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1. Introduction

Our objects of study are translation surfaces and their geodesics. These
structures arise in the study of rational polygonal billiards and more generally
in Teichmüller dynamics. This paper focuses on computing relations between
lengths of geodesics and their intersections on those surfaces.

1.1. Motivation and results. For any closed (meaning compact, connected,
without boundary) oriented surface X, the algebraic intersection endows the
first homology group H1(X,R) with a symplectic bilinear form denoted Int(·, ·).
When X is endowed with a Riemannian metric g, one can ask the following
question: how much can two curves of a given length intersect? Namely, what is

(1) KVol(X) := Vol(X, g) · sup
α,β

Int(α, β)

lg(α)lg(β)
,

where the supremum ranges over all piecewise smooth closed curves α and β
in X, and lg(·) denotes the length with respect to the Riemannian metric (it
is readily seen that multiplying by the volume Vol(X, g) makes the quantity
invariant by rescaling the metric g). This function is well defined and finite
(see [MM14]).

Recent work [CKM21a, CKM21b] provides new estimates of KVol on the Te-
ichmüller curve of some arithmetic translation surface (X,ω). The most natural
non-arithmetic Teichmüller curve Tn, for n ≥ 5, is given by the original Veech
surface [Vee89], namely the surface arising from a right-angled triangle with
angles (π/2, π/n, (n−2) ·π/2n) by the unfolding construction (see [ZK76]). For
odd n, Tn is canonically identified with H2/Γn where Γn is the Hecke triangle
group of signature (2, n,∞) (see §2.1 and §4). In this context, we establish the
first known explicit formula of KVol (beyond the case of the moduli space of
flat tori):

Theorem 1.1. For odd integer n ≥ 5, and any (X,ω) ∈ Tn, we have

KVol(X,ω) =

n
2 cot πn ·

1
sin π

n

cosh dhyp(X, γ0,∞)
,

where γ0,∞ is the hyperbolic geodesic in H2 with endpoints 0 and ∞.

In particular KVol is real analytic on Tn except along the geodesic with end-
points cos πn and ∞.
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1.2. Context and history. While KVol is a close cousin of the systolic ratio
supα

Vol(X,g)
lg(α)2 , very little is known on the function KVol. For any Riemannian

surface (X, g), we have KVol(X, g) ≥ 1, and equality holds if and only if (X, g)
is a flat torus [MM14]. Almost all of the obvious questions about KVol on
hyperbolic surfaces are currently open. In this paper we propose to continue the
study of KVol as a function on the moduli space of translation surfaces, originally
initiated by the third named author in [CKM21a, CKM21b]. The surface X is
called a translation surface if it is equipped with a translation structure, that is,
an atlas of charts such that all transition functions are translations in R2. We
assume that the chart domains cover all the surface X except for finitely many
points called singularities. The translation structure induces the structure of a
smooth manifold and a flat Riemannian metric on X punctured at the singular
points. We require that the metric have a cone type singularity at each singular
point. Geodesics on X can be quite complicated: they may be unions of saddle
connections with different directions.

More specifically, in [CKM21a], KVol is studied for ramified covers of the torus
(or arithmetic Teichmüller curves). It is proved in [CKM21a] that KVol, defined
on the Teichmüller disc of the surface tiled with three squares, is unbounded,
but it does have a minimum, achieved at a surface, unique modulo symmetries,
and otherwise fairly undistinguished. The interesting surfaces, i.e. the three
square surfaces, and the surface tiled with six equilateral triangles, are local
maxima, with KVol = 3, where 3 should be thought of as the ratio of the total
area of the surface, to the area of the smallest cylinder of closed geodesics. The
local maxima are not locally unique, they come in hyperbolic geodesics, in the
Teichmüller curve viewed as a quotient of the hyperbolic plane by a Fuchsian
group.

In the current paper, we extend the study to non arithmetic Teichmüller
curves.

1.3. KVol on non arithmetic Teichmüller curves. Teichmüller curves are
isometrically immersed algebraic curves in the moduli space of Riemann sur-
faces. These arise as SL(2,R)-orbit (or Teichmüller disc) of special flat surfaces
that are called Veech surfaces. For n = 2m + 1 ≥ 5 we will denote by X0 the
original Veech surface [Vee89] arising from a right-angled triangle with angles
(π/2, π/n, (n− 2) · π/2n). The surface X0 lies in the stratum H(n− 3) and its
genus is genus(X0) = (n− 1)/2. From our main result, we will deduce

Theorem 1.2. For any X ∈ Tn the following holds

n

2
cot

π

n
≤ KVol(X) ≤ n

2
cot

π

n
· 1

sin π
n

.

Moreover the bounds are sharp and:

(1) The maximum of the function KVol on Tn is achieved, precisely, along
γ0,∞, that is, by images of the right-angled staircases under the Teich-
müller geodesic flow (see Figure 1).

(2) The minimum of the function KVol on Tn is achieved, uniquely, at X0.
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Finally, in the definition of KVol, the supremum is achieved by pairs of curves
that are (images of) pairs of sides of the double regular 2m+ 1-gon.

Remark 1.3. The case of the regular 4m-gon is dealt with in a forthcoming paper
of the first author. When n ≡ 2 mod 4, the surface Xn belongs to a stratum
with two conical points. This case is combinatorially a bit more complicated
and we set it aside for future work.

Unlike the three-square surface case [CKM21a], KVol is bounded on the Te-
ichmüller discs of the double regular (2m+ 1)-gon. More generally we show

Theorem 1.4. The function KVol is bounded on the Teichmüller disc of X ∈
H(2) if and only if X is a primitive Veech surface i.e. X is not arithmetic.

The same discussion applies to the Teichmüller disc of surfaces in the Prym
eigenform loci in H(4) and H(6) (see [LN14]) by looking at possible cylinder di-
agrams. We suspect that KVol is never bounded from above on the Teichmüller
disc of arithmetic Veech surfaces.

Remark 1.5. Another difference with [CKM21a] is that the minimum of KVol on
Tn is achieved, uniquely, by the most interesting surface in the disc, namely the
double n−gon. On the other hand, similarly to the three-square case, the local
maxima, which are also global maxima are achieved along hyperbolic geodesics
in the Teichmüller disc, which correspond to surfaces with a right-angled tem-
plate, see Figure 1.

1.4. Organisation of the paper. Here is a layout of this paper. In §2.1 we
recall prerequisites on translation surfaces, Veech groups, Veech surfaces, and we
describe the right-angled staircase models for our surfaces. In §3 we explain why
KVol is bounded on some Teichmüller curves. In §4 and §5 we explain how to
interpret KVol geometrically, in terms of hyperbolic distance on the Teichmüller
curve (identified with a quotient of H2 by a Fuchsian group), and we give an
upper bound for KVol on the Teichmüller curve. In particular this proves that
the maximum is achieved by the staircase surfaces.

In §6 we perform the first main step of the proof: we compute KVol for the
double 2m + 1-gon, by a geometric method, carefully looking at how saddle
connections intersect depending on their directions.

In §7 we perform the second main step of the proof: we interpolate, by
analytical methods, between the double 2m+ 1-gon and the staircase surfaces,
thus proving that the minimum is achieved, uniquely, by the former.

Acknowledgments. This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program In-
vestissement d’avenir.

2. Background

2.1. Preliminaries. We review useful results concerning flat surfaces, Veech
groups and Teichmüller curves. For a general introduction to translation surfaces
and their moduli spaces, we refer the reader to the surveys [Zor06, Wri16, Mas22]
and the references therein. Throughout this paper, H(k1, . . . , kr) will denote the
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stratum of moduli space of Abelian differentials ω on Riemann surfaces X of
genus g ≥ 1, having r zeros, of orders ki for i = 1, . . . , r, or equivalently of
angles 2π(ki + 1). For simplicity we will simply denote X for the pair (X,ω) if
the context is clear.

As previously mentioned, geodesics on translation surfaces can be compli-
cated. However for X in the minimal stratum H(2g − 2), any geodesic is ho-
mologous to a union of closed saddle connections. Hence the supremum in
Equation (1) can be taken over all saddle connections of the surface.

We denote the holonomy vector of a saddle connection α by −→α =
∫
α ω ∈ R2.

By abuse of notation we will often confuse −→α with α. We have l(α) = ||−→α ||.
A Teichmüller curve is an isometrically immersed complex curve in the moduli

space of Riemann surfaces. The projection of a closed GL2(R)-orbit to the
moduli space of Riemann surfaces is a Teichmüller curve, so as is common we
will also refer to closed GL2(R)-orbits as Teichmüller curves in H(k1, . . . , kr).
A point on a closed GL2(R)-orbit is called a Veech surface. Equivalently a
translation surface is a Veech surface if and only if its Veech group is a lattice
in SL2(R). The easiest examples of Teichmüller curves are orbits of arithmetic
surfaces (namely ramified covers of the two-torus). Veech [Vee89] discovered a
family of non arithmetic surfaces arising from a right-angled triangle with angles
(π/2, π/n, (n−2) ·π/2n) by the unfolding construction described in [ZK76]. We
give a description of these surfaces in the next section.

2.2. The staircase model for the double (2m+1)−gon. For n ≥ 3, the sur-
faceX0 (arising from the unfolding of a right triangle with angles (π/2, π/n, (n−
2)π/2n)) can be described as follows (see [ZK76, Vee89]). If n ≥ 8 satisfies n ≡ 0
mod 4 then X0 is the quotient of the regular n−gon (with radius 1) by gluing
opposite sides by translation. If n ≥ 5 is odd, X0 is the quotient of the double
of the regular n−gon (with radius 1) by gluing opposite sides by translation.
The translation surface X0, belongs to the stratum H(n/2− 2) if n is even, and
H(n− 3) if n is odd. As mentioned in 2.1 we will focus on the minimal stratum
and in the sequel we will assume n = 2m+ 1 is an odd integer.

It turns out that the double n-gon X0 has a staircase model S0 in its GL2(R)-
orbit. It is described in [Mon05] with a few modifications (see also Figure 1
and [Vee89, §5]).

In order to exhibit the Veech group and a fundamental domain, one needs to
compute the dimensions of the m horizontal cylinders of S0. This immediately
follows from [Vee89, §5]: for k = 1, . . . ,m, the core curve of the kth cylinder of
S0 is given by αk−1 +αk (with the dummy condition α0 := 0), and its height is
βm−k+1. From [Vee89, §5] we draw:

(2) l(αk) = l(βk) = sin
2kπ

n
, for any k = 1, . . . ,m, and Vol(S0) =

n

2
cos

π

n
.

In particular all moduli are the same and equal to

height

width
=

sin 2(m−k+1)π
n

sin 2(k−1)π
n + sin 2kπ

n

=
sin (2k−1)π

n

2 sin 2(k−1+k)π
2n cos 2(k−1−k)π

2n

=
1

2 cosπ/n
.
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Figure 1. Above, the double (2m + 1)−gon X0 is cut into
2(2m − 1) triangles, which are re-arranged into a slanted stair-
shape, whose slanted sides are then rotated and sheared to create
the right-angled stair-shape S0. Below, a staircase model S0 for
X0 (n = 2m+1), form = 2, 3, 4, with parameters (αi, βi)i=1,...,m.
The surface S0 for m = 2 is usually shown rotated by 180 de-
grees, as the golden L (see [DFT11], [DL19]).

From this knowledge, it is easy to construct affine homeomorphisms of S0 whose
derivative maps (outside the singularity) are parabolic elements. This is the aim
of the next section.

2.3. Veech group and fundamental domain. For n ≥ 3, we denote by Γn
the Hecke triangle group of level n (or signature (2, n,∞)) generated by

T =

(
1 Φn

0 1

)
and R =

(
0 −1
1 0

)
, setting Φn = 2 cos

π

n
.

In the following we will simply use the notation Φ for Φn. The group Γn, acting
on the hyperbolic plane H2, has a fundamental domain D depicted in Figure 2.
It is comprised between the vertical geodesics with abscissae −Φ/2 and Φ/2,
and the geodesic with endpoints ±1. The Veech group of S0 coincides with Γn.
In the fundamental domain the staircase model S0 is represented by the point
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i, while X0 corresponds to the lower corners of D (the intersection between a
vertical boundary and the circular boundary).

D

X0

S0

0−Φ
2

Φ
2

Figure 2. A fundamental domain D of the Veech group of the
staircase model of the double regular (2m + 1)-gon, along with
its reflection in the geodesic (−1, 1).

3. Boundedness of KVol on Teichmüller discs

Before studying the maximum of KVol on Teichmüller discs, we give a cri-
terion to ensure that it is indeed a bounded function. We will conclude this
section with a proof of Theorem 1.4.

We can first notice that if there are two parallel saddle connections α, β on
X ∈ H(n − 3) = H(2m − 2) having non trivial intersection then applying the
Teichmüller geodesic flow in the orthogonal direction of α, β, we get for all t > 0

KVol(gtX) ≥ 1

e−2t|α||β|
.

Thus KVol is not bounded on the Teichmüller disc of X. Actually, this remark
applies to a large class of translation surfaces (of genus at least two): those
decomposed into a single metric cylinder, as we will see below.

Before proving Lemma 3.1 we recall the notion of the angle of a horizontal
saddle connection on a surface whose horizontal foliation has only closed leaves.
The union of all (horizontal) saddle connections and the singularity defines a
finite oriented graph Γ. Orientation on the edges comes from the canonical
orientation of the horizontal foliation. At the singularity p the direction of
saddle connections attached to p alternates (between directions toward p and
from p) as we follow the clockwise order. For a saddle connection γ one can
count the number of different sectors between the two directions it determines.
This gives an angle (2k + 1)π well defined modulo 2(2m− 1)π. Observe that if
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γ has angle π then it is the boundary of a metric cylinder embedded into the
surface.

Lemma 3.1. If X has a cylinder decomposition all of whose boundary saddle
connections have trivial intersection pairwise, then there is a saddle connec-
tion with angle π. In particular if X has a one cylinder decomposition and
genus(X) > 1 then there are two parallel saddle connections intersecting non
trivially.

Proof. We consider the saddle connection γ having the smallest angle (2k+ 1)π
at p (see Figure 3). Assume k > 0. Then γ determines 2k+ 1 sectors and so 2k
saddle connections β1, . . . , β2k. Since the angle of γ is minimal, no βi can begin
and end inside the sector of angle (2k+1)π cut by γ. Therefore the intersection
of βi with γ is non trivial for every i = 1, . . . , k. �

γ
β1

β2

Figure 3. A separatrix diagram in H(6). The singularity p has
conical angle 10π and α has angle 3π (or 7π modulo 10π)

From this observation and the fact that one-cylinder surfaces are dense, we
immediately deduce that KVol is not bounded on any connected component of
H(2m − 2) for m ≥ 2. Similarly, since KVol is a continuous function, it is not
bounded on the Teichmüller disc of a generic (with respect to the Masur–Veech
measure) surface X. Veech surfaces are exceptionally symmetric translation
surfaces and are not generic if m ≥ 2. For those surfaces one has the following
converse.

Proposition 3.2. KVol is bounded on the Teichmüller disc of a Veech surface in
H(2m− 2) if there are no parallel saddle connections intersecting non trivially.

Proof of Proposition 3.2. Let us consider only surfaces which have total area
1. Let X be a Veech surface. Let θ be the angle associated to two periodic
directions (d, d′) having saddle connections α, β with nontrivial intersections.
The hypothesis ensures that d 6= d′, so that up to swapping d and d′ we may
assume θ ∈]0, π[. Then any intersection between a saddle connection α with
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direction d, and a saddle connection β with direction d′, if it occurs outside the
singularity, is positive. Therefore, given two saddle connections α and β, with
respective directions d and d′, either Int(α, β) = −1, in which case α and β
intersect only once, at the singularity, or Int(α, β) ≥ 0.

By Veech dichotomy, X is decomposed into cylinders C1, . . . , Cr (of heights
h1(d), . . . , hr(d)) with direction d and saddle connections αi. Observe that in
the minimal stratum H(2m − 2) the number of cylinders r is bounded by the
genus m of the surface. We can subdivide β by looking at the intersections
Int(αk, β). This gives:

(3) l(β) · sin θ =
r∑

k=1

hk(d)Int(αk, β) =
r∑

k=1

ck(d)
Int(αk, β)

l(αk)
,

where ck(d) = hk(d) · l(αk) represents the area of an embedded parallelogram
supported on αk. We write l(αk)l(β) = αk ∧ β/ sin θ, so

1 =
r∑

k=1

ck(d)
Int(αk, β)

αk ∧ β
.

Writing in a slightly different way:

1 =
∑
Int>0

ck(d)
Int(αk, β)

αk ∧ β
−

∑
Int=−1

ck(d)

αk ∧ β
.

By [Vor96], there are no small triangles in X i.e. there existsM > 0, depending
only onX, such that |αk∧β| > M (this is actually the easy part of the character-
ization of Veech surfaces in [SW10]). In particular since ck(d) ≤ Area(X) = 1,
we have ∑

Int=−1

ck(d)

αk ∧ β
< r · 1

M
< C

for some uniform constant C = C(X) (recalling r ≤ m). Thus

Int(αk, β)

αk ∧ β
<

1 + C

ck(d)
<

1 + C

M
.

Hence
Int(αk, β)

l(αk)l(β)
is uniformly bounded on the Teichmüller disc of X. Since

Area(X) = 1, KVol is uniformly bounded as well. �

In H(2) we have a more precise description.

Proof of Theorem 1.4. By [McM07] Teichmüller discs are either dense or closed.
So ifX is not a Veech surface, KVol is not bounded from above on its Teichmüller
disc. For Veech surfaces, a quick inspection of possible cylinder diagrams leads to
the following observation: for two-cylinder decompositions, there are no parallel
saddle connections with non trivial intersections. Now a Veech surface in genus
two is either primitive or square-tiled. By [McM05, Corollary A.2], square-tiled
surfaces all admit one-cylinder decompositions. Since primitive Veech surfaces
in H(2) do not have one-cylinder decompositions, we get the desired result. �
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4. SL2(R)−action and directions in the Teichmüller disc

The action of SL2(R) on moduli spaces provides a powerful tool to study the
dynamics of the translation flow on X. This group is also acting affinely on
surfaces, preserving the intersection form. Saddle connections are mapped to
saddle connections, but lengths are not preserved in general. The right quantity
to consider is not the length of α or β but rather the quantity −→α ∧

−→
β =

l(α)l(β) sin θ, where θ is the angle between the holonomy vectors associated to
−→α ,
−→
β . The wedge product is invariant under SL2(R) and is twice the area of a

(virtual) triangle delimited by α and β.

This observation motivates the following definition.

Definition 4.1. For d ∈ RP 1, we say that a saddle connection in S0 has
direction d if it has direction d in the plane template of Figure 1. For M ∈
GL+

2 (R) we say that a saddle connection α in M · S0 has direction d if M−1 · α
has direction d in S0.

This is a bit counter-intuitive because α may not have direction d in a plane
template for M · S0, but it makes sense with the following observation.

For u ∈ R2, we denote by d = ū ∈ RP 1 its equivalence class. If u = ( xy ), we
view the equivalence class d as minus its co-slope, that is, −x/y, if y 6= 0, or
∞ otherwise 1. This allows us to identify RP 1 with the boundary at infinity of
the hyperbolic plane H2. For θ ∈ R/πZ and u, v ∈ R2 with equivalence classes
d 6= d′ we define

M(d, d′, θ) = {M ∈ GL+
2 (R) : angle(Mu,Mv) = θ}.

Observe that M(d, d′, θ) is well defined (it only depends on the equivalence
classes d, d′ because the angles are taken modulo π) and equivariant by right
multiplication: if G ∈ GL+

2 (R) then

(4) M(d, d′, θ).G =M(G−1d,G−1d′, θ).

We map SO2(R)\GL+
2 (R) to the hyperbolic plane H2 by(

a b
c d

)
7−→ di+ b

ci+ a
.

Note that this defines a right action of GL+
2 (R). See [Mas22, Section 6.1], as

to why we should quotient by SO2(R) on the left, and act by GL+
2 (R) on the

right.
Denote M̄(d, d′, θ) the projection ofM(d, d′, θ) toH2. Observe thatM(d, d′, θ)

is invariant by left multiplication by SO2(R), so any matrix in GL+
2 (R) that

projects to an element of M̄(d, d′, θ), is actually inM(d, d′, θ).
Let γd,d′ be the hyperbolic geodesic with endpoints d, d′. For r ∈ R+, denote

γd,d′,r = {z ∈ H2 : dhyp(z, γd,d′) = r}

1See the end of the proof of Proposition 4.3 as to why we use this identification.
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where dhyp is the hyperbolic distance. Note that γd,d′,r has two connected com-
ponents, γ+

d,d′,r and γ−d,d′,r, such that the angle between R and γ+
d,d′,r (resp.

γ−d,d′,r) at d is in ]0, π/2] (resp. [−π/2, 0[).

Definition 4.2. Let θ(d, d′, r) ∈ ]0, π/2] be the angle at d of R with γ+
d,d′,r.

The map r 7→ θ(d, d′, r) is a homeomorphism from R+ to ]0, π/2] (see Lemma
4.4 for an explicit expression). Denote θ 7→ r(d, d′, θ) the inverse map. The next
proposition describes the set of surfaces X in the GL+

2 (R)-orbit such that the
directions d and d′ make an angle θ in X.

Proposition 4.3. We have, for any d 6= d′ ∈ ∂H2, and any θ ∈ ]0, π[,

M̄(d, d′, θ) =

{
γ+
d,d′,r(d,d′,θ) if θ ∈ ]0, π/2]

γ−d,d′,r(d,d′,π−θ) if θ ∈ [π/2, π[ .

Proof. First let us look at the case d = ¯( 1
0 ) = ∞ and d′ = ¯( 0

1 ) = 0. Observe
that in that case M̄(d, d′, θ) is invariant by z 7→ λz, for any λ > 0. Indeed, take
λ > 0 and z ∈ M̄(d, d′, θ), and let

M =

(
a b
c d

)
be an element ofM(d, d′, θ) ⊂ GL+

2 (R) which projects to z. Then the matrix

M ′ =

(
a b
c d

)(
1 0
0 λ

)
∈ GL+

2 (R)

projects to λz. But the equivalence class, in RP 1, of
(

1 0
0 λ

)
( 1

0 ) (resp.
(

1 0
0 λ

)
( 0

1 )),
is d (resp. d′), and we have seen that M(d, d′, θ) only depends on the equiv-
alence classes d, d′, so M ∈ M(d, d′, θ) entails M ′ ∈ M(d, d′, θ). Therefore
λz ∈ M̄(d, d′, θ). Thus, to determine M̄(d, d′, θ), it suffices to determine its

ū v̄

γd,d′ = γ0,∞γ−d,d′,r(d,d′,θ)

γ+
d,d′,r(d,d′,θ)γ+
d,d′,r(d,d′,θ)i

z = eiθ

θ θ

ū v̄

γd,d′

γ−d,d′,r(d,d′,θ)

γ+
d,d′,r(d,d′,θ)

θ θ

Figure 4. The sets γ+
d,d′,r(d,d′,θ) and γ−d,d′,r(d,d′,θ)

intersection with the horizontal straight line {y = 1}, which we parametrize as{
i+ cotα : α ∈ ]0, π[

}
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A corresponding set of matrices in GL+
2 (R) is given by{(

1 cotα
0 1

)
: α ∈ ]0, π[

}
which send ( 1

0 ) and ( 0
1 ) to, respectively, ( 1

0 ) and ( cotα
1 ). The angle of the latter

vectors is α, so M̄(d, d′, θ) ∩ {y = 1} = {
(

cot θ
1

)
}. Therefore, M̄(d, d′, θ) is

the half-line which starts at the origin, with co-slope cot θ. This is precisely
γ+
d,d′,r(d,d′,θ) if θ ∈ ]0, π/2], and γ−d,d′,r(d,d′,π−θ) if θ ∈ [π/2, π[.
Now let us consider the general case. Pick G ∈ GL+

2 (R) taking direc-
tions d, d′ to ¯( 1

0 ) = ∞ and ¯( 0
1 ) = 0 respectively. Then, by Equation 4,

M(∞, 0, θ).G = M(d, d′, θ), so M̄(d, d′, θ) is the image of M̄(∞, 0, θ) by the
orientation-preserving isometry of H2 corresponding to the action of G. One
verifies that this isometry sends ∞ and 0 to the images of the directions d and
d′ by the identification RP 1 ' ∂H2 via the opposite of the co-slope, respectively.
This finishes the proof. �

Lemma 4.4. The map r 7→ θ(d, d′, r) satisfies

sin θ(d, d′, r) =
1

cosh r(d, d′, θ)
.

Proof. Since the formula is invariant by Möbius transformations, we can assume
that (d, d′) = (0,∞) (see Figure 4, left). We denote θ = θ(d, d′, r) and r =
r(d, d′, θ) for simplicity. The hyperbolic distance from z = eiθ to the geodesic
γ0,∞ is realized by the geodesic η parameterized by η(t) = eit for t ∈ [θ, π/2].
Hence by definition

r = dhyp(z, γd,d′) = lhyp(η) =

∫ π/2

θ

dt

sin t
=

1

2
log

1 + cos θ

1− cos θ
.

Thus cos θ = e2r−1
e2r+1

, and

sin θ(d, d′, r) =
√

1− cos2 θ(d, d′, r) =

√
1−

(
e2r − 1

e2r + 1

)2

=
2er

e2r + 1
.

Lemma 4.4 is proved. �

5. Another look at KVol

Recall that the function KVol can be expressed as a supremum over saddle
connections α, β in (1). We will use the invariance of Int(·, ·) for the affine action
of SL2(R) on translation surfaces and the invariance of ∧ for the linear action
of SL2(R) on R2 in order to have a more suitable formula to work with. In the
sequel we will use the notation K(X):

KVol(X) = Vol(X) ·K(X).

Proposition 5.1. Let P be the set of periodic directions in X = M · S0 for
some M ∈ SL2(R). Then

K(X) = sup
d, d′ ∈ P
d 6= d′

K(d, d′) · sin θ(X, d, d′),
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where K(d, d′) = sup α ⊂ S0 in direction d

β ⊂ S0 in direction d′

Int(α,β)
α∧β and θ(X, d, d′) := θ(r, d, d′) is

the angle given by Definition 4.2 where r is the hyperbolic distance between X
and the geodesic γd,d′ .

Observe that the quantity K(d, d′) is invariant under the diagonal action of
the Veech group Γ. Moreover sin θ(X, d, d′) = 1/ cosh r(θ, d, d′) by Lemma 4.4.

Proof of Proposition 5.1. Given two saddle connections α, β ⊂ X having direc-
tions d, d′ (in X) and making an angle θ, one has α∧ β = l(α)l(β) sin θ. Notice
that parallel saddle connections do not intersect in X, so we will assume d 6= d′.
By definition these saddle connections are the images by M of saddle connec-
tions α′, β′ ⊂ S0 having directions d, d′ (in S0), and thus M ∈ M(d, d′, θ). In
particular the projection ofM to H2, that isX ∈ M̄(d, d′, θ), gives θ = θ(r, d, d′)
where r is the hyperbolic distance between X and the geodesic γd,d′ (see Propo-
sition 4.3). Now, by definition (see (1)),

sup
α,β

Int(α, β)

l(α)l(β)
= sup

d, d′ ∈ P
d 6= d′

sup
α ⊂ X in direction d

β ⊂ X in direction d′

Int(α, β)

l(α)l(β)
=

sup
d, d′ ∈ P
d 6= d′

sup
α ⊂ X in direction d

β ⊂ X in direction d′

Int(α, β)

α ∧ β
· sin angle(α, β) =

= sup
d, d′ ∈ P
d 6= d′

sup
M−1α ⊂ S0 in direction d

M−1β ⊂ S0 in direction d′

Int(M−1α,M−1β)

M−1α ∧M−1β
· sin angle(α, β) =

= sup
d, d′ ∈ P
d 6= d′

K(d, d′) · sin θ(X, d, d′)

as desired. �

We end this section with the following computation of K(0,∞) and K(0,Φ),
for later use.

Proposition 5.2. The following hold:
(i) K(0,∞) = 1

l(αm)2 and K(0,Φ) = 1
Φ ·K(0,∞).

(ii) ∀(d, d′) /∈ Γn · (0,∞), K(d, d′) ≤ K(0,Φ).

Proof of Proposition 5.2. (i) We use the notations of Figure 1. The directions
d = 0 and d′ = ∞ correspond to the vertical and the horizontal, respectively.
By definition

K(0,∞) = sup
α ⊂ S0 horizontal

β ⊂ S0 vertical

Int(α, β)

l(α)l(β)
= sup

i,j=1,...,m

Int(αi, βj)

l(αi)l(βj)

A quick look at the intersections shows that Int(αi, βj) ∈ {0,±1}. Moreover,
l(αk) = l(βk) = sin 2kπ/(2m + 1) ≥ sinπ/(2m + 1) and equality is realized for
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k = m. Since Int(αm, βm) 6= 0, we draw K(0,∞) =
1

l(αm)l(βm)
=

1

l(αm)2
.

The discussion for the directions d = 0 and d′ = Φ is similar. They correspond
to the vertical and the direction of the diagonal of horizontal cylinders. It is
clear that

K(0,Φ) = sup
α ⊂ S0 vertical

β ⊂ S0 diagonal of a horizontal cylinder

Int(α, β)

l(α)l(β)

is maximal for α = βm and β = α1 + βm. And we have K(0,Φ) = Int(α,β)
α∧β =

1
l(α1)l(βm) = 1

ΦK(0,∞).

(ii) Let (d, d′) /∈ Γ · (0,∞). Since K(d, d′) is invariant under the diagonal
action of the Veech group and d is a periodic direction, we can assume d =∞,
and, up to a horizontal shear, d′ ∈]0,Φ[. Notice that given a geodesic β in
direction d′, every intersection with any of the αi requires a vertical length
l(α1) (this is where we use the fact that d′ is not vertical), that is

∀i ∈ {1, · · · ,m}, l(β) sin θ(S0, d, d
′) ≥ l(α1)Int(αi, β).

Hence

∀i ∈ {1, · · · ,m}, Int(αi, β)

l(αi)l(β) sin θ(S0, d, d′)
≤ 1

l(α1)l(αi)

But l(αi)l(β) sin θ(S0, d, d
′) = αi∧β, and l(αi) ≥ l(αm), so that the last equation

reduces to

∀i ∈ {1, · · · ,m}, Int(αi, β)

αi ∧ β
≤ 1

l(α1)l(αm)
=

1

Φ
K(0,∞),

where the last equality follows from (i). This concludes the proof of Proposi-
tion 5.2. �

6. Computation of KVol for the double (2m+ 1)-gon

In this section we show that KVol(X0) is realised by pairs of sides of the
double (2m+ 1)-gon:

Proposition 6.1. For every pair of saddle connections α and β on X0, we
have:

Int(α, β)

l(α)l(β)
≤ 1

l20
where l0 is the length of the side of the (2m+ 1)-gon.
Moreover, equality is achieved if and only if α and β are two distinct sides of
the regular (2m+ 1)-gon.

In particular, since the directions d = 0 and d′ = ∞ represent sides of the
double (2m+ 1)-gon, we deduce the following:

Corollary 6.2. For X = X0 the double (2m+ 1)-gon, we have:

K(X0) = K(0,∞) · sin θ(X0, 0,∞)
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The main idea of the proof of Proposition 6.1 is to subdivide both saddle
connections α and β into segments of length at least l0 such that each segment
of α intersect each segment of β at most once.

6.1. Sectors and separatrix diagrams. Let α and β be two saddle connec-
tions on the double (2m + 1)-gon. We partition the set of possible directions
into 2m+ 1 sectors of angle π

2m+1 , as in Figure 5 for the double heptagon.

Figure 5. The seven sectors for the double heptagon.

To each sector Σi there is associated a separatrix diagram which encodes the
admissible sequences of intersections with the sides of the double (2m+ 1)-gon,
as in [DL19, §3]. Such a diagram looks like:

eσi(1) � eσi(2) � · · ·� eσi(2n) � eσi(2m+1)

with σi ∈ S2m+1, and it means that for any curve α in sector Σi, each inter-
section of α with eσi(j) is preceded and followed by an intersection with either
eσi(j−1) or eσi(j+1)

2. In particular, each intersection with eσi(1) (resp. eσi(2m+1))
is preceded (and followed) by an intersection with eσi(2) (resp. eσi(2m)). We say
that the side eσi(1) (resp. eσi(2m+1)) is sandwiched by eσi(2) (resp. eσi(2m)) in
the sector Σi.

For the sake of completeness, we provide the seven possible separatrix dia-
grams for the double heptagon.

(5)

Σ0 : e1 � e2 � e0 � e3 � e6 � e4 � e5

Σ1 : e5 � e6 � e4 � e0 � e3 � e1 � e2

Σ2 : e2 � e3 � e1 � e4 � e0 � e5 � e6

Σ3 : e6 � e0 � e5 � e1 � e4 � e2 � e3

Σ4 : e3 � e4 � e2 � e5 � e1 � e6 � e0

Σ5 : e0 � e1 � e6 � e2 � e5 � e3 � e4

Σ6 : e4 � e5 � e3 � e6 � e2 � e0 � e1

6.2. Construction of the subdivision. Let us denote by Σα (resp. Σβ) the
sector of α (resp. β), and σα (resp. σβ) the corresponding permutation. Now,
we cut α (resp. β) at each intersection with a non-sandwiched side in the sector
Σα (resp. Σβ). We get a decomposition α = α1 ∪ · · · ∪ αk and β = β1 ∪ · · · ∪ βl
with k, l ≥ 1 and each segment is either (see Figure 6):

2Unless it reaches a singularity.
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• A non-sandwiched segment which goes from one side to another non-
adjacent side of one of the (2m+ 1)-gons.
• A sandwiched segment which intersects a sandwiched side in its interior.
Such segments go through both (2m+ 1)-gons (see Figure 7).
• an initial or final segment α1, αk, β1, βl. We also call such segments
non-sandwiched.

Notation 6.3. When a segment αi (or βj) intersects the side e which is sand-
wiched by e′ in the corresponding sector, we say that αi is of type e′ → e→ e′.

Remark 6.4. For a sandwiched segment αi of type e′ → e → e′, there is a
parallelogram P (e′, e) ⊂ X0 with the following property: one of its sides is
e′ and one of its diagonals is e. The segment αi goes from one e′-side to the
opposite side. The closure of P (e′, e) is a cylinder.

Notice that for each sector Σi, the sides of the (2m+ 1)-gon which are sand-
wiched in Σi are those having direction in the boundary of Σi. For instance,
the sides of the double heptagon which are sandwiched in the sector Σ0 are e1

and e5 (see Figure 5).
Moreover, the side of the (2m + 1)-gon with direction in Σi ∩ Σi−1 is sand-

wiched in both sectors Σi and Σi−1, but in Σi it is sandwiched by its successor
in the cyclic order (modulo 2m+ 1), while in Σi−1 it is sandwiched by its pre-
decessor. For instance, e1 is sandwiched by e2 in Σ0, while it is sandwiched by
e0 in Σ2m (Σ6 for the double heptagon).

Since no two sectors have the same pair (sandwiched side, sandwiching side),
prescribing the type of αi automatically tells which sector the direction of α
belongs to.

Remark 6.5. If α is a diagonal of the double (2m + 1)-gon, the sector is not
uniquely defined. However, in such cases α is not divided into pieces and k = 1.

Figure 6. Examples of non-sandwiched segments in green and
a sandwiched segment in red. The sandwiched segment is of type
e2 → e1 → e2. Remark that the points © and 4 on the side e2

are not the same.
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The next two lemmas are the reason for this peculiar way of subdivising
saddle connections.

Lemma 6.6. Every segment of α (resp. β) has length at least l0, with equality
if and only if α (resp. β) is a side of the double (2m+ 1)-gon.

Proof. A non-sandwiched segment goes from one side (or vertex) of a (2m+ 1)-
gon to a non-adjacent side in the same (2m + 1)-gon. So its length is a least
l0.

Now take a sandwiched segment αi which intersects a sandwiched side e in
its interior. If the type of αi is e′ → e→ e′, then by Remark 6.4, αi goes from
the side e′ of P (e′, e) to the opposite side of P (e′, e). In particular the length of
αi is no less than that of e′ which is l0. �

6.3. Study of the intersections. In this section, we investigate the possible
intersections between the segments of α and β. We first note that, since both
α and β are made of segments of straight lines in the same direction, all non-
singular intersections have the same sign. In particular, adding the possible
singular intersection, it gives:

(6) Int(α, β) ≤
∑
i,j

|Int(αi, βj)|+ 1

where |Int(αi, βj)| is the geometric intersection between αi and βj . Observe that
αi and βj can have nontrivial intersections on the sides of the (2m+ 1)-gons.

Lemma 6.7. If α and β are not both diagonals, then Int(α, β) ≤ kl.

Proof of Lemma 6.7. We will show that
∑

i,j |Int(αi, βj)| ≤ kl−1. Let us fix i, j.
We first observe that if either αi or βj is a non-sandwiched segment, then αi and
βj intersect at most once (possibly on a side). Indeed a non-sandwiched segment
goes from one side to another non-adjacent side of one of the (2m+ 1)-gons. In
particular it is a segment that is contained entirely in one of the (2m+ 1)-gons.
A sandwiched segment consists of two straight lines, not contained in the same
(2m+ 1)-gon. Hence in total they intersect at most once.

Thus it remains to consider the case where αi and βj are sandwiched segments.
Up to a rotation and a symmetry, we can assume αi is of type e2 → e1 → e2

(see Figure 5). The sector determined by α is necessarily Σ0.
Now if βj is sandwiched but neither e1 nor e2 appear in the type of βj , then

αj is contained in the parallelogram P (ek, el) (defined in Remark 6.4) for some
ek, el 6∈ {e1, e2}. In particular αi does not intersect this parallelogram, and so
not βj either.

Eventually it remains to treat the following cases where βj is of type:

(1) e0 → e1 → e0 (2) e1 → e0 → e1

(3) e1 → e2 → e1 (4) e2 → e1 → e2

(5) e2 → e3 → e2 (6) e3 → e2 → e3

In all situations but (3), we can show that αi and βj intersects at most once.
We proceed case by case.
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Figure 7. The six different cases where αi (in red) and βj (in
green) are sandwiched and intersect.

Case (1): Recall that αi is contained in the parallelogram P (e2, e1) and
goes from one e2-side to the opposite side. Let us denote by e, e′ the two other
sides of P (e2, e1). Similarly βj is contained in another parallelogram P (e0, e1)
sharing the same diagonal, and βj goes from one side e0 to the opposite side.
We can see that the intersection of P (e2, e1) with P (e0, e1) is connected: it is a
parallelogram. In particular the intersection of βj with P (e2, e1) goes from the
side e to the side e′ and thus intersects αi exactly once (see Figure 8).

Case (4): By Remark 6.4 αi and βj are contained in the same P (e2, e1).
They both go from one side e2 to the opposite. In particular they intersect at
most once.

Case (2): By (5), since e0 is sandwiched by e1, the direction of β lies in the
sector Σ5. Moreover βj lies in the parallelogram P (e1, e0) and goes from the side
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e1

e2

e2

e0

e0

Figure 8. Case 1 re-drawn

e1 to the opposite (see Figure 9). The segments αi and βj intersect each other at
most twice. Assume by contradiction αi ∩ βj = {p, q} with p 6= q ∈ X0. Since p
and q belong to different parts of the segment αi, they belong to different copies
of the (2m+ 1)-gon. The slope s of the holonomy vector defined by pq coincide
with the slope of β and thus belongs to the sector Σ5 i.e. slope(e4) ≤ s ≤ 0
(with equality iff β is a diagonal). On the other hand, the intersection of αi
with the two sides e1 on the plane template of Figure 9 determines two points
c and d.

By construction the slope s satisfies s ≤ slope(cd). Since slope(cd) = slope(e4)
we get that β is a diagonal. We run into a contradiction because βj = β is not
sandwiched (see beginning of Section 6.2), and therefore Int(αi, βj) ≤ 1.

p

qc

d

e0

e6

e1

e4

e5

e2

e3

Figure 9. The parallelogram P (e1, e0) and two intersections in
Case (2): β 6∈ Σ5

Case (6): This case is the same as Case (2) rotating by an angle 2π
2m+1 and

swapping αi and βj .
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Case (5): By (5), since e3 is sandwiched by e2, the direction of β lies in
the sector Σ3 and β is contained in the parallelogram P (e2, e3). In particular
its slope verifies s ≥ slope(e6). The segment αi intersects P (e2, e3) with two
connected components. One such component intersects one side e2 at a point
a while the other component intersects the other side e2 at a point b (which
project in the double (2m + 1)-gon to the red bullet and the red triangle in
Figure 7 Case (5)). As in Case (2) the segments αi and βj intersect each
other at most twice. Assume by contradiction αi ∩ βj = {p, q} with p 6= q ∈
P (e2, e3). Necessarily slope(ab) ≥ slope(pq) = s. Since α ∈ Σ0 we can check
that slope(ab) ≤ slope(e6).

Thus s = slope(e6) and β is a diagonal: we again run into a contradiction
because βj = β is not sandwiched. Therefore Int(αi, βj) ≤ 1 as desired.

Conclusion: Setting aside case (3) which will be considered below, we have
for every i, j, |Int(αi, βj)| ≤ 1. In particular

∑
i,j |Int(αi, βj)| ≤ kl. Recall that

we want the left quantity to be less than kl− 1 instead of kl; the desired bound
comes from the following observation: up to permuting α and β, we may assume
α is not a diagonal. Then α1 is non-sandwiched and lies in one of the (2m+ 1)-
gons while the second non-sandwiched αi lies in the other (2m + 1)-gon3. In
particular, since β1 is non sandwiched, it lies in one of the two (2m + 1)-gons
and it cannot intersect both α1 and the next non-sandwiched αi.

In particular,
∑

i,j |Int(αi, βj)| ≤ kl − 1. Hence, by Formula 6, we get that
Int(α, β) ≤ kl.

Treating case (3). In this paragraph we assume there are indices i, j such
that αi is sandwiched of type e2 → e1 → e2 and βj is sandwiched of type
e1 → e2 → e1. In this case, αi and βj could intersect twice, but we will show
that if this happens then there is an index j′ such that αi and βj′ don’t inter-
sect. Hence the conclusion

∑
i,j |Int(αi, βj)| ≤ kl will still hold (and in fact the

inequality will be strict, as we require).

To do that let us assume αi0 , . . . , αi0+p (resp. βj0 , . . . , βj0+q) are consecu-
tively sandwiched of type e2 → e1 → e2 (resp. e1 → e2 → e1), this sequence
being maximal (i.e αi0−1 and αi0+p+1 – resp. βj0−1 and βj0+q+1 – are not
sandwiched). An example of such a configuration is depicted in Figure 11 for
p = q = 0 and in Figure 12 for p = q = 3. We claim that there are at
most (p+ 3)(q+ 2) intersections between αi0−1 ∪αi0 ∪ · · · ∪αi0+p ∪αi0+p+1 and
βj0−1∪βj0∪· · ·∪βj0+q∪βj0+q+1, while there are (p+3)(q+3) pairs of segments.

Indeed, in this configuration αi0−1 ∪ αi0 ∪ · · · ∪ αi0+p ∪ αi0+p+1 and βj0−1 ∪
βj0 ∪· · ·∪βj0+q∪βj0+q+1 go through the cylinder P (e2, e1) defined by e1 and e2,
as in Figure 11. Now, instead of cutting β each time it crosses e1 we can cut β
each time it crosses e2. Notice that β crosses e1 once more than it crosses e2, so
it gives a decomposition βj0−1∪· · ·∪βj0+q∪βj0+q+1 = β̃j0 ∪· · ·∪ β̃j0+q∪ β̃j0+q+1

3Notice that the last non-sandwiched segment before a sequence of sandwiched segments
and the next non-sandwiched segment after such a sequence lie in differents (2m+1)-gons, as
in Figures 11 and 12.
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Figure 10. αi and βj could intersect twice in the configuration
of case 3. Below, a closer look at the cylinder P (e2, e1). In the
example of this picture, αi does not intersect βj−1.

Figure 11. αi0−1∪αi0∪· · ·∪αi0+p∪αi0+p+1 and βj0−1∪βj0−1∪
· · ·∪βj0+q∪βj0+q+1 for p = q = 0. There are only six intersections
but nine pairs of segments.

Figure 12. αi0−1∪αi0∪· · ·∪αi0+p∪αi0+p+1 and βj0−1∪βj0−1∪
· · · ∪ βj0+q ∪ βj0+q+1 for p = q = 3. There are only ten intersec-
tions but thirty-six pairs of segments.

with only q + 2 segments while each β̃j for j ∈ Jj0, j0 + q + 1K can intersect
each of the αi for i ∈ Ji0 − 1, i0 + p + 1K at most once, which leaves at most
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(p+ 3)(q + 2) intersections.

In conclusion, summing with all other segments yields
∑

i,j |Int(αi, βj)| <
kl. Adding the possible singular intersection, we get the desired result. This
concludes the proof of Lemma 6.7 �

6.4. Conclusion. We are now able to prove the main proposition of this section.

Proof of Proposition 6.1. If either α or β is not a diagonal, then:
• l(α)l(β) > kl · l20 by Lemma 6.6,
• Int(α, β) ≤ kl by Lemma 6.7,

In particular, we have:
Int(α, β)

l(α)l(β)
<

1

l20
as desired.
Otherwise, both α and β are diagonals. Then:

(1) either none of them is a side of a (2m+ 1)-gon and then:
(a) l(α)l(β) ≥ 4 cos2( π

2m+1)l20 > 2l20 because the shortest diagonals of
the (2m+ 1)-gon which are not sides have length 2 cos( π

2m+1)l0.
(b) Int(α, β) ≤ 2 because there is at most one non-singular intersection

and one singular intersection.
In particular, Int(α,β)

l(α)l(β) <
1
l20
.

(2) or α (up to a change in names) is a side, and then:
(a) Int(α, β) ≤ 1 as there is no non-singular intersection,
(b) l(α)l(β) ≥ l20 with equality if and only if both α and β are sides of

a (2m+ 1)-gon.
In particular, we have Int(α,β)

l(α)l(β) ≤
1
l20

with equality if and only if both α
and β are sides of a (2m+ 1)-gon.

This concludes the proof of Proposition 6.1. �

7. Extension to the Teichmüller disc

In this section, we finally show our main result:

Theorem 7.1. For any surface X in the Teichmüller disc of the double (2m+1)-
gon, we have:

(7) K(X) = K(0,∞) sin θ(X, 0,∞).

Clearly Theorem 1.1 follows directly by applying Lemma 4.4. Before proving
Theorem 7.1, we show how to deduce and Theorem 1.2.

Proof of Theorem 1.2. Since Vol(S0) = n
2 cos πn by 2 and the furthest point of D

from γ0,∞ is X0, the corresponding angle sin θ(X0, 0,∞) being equal to sin π
n ,

Equation (7) implies
n

2
cos

π

n
·K(0,∞) · sin π

n
≤ KVol(X) ≤ n

2
cos

π

n
·K(0,∞).

We conclude with Proposition 5.2 and Equation (2): K(0,∞) = 1
l(αm)2 = 1

sin2 π
n

.
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The maximum is achieved precisely when sin θ(X, 0,∞) = 1 i.e. X belongs
to the geodesic γ0,∞, namely X is the image of S0 by a diagonal matrix of
SL2(R). As we have seen the the minimum is achieved uniquely at X0. Finally
by Proposition 6.1, the supremum is achieved by pairs of curves that are (images
of) pairs of sides of X0. �

7.1. Interpolation between the regular n-gon and the staircase model.
Recall that Proposition 5.1 provides another expression of KVol:

(8) K(X) = sup
(d,d′)

K(d, d′) sin θ(X, d, d′),

where the supremum is taken over all pairs (d, d′) of distinct periodic directions.
The quantity K(d, d′) is invariant under the diagonal action of the Veech group.
Moreover, we know that Equation (7) holds:

• for X in the geodesic γ0,∞ by Proposition 5.2
• for X = X0 the double (2m+ 1)-gon by Corollary 6.2.

The main idea of the proof of Theorem 7.1 is to use these two results and
interpolate between them to show that Equation (7) holds in fact for the whole
Teichmüller disc. By symmetry, we can restrict to the surfaces X on the right
half of the fundamental domain, that is on D+ = {x+ iy | 0 ≤ x ≤ Φ

2 and x2 +

y2 ≥ 1}. Using Equation (8), it suffices to show that for any pair of distinct
periodic directions (d, d′) one has:

(¨) ∀X ∈ D+, K(d, d′) sin θ(X, d, d′) ≤ K(0,∞) sin θ(X, 0,∞)

The proof is divided in two steps:
(1) Show that it suffices to prove (¨) for 0 ≤ d < Φ

2 < d′.
(2) Show that (¨) holds under the assumption 0 ≤ d < Φ

2 < d′.
The proof of the first step (Section 7.2) involves hyperbolic geometry and Veech
group action, while the second step (Section 7.3) will be deduced from the study
of the function

X 7→ sin θ(X, 0,∞)

sin θ(X, d, d′)
.

7.2. Reduction to convenient geodesics. In this section, we will prove that
it suffices to verify (¨) for pairs (d, d′) with 0 ≤ d < Φ

2 < d′. The main step of
the proof is Lemma 7.6.

Definition 7.2. Given a pair of distinct periodic directions (d, d′) and its asso-
ciated geodesic γd,d′ on H2, we denote by V (d, d′) be the connected component
of H2\(Γn.γd,d′) containing X0.

Remark 7.3. If one of the images of γd,d′ by the action of the Veech group Γn
passes through X0, then V (d, d′) is not well defined. It is convenient, in this
case, to set V (d, d′) = {X0}. Note that in this case there exists G ∈ Γn such
that sin θ(X0, G.d,G.d

′) = 1, so by Equation (¨) for X = X0 we have

K(d, d′) sin θ(X, d, d′) ≤ K(d, d′) = K(G.d,G.d′) sin θ(X0, G.d,G.d
′) ≤

≤ K(0,∞) sin θ(X0, 0,∞) ≤ K(0,∞) sin θ(X, 0,∞),

therefore, (¨) holds for any X ∈ D+.
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X

(0, 0)

X0

K

M

V (d,d′)∩D+

Figure 13. The highest K point of V (d, d′) ∩ γΦ/2,∞ is further
away from γ0,∞ than M , which is itself further away from γ0,∞
than X.

Remark 7.4. Notice that, by definition, the boundary of V (d, d′) is made of
geodesic segments in the Veech group orbit of γd,d′ . Since d and d′ correspond
to directions of cusps, there is a finite number of such segments.

Lemma 7.5. For any pair of distinct periodic directions (d, d′), the furthest
point X1 from γ0,∞ in the boundary of V (d, d′) ∩D+ is further away from γ0,∞
than any point X ∈ D+ outside V (d, d′). Equivalently

sin θ(X1, 0,∞) ≤ sin θ(X, 0,∞).

Proof. Take X ∈ D+ \ V (d, d′) and call g the perpendicular to γ0,∞ which
contains X. If g intersects V (d, d′) then there is an intersection point in the
boundary of V (d, d′), and this point is further away from γ0,∞ than X (see
Figure 13). If g does not meet V (d, d′), then g intersects the geodesic γΦ/2,∞
above V (d, d′) at M . We claim that the highest point K of

V (d, d′) ∩ γΦ/2,∞

is further away from γ0,∞ thanM . Indeed by construction we have the inequality

sin θ(M, 0,∞) ≥ sin θ(K, 0,∞).

By Lemma 4.4, one has cosh dhyp(M,γ0,∞) = sin−1 θ(M, 0,∞). Since cosh is an
increasing function, we deduce dhyp(M,γ0,∞) ≤ dhyp(K, γ0,∞). Now since M is
by construction further away from γ0,∞ than X, this proves the lemma. �

Lemma 7.6. Let (d1, d
′
1) and (d2, d

′
2) be two pairs of directions such that the

associated geodesics γd1,d′1
and γd2,d′2

cross the half fundamental domain D+. We
assume that:

(i) K(d1, d
′
1) ≥ K(d2, d

′
2).

(ii) The geodesic γd2,d′2
lies outside V (d1, d

′
1).
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(iii) (¨) holds for any pair of directions whose associated geodesic is in the
boundary of V (d1, d

′
1).

Then (¨) holds for (d2, d
′
2).

Proof. Pick a point X ∈ D+. We subdivide the proof in two cases.
First case: X 6∈ V (d1, d

′
1). Then, Lemma 7.5 gives us a point X1 on the

boundary of V (d1, d
′
1) such that

(9) sin θ(X1, 0,∞) ≤ sin θ(X, 0,∞).

Note that up to acting by the Veech group, which does not change the conclusion,
we may assume that X1 lies on γd1,d′1

itself, so sin θ(X1, d1, d
′
1) = 1. Then

K(d2, d
′
2) sin θ(X, d2, d

′
2) ≤ K(d2, d

′
2)

≤ K(d1, d
′
1) by assumption (i)

= K(d1, d
′
1) sin θ(X1, d1, d

′
1) because sin θ(X1, d1, d

′
1) = 1

≤ K(0,∞) · sin θ(X1, 0,∞) by assumption (iii)
≤ K(0,∞) · sin θ(X, 0,∞) by (9).

Second case: X ∈ V (d1, d
′
1). Then, by assumption (ii), the perpendicular to

γd2,d′2
through X crosses the boundary of V (d1, d

′
1) before it reaches γd2,d′2

, and
again, up to acting by the Veech group we may assume the crossing occurs at
γd1,d′1

so that sin θ(X, d1, d
′
1) ≥ sin θ(X, d2, d

′
2). Therefore

K(d2, d
′
2) sin θ(X, d2, d

′
2) ≤ K(d1, d

′
1) sin θ(X, d2, d

′
2) by assumption (i)

≤ K(d1, d
′
1) sin θ(X, d1, d

′
1)

≤ K(0,∞) · sin θ(X, 0,∞) by assumption (iii),

which finishes the proof. �

In particular, since we can apply Lemma 7.6 when (d2, d
′
2) is in the orbit of

(d1, d
′
1) under the diagonal action of the Veech group, it suffices to prove (¨)

for pairs of directions (d, d′) such that some segment of γd,d′ is in the boundary
of V (d1, d

′
1). Since V (d1, d

′
1) is invariant under the dihedral group preserving

X0, it suffices to consider segments of the boundary which are contained in D+.
These geodesics satisfy the following property.

Lemma 7.7. If γd,d′ is a geodesic whose closest point to X0 lies in D+, then
γd,d′ intersects the geodesic γΦ/2,∞. In particular, we can assume d < Φ

2 < d′.
Moreover, the direction of the tangent vector of γd,d′ at the intersection point
lies in the first quadrant, in particular d+ d′ > Φ.

Proof. If γd,d′ does not intersect the geodesic γΦ/2,∞, then the perpendicular
projection of X0 to γd,d′ lies below X0, hence not in D, see Figure 14 (left part).
The statement about the tangent vector at the intersection follows from the
convexity of V (d, d′) and its symmetry with respect to γΦ/2,∞. See Figure 14
(right part). �

In particular, to prove Theorem 7.1 it suffices to show that (¨) holds for pairs
(d, d′) with d < Φ

2 < d′ and d+ d′ > Φ. We distinguish two cases:
(1) d ≥ 0
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(0, 0)

X0

(a/2, 0)

P

(d′, 0)

D+

X0

Figure 14. Left: when d′ < Φ/2, the orthogonal projection of
X0 to γd,d′ does not lie in D. Right: when the tangent vector to
γd,d′ at the intersection with the right boundary of D does not
lie in the first quadrant, V (X0, d, d

′) is not convex.

(2) d < 0

In fact, case 1 is more difficult and will be proven in the next section. However,
case 2 can be directly deduced from case 1. Indeed, by Lemma 7.7, if d < 0 then
d′ ≥ Φ−d > Φ. In particular, γd,d′ lies outside V (0,Φ), whose boundary is made
of the geodesic segments that are images of γ0,Φ by the rotation around X0, in
particular γ0,Φ ∩D is the only boundary of V (0,Φ) intersecting D+; see Figure
15 for the double pentagon. Since K(d, d′) ≤ K(0,Φ) (by Proposition 5.2) and
the pair (0,Φ) satisfies (¨) by case 1, we conclude by Lemma 7.6 that (d, d′)
satisfies (¨). This shows that case 1 implies case 2.

7.3. Study of the ratio of sines. In this section we show that any pair of
periodic directions (d, d′) in case 1 (i.e 0 ≤ d < Φ

2 < d′) satisfies (¨). Our proof
relies on the study of the function

F(d,d′) : X 7→ sin θ(X, 0,∞)

sin θ(X, d, d′)
.

More precisely:

Proposition 7.8. Under the assumption 0 ≤ d < Φ
2 < d′, the function F(d,d′)

on D+ is minimal at X0.

Before giving the proof of this proposition, let us first state and prove the
following corollary, which concludes the proof of Theorem 7.1:

Corollary 7.9. For any (d, d′) such that 0 ≤ d < Φ
2 < d′, (¨) holds.
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0 1
Φ

Φ
2

1 Φ2
Φ

Φ2−2
Φ

X0

S0

Figure 15. The domain V (0,Φ) for the double pentagon.

Proof of Corollary 7.9. Let (d, d′) be such that 0 ≤ d < Φ
2 < d′, and X ∈ D+.

We know from Corollary 6.2 that

K(d, d′) sin θ(X0, d, d
′) ≤ K(0,∞) sin θ(X0, 0,∞).

In particular, by minimality of F(d,d′) at X0

K(d, d′) ≤ K(0,∞)F(d,d′)(X0) ≤ K(0,∞)F(d,d′)(X)

Hence
K(d, d′) sin θ(X, d, d′) ≤ K(0,∞) sin θ(X, 0,∞)

This concludes the proof. �

Proof of Proposition 7.8. We divide the proof in 5 steps:
(1) We remark that F(d,d′) is well defined and differentiable on H2, and has

a well defined minimum on D+.
(2) We study the gradient of F(d,d′) in D+ and show that it doesn’t vanish

inside D+.
(3) We remark that F(d,d′) is not minimal at the left boundary of D+.
(4) We study the variations of F(d,d′) on the lower boundary of D+, which

we parametrize as
{

(cos θ, sin θ) : θ ∈
[
π
n ,

π
2

]}
, and show that F(d,d′) in-

creases with θ.
(5) We study the variations of F(d,d′) on the line x = Φ

2 and show that it
increases strictly with y.
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Proof of step 1.
Note that by Lemma 4.4

F(d,d′)(X) =
cosh dhyp(X, γd,d′)
cosh dhyp(X, γ0,∞)

where dhyp(X, γd,d′) is the hyperbolic distance from X to the geodesic γd,d′ .
Distance functions are not differentiable, but their cosh’s are.

Moreover, F(d,d′)(x+ iy)→ +∞ when y → +∞ (and x ∈ [0, Φ
2 ]), so if A > 0

is sufficiently big, we have F(d,d′)(X) > F(d,d′)(X0) for any X = x + iy ∈ D+

with y > A. In particular, F(d,d′) reaches its minimum on the compact set
K = D+ ∩ {x+ iy|y ≤ A}. This finishes the proof of step 1.

Proof of step 2.
Note that since the natural logarithm is an increasing diffeomorphism, we may
as well look for the minimum of logF(d,d′)(X) over D+. Now

∇ logF(d,d′)(X) =
∇ cosh dhyp(X, γd,d′)
cosh dhyp(X, γd,d′)

−
∇ cosh dhyp(X, γ0,∞)

cosh dhyp(X, γ0,∞)

= tanh dhyp(X, γd,d′)∇dhyp(X, γd,d′)− tanh dhyp(X, γ0,∞)∇dhyp(X, γ0,∞).

Now the distance gradients are unit vectors, and they are parallel only along
the common perpendicular (if it exists) to γ0,∞ and γd,d′ , or never (otherwise),
so the gradient of F(d,d′) cannot vanish outside of the common perpendicu-
lar. Along the common perpendicular, the numbers tanh dhyp(X, γd,d′) and
tanh dhyp(X, γ0,∞) are equal only at the middle of the common perpendicu-
lar segment between the two lines, and there the distance gradients point in
opposite directions. So the gradient of F(d,d′) cannot vanish at all. Thus F(d,d′)

does not have a minimum in the interior of D+.

Proof of step 3.
On the left boundary ofD+, which is contained in γ0,∞, we have∇dhyp(X, γ0,∞) =
0, and ∇dhyp(X, γd,d′) points to the left because d ≥ 0. Therefore no point on
the left boundary is a local minimum for F(d,d′).

Proof of step 4.
Now let us study the function F(d,d′)(X) restricted to the lower boundary of D+.

We first give a more convenient expression of F(d,d′). Let X = x + iy be a
point in the domain D+. We have:

sin θ(X, 0,∞) =
y√

x2 + y2

And since the matrix
(
−1 d

1
d′−d

−d′
d′−d

)
∈ SL2(R) acts on H2 by isometry and sends

the geodesic γd,d′ to γ0,∞ and x+ iy to

x̃+iỹ =
(−x− iy + d)(d′ − d)

x+ iy − d′
=

d− d′

(x− d′)2 + y2
·(−(x−d)(x−d′)−y2+iy(d′−d))
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we have:

sin θ(X, d, d′) =
ỹ√

x̃2 + ỹ2
=

y(d′ − d)√
((x− d)(x− d′) + y2)2 + y2(d′ − d)2

Hence:

(10) F(d,d′)(X) =
1

d′ − d

√
((x− d)(x− d′) + y2)2 + y2(d′ − d)2

x2 + y2

To study the variations of F(d,d′)(X), it suffices to consider what is inside the
square root in (10):

G : (x, y) 7→ ((x− d)(x− d′) + y2)2 + y2(d′ − d)2

x2 + y2

On the lower boundary of D+, this reduces to

(1+dd′−(d+d′) cos θ)2+(d′−d)2 sin2 θ = (1+dd′)2−2(1+dd′)(d+d′) cos θ+2dd′ cos 2θ−1

whose derivative with respect to θ is

−4dd′ sin 2θ + 2(1 + dd′)(d+ d′) sin θ = 2 sin θ
[
(1 + dd′)(d+ d′)− 4dd′ cos θ

]
.

We want to prove that G is an increasing function of θ. This follows from
(1 +dd′)(d+d′) ≥ 4dd′, which in turn follows from d+d′ ≥ 2

√
dd′, and the fact

that x2 − 2x+ 1 ≥ 0 for any real number x, in particular for x =
√
dd′.

Proof of step 5.
We compute the differential of G with respect to y. It gives

∂G

∂y
(x, y) =

2y

(x2 + y2)2
· (y4 + 2x2y2 + x4 − dd′(2x− d)(2x− d′)).

The sign of ∂G
∂y (x, y) is the sign of the polynomial P (X) = X2 + 2x2X + x4 −

dd′(2x− d)(2x− d′), which has discriminant

∆ = 4dd′(2x− d)(2x− d′).

Setting x = Φ
2 yields:

∆ = 4dd′(Φ− d)(Φ− d′).

In particular:
• If d′ > Φ, then ∆ < 0 and P has no real roots.
• If d′ = Φ then ∆ = 0 and the only real root of P is −Φ2

4 < 0.
• Else, Φ

2 < d′ < Φ and P has two real roots:

λ− = −Φ2

4
−
√
dd′(Φ− d)(Φ− d′) < 0 and λ+ = −Φ2

4
+
√
dd′(Φ− d)(Φ− d′).

But d(Φ − d) ≤ Φ2

4 and d′(Φ − d′) ≤ Φ2

4 so
√
dd′(Φ− d)(v − d′) ≤ Φ2

4
and λ+ ≤ 0.



ALGEBRAIC INTERSECTION FOR A FAMILY OF VEECH SURFACES 29

In conclusion, P has no real positive roots, in particular it is positive on R∗+,
and so is ∂G

∂y (Φ
2 , y). This finishes the proof of the last step.

In particular, the only possible minimum for F(d,d′) on D+ is X0. This proves
Proposition 7.8.

�
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