work on the Keane conjecture [38], and A. Zorich
[45,46] among others. Zorich was motivated by the study of the asymptotic behavior in
homology of (long) typical leaves of orientable measured foliations on closed surfaces of
higher genus, which he initiated in [44].
Let Qg be the Teichmüller space of holomorphic quadratic differentials on Riemann

surfaces of genus g ! 2. TheKontsevich–Zorich cocycleGKZ
t can be defined as the quotient

cocycle, with respect to the action of the mapping class group Γg , of the trivial cocycle

Gt × id :Qg ×H 1(M,R)→Qg ×H 1(M,R). (8)

The cocycle GKZ
t acts on the orbifold vector bundle

H1
g(M,R) :=

(
Qg ×H 1(M,R)

)
/Γg (9)
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over the moduli space Mg = Qg/Γg of holomorphic quadratic differentials. The base
dynamics of the Kontsevich–Zorich cocycle is the Teichmüller geodesic flow Gt onMg .
Note that the mapping class group acts naturally on the cohomology H 1(M,R) by pull-
back.We recall that the real homologyH1(M,R) and the real cohomologyH 1(M,R) of an
orientable closed surface M are endowed with a natural symplectic form (the intersection
form) and are (symplectically) isomorphic by Poincaré duality.
Since the vector bundle H1

g(M,R) has a symplectic structure, the Lyapunov spectrum
of the cocycle GKZ

t (with respect to any Gt -invariant ergodic probability measure µ on
M(1)

g ) is symmetric:

λ
µ
1 ! · · · ! λµ

g ! 0!−λµ
g ! · · · !−λµ

1 . (10)

The non-negative part of the Kontsevich–Zorich spectrum (10) coincides with the num-
bers (7) which appear in the Lyapunov spectrum (5) of the Teichmüller flow. This relation
can be explained as follows. By Section 2 the tangent space TMκ ≡Mκ×H 1(M,Σκ ;C)

locally. There is a surjective map H 1(M,Σκ ;C)→ H 1(M,C) which neglects cohomol-
ogy classes dual to cycle joining two singularities. Such classes are responsible for the
(trivial) part of the Lyapunov spectrum (5) consisting of σκ − 1 repeated 1’s and −1’s. Let
then H1

κ (M,C) be the bundle over the moduli space with fiber H 1(M,C). There is the
following natural isomorphism of vector bundles overMκ :

H1
κ (M,C)≡C⊗H1(M,R)≡R2 ⊗H1(M,R), (11)

induced by the corresponding isomorphism on the fibers. The tangent cocycle T Gt of the
Teichmüller geodesic flow on H1(M,C) can then be written in terms of the Kontsevich–
Zorich cocycle:

T Gt = diag
(
et , e−t

)
⊗GKZ

t on R2 ⊗H1(M,R). (12)

Formula (12) implies that the non-trivial Lyapunov spectrum of T Gt onH1(M,C) can be
obtained as a union of the translations of the Lyapunov spectrum of GKZ

t by ±1, hence (5)
follows (see also [48, §5.7]).
We will discuss the main ideas of the proof of the following result originally conjec-

tured by A. Zorich in [45] for the Rauzy–Veech–Zorich cocycle, a discrete-time version
of the Kontsevich–Zorich cocycle, and by M. Kontsevich (and A. Zorich) in [25] for the
Kontsevich–Zorich cocycle (see also [48, §5.6]):

THEOREM 3.1 [21, Theorem 8.5]. Let µ denote the absolutely continuous SL(2,R)-
invariant ergodic probability measure on any connected component C(1)

κ of a stratum
M(1)

κ ⊂M(1)
g of the moduli space of orientable holomorphic quadratic differentials of

unit total area. The Lyapunov exponents of GKZ
t over C(1)

κ satisfy the inequalities:

λ
µ
1 = 1> λ

µ
2 ! · · · ! λµ

g > 0. (13)
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The inequality λ
µ
1 = 1 > λ

µ
2 is the content of Veech’s Theorem 2.2. We will give a

complete new proof below. The other non-trivial inequality in (13) is λµ
g > 0. We will

describe the strategy of the proof that λµ
2 > 0. The full proof of the theorem for genus g ! 3

is more complicated but it does not require substantial new ideas. The Zorich conjecture
states that the exponents in (13) are all distinct, that is, the Lyapunov spectrum of the
cocycle is simple. A proof of the conjecture, which yields as a corollary an independent
proof of Theorem 3.1 based on completely different methods, has been recently given by
A. Avila and M. Viana [8].

4. Variational formulas

The Kontsevich–Zorich cocycle can be written in the form of an O.D.E. in a fixed Hilbert
space. This is accomplished as follows. Let Rq be (degenerate) Riemannian metric induced
by a holomorphic quadratic differential q and let ωq be the corresponding area form. With
respect to a holomorphic local coordinate z = x + iy, the quadratic differential q has the
form q = φ(z) dz2, where φ is a locally defined holomorphic function, and, consequently,

Rq =
∣∣φ(z)

∣∣1/2(dx2 + dy2
)1/2

, ωq =
∣∣φ(z)

∣∣dx ∧ dy. (14)

The metric Rq is flat, it is degenerate at the finite set Σq of zeroes of q and, if q is ori-
entable, it has trivial holonomy, hence q induces a structure of translation surface on M .
It follows that, if q is orientable, there exists a (unique) frame {S,T } of the tangent bundle
ofM overM \Σq with the following properties [19, §2]:
(1) The frame {S,T } is orthonormal with respect to the Riemannian metric Rq on

M \Σq ;
(2) The vector field S[T ] is tangent to the oriented horizontal [vertical] foliation Fq

[F−q ] in the positive direction.
Let L2q(M) := L2(M,ωq) the space of complex-valued, square-integrable functions and

H 1
q (M) be the (Sobolev) subspace of functions v ∈ L2q(M) such that Sv ∈ L2q(M) and

T v ∈ L2q(M). The flows generated by the vector fields S, T preserves the area form ωq . In
fact, the 1-forms

ıSωq = Im
(
q1/2

)
and ıT ωq =−Re

(
q1/2

)
(15)

are closed and the Lie derivatives

LSωq = dıSωq + ıSdωq = 0,

LT ωq = dıT ωq + ıT dωq = 0. (16)

Hence, the vector fields S,T yield densely defined anti-symmetric (in fact, essentially
skew-adjoint) operators on the Hilbert space L2q(M). In addition, these operators commute



On the Lyapunov exponents of the Kontsevich–Zorich cocycle 561

in the following sense. Let (·, ·)q denote the inner product in L2q(M). For all functions
v1, v2 ∈H 1

q (M),

(Sv1, T v2)q = (T v1, Sv2)q . (17)

In conclusion, there is a well-defined action of the commutative Lie algebra R2 on L2q(M)

by essentially skew-adjoint operators [19].
The above properties are not surprising since, with respect to a local canonical (holomor-

phic) coordinate z = x + ıy at a point p ∈M \Σq , the holomorphic quadratic differential
q = dz2, the metric Rq is Euclidean, the area form ωq = dx ∧ dy and the vector fields
S = ∂/∂x, T = ∂/∂y. The formulas for S, T in a neighbourhood of a zero p ∈Σq of even
order k ! 2 are given in [19, (2.7)].
A key idea in [19,21] is to consider the Cauchy–Riemann operators determined by an

orientable quadratic differential.

LEMMA 4.1 [19, Proposition 3.2]. Let q be an orientable quadratic differential onM . The
Cauchy–Riemann operators

∂±
q := S ± iT

2
(18)

with (dense) domain H 1
q (M) ⊂ L2q(M) are closed and have closed range of finite codi-

mension equal to the genus of M . Let M±
q ⊂ L2q(M) be the subspaces of meromorphic,

respectively, anti-meromorphic, functions. The following orthogonal splittings hold:

L2q(M) = Ran
(
∂+
q

)
⊕M−

q = Ran
(
∂−q

)
⊕M+

q . (19)

The spaces M±
q consist of all meromorphic, respectively anti-meromorphic, functions

with poles atΣq of orders bounded above in terms of the multiplicities of the points p ∈Σq

as zeroes of the quadratic differential q . The complex dimension ofM±
q can therefore be

computed by the Riemann–Roch theorem and it is equal to the genus of M . By (17) the
adjoint operators (∂±

q )∗ are extensions of the operators −∂∓q . It follows that the kernels of
(∂±

q )∗ are the subspaces M∓
q , respectively, hence the splitting (19) follows immediately

by Hilbert space theory.
(Absolute) real cohomology classes on M can be represented in terms of meromorphic

(or anti-meromorphic) functions in L2q(M). In fact, by the theory of Riemann surfaces [16,
III.2], any c ∈H 1(M,R) can be represented as the real part of a holomorphic differential
h on M . Let q be an orientable holomorphic quadratic differential on M and let q1/2 a
holomorphic square root of q . The quotient h/q1/2 is a meromorphic function on M with
poles at the setΣq of zeroes of q . A computation shows thatm+ = h/q1/2 ∈ L2q(M), hence
m+ ∈M+

q . The following representation of cohomology classes therefore holds:

c ∈H 1(M,R)↔ c = Re
[
m+ · q1/2

]
, m+ ∈M+

q . (20)
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ThemapM+
q →H 1(M,R) given by the representation (20) is bijective and it is in fact iso-

metric ifM+
q is endowed with the Euclidean structure induced by L2q(M) and H 1(M,R)

with the Hodge product relative to the complex structure of the Riemann surface Mq car-
rying the holomorphic quadratic differential q ∈Mg .
Let q ∈Q(1)

κ and c ∈H 1(M,R). Let qt := Gt(q) be the orbit of q under the Teichmüller
flow and ct := GKZ

t (c) the orbit of c under the Kontsevich–Zorich cocycle. Let Mt the
Riemann surface carrying qt ∈Q(1)

κ . By (20),

ct = Re
[
m+

t · q1/2t

]
∈H 1(Mt ,R), (21)

where m+
t ∈M+

t , the space of meromorphic function on Mt which are in L2q(M). At this
point, we have to make the following crucial remark. By the very definition of the Teich-
müller flow Gt , the area form ωt of the metric Rt induced by the quadratic differential
qt is constant. Hence the Hilbert space L2q(M) is invariant under the action of the Teich-
müller flow on Q(1)

κ . Let M±
t ⊂ L2q(M) be the subspaces of meromorphic, respectively,

anti-meromorphic, functions on the Riemann surface Mt . Such spaces are, respectively,
the kernels of the adjoints of the Cauchy–Riemann operators ∂∓t , related to the holomor-
phic quadratic differential qt . By Lemma 4.1, the dimension of M±

t is constant equal
to the genus g ! 1 of M . It can be proved that {M±

t | t ∈ R} are smooth families of
g-dimensional subspaces of the fixed Hilbert space L2q(M).
Let π±

q :L2q(M)→M±
q denote the orthogonal projection onto the finite-dimensional

subspace of meromorphic, respectively anti-meromorphic, functions. It follows immedi-
ately from (19) that, for every u ∈ L2q(M), there exist functions v± ∈H 1

q (M) such that

u = ∂+
q v+ + π−q (u) = ∂−q v− + π+

q (u). (22)

Let π±
t :L2q(M) →M±

t denote the orthogonal projections in the (fixed) Hilbert space
L2q(M). By definition, the projections π±

t coincide with the projections π±
q for q = qt , for

any t ∈R.

LEMMA 4.2 [21, Lemma 2.1]. The Kontsevich–Zorich cocycle is described by the follow-
ing variational formulas:

{
m+

t = ∂+
t vt + π−t (m+

t ),

d
dt m

+
t = ∂−t vt − π−t (m+

t ).
(23)

PROOF. By the definition (4) of the Teichmüller flow Gt , the quadratic differential qt :=
Gt(q) and the related Cauchy–Riemann operators ∂±

t can be explicitly written in terms of
q and of corresponding frame {S,T }. In fact, we have Re(q1/2t )≡ et Re(q1/2), Im(q

1/2
t )≡

e−t Re(q1/2) and

St ≡ e−t S, Tt ≡ etT , ∂±
t ≡

e−t S ± ietT

2
; (24)
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hence, by straightforward computations,

d

dt
q
1/2
t ≡ qt

1/2,
d

dt
∂±
t ≡−∂∓t . (25)

Equation (23) in the statement of the lemma follows from the formulas (25) by a computa-
tion based on the following two remarks. First, since the function m+

t is meromorphic on
the Riemann surface Mt , it satisfies the equation ∂+

t m+
t ≡ 0 in the weak sense in L2q(M).

It follows that, by taking a time derivative,

−∂−t m+
t + ∂+

t

(
d

dt
m+

t

)
≡ 0. (26)

Second, by the definition (8) of the cocycle GKZ
t , the one-parameter family of cohomology

classes ct := GKZ
t (c) is locally constant, that is, ct ≡ c ∈ H 1(M,R). It follows that the

time derivative of the 1-form Re(m+
t q

1/2
t ) is equal to zero in H 1(M,R), hence it is an

exact form. There exists therefore a function Ut ∈H 1(M) such that

Re
[(

d

dt
m+

t + m+
t

)
q
1/2
t

]
= dUt . (27)

A straightforward computation based on formulas (26), (27) and on the splittings (22) for
q = qt , applied to the functionsm+

t ∈M+
t ⊂ L2q(M) and dm+

t /dt ∈ L2q(M), concludes the
argument. In fact, the splitting in the first line of (23) is simply the first splitting in (22) for
q = qt , applied to the function m+

t ∈M+
t ⊂ L2q(M). It is therefore an identity which de-

termines the function vt ∈H 1
q (M) up to an additive constant. The second line is a formula

for the derivative dm+
t /dt written in terms of the second splitting in (22) for q = qt . "

An immediate consequence of Lemma 4.2 is the following result on the variation of the
Hodge norm of cohomology classes under the action of the Kontsevich–Zorich cocycle.
Let Bq :L2q(M)×L2q(M)→C be the complex bilinear form given by

Bq(u, v) :=
∫

M
uvωq, for all u,v ∈ L2q(M). (28)

LEMMA 4.3 [21, Lemma 2.1′]. The variation of the Hodge norm ‖ct‖, which coincides
with the L2q -norm |m+

t |0 under the identification (21), is given by the following formulas:

(a)
d

dt

∣∣m+
t

∣∣2
0 =−2ReBq

(
m+

t

)
=−2Re

∫

M

(
m+

t

)2
ωq,

(b)
d2

dt2

∣∣m+
t

∣∣2
0 = 4

{∣∣π−t
(
m+

t

)∣∣2
0 −Re

∫

M

(
∂+
t vt

)(
∂−t vt

)
ωq

}
. (29)
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PROOF. The formulas (29) can be immediately deduced from (23) by taking into ac-
count the Gt -invariance of the inner product in L2q(M) and the orthogonality of the split-
tings (19), (22) for q = qt . "

5. Bounds on the exponents

Lemma 4.2 immediately implies Veech’s Theorem 2.2. In fact, we have

THEOREM 5.1 [21, Corollary 2.2]. Let µ denote any ergodic Gt -invariant probability
measure on the moduli space M(1)

g of orientable holomorphic quadratic differentials of
unit total area. The Lyapunov exponents of the Kontsevich–Zorich cocycle GKZ

t with re-
spect to the ergodic measure µ satisfy the following inequality:

λ
µ
1 = 1> λ

µ
2 . (30)

PROOF. By formula (a) in (29),

d

dt
log

∣∣m+
t

∣∣2
0 =−2ReBq(m+

t )

|m+
t |20

. (31)

Since by the Schwarz inequality,

∣∣Bq

(
m+

t

)∣∣ =
∣∣(m+

t ,m+
t

)
q

∣∣ #
∣∣m+

t

∣∣2
0, (32)

Equation (31) implies that the upper Lyapunov exponent

λ
µ
1 := lim sup

T→±∞

1
T
log

∣∣m+
T

∣∣
0 # 1. (33)

Moreover, the 1-dimensional subspace of complex constant functions is invariant under the
flow of Equation (23), since for m+

t ∈C, the function vt ≡ 0 and the orthogonal projection
π−t (m+

t )≡m+
t ∈C. By the definition of the isomorphism (20), this corresponds to the fact

that the plane Eq ⊂H 1(M,R) generated by the cohomology classes {Re(q1/2), Im(q1/2)}
is invariant under the cocycleGKZ

t . The Lyapunov exponents ofGKZ
t restricted to this plane

are ±1, as it can be seen directly from the definition or by the formula (31) in the case of
purely real or purely imaginary constant functions. Hence λµ

1 = 1. The exponent λµ
2 is the

top Lyapunov exponent of GKZ
t on the bundle with fiber H 1(Mq,R)/Eq . Under the iso-

morphism (20), the vector space H 1(Mq,R)/Eq is represented by meromorphic functions
with zero average (orthogonal to constant functions). It can be seen that the subspace of
zero average meromorphic functions is invariant under the flow of Equation (23). Let

Λ+(q) :=max
{ |Bq(m+)|

|m+|20
∣∣m+ ∈M+

q \ {0},
∫

M
m+ωq = 0

}
. (34)
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By averaging (31) over the interval [0, T ], taking the upper limit and applying the Birkhoff
ergodic theorem with respect to the Gt -invariant measure µ to the r.h.s., we have that, if
m+
0 ∈M+

q has zero average, for µ-almost all q ∈Mκ ,

lim sup
T→+∞

1
T
log

∣∣m+
T

∣∣
0 #

∫

Mκ

Λ+(q) dµ(q). (35)

Since, by the Schwarz inequality (32), Λ+(q) # 1 for all q ∈Mκ , it is sufficient to prove
that Λ+(q) < 1 on a positive measure set. In fact, Λ+(q) = 1 if and on only if there exists
a non-zero meromorphic function with zero average m+ ∈M+

q such that |(m+,m+)q | =
|m+|20. A well-known property of the Schwarz inequality then implies that there exists
λ ∈ C such that m+ = λm+. However, it cannot be so, since in that case m+ would be
meromorphic and anti-meromorphic, hence constant, and by the zero average condition it
would be zero. We have therefore proved that Λ+(q) < 1 for all q ∈Mκ . The argument is
completed. "

The proof of lower bounds on the Lyapunov exponents of the Kontsevich–Zorich co-
cycle relies on the formula (29), (b), for the second derivative. Unfortunately, the r.h.s of
the formula contains two terms and, while the first is at least clearly non-negative, the sign
of second appears to be oscillating in a way difficult to control. In order to overcome this
difficulty, we follow an idea of [25] which consists in averaging over the orbits of the circle
group SO(2,R) in the stratumMκ .
Let SL(2,R) q be an orbit of SL(2,R) in Mκ . For almost all q ∈Mκ , the quotient

SL(2,R) q/SO(2,R) is a copy of the Poincaré disk, in the sense that it is an immersed
two-dimensional disk on which the Teichmüller metric reduces to the standard Poincaré
metric (with curvature −4). Such a disk is called a Teichmüller disk (see [32, 2.6.5]).
The hyperbolic Laplacian of the Hodge norm of a cohomology class on a Teichmüller

disk can be computed as follows. We write formula (29), (b), for all quadratic differentials
in a SO(2,R)-orbit, we then average with respect to the Haar measure on SO(2,R). The
averaging eliminates the ‘bad’ second term in the r.h.s. of formula (29), (b) (the oscillation
is canceled!).

LEMMA 5.2 [21, Lemma 3.2]. The following formulas hold for the hyperbolic gradient
∇h and the hyperbolic Laplacian +h of the norm of a cohomology class on a Teichmüller
disk:

(a) ∇h

∣∣m+
z

∣∣2
0 =−2

(
ReBq

(
m+)

, ImBq

(
m+))

,

(b) +h

∣∣m+
z

∣∣2
0 = 8

∣∣π−q
(
m+)∣∣2

0. (36)

Hence, by a straightforward calculation,

+h log
∣∣m+

z

∣∣
0 = 4

|π−z (m+
z )|20

|m+
z |20

− 2 |Bq(m+
z )|2

|m+
z |40

! 2
|π−z (m+

z )|20
|m+

z |20
. (37)
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An analysis of the solutions of the hyperbolic Poisson equation, combined with the Os-
eledec’s theorem on the existence of Lyapunov exponents and Birkhoff ergodic theorem,
leads to the following lower bound. Let

Λ−(q) :=min
{ |π−q (m+)|20

|m+|20
∣∣m+ ∈M+

q \ {0}
}
. (38)

THEOREM 5.3 [21, Theorem 3.3]. Let µ be anyGt -ergodic SL(2,R)-invariant probability
measure on M(1)

κ . The second Lyapunov exponent λµ
2 of the Kontsevich–Zorich cocycle

with respect to the measure µ, satisfies the following lower bound:

λ
µ
2 !

∫

M(1)
κ

Λ−(q) dµ(q). (39)

Theorem 5.3 shows that to be able to prove that λµ
2 > 0 it is sufficient to prove

that the non-negative continuous function Λ− :M(1)
g → R is strictly positive at some

q ∈ supp(µ) ⊂Mκ . Hence we are led to consider the locus {Λ− = 0} in the moduli
spaceM(1)

g .

6. The determinant locus

Let π−q be as above the orthogonal projection on the subspace M−
q ⊂ L2q(M) of anti-

meromorphic functions. Let Hq be the non-negative definite Hermitian form on the sub-
spaceM+

q ⊂ L2q(M) defined as follows. For all (m+
1 ,m+

2 ) ∈M+
q ×M+

q ,

Hq

(
m+
1 ,m+

2
)
:=

(
π−q

(
m+
1
)
,π−q

(
m+
2
))

q
. (40)

The non-negative number Λ−(q) is by definition the smallest eigenvalue of the Hermitian
form Hq . The locus {Λ− = 0} coincides therefore with the set of quadratic differentials
for which the Hermitian form Hq is degenerate, that is, represented by a g × g Hermitian
matrix with zero determinant.
There is a close relation between the Hermitian form Hq and the derivative of the clas-

sical period matrix along the Teichmüller trajectory in the moduli space determined by the
quadratic differential q onM .
Let us recall the definition of the period matrix. LetM be a marked Riemann surface of

genus g ! 2 and let {a1, b1, . . . , ag, bg} ⊂ H1(M,Z) be a canonical homology basis (see
[16, III.1]), characterized by the property that, for all i, j ∈ {1, . . . , g},

ai ∩ aj = bi ∩ bj = 0 and ai ∩ bj = δij . (41)

In other terms, a canonical homology basis is a symplectic basis with respect to the sym-
plectic structure on the real homology H1(M,R) given by the (algebraic) intersection
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form ∩. Let {θ1, . . . , θg} be the dual basis of the space of holomorphic (Abelian) differen-
tials onM , characterized by the conditions θi (aj ) = δij , for all i, j ∈ {1, . . . , g}. The g×g

complex matrix Π given by

Πij (M) :=
∫

bj

θi , i, j ∈ {1, . . . , g}, (42)

is the period matrix of the marked Riemann surface M . The period matrix yields a holo-
morphic mappingΠ :Tg →Sg on the Teichmüller space of Riemann surfaces with values
in the Siegel space Sg of g × g complex symmetric matrices with positive definite imagi-
nary part.
Let q ∈Q

(1)
g be a holomorphic quadratic differential on the Riemann surface Mq . Let

(Mt , qt ) := Gt(Mq,q), for t ∈ R, be the Teichmüller orbit of (Mq, q) in the Teichmüller
space Q

(1)
g . The equation

det

[
d

dt
Π(Mt)

∣∣∣∣
t=0

]
= 0 (43)

defines a real analytic hypersurface D
(1)
g ⊂Q

(1)
g of real codimension 2. In other words, the

hypersurface D
(1)
g is the locus where the derivative of the period matrix in the direction of

the Teichmüller flow is degenerate.
It is immediate to see that Equation (43), hence the locus D

(1)
g , is invariant under change

of marking on M , that is, invariant under the action of the mapping class group Γg . It
follows that the projection D(1)

g := D
(1)
g /Γg of D

(1)
g into the moduli space M(1)

g is well
defined. The real analytic hypersurface D(1)

g ⊂M(1)
g of real codimension 2 was introduced

in [21, §4], and called the determinant locus. The following lemma holds.

LEMMA 6.1 [21, Lemma 4.1]. The locus {Λ− = 0} ⊂M(1)
g coincides with the determi-

nant locus D(1)
g .

PROOF. Let {m+
1 , . . . ,m+

g } be an orthonormal basis of M+
q ⊂ L2q(M). The (symmet-

ric) matrix B(q) of the projection operator π−q :M+
q →M−

q , with respect to the bases
{m+

1 , . . . ,m+
g }⊂M+

q and {m+
1 , . . . ,m+

g }⊂M−
q , and the Hermitian non-negative matrix

H(q) of the Hermitian form Hq , with respect to the basis {m+
1 , . . . ,m+

g }, are given by the
following formulas:

Bij (q) = Bq

(
m+

i ,m+
j

)
=

(
m+

i ,m+
j

)
q
,

H(q) = B(q)∗B(q) = B(q)B(q). (44)

The quotients φ+
i := θi/q

1/2 are meromorphic functions on Mq with poles at Σq , which
belong to the space L2q(M). The system {φ+

1 , . . . ,φ+
g } is a basis of the spaceM+

q .
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The infinitesimal deformation of the complex structure of the Riemann surface Mq in-
duced by the Teichmüller flow in the direction of the quadratic differential q ∈Q

(1)
g can

be represented by a canonical Beltrami differential µq := |q|/q , hence by Rauch’s formula
[22, Proposition A.3]:

d

dt
Πij (Mt )

∣∣∣∣
t=0

=
∫

M
θiθjµq =

∫

M
φ+

i φ+
j ωq = Bq

(
φ+

i ,φ+
j

)
. (45)

Since {φ+
1 , . . . ,φ+

g } is a basis of M+
q , there exists a non-singular g × g complex matrix

C(q) such that

φ+
i =

g∑

j=1
Cij (q)m+

j and C(q)C(q)∗ = Im(Π). (46)

In fact, by [16, III.2.3],

(
φ+

i ,φ+
j

)
q

= i

2

∫

M
θi ∧ θj

= i

2

g∑

k=1

{∫

ak

θi

∫

bk

θj −
∫

bk

θi

∫

ak

θj

}
= Im(Πij ). (47)

By (45) and (46),

∣∣∣∣det
(

d

dt
Πij (Mt )

∣∣∣∣
t=0

)∣∣∣∣=
∣∣detC(q)B(q)C(q)t

∣∣ =
∣∣detC(q)

∣∣2 ∣∣detB(q)
∣∣

= det Im(Π)
[
detH(q)

]1/2
. (48)

Since Im(Π) is positive definite, the Hermitian form Hq is degenerate, hence Λ−(q) = 0,
if and only if q ∈D(1)

g . "

The geometry of the determinant locus, in particular with respect to the foliation of the
moduli space M(1)

g by orbits of the SL(2,R)-action, plays an important role in the study
of Lyapunov exponents of the Kontsevich–Zorich cocycle (and of the Teichmüller flow).
We have proved the following non-trivial result:

THEOREM 6.2 [21, Theorem 4.5]. Let M(1)
κ be any stratum of the moduli space of ori-

entable holomorphic quadratic differentials. No connected component of M(1)
κ is con-

tained in the determinant locus. In fact, the following stronger result holds. Let

Λ1(q)≡ 1! Λ2(q) ! · · · !Λg(q) ! 0 (49)



On the Lyapunov exponents of the Kontsevich–Zorich cocycle 569

be the eigenvalues of the Hermitian form Hq in decreasing order. Let C(1)
κ denote any

connected component ofM(1)
κ . We have:

sup
q∈C(1)

κ

Λi (q) = 1, for all i ∈ {1, . . . , g}. (50)

The proof of Theorem 6.2 shows that the supremum of the (continuous) functions Λi is
achieved at a certain kind of boundary points of the moduli space which can be found in the
closure of any connected component of any stratum. The argument is based on asymptotic
expansions for the period matrix (and its derivatives) [18, Chap. III], [29,43], [21, §4].
The simplest and most intuitive choice of the appropriate boundary points is the disjoint

sums of g tori with 2g − 2 paired punctures. At these points, the period matrix and its
derivative along the Teichmüller flow are diagonal with all diagonal entries different from
zero. It follows that the Hermitian form Hq is non-degenerate. In fact, it is immediate to
see that Λ1 = · · · = Λg = 1. Riemann surfaces pinched along g − 1 (separating) cycles
homologous to zero converge to boundary points of that type.
Unfortunately, quadratic differentials on such pinched surfaces cannot in general belong

to a stratum with a zero of high multiplicity as the pinching parameters converge to zero.
In order to overcome this difficulty and treat all strata, we have considered a different type
of boundary points. Such points are given by meromorphic quadratic differentials on Rie-
mann spheres with 2g paired punctures, having poles of order 2 with strictly positive real
residues at all punctures, equal at paired punctures (the residue of a quadratic differential
at a pole p ∈M is the standard residue of the holomorphic 1-form zφ(z) dz with respect
to a holomorphic coordinate z :M →C such that z(p) = 0 and q = φ(z) dz2).
A basic step of the proof of Theorem 6.2 consists in constructing in every connected

component of every stratumMκ of the moduli space a family of quadratic differentials on
Riemann surfaces pinched along a set of g distinct closed regular trajectories spanning a
Lagrangian subspace in homology. The limit of any such family as the pinching parameters
converge to zero is a meromorphic quadratic differential on a Riemann sphere of the type
just described. The period matrix and its derivative converge to a diagonal matrix only in
the projective sense, but this is enough for the proof.
As a corollary of Theorems 5.3 and 6.2, we obtain

COROLLARY 6.3 [21, Corollary 4.5′]. Let µ be the normalized absolutely continuous in-
variant measure on any connected component C(1)

κ of a stratumM(1)
κ of the moduli space

of orientable holomorphic quadratic differentials of unit total area. The second Lyapunov
exponents of GKZ

t over C(1)
κ is strictly positive, in fact

λ
µ
2 !

∫

M(1)
κ

Λ−(q) dµ(q) > 0. (51)

The proof of Theorem 3.1 is complete only if g = 2. If g ! 3, the complete proof of
the theorem is based on formulas similar to (37) for the logarithm of the k-volume of
k-dimensional isotropic subspaces ofH 1(M,R), for all k ∈ {1, . . . , g}. Unfortunately, only
in the case k = g these computations yield a closed formula for the Lyapunov exponents,
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that is, independent of the Oseledec’s splitting of the real cohomology bundle H1
κ (M,R).

As a consequence, the complete proof of Theorem 3.1 is rather convoluted and beyond the
scope of this paper. In the case k = g we find a somewhat different version of a formula
discovered by M. Kontsevich and A. Zorich:

THEOREM 6.4 ([25] and [21, Corollary 5.3]). Let µ be the normalized absolutely contin-
uous invariant measure on any connected component C(1)

κ of a stratumM(1)
κ of the moduli

space of orientable holomorphic quadratic differentials of unit total area. The Lyapunov
exponents of GKZ

t over C(1)
κ satisfy the following formula:

λ
µ
1 + · · · + λµ

g =
∫

M(1)
g

(
Λ1(q) + · · · +Λg(q)

)
dµ(q). (52)

We remark that, since Λ1(q) ≡ λ
µ
1 = 1, the above formula yields a closed formula for

the sum λ
µ
2 + · · · + λ

µ
g , hence for the second exponent λ

µ
2 if g = 2. We do not know of any

other closed formulas for single exponents or partial sums of them if g ! 3.
Kontsevich (and Zorich) [25] have conjectured that the sums of the Lyapunov expo-

nents (52) are rational numbers for all connected components of all strata. These numbers
are conjecturally related to the Siegel–Veech constants which arise in counting problems
for embedded flat cylinders or saddle-connections on translation surfaces [42,13]. Siegel–
Veech constants can in turn be computed (exactly!) by formulas expressing them in terms
of the volumes of connected components of strata [14,15] (see the article by A. Eskin [2]
in this handbook on counting problems, Siegel–Veech constants and volumes of strata).

7. An example

The problem of describing the intersections of SL(2,R)-orbits of quadratic differentials
with the determinant locus D(1)

g ⊂M(1)
g is in general open. Since D(1)

g is by its very de-
finition invariant under the action of the circle subgroup SO(2,R), this problem can be
reduced to the one of describing the intersection of the projection D(1)

g /SO(2,R) of the
determinant locus with Teichmüller disks inside the quotient spaceM(1)

g /SO(2,R).
The determinant locus has real codimension 2 while Teichmüller disks have dimen-

sion 2, hence it is natural to expect that the intersection with a generic disk be either empty
or a discrete (possibly countable) set. In many cases, it is immediate to see that the in-
tersection is non-empty. Examples of Teichmüller disks with non-empty intersection are
provided by quadratic differentials with symmetries.
W. Veech asked whether there exists a Teichmüller disk (in the moduli space of ori-

entable quadratic differentials) entirely contained in the projection of the determinant lo-
cus. We will show below that the answer to this question is affirmative by exhibiting an ex-
ample in genus g = 3. It should be remarked that we can prove that the answer to Veech’s
question is negative in genus g = 2.
The idea behind our example is to consider (orientable) holomorphic quadratic differen-

tials with appropriate symmetries which are stable under the SL(2,R)-action. We are able
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to answer a refined version of Veech’s question which has immediate consequences for the
Lyapunov exponents of the Kontsevich–Zorich cocycle. We introduce a natural filtration

R(1)
g (1)⊂R(1)

g (2)⊂ · · ·⊂R(1)
g (g − 1) = D(1)

g (53)

of the determinant locus D(1)
g by the sets

R(1)
g (k) :=

{
q ∈M(1)

g |Λk+1(q) = · · · = Λg(q) = 0
}
. (54)

It is immediate to see that R(1)
g (k) is a real analytic subvariety of the moduli space (de-

scribed by the vanishing of all minors of order k + 1 of the derivative of the period ma-
trix along the Teichmüller flow), invariant under the action of the circle group, for all
k ∈ {1, . . . , g− 1}.
We will describe below a closed SL(2,R)-orbit contained not only in the determinant

locus D(1)
3 but in the smaller locus R(1)

3 (1). We do not know whether there are similar
examples in any genus g ! 3.
The relevance of the locus R(1)

g (1) is given by the following vanishing result for the
Lyapunov exponents of the Kontsevich–Zorich cocycle:

COROLLARY 7.1. Let µ be an SL(2,R)-invariant ergodic probability measure on the
moduli spaceM(1)

g . If supp(µ)⊂R(1)
g (1), then

λ
µ
2 = · · · = λµ

g = 0. (55)

PROOF. It can be proved that the Kontsevich–Zorich formula (52) holds for any SL(2,R)-
invariant ergodic probability measure onM(1)

g . Hence the result follows. "

We are unable to prove by our methods stronger vanishing results, based on conditions
of type supp(µ)⊂Rg(k) for k > 1.
Let q ∈Q

(1)
g be a holomorphic (orientable) quadratic differential with a non-trivial group

Aut(q) of symmetries. The group Aut(q) ⊂ Aut(Mq) is defined as the subgroup formed
by all automorphisms a ∈ Aut(Mq) such that a∗(q) = q . There is a natural unitary ac-
tion (by pull-back) of Aut(q) on the finite-dimensional Euclidean spaceM+

q ⊂ L2q(M) of
meromorphic functions.
For any a ∈ Aut(q), let {m+

1 (a), . . . ,m+
g (a)} be an orthonormal basis of eigenvectors

and let {u1(a), . . . , ug(a)} the corresponding eigenvalues for the unitary operator induced
by a onM+

q . Let Ba(q) be the matrix of the projection operator π−q :M+
q →M−

q , with
respect to the bases {m+

1 (a), . . . ,m+
g (a)}⊂M+

q and {m+
1 (a), . . . ,m+

g (a)}⊂M−
q , that is

Ba
ij (q) = Bq

(
m+

i (a),m+
j (a)

)
=

∫

M
m+

i (a)m+
j (a)ωq . (56)

For any I, J ⊂ {1, . . . , g} with #(I ) = #(J ), let Ba
I,J (q) be the minor of the matrix Ba(q)

with entries Ba
ij (q) for i ∈ I and j ∈ J .
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LEMMA 7.2. Let q ∈ Q
(1)
g be a holomorphic quadratic differential with a non-trivial

group Aut(q) of symmetries. For any a ∈Aut(q),
∏

i∈I

∏

j∈J

ui(a)uj (a) 3= 1 4⇒ detBa
I,J (q) = 0. (57)

PROOF. Since a ∈Aut(q), by (56) and by change of variables, we have

Ba
ij (q) =

∫

M
a∗m+

i (a)a∗m+
j (a)ωq = ui(a)uj (a)Ba

ij (q). (58)

The result follows. "

LetQ0 be the stratum of meromorphic quadratic differentials with 4 simple poles on the
(punctured) Riemann sphere P1(C). The corresponding moduli space M(1)

0 of meromor-
phic quadratic differentials with unit total area consists of a single SL(2,R)-orbit.
Let κ = (1,1,1,1) and let Mκ the stratum of holomorphic differentials (on Riemann

surfaces of genus g = 3) with 4 simple zeroes. Let V ⊂Mκ be subvariety of all orientable
quadratic differentials obtained as the pull-back of a meromorphic quadratic differential
q0 ∈Q0 by a 4-sheeted branched covering, branched over the 4 poles of q0 (with branching
order equal to 4 at each pole).
The subvariety V (1) = V ∩M(1)

κ consists of a single closed SL(2,R)-orbit. In fact, it can
be described as the (closed) SL(2,R)-orbit of the (non-primitive) Veech surface obtained
as a 2-sheeted branched cover of the torus C/(Z⊕ ıZ), branched over the 4 half-integer
points (Z/2 ⊕ ıZ/2)/(Z ⊕ ıZ) (see the article by P. Hubert and T. Schmidt [4] in this
handbook on the theory of Veech surfaces).

THEOREM 7.3. The closed SL(2,R)-orbit V (1) ⊂M(1)
κ is entirely contained in the locus

R3(1).

PROOF. Let q ∈ V (1). By definition there exists a 4-sheeted branched covering z :Mq →
P1(C), branched over 4 (distinct) points x1, . . . , x4 ∈ P1(C) and a meromorphic quadratic
differential q0 on P1(C), with 4 simple poles at the points x1, . . . , x4 such that q = z∗(q0).
The Riemann surfaceMq is a genus 3 surface determined by the algebraic equation:

w4 = (z− x1)(z− x2)(z− x3)(z− x4). (59)

The group Aut(Mq) of all automorphisms of the Riemann surface Mq is cyclic of order 4,
generated by the automorphism a :Mq →Mq given by

a(z,w) = (z, ıw). (60)

The divisors of the meromorphic functions z,w and of the meromorphic differential dz are
of the following form:
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(z) = P1P2P3P4
Q1Q2Q3Q4

, (w) = X1X2X3X4
Q1Q2Q3Q4

,

(dz) = X3
1X

3
2X

3
3X

3
4

Q2
1Q

2
2Q

2
3Q

2
4
, (61)

where z−1{0} = {P1, . . . ,P4}, z−1{∞} = {Q1, . . . ,Q4} and X1, . . . ,X4 are the branching
points of the covering z :Mq → P1(C). It follows that the differentials

θ1 := dz

w2
, θ2 := dz

w3
, θ3 := zdz

w3
, (62)

form a basis of the space of holomorphic differentials onMq which diagonalizes the action
of the group Aut(Mq) on the vector space of holomorphic differentials on Mq . In fact,
by (60) and (62), the action of the automorphism a ∈Aut(Mq) on the basis (62) is diagonal
with eigenvalues −1 (with multiplicity 1) and ı =

√
−1 (with multiplicity 2):

a∗(θ1) =−θ1, a∗(θ2) = ıθ2, a∗(θ3) = ıθ3. (63)

The orientable quadratic differentials q ∈ V (1) is therefore equal to θ21 (up to multiplication
by a non-zero complex number) and the spectrum of the action of a ∈Aut(q) on the space
M+

q ⊂ L2q(M) of meromorphic functions consists of the eigenvalues

u1(a) = 1, u2(a) =−ı, u3(a) =−ı. (64)

It follows that q ∈R(1)
3 (1). In fact, by Lemma 7.2 all entries Ba

ij (q) = 0 for all (i, j) 3=
(1,1), hence the matrix Ba(q) and, consequently, the Hermitian form Hq have rank 1. The
argument is concluded. "

By Corollary 7.1, we have

COROLLARY 7.4. The normalized SL(2,R)-invariant measure µ supported on the closed
SL(2,R)-orbit V (1) is an SL(2,R)-invariant ergodic probability measure on M(1)

3 such
that

λ
µ
2 = λ

µ
3 = 0. (65)

8. Invariant sub-bundles

By Oseledec’s theorem [34], [1, §5], for almost all holomorphic quadratic differentials
q ∈M(1)

κ , the fiber H 1(Mq,R) of the cohomology bundleH1
κ(M,R) has a direct splitting

H 1(Mq,R) = E+
q ⊕E−q ⊕E0

q, (66)
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where E+
q , E−q and E0

q are the subspaces of cohomology classes with, respectively, strictly
positive, strictly negative and zero Lyapunov exponent. Since the cohomology bundle has
a symplectic structure E+

q and E−q are isotropic subspaces of the same dimension. In fact,
according to Theorem 3.1, E0

q = {0} and E+
q , E−q are Lagrangian. We will not rely below

on this result, hence the results of this section will be independent of the non-uniform
hyperbolicity of the Kontsevich–Zorich cocycle.
The homology cycles in the Poincaré dual of E+

q , E−q are called (following I. Nikolaev
and E. Zhuzhoma [33, §7.9.3]) the Zorich cycles for the horizontal, respectively, vertical,
measured foliation of the quadratic differential q . Zorich cycles for an orientable measured
foliations F are a generalization of the Schwartzman’s asymptotic cycle which coincides
with the Poincaré dual of the cohomology class of the closed 1-form ηF such that F :=
{ηF = 0}.
In fact, by unique ergodicity, the Schwartzman’s cycle yields the direction of the lead-

ing term in the asymptotic behavior in homology of a typical leaf of a generic orientable
measured foliation on a surface of genus g ! 1, while Zorich cycles yield the direction of
the first g terms (under the hypothesis that the cocycle is non-uniformly hyperbolic) as the
length of the leaf gets large. The remainder in this asymptotics, that is, the distance in ho-
mology of the typical leaf from the space of all Zorich’s cycles, stays uniformly bounded
(see [44,47] or [48, Appendix D]).
We will outline below the proof of a representation theorem which states that all Zorich

cycles (or rather the corresponding dual cohomology classes) can be represented in terms
of currents of order 1 satisfying certain properties with respect to the measured foliation F .
A basic current (of dimension 1) for a measured foliation F (with singularities at a

finite set ΣF ⊂M) is a 1-dimensional current C (in the sense of G. de Rham [12], that is,
a continuous functional on the vector space of smooth 1-forms with compact support) on
M \ΣF which satisfies the vanishing conditions

ıXC = LXC = 0, (67)

for all smooth vector fields X with compact support in M \ ΣF tangent to the leaves of
the foliation F . (The operation of contraction ıX and Lie derivative LX are extended to
currents in the standard distributional sense [36, Chapter IX, §3].)
Basic currents are a distributional generalization of basic forms, a well-known notion

in the geometric theory of foliations. Since M has dimension 2, a current of dimension 1
satisfying (67) is closed, hence it represents, by the generalized de Rham theorem (see [12,
Theorem 12], or [36, Chapter IX, §3, Theorem I]) a cohomology class in H 1(M \ΣF ,R).
Let q ∈Q

(1)
κ be an orientable quadratic differential. Let B±q(M) be, respectively, the

space of basic currents for the measured foliations F±q (we recall that Fq is the horizontal
foliation andF−q the vertical foliation). Let {S,T } be the orthonormal frame of the tangent
bundle described in Section 4 and {ηT ,ηS} be the dual frame of the cotangent bundle,
which is defined by

ηT :=−ıT ωq = Re
(
q1/2

)
, ηS := ıSωq = Im

(
q1/2

)
. (68)

For the statement of the representation theorem, the notion of order of a current, taken
with respect to a scale of Sobolev spaces, is crucial. Let Σq be the set of the zeroes of q .
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A current onM \Σq has order r ∈N if it extends to a continuous functional on the Sobolev
space Hr

q (M) of all L2q forms with L2q derivatives (with respect to the vector fields S, T )
up to order r . We remark that under this definition the order of a current is not uniquely
defined. In fact, a current of order r has also order r ′ for all r ′ ! r .
Let Br

±q(M) ⊂ B±q(M) be the subsets of basic currents of order r . There is a close
relation between basic currents (of order r) and invariant distributions (of order r). An
S-invariant, respectively T -invariant, distribution (of order r) is a distributional solution D
(of order r) of the equation

SD = 0, respectively TD = 0. (69)

We have proved in [19] that invariant distributions of finite order for the vector field S,
respectively T , yield a complete system of obstructions to the existence of smooth solutions
u to the cohomological equation

Su = f, respectively T u = f, (70)

in the following sense. There exists γ > 1 such that for almost all quadratic differentials
q ∈M(1)

κ and for any function f ∈Hr
q (M) which belongs to the kernel of all S-invariant,

respectively T -invariant, distributions of order r , the cohomological equation Su = f , re-
spectively T u = f , has a solution u ∈Hs

q (M) for all s < r − γ (finite loss of derivatives).
The following result describes the relation between basic currents and S-invariant,

T -invariant distributions:

LEMMA 8.1 [21, Lemma 6.6]. A current C ∈ Br
q(M), respectively C ∈ Br

−q(M), if and
only if C = D · ηS , respectively C = D · ηT , where D is an S-invariant, respectively a
T -invariant, distribution of order r ∈N.

The main result of this section states that, for almost all q ∈M(1)
κ , the Poincaré dual of

every Zorich cycle is the cohomology class of a basic current of order 1. It can be proved
that the natural cohomology maps

B1±q(M)→H 1(M \Σq,R)

are injective and their images H 1,1
±q (M,R) satisfy the inclusions

H 1,1
±q (M,R)⊂H 1(M,R)⊂H 1(M \Σq,R).

We can finally state the representation theorem for Zorich cycles:

THEOREM 8.2 [21, Theorem 8.3]. For almost all q ∈M(1)
κ , we have

E+
q = H 1,1

q (M,R), E−q = H 1,1
−q (M,R). (71)

(The Poincaré duals of Zorich cycles for a generic orientable measured foliation F are
represented by basic currents for F of Sobolev order 1).
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We will outline below the proof of the main part of Theorem 8.2, that is, the inclusions
E±

q ⊂H 1,1
±q (M,R). The argument is based on the following Cheeger-type estimate for the

constant in the Poincaré inequality (equivalently, for the first non-trivial eigenvalue of the
Laplace–Beltrami operator of the flat metric Rq induced by the quadratic differential q

onM).
TheDirichlet form of the metric Rq , introduced in [19, (2.6)], is defined as the Hermitian

form on the Hilbert space L2q(M) given by

Q(u, v) := (Su,Sv)q + (T u,T v)q . (72)

The domain of the Dirichlet form Q is the Sobolev space H 1
q (M)≡H 1(M) of functions

u ∈ L2q(M) such that Su,T u ∈ L2q(M).

LEMMA 8.3 [21, Lemma 6.9]. There is a constant Kg,σ > 0 such that the following holds.
Let q ∈Q

(1)
g be a holomorphic (orientable) quadratic differential, let Σq be the set of its

zeroes and let σ := #(Σq). Denote by ‖q‖ the Rq -length of the shortest geodesic segment
with endpoints in Σq . Then, for any v ∈H 1

q (M), the following inequality holds:

∣∣∣∣v−
∫

M
vωq

∣∣∣∣
0
# Kg,σ

‖q‖ Q(v, v)1/2. (73)

The proof of Lemma 8.3 follows closely Cheeger’s proof (see [11] or [10, Chapter III,
D.4]) for the case of a smooth Riemann metric. The degenerate (or singular) character
of the metric Rq at the finite set Σq does not affect Cheeger’s argument. Moreover, we
are able to give an explicit estimate of Cheeger’s isoperimetric constant in terms of the
quantity ‖q‖.

PARTIAL PROOF OF THEOREM 8.2. We prove the inclusion E+
q ⊂ H 1,1

q (M,R). The in-
clusion E−q ⊂H 1,1

−q (M,R) can be proved by a similar argument.
Let q ∈ Q

(1)
κ be any Oseledec regular point of the Kontsevich–Zorich cocycle and let

ct := GKZ
t (c), t ∈R, be the orbit under the cocycle of a cohomology class c ∈H 1(M,R).

LetM+
t be the space of meromorphic functions, with respect to the complex structure

induced by the quadratic differential qt := Gt(q) ∈Q
(1)
κ , which belong the space L2qt

(M).
According to the representation formula (20), for each t ∈ R there exists a function

m+
t ∈M+

t such that

ct = Re
[
m+

t q
1/2
t

]
. (74)

Since the L2q norm is invariant under the action Teichmüller flow on the Teichmüller space,
the spaceM+

t ⊂ L2q(M) for all t ∈R, and it can be proved that the map t →m+
t ∈ L2q(M)

is smooth.
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There exist a measurable function K1 > 0 on M(1)
κ and an exponent 0 < λ< 1 such

that, if c ∈E+
q , the Hodge norm

‖c‖qt =
∣∣m+

t

∣∣
0 # K1(q)

∣∣m+
0
∣∣
0 exp

(
−λ|t |

)
, t # 0. (75)

Since ct ≡ c ∈H 1(M,R) (by the definition (8) of GKZ
t ), there exists a unique zero average

function Ut ∈ L2q(M) such that

dUt = Re
[
m+

t q
1/2
t

]
−Re

[
m+
0 q1/2

]
. (76)

It follows that, by the variational formula (23), the function Ut satisfies the following
Cauchy problem in L2q(M):

{
d
dt Ut = 2Re(vt ),

U0 = 0
(77)

(if the function vt ∈H 1(M) in (23) is chosen with zero average).
For any (orientable) quadratic differential q ∈Q

(1)
κ , by the commutativity property (17)

of the vector fields S, T , the Dirichlet form can be written as

Q(v, v) =
∣∣∂±

q v
∣∣2
0, for all v ∈H 1

q (M)

(where ∂±
q are the Cauchy–Riemann operators introduced in Section 4).

Since the function vt ∈ H 1
q (M) ≡ H 1(M) in (23) is chosen with zero average, by

the Poincaré inequality Lemma 8.3 and by the orthogonality of the decomposition (19),
(22) for q = qt , we have

|vt |0 # Kg,σ‖qt‖−1
∣∣∂+

t vt

∣∣
0 # Kg,σ‖qt‖−1

∣∣m+
t

∣∣
0, (78)

where ‖qt‖ denotes as above the length of the shortest geodesic segment with endpoints in
the set of zeroes of the quadratic differential qt with respect to the induced metric.
It follows, by formulas (75), (77) and (78), that there exists a measurable function

K2 > 0 onM(1)
κ such that, if c ∈E+

q ,

∣∣∣∣
d

dt
Ut

∣∣∣∣
0
# 2|vt |0 # K2(q)

∣∣m+
0
∣∣
0‖qt‖−1 exp

(
−λ|t |

)
, t # 0. (79)

Since U0 = 0, by Minkowski’s integral inequality, formula (79) implies the following esti-
mate:

|Ut |0 # K2(q)
∣∣m+

0
∣∣
0

∫ |t |

0
e−λ|s|‖qs‖−1 ds, t # 0. (80)
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By the logarithmic law for the Teichmüller geodesic flow on the moduli space, proved
by H. Masur in [31], the following estimate holds for almost all quadratic differentials
q ∈M(1)

κ (see [31, Proposition 1.2]):

lim sup
t→±∞

− log‖qt‖
log |t | # 1

2
. (81)

It follows that, for almost all q ∈M(1)
κ , the integral in formula (80) converges as t →

−∞, hence the family of functions {Ut | t # 0} is uniformly bounded in the Hilbert space
L2q(M).
Let U ∈ L2q(M) be any weak limit of Ut as t → −∞ (which exists since bounded

subsets of separable Hilbert spaces are sequentially weakly compact). By contraction of
the identity (76) with the vector field S and by taking the limit as t →−∞, we have

SUt =−Re
(
m+
0
)
+ et Re

(
m+

t

)
, t # 0;

SU =−Re
(
m+
0
)
. (82)

The identities in (82) hold in the sense of distributions. It follows by a straightforward
computation that there exists a distribution D such that

dU =−Re
[
m+
0 q1/2

]
+D · ηS. (83)

In fact, dU = SU ηT + T UηS , hence by (68) the identity (83) holds with D := T U −
Im(m+

0 ). Since U ∈ L2q(M) the distributionD has Sobolev order 1 and the current C :=D ·
ηS is a basic current of order 1 for the horizontal foliation Fq representing the cohomology
class c ∈E+

q .
In fact, it is immediate by (83) that C is closed and represents c = Re[m+

0 q1/2]. Finally,
C is basic for Fq = {ηS = 0} since, if X is any vector fields tangent to Fq on M \Σq , we
have in the distributional sense:

ıXC = D · ıXηS = D · 0= 0,

LXC = ıXdC + dıXC = 0. (84)

Otherwise, since C is closed and by a standard formula dC = SD · ωq , the distribution D
is S-invariant, hence C is basic for Fq by Lemma 8.1. "
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