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Abstract

In this series of lectures, we describe some counting problems in moduli space and outline
their connection to the dynamics of the SL(2,R) action on moduli space. Much of this is
presented in analogy with the space of lattices SL(n,R)/SL(n,Z).

1. LECTURE 1: Counting problems and volumes of strata

Recall that Ωn = SL(n,R)/SL(n,Z) is the space of covolume 1 lattices in Rn. This space
is non-compact, since we can have arbitrarily short vectors in a lattice.
We will refer to moduli spaces of translation surfaces as defined in the lectures by

Howard Masur in this handbook [3, Definition 6] as strata. Note that the case of n = 2
in the space of lattices and the case of the stratum H1(∅) boil down to the same thing,
since we are considering the space of unit area holomorphic 1-forms on tori, which is
given by SL(2,R)/SL(2,Z).
Let B(R) be the ball of radius R centered at 0 in Rn. For a given lattice ∆ ∈ Ωn, we

would like to find out how many lattice points, that is, how many points of ∆ are contained
in B(R).
It is immediately clear that for a fixed lattice ∆, as R → ∞,

∣∣∆∩ B(R)
∣∣ ∼Vol

(
B(R)

)
=Vol

(
B(1)

)
Rn (1)

(i.e. the number of lattice points is asymptotic to the volume). However, this is not uniform
in ∆. A uniform upper bound can be given as follows:
Let Rn be endowed with a Euclidean structure. Given a subspace L of Rn, we say it is

∆-rational if L ∩∆ is a lattice in L. We define d(L) to be the volume of L/(∆ ∩ L). We
then define the function α by

α(∆) = sup
1

d(L)
,

where the supremum is taken over all∆-rational subspaces L. We have the following result
(see [25]): there is a constant C, depending only on the dimension n so that for all∆ ∈Ωn,

∣∣∆∩ B(1)
∣∣ < Cα(∆). (2)

This estimate follows from what is called “the geometry of numbers”.
The analogous problem in moduli space is as follows: letH(β) be a stratum, i.e. a moduli

space of translation surfaces (defined in [3, Definition 6]), and let S = (X,ω) ∈ H(β).
Recall (see, e.g., [3, §1.1]) that the holonomy of a curve γ on S is given by

hol(γ ) =
∫

γ
ω.



584 A. Eskin

Let

Vsc(S) =
{
hol(γ ): γ is a saddle connection on S

}
,

so that Vsc(S) ⊂ C ( R2 (saddle connections are defined in [3, Definition 3]). Note that
Vsc(S) is a discrete subset of R2, but it is not, in general, a subgroup. We are interested in
|Vsc(S) ∩ B(1)|, i.e. the number of saddle connections of length at most 1 on S.
The result is as follows: Fix ε > 0. Then there is a constant c = c(β, ε) such that for all

S ∈H(β) of area 1,

∣∣Vsc(S) ∩ B(1)
∣∣ ! c

((S)1+ε
, (3)

where ((S) is the length of the shortest saddle connection on S.
The proof of this result (which can be found in [9]) is more difficult than that of (2).

It uses techniques developed by Margulis for the quantitative version of the Oppenheim
conjecture (see Lecture 3), as well as induction on the genus.
The following construction and its analogues play a key role. For any function of

compact support f ∈ Cc(Rn), let f̂ (∆) = ∑
v∈∆\0 f (v). Note that if f = χB(1), we get

f̂ (∆) = |∆∩ B(1)|. We have the Siegel formula: For any f ∈ Cc(Rn),

1
µ(Ωn)

∫

Ωn

f̂ (∆) dµ(∆) =
∫

Rn
f dλ, (4)

where µ is Haar measure on Ωn = SL(n,R)/SL(n,Z), and λ is Lebesgue measure on Rn.
The generalization of this formula to moduli space was developed, so the legend goes, by

Veech while he listened to Margulis lecture on the Oppenheim conjecture. For f ∈ Cc(R2)
we define the Siegel–Veech transform f̂ (S) = ∑

v∈Vsc(S) f (v). Just as above, if f = χB(1),
f̂ counts the number of saddle connections of length ! 1.
Just as we had the Siegel formula for lattices, here we have the Siegel–Veech formula:

There is a constant b(β) such that for any f ∈ Cc(R2), we have

1
µ(H1(β))

∫

H1(β)
f̂ (S) dµ(S) = b(β)

∫

R2
f, (5)

where µ is the natural SL(2,R) invariant measure on H1(β), where H1(β) ⊂ H(β) is the
hypersurface of translation surfaces of area 1 (this measure is defined in [3, §3], or in the
next section).
Let us sketch the proof of this result (essentially from [28], also reproduced in [9]). The

first step (which is by far the most technical) is to show that f̂ ∈ L1(H1(β)), so that the
left-hand side is finite. This can be deduced, e.g., from (3). Having done this, we denote
the quantity on the left-hand side of (5) by ϕ(f ).
Thus we have a linear functional ϕ :Cc(R2) → R, i.e. a measure. But it also has to be

SL(2,R) invariant. Only Lebesgue measure and δ0, the delta measure at 0 are SL(2,R)

invariant. Thus we have ϕ(f ) = af (0) + b
∫

R2 f . It remains to show a = 0. Consider the
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limit of indicator functions f = χB(R) as R → 0. Both sides of the equation tend to 0, so
we have that a = 0, and thus our result.
Returning to lattices, we can apply literally the same arguments to prove the Siegel

formula (4). Note that nothing was special about dimension 2 in the above proof sketch.
Thus, we have almost proved (4) as well. To be precise, we currently have:

1
µ(Ωn)

∫

Ωn

f̂ (∆) dµ(∆) = b

∫

Rn
f dλ,

for some constant b. We need to show b = 1. Here, we once again use f = χB(R), but this
time consider R → ∞. Recall that f̂ (∆) = |∆ ∩ B(R)| ∼ Vol(B(R)), for R → ∞ and ∆
fixed. Thus, we get b = 1, and the Siegel formula.
We should remark that for the space of lattices the proof of the Siegel formula indicated

above is not the easiest available. In fact, it is possible to avoid proving a priori that f̂ ∈
L1(Ωn). See [26] or [5] or [27] for the details.
We now show how to use the Siegel formula to calculate the volumes of the spaces Ωn.

We first prove a variant of the formula. Recall that v ∈∆ is primitive if there is no integer
n so that v/n ∈∆. The analogue of (1) for counting primitive vectors is

∣∣∆prim ∩ B(R)
∣∣ ∼ 1

ζ(n)
Vol

(
B(1)

)
Rn, (6)

where ζ(n) is Riemann’s zeta function. Now for f ∈ Cc(Rn), let

f̃ (∆) =
∑

v∈∆

′
f (v),

where the prime indicates that we are summing over primitive vectors only. Now the proof
of the Siegel formula given above shows that

1
µ(Ωn)

∫

Ωn

f̃ (∆) dµ(∆) = 1
ζ(n)

∫

Rn
f dλ. (7)

The rest of the argument is heuristic. Consider f = χB(ε) for some small positive ε. We
have that f̃ (∆) = 0 unless ∆ has a primitive vector of length less than ε. Note that if v is a
primitive short vector, then so is −v. It turns out that we can, in the limit as ε → 0, ignore
the contribution to the integral of the lattices which have more then two primitive short
vectors; thus we may assume that f̃ (∆) = 2. Now, let v any one of the two primitive short
vectors in∆, and consider a basis for∆ containing v. We may subtract multiples of v from
the other elements of the basis, to make them as short as possible. After this “reduction”
procedure is complete, we get a basis for ∆ containing v where all the other elements
are almost orthogonal to v. Then these other basis elements form an arbitrary lattice of
dimension n − 1, i.e. an element of Ωn−1. Thus, the left-hand side of (7) is approximately

2
µ(Ωn)

1
2
Vol

(
B(ε)

)
µ(Ωn−1),
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where the factor of 2 came from the value of f̃ , the factor of 12 Vol(B(ε)) came from the
integral over v ∈ Rn, and the factor µ(Ωn−1) came from the integral over the rest of the
basis (and we assumed that f̃ is always either 0 or 1). The right-hand side of (7) is exactly
equal to 1

ζ(n) Vol(B(ε)).
Doing this more carefully, and taking into account the normalizations of the measures

(to be defined in the next lecture), we get, after sending ε → 0,

1
ζ(n)

= n − 1
n

µ(Ωn−1)
µ(Ωn)

. (8)

Now after iterating the above formula, we get the desired formula for the volume:

µ(Ωn) = 1
n
ζ(2)ζ(3) . . . ζ(n). (9)

The above could be justified rigorously, but this is usually not done since (8) and (9) can
be obtained from (7) in an easier way (see [26] or [5] or [27]). However, the analogue of the
argument presented here is the only way we currently know how to proceed in the case of
translation surfaces. This was done in [11] where we obtained the following result, which
corresponds to (8). For any stratum (i.e. moduli space of translation surfaces) H1(β), the
coefficient b(β) involved in (5) can be expressed in the following form:

b(β) =
∑

α<β

c(α,β)
µ(H1(α))

µ(H1(β))
, (10)

where the sum is over lower dimensional strata α (which lie at the “boundary” of H1(β)),
and c(α,β) are explicitly known rational numbers.
We note that (10) fails as a method for calculating the volumes, since (unlike the lattice

case) we do not have an independent formula for b(β). In the second lecture we will show
that the volumes can be computed in a different way; then (10) can be used to evaluate
b(β). Also, we will see in the third lecture that b(β) is the answer to a certain natural
counting problem. The numbers b(β), called the Siegel–Veech constants, appear in some
other contexts as well, in particular in connection with the Lyapunov exponents of the
geodesic flow (see, e.g., [1, end of §6]).

2. LECTURE 2: Lattice points and branched covers

In this lecture we describe briefly another strategy for calculating volumes of moduli spaces
of translation surfaces, which also has a parallel for the space of lattices. Recall that we
are considering the moduli spaces H(β) of translation surfaces with singularity structure
β = (β1,β2, . . . ,βn), where βi ∈ N,

∑
βi = 2g − 2. Let the set of singularities be denoted

by Σ . We have |Σ | = n, and we have the first relative homology group of S relative to Σ
(with coefficients in Z):

H1(S,Σ;Z) = Z2g+n−1.



Counting problems in moduli space 587

We can pick a basis for the relative homology by selecting g a-cycles, g b-cycles (from
absolute homology), and n − 1 relative cycles, where a relative cycle is a path with starts
at some point of Σ and ends at a different point of Σ .
Fix a Z-basis γ1,γ2, . . . ,γk of H1(S,Σ;Z), where k = 2g + n − 1. We recall the fol-

lowing fact (see [14]):

THEOREM 1. The map (X,ω) → (hol(γ1), . . . ,hol(γk)) from H(β) → (R2)k is a local
coordinate system.

By pulling back Lebesgue measure on (R2)k , we obtain a normalized measure ν on
H(β). (For more details on the above construction, see [3, §3].) Now, we would like to
define a measure on the hypersurface H1(β).
This is similar to the lattice setting, where if we pick a basis v1, v2, . . . , vn for our lattice

∆ ⊂ Rn, we get a matrix in Mn(R) by letting vi be the ith column. Note that since our
lattice is unit volume, our matrix has determinant 1. We have a natural (Lebesgue) measure
ν on Mn(R). Consider the det = 1 hypersurface Ω1 (i.e. SL(n,R)). We define a measure
µ on this space as follows: let E ⊂ Ω1, and let C1(E) be the cone over E (i.e. the union
of all line segments which start at the origin and end at a point of E). We define µ(E) =
ν(C1(E)). This yields a finite measure since we are considering a fundamental domain
under the SL(n,Z)-action. This is in fact the measure used in the previous section in the
case of lattices.
Returning to the setting of translation surfaces, recall that the area of our surface S =

(X,ω) is given by

area(S) = 1
2i

∫

X
ω ∧ ω̄ = 1

2i

g∑

i=1

∫

ai

ω̄

∫

bi

ω−
∫

bi

ω̄

∫

ai

ω,

where ai and bi are the a- and b-cycles on X, respectively.
This gives that the area is a quadratic form in the local coordinate system, i.e.

area(X,ω) = Q
(
hol(γ1), . . . ,hol(γk)

)
.

However, it is a degenerate form, since it only depends on the absolute cycles ai and bi . We
can mimic the lattice picture now: we define µ(E) = ν(C1(E)) for any subset E ⊂ H1(β).
This is the measure used in the previous section for the case of translation surfaces.
In what follows, we should really work inside each local coordinate chart as in Theo-

rem 1 and then sum over the charts at the end (see [12, §3.2]). But to simplify the presenta-
tion, we pretend there is only one chart. Let F ⊂ H1(β) denote a fundamental domain (for
the relation of equivalence of translation surfaces) with rectifiable boundary, so that each
translation surface corresponds to a unique point in F . Then,

µ
(
H1(β)

)
= µ(F) = ν

(
C1(F)

)
.
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We now make a cosmetic step. Let CR(F) denote the cone of F extended to the hyper-
surface of area R-surfaces. Clearly,

µ
(
H1(β)

)
= ν

(
C1(F)

)
= ν(CR(F))

Rk
.

We have the following fact:

∣∣CR(F) ∩
(
Z2

)k∣∣ ∼ ν
(
CR(F)

)

as R → ∞, i.e. the number of lattice points in a cone is asymptotic to the volume. Usually
this is used to estimate the number of lattice points, but here we use this in reverse and
estimate the volume by the number of lattice points. Thus, we get that

µ
(
H1(β)

)
= ν(CR(F))

Rk
∼ |CR(F) ∩ (Z2)k|

Rk
,

or, equivalently,

∣∣CR(F) ∩
(
Z2

)k∣∣ ∼ µ
(
H1(β)

)
Rk. (11)

Equation (11) is not useful unless we can find an interpretation of the points of CR(F)∩
(Z2)k . This is given by the following:

LEMMA 2. S = (X,ω) ∈ CR(F)∩ (Z2)k if and only ifX is a holomorphic branched cover
of the standard torus of degree ! R, ω is the pullback of dz under the covering map, and
all singularities branch over the same point.

PROOF. Since S ∈ CR(F), area(S) ! R. By definition, S ∈ (Z2)k is equivalent to
hol(γ1), . . . ,hol(γk) ∈ Z2. Fix a non-singular point z0 on S, and define π :S → T , where
T is the standard torus, by π(z) =

∫ z
z0
ω. Since

∫
γ ω ∈ Z + iZ for any closed curve or sad-

dle connection γ , this is a well-defined covering map with all singularities branching over
the same point. Since the torus is unit volume, the area of S is equal to the degree of the
covering. "

Let Nβ(d) denote the number1 of branched covers of T of degree d with branching
type β . (Note that Nβ(d) is defined in purely combinatorial terms.)
Combining Lemma 2 with (11), we obtain the following: as R → ∞,

R∑

d=1
Nβ(d) ∼ µ

(
H1(β)

)
Rk. (12)

1In order for Theorem 3 below to hold, we should, when defining Nβ (d), weigh each cover by the inverse of
its automorphism group. However, this does not affect the asymptotics and can be ignored here.
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(This relation was discovered by Kontsevich and Zorich, and independently by Masur and
the author.) Thus, we can compute µ(H1(β)) if we can compute the asymptotics of the
left-hand side of (12). This is a purely combinatorial problem.
Suppose we are considering a degree d cover of the torus. Consider the standard basis

a and b of curves on the torus (when the torus is viewed as the unit square, the curves
correspond to the sides of the square). They give rise to permutations of the sheets, that is,
elements of the symmetric group Sd . We will abuse notation by denoting these permuta-
tions also by a and b. Singularity types of covers correspond to different conjugacy classes
of the commutator aba−1b−1. A simple zero is a transposition, a double zero a three cy-
cle, a two simple zeroes is a product of two transpositions, etc. (So, for example, if we
are considering the stratum H(1,1), the commutator will be in the same conjugacy class
as a product of two transpositions.) The number of pairs (a, b) ∈ Sd × Sd satisfying such
a commutation relation can be expressed as a sum over the characters of the symmetric
group Sd .
However, simply looking at the conjugacy class of the commutator permutation does

not guarantee that the resulting surface is connected. We wish to count only the connected
covers. However, the disconnected ones dominate the count. If one knows the number of
disconnected covers exactly, one can compute the number of connected covers (by using
inclusion/exclusion to subtract off all the possible ways a cover can disconnect). Unfor-
tunately, as one does that, the first n terms in the asymptotic formula cancel. Still, it is
possible, using the exact formula for the number of disconnected covers in [4], to carry out
the computation (see [12]). The result, is a fairly messy but computable formula for the
volume µ(H1(β)).
There are two consequences of the above computations worth mentioning:

THEOREM 3. The generating function Fβ(q) = ∑∞
d=0Nβ(d)qd is a quasi-modular form,

that is, it is a polynomial in the Eisenstein series Gk(q), k = 2,4,6.

THEOREM 4. π−2gµ(H1(β)) ∈ Q, where g is the genus of any surface in H(β).

Both of the above theorems were conjectured by Kontsevich. Further work showed that
they hold also for the connected components of strata, and that similar results hold for
spaces of quadratic differentials. We remark that Theorem 4 implies that the Siegel–Veech
constants are rational.
For the space of lattices, one can carry out the same construction. The main difference

is that one ends up counting unbranched covers of the standard torus T n, or what is equiv-
alent, sublattices of the standard lattice Zn. By computing the number of sublattices of Zn

of index at most R, and sending R → ∞, it is not difficult to reproduce (9).

3. LECTURE 3: The Oppenheim conjecture and Ratner’s theorem

3.1. Counting cylinders and saddle connections

Recall that Vsc(S) = {hol(γ ): γ is a saddle connection on S} where S = (X,ω) is a trans-
lation surface. We also define the analogous set:
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V (S) =
{
hol(γ ): γ is a closed geodesic on S not passing through singularities

}
.

Note that any such closed geodesic is part of a cylinder (see [3, §3]), and all the closed
geodesics in the cylinder have the same holonomy. Thus, |V (S) ∩ B(R)| is the number of
cylinders on S of length at most R.
Masur proved the following:

THEOREM 5. For all translation surfaces S in a compact set, there are constants c1 and
c2 so that for R - 1,

c1R
2 <

∣∣V (S) ∩ B(R)
∣∣ !

∣∣Vsc(S) ∩ B(R)
∣∣ < c2R

2.

The upper bound is proved in [17] and the lower bound is proved in [16]. The proof of
the lower bound depends on the proof of the upper bound. Another proof of both the upper
and lower bounds with explicit constants was given by Vorobets in [29] and [30]. Also
see [9] for yet another proof of the upper bound, which is influenced by ideas of Margulis.
We also note that there is a dense set of directions with a closed trajectory and thus a

cylinder.
The following theorem, gives asymptotic formulas for the number of saddle connections

and cylinders of closed geodesics on a fixed surface. It was first proved in this form in [9],
but many of the ideas came from [28], where a slightly weaker version was proved.

THEOREM 6. For a.e. S ∈H1(β), we have

∣∣Vsc(S) ∩ B(R)
∣∣ ∼ πb(β)R2,

where Vsc(S) is the collection of vectors in R2 given by holonomy of saddle connections
on S, and b(β) is the Siegel–Veech constant from Lecture 1 (whose value is given by (10)).
Similarly, for cylinders of closed geodesics, we have that there is a constant b1(β) so

that

∣∣V (S) ∩ B(R)
∣∣ ∼ πb1(β)R2,

where V (S) is the collection of vectors given by holonomy along (imprimitive) closed geo-
desics not passing through singularities, and b1(β) is the associated Siegel–Veech con-
stant.

The following exposition will be along the lines of [9], which was heavily influenced
by [28]. To simplify the notation, we only deal with the case of saddle connections. Define
gt =

(
et 0
0 e−t

)
and rθ =

( cos θ sin θ
− sin θ cos θ

)
. Let f be the indicator function of the trapezoid defined

by the points

(1,1), (−1,1), (−1/2,1/2), (1/2,1/2).
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Fig. 1. Lemma 7.

LEMMA 7. We have
∫ 2π

0
f (gt rθv)dθ ≈

{
2e−2t if et/2! ‖v‖ ! et ,
0 otherwise.

PROOF. Let U denote the trapezoid. Note that

f (gt rθv) 0= 0 ⇔ gt rθv ∈ U ⇔ rθv ∈ g−1
t U. (13)

The set g−1
t U is the shaded region in Figure 1. From (13) it is clear that the integral in

Lemma 7 is equal to (2π times) the fraction of the circle which lies inside the shaded region
g−1

t U . If v is too long or too short (not drawn), then the circle would completely miss the
shaded region, and the integral would be zero. If it does not miss, then (2π times) the
fraction of the circle in the shaded region is approximately 2e−2t , independent of ‖v‖. "

We now prove Theorem 6. Summing our formula from Lemma 7 over all v ∈ Vsc(S) and
recalling the definition of the Siegel–Veech transform f̂ (S) = ∑

v∈Vsc(S) f (v), we get

1
2e
2t

∫ 2π

0
f̂ (gt rθS)dθ ≈

∣∣Vsc(S) ∩ B
(
et

)∣∣ −
∣∣Vsc(S) ∩ B

(
et/2

)∣∣.
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Writing R = et , we can rewrite this as

1
2R

2
∫ 2π

0
f̂ (gt rθS)dθ ≈

∣∣Vsc(S) ∩ B(R)
∣∣ −

∣∣Vsc(S) ∩ B(R/2)
∣∣. (14)

This equation is key to the counting problem, since the right-hand side counts saddle con-
nections in an annulus, and the left-hand side is an integral over (part of) an SL(2,R) orbit.
(The fact that we only have approximate equality does not affect the leading order asymp-
totics.) Now we are supposed to use some sort of ergodic theory to analyze the behavior of
integral on the left-hand side of (14) as t → ∞ (or equivalently as R → ∞).
There is an ergodic theorem of Nevo [19] which implies that2 for almost all S ∈H1(β),

and provided that f̂ ∈ L1+ε(H1(β)), the integral converges to 2π
∫
H1(β) f̂ (S) dS =

2πb(β)
∫

R2 f . The assertion that f̂ ∈ L1+ε can be verified using (3). This immediately
implies Theorem 6. "

However, this approach is a failure if one wants to prove things about billiards in rational
polygons: our theorems hold for almost every point S, and the set of translation surfaces
arising from rational polygons has measure zero.

3.2. Oppenheim’s conjecture

We now describe a counting problem for lattices which has a solution very similar to the
above approach. (In fact, the results in this subsection predated and heavily influenced the
discussion in the previous subsection.) LetQ = Q(x1, x2, . . . , xn) be a indefinite irrational
quadratic form in n variables which is not a multiple of a rational form. In 1929 Oppenheim
conjectured the following: for n # 5, Q(Zn) is dense in R. This was proved for n # 3 by
Margulis in 1986 [15], using methods from dynamics and ergodic theory.
We will now assume that Q has signature (p, q), with p # 3 and q # 1. In [7], the

following quantitative version of the conjecture is proved:

∣∣{x ∈ Zn: ‖x‖ ! T , a ! Q(x) ! b
}∣∣ ∼ c(Q)(b − a)T n−2. (15)

This is very similar to our above problem with saddle connections: we want to consider
the lattice points in the ball of radius T intersected with the region in between the two
hypersurfaces Q(x) = a and Q(x) = b.
To solve this, one writes an integral very similar to the previous problem: this time, our

compact group which we are integrating over is H = SO(Q) ∩ SO(n) and our diagonal
subgroup, denoted by at , has 1’s in every diagonal entry except the first and last, where
they are et and e−t , respectively. Our integral is as follows: T n−2 ∫

H f̂ (ath∆Q)dh, where
∆Q is a certain lattice in Rn associated to Q.

2The theorem of Nevo used here is about a general SL(2,R) action, and uses nothing about the geometry of the
moduli space.
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Hence, if one makes a formal analogy between the spaces of translation surfaces and the
spaces of lattices, the problem of counting saddle connections corresponds to the quanti-
tative Oppenheim conjecture. There is an important difference between the two problems:
unlike the saddle connection case where the result is “almost everywhere”, we can prove
the asymptotic formula (15) for ALL quadratic forms Q not proportional to rational forms
(and (15) fails for multiples of rational forms). This is due to the theorems we describe in
the next part of the lecture, which are collectively known as Ratner’s theorem. A major
unsolved question is whether or not there is a version of Ratner’s theorem for the action on
the moduli space of translation surfaces. An affirmative answer would allow us to prove an
asymptotic formula for billiards in every rational polygon (and every translation surface).
For more details on Oppenheim’s conjecture and its solution, see [2, §3.3a, §5.1].

3.3. Ratner’s theorem

Recall the Birkhoff Ergodic Theorem (see, e.g., [13, Theorem 4.1.2]):

THEOREM 8 (Birkhoff). Let (X,µ) be a measure space with µ(X) = 1, and let T :X → X
be a ergodic measure preserving transformation. Let f :X → R be in L1(X,µ). Then, for
almost every x ∈ X, we have that

lim
N→∞

1
N

N−1∑

i=0
f

(
T ix

)
=

∫

X
f dµ. (16)

This is a great theorem, but the “almost every” is fatal for most applications to number
theory. We would like to know what happens for those other points as well, and Ratner’s
theorem can describe the behavior in certain settings.
First, however, recall that T :X → X is said to be uniquely ergodic if there is a unique

invariant probability measure µ on X.
We have the following consequence of unique ergodicity: if T is uniquely ergodic, and

X is compact, then (assuming f in continuous) the convergence in Birkhoff’s theorem
holds for all x ∈ X. To see this, let νN(f ) = 1

N

∑N−1
i=0 f (T ix). Since X is compact, the

set of probability measures on X is weak-∗ compact, so there is a subsequence νnj and a
probability measure ν∞ so that νnj → ν∞. Its easy to see that ν∞ is an invariant measure
for T , so ν∞ = µ. This is equivalent to (16).
Thus we can see that understanding the set of invariant measures is very important (or

in particular, the set of ergodic invariant measures, since any invariant measure is a convex
combination of ergodic measures). The other key issue in the topological setting is under-
standing the closure of orbits, and the two are related, since there will be invariant measures
supported on orbit closures. This is the subject matter of Ratner’s theorem (see [20–24]).
We now describe the setting. Let G be a semisimple Lie group with finite center (for

example, G = SL(n,R)). Let Γ be a lattice in G (not necessarily cocompact, e.g., Γ =
SL(n,Z)), and let U be a one parameter unipotent subgroup (for example, ut =

( 1 t
0 1

)
). We

let U act on G/Γ by left multiplication on cosets (for n = 2, this action is the horocycle
flow).



594 A. Eskin

The following theorem is stated somewhat informally, e.g., [24] or [2, §3.3c] for precise
statements.

THEOREM 9 (Ratner).
(1) The closure of every U -orbit is algebraic: that is, for all x ∈ G/Γ , there is a closed

subgroup L ⊂ G such that Ux = Lx, and that L ∩ xΓ x−1 is a lattice in L (so that
Lx is a closed subset of G/Γ ).

(2) Every ergodic U -invariant measure ν is algebraic, that is there exists a subgroup L

and x ∈ G/Γ , such that ν is the L-invariant measure on the closed subset Lx.
(3) Every orbit is uniformly distributed in its closure, that is, for every x ∈ G there ex-

ists a (not necessarily proper) subgroup L of G such that Lx = Ux is closed, and
1
T

∫ T
0 f (utx) dt →

∫
f (y)dµL(y) as t → ∞, where µL is the L-invariant proba-

bility measure on Lx.

The second part of the theorem is the most difficult. The other two parts are essentially
consequences of part 2. Also note that Birkhoff’s theorem yields that for all ε > 0 there is a
set B of measure < ε so that outside of B , the convergence is uniform. Dani and Margulis
obtained an explicit description of B using part 2 of Ratner’s theorem (see [6]).
One eventual goal is to prove a version of Ratner’s theorem for the SL(2,R) action on

H1(β). That is, we would like to classify invariant measures, orbit closures, and prove
uniform distribution, for both the full SL(2,R) action, and for the horocycle flow (which
is defined to be the action on H1(β) of the subgroup

( 1 ∗
0 1

)
of SL(2,R)).

One partial result in this direction is due to McMullen [18]: he has classified the SL(2,R)

orbit closures and invariant measures for the moduli space of genus 2 surfaces (i.e. the strata
H(1,1) and H(2)). Note that the integral in (14) is over large circles in SL(2,R), which
can be approximated well by horocycles. Thus the horocycle flow is directly relevant to the
counting problem. For other very partial results in this direction see [8] and [10], where
this program (i.e. measure classification with respect to the horocycle flow and application
to counting) has been carried out in the very special case of branched covers of Veech
surfaces.
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