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Abstract. We show that any real number in [0, 1) is a diffusion rate for the wind-tree
model with rational parameters. We will also provide a criterion in order to describe the
shape of the Lyapunov spectrum of cocycles obtained as suspension of a representation. As
an application, we exhibit an infinite family of wind-tree billiards for which the interior of
the Lyapunov spectrum is a big as possible: this is the full square (0, 1)2. To the best of the
knowledge of the authors, these are the first complete description where the interior of the
Lyapunov spectrum is known explicitly in dimension two, even for general Fuchsian groups.

1. Introduction

The wind-tree model (in a slightly different version) was introduced by P. Ehrenfest and
T. Ehrenfest [EE90] about a century ago and investigated later by J. Hardy and J. We-
ber [HW80]. All of these studies had physical motivations.

More concretely, the model T (a, b) is obtained by putting a fixed [0, a] × [0, b] rectangular
scatterer Z2-periodically in the plane with sides parallel to the axes and examines the behavior
of the trajectory of x ∈ T (a, b) which follows the rules of elastic collision when it hits one of
the rectangles, as in Figure 1.

Figure 1. The (periodic) wind-tree model.

Several advances were obtained recently using the powerful technology of deviation spectrum
of measured foliations on surfaces, and the underlying dynamics in the moduli space. In this
work we focus on the diffusion rate, namely

δθ(x) = lim sup
T→+∞

log d(x, φθT (x))

log T
∈ [0, 1],
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where φθT (x) is the position of a particle after time T (with constant velocity) starting from
position x in direction θ ∈ S1 and d(., .) is the Euclidean distance on R2. In the sequel, we
consider the set D ⊂ S1 of directions θ whose δθ(x) is constant for almost every x ∈ T (a, b).
The latter will be simply denoted δθ.

Delecroix–Hubert–Lelièvre [DHL14] proved that D has full Lebesgue measure in S1 and
that δθ = 2

3 for almost every θ and every (a, b) ∈ E , where
E = {(a, b) ∈ (0, 1)2; 1/(1− a) = x+ y

√
D, 1/(1− b) = (1− x) + y

√
D,x, y ∈ Q, D ∈ Z>0}.

In particular, (0, 1)2 ∩ Q2 ⊂ E . They also showed that this property holds for almost every
parameter (a, b) ∈ (0, 1)2. Later, [DHL14] strengthen the result to any parameter, using
an argument by Chaika and Eskin [CE15]: the diffusion rate does not depend either on the
concrete values (a, b) of the obstacle nor on the choice of a generic direction θ on the circle.
In this paper we establish the following result, providing a positive answer to a question of
A. Zorich [Zor10].

Theorem 1.1. For any (a, b) ∈ E one has

{δθ; θ ∈ D} = [0, 1].

Remark 1.2. Our methods allows to establish the corresponding result in the case of the
Delecroix–Zorich variant [DZ20]. More precisely, a Delecroix–Zorich wind-tree model consists
of identical connected vertically and horizontally symmetric right-angled scatterers arranged
Z2-periodically in the plane with the sides parallel to the axes, as in Figure 2.

Figure 2. The Delecroix–Zorich variant (cf. [DZ20, Figure 4]).

The general discussion about diffusion rates above remains valid in this case (see Re-
mark 4.1) and we have the following.

Theorem 1.3. For any Delecroix–Zorich wind-tree model with rational side lengths one has

[0, 1) ⊂ {δθ; θ ∈ D} ⊂ [0, 1].

We dont know whether 1 belongs to {δθ; θ ∈ D} in this case.

Joint diffusion. We also exhibit an infinite family of wind-tree billiards with all possible
joint diffusion rates. To our knowledge, this is a phenomenon that has not been previously
exhibited. More precisely, consider the horizontal diffusion rate

δhθ (x) = lim sup
T→+∞

log dh(x, φθT (x))

log T
∈ [0, 1],
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where dh(., .) is the Euclidean horizontal distance on R2, that is, dh((a, b), (c, d)) = |c − a|.
Similarly, we define the vertical diffusion rate δvθ (x). As in the case of the diffusion rate δθ(x),
the horizontal and vertical diffusion rates are constants for θ in a full measure set D′ ⊂ D ⊂ S1,
and denoted δhθ , δ

v
θ , respectively. We prove the following.

Theorem 1.4. For side lengths (a, b) in the set

E� =

{(
p

q
,
r

s

)
∈ (0, 1)2; gcd(p, q) = gcd(r, s) = 1, p, q, r, s ∈ 2N− 1

}
,

the set of joint diffusion rates contains the full open square. More precisely,

{(0, 0)} ∪ (0, 1)2 ⊂ {(δhθ , δvθ ); θ ∈ D′} ⊂ [0, 1]2.

Lyapunov spectrum of hyperbolic surfaces. It is now well established (see the approach
originated in the pioneering work [DHL14]) that the diffusion rate can be interpreted as a
Lyapunov exponent of a certain renormalizing dynamical system associated to the billiard
flow. In the case of (a, b) ∈ E , this corresponds to the geodesic flow on a hyperbolic surface
(see Section 4 for more details).

The results presented in this section are independent to the wind-tree model and will serve
for our purposes.

By H we denote the hyperbolic plane, identified with PSO(2,R)\PSL(2,R). Its unit tangent
space may be identified with PSL(2,R). Let S = H/Γ be a hyperbolic surface, where Γ is a
(non necessarily uniform) lattice of PSL(2,R). The geodesic flow (gt) coincides with the (left)
action of the diagonal group

{(
et/2 0
0 e−t/2

)
; t ∈ R

}
on X = PSL(2,R)/Γ.

We consider a 2-dimensional symplectic bundle p:E → X and a cocycle A over gt, i.e.,
a family of symplectic linear maps At(x):E(x) → E(gt(x)), which depends continuously on
(x, t) ∈ X × R and satisfies As(gt(x)) ◦At(x) = As+t(x).

We assume that the cocycle is obtained as the suspension of a representation

ρ: Γ→ SL(2,R).

That is, we consider the trivial bundle Ê = PSL(2,R)×R2 and the trivial cocycle defined by
Ât(x).u = (gt(x), u). The group Γ acts on Ê by γ(x, u) = (γ(x), ρ(γ).u). The bundle E is
then the quotient Ê/Γ. Since the actions of (gt) and Γ commute on SL(2,R), the cocycle Â
on Ê induces a cocycle A on E.

We introduce the setM of Borel probability measures µ on X that are invariant, ergodic
for gt and Oseledets regular, i.e., there exists λ(µ) ≥ 0 such that either

• λ(µ) = 0 and 1
t log‖At(x)‖→ 0 as t→ ±∞, for µ-a.e. x ∈ X, or

• λ(µ) > 0 and there is a measurable splitting E = Es⊕Eu such that 1
t log‖At(x)|Es‖→

−λ(µ) and 1
t log‖At(x)|Eu‖→ λ(µ) as t → ±∞, for µ-a.e. x ∈ X. Moreover

At(x).Es/u(x) = Es/u(gt(x)) for µ-a.e. x ∈ X and all t ∈ R.
The number λ(µ) is then uniquely defined and it will be referred to as the Lyapunov exponent
of µ.

By Oseledets theorem, for a given ergodic probability measure µ, if the maps x 7→ |log‖At(x)‖|
are integrable for each each t ∈ R, then µ ∈M. This is the case in particular to the compactly
supported measures. We will prove the following.

Theorem 1.5. The set Λ1 := {λ(µ); µ ∈M} is an interval.
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This may be generalized as follows. We consider:
• two cocycles A,A′ on E over (gt), defined as suspensions of representations ρ, ρ′,
• the set of regular measuresM :=MA ∩MA′ ,
• for each µ ∈M, the Lyapunov vector (λ(µ), λ′(µ)) := (λA(µ), λA′(µ)).

Theorem 1.6. Let Λ := {(λ(µ), λ′(µ)); µ ∈ M} and let L ⊂ R2 be the smallest affine space
containing Λ. If ρ, ρ′ are irreducible, the interior of Λ (relative to L) is convex and dense
in Λ.

Remark 1.7. Theorems 1.5 and 1.6 are closely related to the work of Breuillard and Sert
(see [BS21]) for random products of matrices. A random version of Theorems 1.5 is proven in
Feng (see [Fen09]) in a different setting.

To each wind tree model are associated some lattice Γ, two irreducible representations
ρ−, ρ+ and, by the previous discussion, some set Λ which satisfies Λ ⊂ {(δhθ , δvθ ); θ ∈ D′}. A
main part of this work is to control the set Λ by showing that (0, 0) ∈ Λ and (1, 1) ∈ Λ; in
the setting of Theorem 1.4 we also prove that Λ contains the full open square (0, 1)2.

Remark 1.8. For the wind-tree model associated to the surface with three squares that is,
when the scatterers are squares of side length one half, Λ consists of the segment x = y:
indeed the representations ρ−, ρ+ are conjugated, see [Par20b, Section 2.3.2]. This contrasts
with Theorem 1.4. It would be interesting to have instances of Λ with different (intermediate)
shapes. Also that we don’t know how much can differ the sets Λ and {(δhθ , δvθ ); θ ∈ D′}.
Structure of the paper. In Section 2 we prove Theorem 1.5 and Theorem 1.6 which are
needed for the proof of Theorem 1.1 and Theorem 1.4, respectively.

In Section 3 we review useful results concerning translation surfaces, their moduli spaces,
affine invariant submanifolds and the Kontsevich–Zorich cocycle.

In Section 4 we relate the diffusion rate of the wind-tree model to the Lyapunov exponents
of the Kontsevich–Zorich cocycle following [DHL14; DZ20].

In Section 5 we give a geometric criterion to classify whether a parabolic element is in the
kernel of the natural representations.

In Section 6 we conclude the proof of Theorem 1.1 by showing that (0, 0) ∈ Λ and (1, 1) ∈ Λ.
In Section 7 we prove Theorem 1.4 exhibiting an infinite family of wind-tree billiards for

which the Lyapunov spectrum contains the full square (0, 1)2.

Acknowledgments. The authors thank Yves Benoist and Igor Krichever for helpful con-
versations. This work was partially supported by the ANR Project GeoDyM, the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) and the ERC project 692925 NUHGD. This work
was also partially supported by Centro de Modelamiento Matemático (CMM), ACE210010
and FB210005, BASAL funds for centers of excellence from ANID-Chile, and the MATH-
AmSud 21-MATH-07 grant. The fourth named author was also supported by ANID-Chile
through the FONDECYT 3190257 and 1221934 grants.

2. Lyapunov spectrum

In this section we prove Theorem 1.5 and Theorem 1.6 which are used latter for the proof
of Theorem 1.1 and Theorem 1.4, respectively.

The proof of Theorem 1.6 has two cases:
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Case 1: Λ is contained in a line. It is then enough to consider one cocycle and we are reduced
to Theorem 1.5.

Case 2: Λ is not contained in a line.
The proof in the first case (or the proof of Theorem 1.5) is very similar to the proof of the
second case, but simpler. In the following we only detail the second case.

2.1. Periodic approximation. We begin by establishing a property of Lyapunov exponents
supported on periodic orbits (cf. [Ben97]).

Proposition 2.1. Λper = {(λ(µ), λ′(µ)), µ ∈M supported on a periodic orbit} is dense in Λ.

Proof. Let us consider an arbitrary measure µ ∈M. Any point x in a set with full µ-measure
is recurrent and satisfies Oseledets theorem. One lifts x as a point x̂ ∈ PSL(2,R) and chooses
a small neighborhood U disjoint from its images γ(U), γ ∈ Γ \ {e}. Since x is recurrent by
the flow, there exists t > 0 large and γ ∈ Γ such that γ(gt(x̂)) is arbitrarily close to x̂. The
Anosov closing lemma then gives ẑ ∈ U and s > 0 such that γ(gs(ẑ)) = ẑ. Moreover |s − t|
is arbitrarily small if γ(gt(x̂)) is close enough to x̂. We denote by z the projection of ẑ to
X: it is fixed by gs. Since the bundle E is locally trivial it is defined from a representation
ρ: Γ→ SL(2,R), so that taking a chart over U , one has At(x) = As(z) = ρ(γ).

Let us first assume that λ(µ) = 0. Having chosen t large, 1
t log‖At(x)‖ is close to 0. Since

|s− t| is small, one deduces that 1
s log‖As(z)‖ is also close to zero. We have built a periodic

orbit whose Lyapunov exponent associated to the cocycle A is arbitrarily close to 0.

We then assume λ(µ) > 0: there exists a measurable hyperbolic decomposition E = Es⊕Eu.
We may have chosen x and gt(x) in a set Y ⊂ X with positive µ-measure where the bundles
Es, Eu vary continuously and are invariant by At(x). We then check that the Lyapunov
exponent λ(z) of the periodic orbit of z is close to λ(µ). (This is similar to [ABC11, Theorem
3.8].)

Any vector v in R2 decomposes as v = vsx+vux according to the splitting Es(x)⊕Eu(x). Let
us choose α > 0 small and consider the cone C of vectors v satisfying ‖vsx‖≤ α‖vux‖. For y ∈ Y
close to x, the decomposition Es(y)⊕Eu(y) is close, hence any vector v = vsy + vuy ∈ Es(y)⊕
Eu(y) may be decomposed as vsx+vux ∈ Es(x)⊕Eu(x) such that ‖vsx‖≤ α2‖vuy‖+(1 +α2)‖vsy‖
and ‖vux‖≥ (1− α2)‖vuy‖−α2‖vsy‖.

For t large enough, ‖At(x).vsx‖≤ 1
2‖vsx‖ and ‖At(x).vux‖≥ 2‖vux‖. Since gt(x) ∈ Y is close to

x, the image v̄ := At(x).v decomposes as v̄s + v̄u ∈ Es(x)⊕ Eu(x) satisfying

‖v̄s‖≤ (α2 + (1 + α2)
α

4
) ‖At(x).vux‖ and ‖v̄u‖≥ (1− α2 − α3

4
) ‖At(x).vux‖.

Hence, having chosen α small enough, the image v̄ is still in the cone C. Moreover

‖At(x)‖≥ ‖v̄‖‖v‖ ≥ (1− α2 − α3

4
)

1− α
1 + α

‖At(x).vux‖
‖vux‖

.

Since both 1
t log‖At(x)‖ and 1

t log‖At(x)|Eu(x)‖ are close to λ(µ), and since |s − t| is small,
this proves that vectors in the cone C grow exponentially under forward iterations of As(z)
with a rate close to λ(µ). The Lyapunov exponent of the invariant measure supported on the
orbit of z is thus close to λ(µ) as required.

The same analysis applies to the other cocycle A′. Hence the two Lyapunov exponents
λ(z), λ′(z) of the periodic orbit of z are close to those of µ. �
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2.2. Reduction to a symbolic setting. We will work with the alphabet {1, 2, 3}. Let
Σ := {1, 2, 3}Z be the space of sequences ε = (εk)k∈Z endowed with the shift map σ. If
w = ε0ε1 · · · εn−1 is a finite word, we denote by w the periodic sequence ε such that εin+j = εj
for each i ∈ Z and 0 ≤ j < n. Also i` denotes the word i · · · i where the symbol i is repeated
` times. And [i] := {ε, ε0 = i} is the 1-cylinder associated to the symbol i.

For any continuous function r: Σ → (0,∞), one defines the suspension Σr as the quotient
of Σ×R by the map (ε, s) 7→ (σ(ε), s− r(ε)). It is endowed with the flow (σtr)t∈R induced by
σtr(ε, s) = (ε, s+ t).

A cocycle M on Σ is a map which associates to (ε, n) ∈ Σ× Z a matrix Mn(ε) ∈ SL(2,R)
and satisfies Mm(σn(ε)) ◦Mn(ε) = Mn+m(ε). It defines by suspension a cocycle A on Σr: let
E → Σr be the bundle which is the quotient of (Σ× R)× R2 by the map

(ε, s, v) 7→ (σ(ε), s− r(ε),M1(ε).v).

The cocycle A acts on E and is the quotient of the trivial cocycle At(ε, s, v) = (ε, s+ t, v).
A cocycle on Σ is one-step locally constant ifM1(ε) only depends on (ε0, ε1). Such a cocycle

is defined by 9 linear maps Mi,j ∈ SL(2,R) with i, j ∈ {1, 2, 3}. For any word w = ε0 · · · εn,
we denote

Mw = Mε0···εn = Mεn−1,εn · · ·Mε0,ε1 ,

i.e., Mw coincides with Mn(ε′) associated to the sequences ε′ such that ε′i = εi for 0 ≤ i ≤ n.
A one-step locally constant cocycle M on Σ is irreducible if there does not exist a linear

1-space L ⊂ R2 which is invariant by each map Mw where w = ε0 · · · εn satisfies ε0 = εn.

One can extract a symbolic system from our geometrical setting:

Lemma 2.2. For any periodic points z1, z2, z3 ∈ X with disjoint orbits, there exist:
• a invariant compact set K ⊂ X containing z1, z2, z3 and invariant by the flow g,
• a continuous function r: Σ = {1, 2, 3}Z → (0,∞),
• a conjugacy h: Σr → K between (Σr, σr) and (K, g) such that h(i, 0) = zi,
• one-step locally constant cocycles M,M ′, defining cocycles (E ,A), (E ′,A′) on (Σr, σr),
that are conjugated to the the cocycles (E,A), (E,A′), on (K, g),

Moreover, if the representations ρ, ρ′ are irreducible and λ(z1), λ
′(z1) 6= 0, then the previous

is also true with M,M ′ irreducible cocycles.

Proof. The shadowing lemma provides us with an invariant hyperbolic set K contained in a
small neighborhood U of the orbits of the periodic points zi and of heteroclinic points zj,k.
Fixing pieces of orbits ζj,k connecting a neighborhood of zj to a neighborhood of zk, the set K
is the union of orbits that can be split as pieces of orbits close to the orbits of zi and transition
arcs ζj,k. This decomposition defines a coding over the alphabet {1, 2, 3}, implying the three
first items of the lemma.

By pulling back by h the cocycles (E,A) and (E,A′), one defines cocycles (E ,A), (E ′,A′) on
(Σr, σr). Since (E,A) and (E,A′) are the suspensions of representations ρ, ρ′: Γ → SL(2,R),
the cocycles (E ,A), (E ′,A′) are the suspensions of locally constant cocycles M,M ′. Having
chosen the neighborhood U small (hence the pieces of orbits ζj,k long) the sets h([i], 0) have
small diameters and the cocycles M,M ′ are one-step locally-constant, giving the last item.

Let us assume that ρ, ρ′ are irreducible and λ(z1), λ
′(z1) 6= 0, and let us prove the final

statement. We claim that one can modify the heteroclinic points z1,2 in such a way that there
does not exist a linear 1-space L ⊂ R2 preserved by the matrices M1,1 and M2,1M1,2. This
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will imply that M is irreducible. In a similar way, one can modify independently z1,3 in such
a way that there is no 1-space preserved by M ′1,1 and M ′3,1M ′1,3. This will imply that M ′ is
irreducible.

Since λ(z1) 6= 0, the matrixM1,1 is hyperbolic and preserves two directions Eu, Es. One will
select two elements γu, γs ∈ Γ and modify the heteroclinic orbit ζ1,2 by an orbit that shadows
` times γu, then m times the orbit of z1, then n times γs, and finally the original orbit ζ1,2. In
this ways, one modifies the matrix M1,2 by precomposing by a product A`Mm

1,1B
n. Since ρ is

irreducible, one can choose A that does not preserves Eu and B that does not preserves Es.
Up to replace A by A2, the matrix M2,1M1,2A does not preserve Eu. If it does not preserve

Es either, one replaces M1,2 by M1,2A as explained and gets the required property.
IfM2,1M1,2AE

s = Es, the matricesM2,1M1,2AM
`
1,1B do not preserve Es. SinceM2,1M1,2A

does not preserve Eu, the directionsM2,1M1,2AE
u andM2,1M1,2AM1,1E

u are different. Hence
one can choose ` = 0 or 1, and ensure that M2,1M1,2AM

`
1,1B does not preserve Eu. In this

case, one thus replaces M1,2 by M1,2AB or M1,2AM1,1B and get the property.
This concludes the proof of the irreducibility of the cocycles M,M ′. �

In the next sections, we construct new suspended shifts Σr̃ with cocycles Ã, Ã′ that are iso-
morphic to the cocyclesA,A′ over invariant compact sets of Σr. They are obtained by selecting
periodic orbits and heteroclinic points in Σr, in the same way as for proving Lemma 2.2.

Lemma 2.3. For any periodic points z1, z2, z3 ∈ Σr with disjoint orbits, there exist:
• a continuous function r̃: Σ = {1, 2, 3}Z → (0,∞),
• a conjugacy h: Σr̃ ↪→ Σr between Σr̃ and a subset K of Σr such that h(i, 0) = zi,
• one-step locally constant cocycles M̃, M̃ ′, defining cocycles (Ẽ , Ã), (Ẽ ′, Ã′) on (Σr̃, σr̃),
that are conjugated to the cocycles (E ,A), (E ′,A′) on (K,σr̃),

2.3. Approximation by hyperbolic periodic orbits. One can upgrade Proposition 2.1
and require that the periodic orbits are hyperbolic.

Proposition 2.4. Let M,M ′ be one-step locally constant cocycles on Σ such that λ(1) 6= 0.
For any i ∈ {1, 2, 3}, there exists a periodic orbit in Σr such that the Lyapunov exponents for
A,A′ are arbitrarily close to the exponents λ(i), λ′(i) and the exponent for A is non-vanishing.

We first prove the property for a single cocycle.

Lemma 2.5. Let M be a one-step locally constant cocycle on Σ such that λ(1) 6= 0. For any
i ∈ {1, 2, 3}, there exists a periodic orbit in Σr whose Lyapunov exponent for A is arbitrarily
close to the exponent λ(i) and is non-vanishing.

Proof. Without loss of generality, one may consider the case i = 2 and assume that the spectral
radius ofM2,2 vanishes (λ(2) = 0.) We will choose ` ≥ 2 and take n large, so that the exponent
of the periodic orbit γ in Σr which follows the itinerary 1`2n in Σ is arbitrarily close to 0.

Let us first assume thatM2,2 is conjugated to a rotation. The integer ` is chosen arbitrarily.
Let Cu be a small open neighborhood of the unstable space Eu ofM1,1 such thatM1,1Cu ⊂ Cu.
Since the rotations are recurrent, there exists n large such thatMn

2,2M
`
1,1Cu ⊂ Cu. This implies

that the matrix Mn
2,2M

`
1,1 is hyperbolic. Hence the Lyapunov exponent for A of the periodic

orbit γ is non-vanishing.
Let us now suppose that M2,2 is parabolic (and not the identity). It admits a unique

invariant 1-space Ec. If Ec coincides with one of the invariant spaces Es or Eu of M1,1, the
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spectral radius of Mn
2,2M

`
1,1 coincides with the spectral radius of M `

1,1, hence the Lyapunov
exponent for A of the periodic orbit γ is non-vanishing.

IfM2,2 is parabolic and Ec does not coincides with Es or Eu, one fixes an open set C ⊂ P 1(R)

which is the complement of a small neighborhood of Es and chooses ` ≥ 1 large so that M `
1,1C

is a small neighborhood of Eu. Taking n large enough, Mn
2,2M

`
1,1C is close to Ec, hence

contained in C. This implies that the matrix Mn
2,2M

`
1,1 is hyperbolic and that the Lyapunov

exponent for A of the periodic orbit γ is non-vanishing. �

Proof of Proposition 2.4. We continue the proof of Lemma 2.5, still assuming i = 2 and λ(2) =
0: we get a periodic orbit γ which follows the itinerary 1`2n with n large. As before the
Lyapunov exponent for A is close to λ(2) and is non vanishing, so it remains to control the
Lyapunov exponent for A′.

Let us first consider the case λ′(2) = 0. Since n is large, the Lyapunov exponent of γ for
A′ is close to λ′(2) = 0; so the proposition holds.

In the case λ′(2) 6= 0, let Es′ and Eu′ be the stable and unstable spaces of M ′2,2. Regarding
the itinerary 1`2n, note that the integer ` may be chosen so that (M ′1,1)

` does not send Eu′

on Es′. Let C′ be a small open neighborhood of Eu′, whose closure is disjoint from Es′.
Provided that n is larger than some n0 ≥ 1, we thus have (M ′2,2)

n(M ′1,1)
`C′ ⊂ C′. The

matrix (M ′2,2)
n(M ′1,1)

` is hyperbolic and the difference between its spectral radius differs and
the spectral radius of (M ′2,2)

n is bounded uniformly in n. This implies that the Lyapunov
exponent of γ for A′ is close to λ′(2) and the proposition holds in this case also. �

2.4. Hyperbolic cocycles. A cocycleM on Σ is uniformly hyperbolic if for each ε ∈ Σ, there
exists a decomposition R2 = Es(ε)⊕ Eu(ε) which

• depends continuously on ε,
• is invariant, i.e., M1(ε).Es(ε) = Es(σ(ε)) and M1(ε).Eu(ε) = Eu(σ(ε)),
• is contracted/expanded, i.e., ‖Mn|Es‖≤ 1/2 and ‖M−n|Eu‖≤ 1/2 for some n ≥ 1.

The hyperbolicity can be checked with the following cone criterion.

Proposition 2.6 ([ABY10, Theorem 2.3]). A one-step locally constant cocycle M on SL(2,R)
is uniformly hyperbolic if and only if there exist non-empty open sets C1, C2, C3 ( P 1(R) satis-
fying Mi,j(Ci) ⊂ Cj for any i, j ∈ {1, 2, 3}.

We then explain how to extract a uniformly hyperbolic subsystem.

Lemma 2.7. Let Σr be a suspended shift and letM,M ′ be irreducible one-step locally constant
cocycles on Σ such that the 3 fixed points i ∈ Σ are hyperbolic for each cocycle M,M ′.

Then, there exists an extracted suspended shift h: Σr̃ ↪→ Σr which satisfies h(i, 0) = (i, 0)

for each i ∈ {1, 2, 3} and two uniformly hyperbolic one-step locally constant cocycles M̃, M̃ ′

on Σ whose suspensions on Σr̃ are conjugated to the suspensions on M,M ′ over h(Σr̃).

Proof. Let R2 = Esi ⊕ Eui be the hyperbolic decomposition over the fixed point i.

Claim. For every i 6= j, there exists a finite word w(i, j) starting with i and ending with j
such that Mw(i,j)E

s
i 6= Euj and Mw(i,j)E

u
i 6= Esj .

Proof of the claim. One may assume that Mi,jE
s
i = Euj or Mi,jE

u
i = Esj , otherwise we are

done. We will consider the first case (the second one is analogous). SinceM is irreducible, there



DIFFUSION RATES FOR THE WIND-TREE MODEL 9

is a word w which starts and ends with i satisfying MwE
s
i 6= Esi . Note also that M2

wE
s
i 6= Esi

and M2
wE

s
i 6= MwE

s
i . In particular we have Mi,jMwE

s
i 6= Euj and Mi,jM

2
wE

s
i 6= Euj .

If Mi,jMwE
u
i 6= Esj or Mi,jM

2
wE

u
i 6= Esj we are done with wi,j = wj or wi,j = wwj.

Otherwise MwE
u
i = Eui and Mi,jE

u
i = Esj . We choose another word w′ which starts and ends

with i satisfying Mw′E
u
i 6= Eui . Hence we have Mi,jMw′E

u
i 6= Esi and Mi,jMw′wE

u
i 6= Esi .

If Mi,jMw′E
s
i 6= Euj or Mi,jMw′wE

s
i 6= Euj , we are done with wi,j = w′j or wi,j = w′w′j.

OtherwiseMw′E
s
i = Esi so thatMi,jMw′wE

s
i 6= Euj andMi,jMw′w′wE

s
i 6= Euj . SinceMw′E

u
i 6=

Eui , the images of Eui by Mi,jMw′w and Mi,jMw′w′w are different, so we are done with the
word wi,j = w′wj or wi,j = w′w′wj. �

Let C1, C2, C3 ⊂ P 1(R) be small open neighborhoods of Eu1 , Eu2 , Eu3 such that Mi,iCi ⊂ Ci
and Esj 6∈ Mw(i,j)Ci. Choosing any ` ≥ 1 large, M `

j,j contracts Mw(i,j)Ci near the unstable
direction Euj , so that M `

j,jMw(i,j)Ci ⊂ Cj . The same construction applies to the cocycle M ′.
One extracts a suspended subshift h: Σr̃ → Σr with the same periodic points h(i, 0) = (i, 0),

but whose transition between different symbols i, j follows the itinerary w(i, j) j` from the
original coding. By Lemma 2.3, one gets new cocycles (Ẽ , Ã), (Ẽ ′, Ã′) over Σr̃ which are
associated to one-step locally constant cocycles M̃, M̃ ′ over Σ. By construction M̃i,i = Mi,i,
whereas M̃i,j = M `

j,jMw(i,j). Consequently the cone criterion in Proposition 2.6 holds for M̃
and the sets Ci, proving that M̃ is uniformly hyperbolic. The same holds for M̃ ′. �

2.5. Proof of Theorem 1.6. As we explained in at the beginning of Section 2 we will consider
the main case, where the set Λ := {(λ(µ), λ′(µ)), µ ∈M} is not contained in a line.

Proposition 2.8. Λhper = {(λ(γ), λ′(γ)), γ periodic orbit with λ(γ), λ′(γ)6= 0} is dense in Λ.

Proof. By Proposition 2.1, it is enough to prove that Λhper is dense in Λper. Moreover there
exists three periodic orbits γi in X whose pairs of exponents (λ(γi), λ

′(γi)) are not contained
in a common line. This implies that there exists two periodic orbits γ0, γ′0 such that λ(γ0) 6= 0
and λ′(γ′0) 6= 0. For any periodic orbit γ ⊂ X, one applies Lemma 2.2 and build a symbolic
system h: Σr → X such that the periodic points h(i, 0) lift points in each orbits γ0, γ′0, γ.
Proposition 2.4 applied twice then ensures that there exist a periodic orbit γ̄ ⊂ h(Σr) whose
Lyapunov exponents λ(γ̄), λ′(γ̄) are non vanishing and close to λ(γ), λ′(γ) as required. �

Theorem 1.6 is now a consequence of the following.

Proposition 2.9. If ρ, ρ′ are irreducible, then for any periodic orbits γ1, γ2, γ3 ⊂ X satisfying
λ(γi), λ

′(γi) 6= 0 we have{∑
ai · (λ(γi), λ

′(γi)), a1 + a2 + a3 = 1, ai ≥ 0

}
⊂ Λ.

From Lemma 2.2 and Lemma 2.7, it reduces to the next statement.

Lemma 2.10. Let Σr be a suspension of the shift Σ = {1, 2, 3}Z and let (E ,A), (E ′,A′) be
cocycles associated to uniformly hyperbolic one-step locally constant cocycles M,M ′. Let λi, λ′i
be the Lyapunov exponents for A,A′ of the periodic orbits associated to the fixed points i ∈ Σ.

Then, for any a1, a2, a3 ∈ [0, 1] with a1+a2+a3 = 1, there is an ergodic invariant probability
measure µ on Σr whose Lyapunov exponents for A,A′ are λ =

∑
aiλi and λ′ =

∑
aiλ
′
i.
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Proof. The unstable bundles Eu, Eu′ for M and M ′ are continuous. One can thus define the
continuous functions

ψ(ε) = log‖Mε0,ε1 |Eu(ε)‖−λr(ε), ψ′(ε) = log‖M ′ε0,ε1 |Eu′(ε)‖−λ′r(ε).

On fixed points, they take the values ψ(i) = (λi − λ)r(i) and ψ′(i) = (λ′i − λ′)r(i). Let us set

αi =
ai

r(i)
·
[
a(1)

r(1)
+
a(2)

r(2)
+
a(3)

r(3)

]−1
,

so that
∑
αi = 1,

∑
αiψ(i) = 0 and

∑
αiψ

′(i) = 0. The set of ergodic measures satisfies a
weak convexity property, see Theorem A.1 in the appendix: there exists an ergodic measure
m on Σ such that

∫
ψdm = 0 and

∫
ψ′dm = 0. In particular by definition of ψ, Birkhoff

ergodic theorem gives for m-almost every ε ∈ Σ:

lim
n

1

n

n−1∑
k=0

log‖M1(σk(ε))|Eu‖ = λ lim
n

1

n

n−1∑
k=0

r(σk(ε)).

The measure m×R defines an invariant finite measure on Σr. After normalization, we denote

it by µ. For µ-almost every point x, the quantity
1

t
log‖At(x)|Eu‖ converges as t → +∞ to

the Lyapunov exponent λ(µ) of µ for A. For m-almost every ε we set x = (ε, 0) and get

λ = lim
n

∑n−1
k=0 log‖M1(σk(ε))|F ‖∑n−1

k=0 r(ε)
= lim

t

1

t
log‖At(ε, 0)|F ‖= λ(µ).

The same argument shows that the Lyapunov exponent λ′(µ) of the measure µ for the cocycle
A′ coincides with λ′ as required. �

3. Translation surfaces

In this section we review useful results concerning translation surfaces, their moduli spaces,
affine invariant submanifolds and the Kontsevich–Zorich cocycle. For a general introduction
to translation surfaces and their moduli spaces, we refer the reader to the surveys [FM14;
Zor06].

3.1. Moduli spaces of translation surfaces. A structure of translation surface on a com-
pact oriented topological surface (M,Σ) of genus g is the data (X,ω) where X is a genus g
Riemann surface together with a non identically zero holomorphic 1-form ω where Σ is the
zero set of ω. For any integer partition κ of 2g−2, let H(κ) denote the moduli space of nonzero
holomorphic 1-forms (X,ω) having prescribed zeroes of multiplicities κ. We also define the
Teichmüller space T (κ) as the quotient of the set of structure of translation surfaces by the
natural action of Diff0(M,Σ). Then, H(κ) is the quotient of T (κ) by the mapping-class group
MCG(M,Σ) := Diff+(M,Σ)/Diff0(M,Σ).

We use the upper script notation T (1)(κ) and H(1)(κ) for the space of unit area translation
surfaces (i.e., i/2

∫
ω ∧ ω = 1).

The group GL+
2 (R) naturally acts on the set of structures of translation surface by post-

composition with the translation charts. This action commutes with the action of Diff(M,Σ).
Therefore it induces a well defined action on both T (κ) and H(κ). We will refer to the action
of the 1-parameter diagonal subgroup gt := diag(et, e−t) as the Teichmüller geodesic flow.
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3.2. Affine invariant submanifolds. Let γ1, . . . , γn be any basis of the relative homology
group H1(X,Σ,Z), where n = 2g + s− 1. The period coordinate maps defined by

(X,ω) 7→
(∫

γ1

ω, . . . ,

∫
γn

ω

)
provide H(κ) with an atlas of charts to Cn with transition functions in GL(n,Z). Over each
stratum H(κ) there is a flat bundle H1 whose fibers over (X,ω) are H1(X,Σ,C). An affine
invariant submanifold of H(κ) is a properly immersed manifold N ↪→ H(κ) such that each
point of N has a neighborhood whose image is given by the set of surfaces in an open set
satisfying a set of real linear equations in period coordinates. It follows directly from the
definition that N is GL2(R)-invariant.

3.3. The Kontsevich–Zorich cocycle. On the trivial bundle T (1)(κ)×H1(X,R) we define
a trivial cocycle over (gt) as usual by

Ĝt
KZ

((X,ω), c) = (gt(X,ω), c).

We will often use the notationH1
R := H1(X,R) for short. The mapping-class group MCG(M,Σ)

acts in a non trivial canonical way on both factors of the product T (1)(κ) ×H1(X,R). The
quotient cocycle GKZt is the (reduced) Kontsevich–Zorich cocycle (or KZ cocycle for short).
It acts on the real Hodge bundle H1

R. We will denote by GKZt (X,ω) the linear map from
H1(X,R) to H1(gtX,R).

3.4. Lyapunov spectrum of the KZ cocycle. Let N be a closed SL(2,R)-invariant affine
manifold. Given any ergodic (gt)-invariant probability measure µ with support contained in
N (1), and any choice of norm ‖·‖ (e.g. the Hodge norm), it follows from the work of [For02] that
the KZ cocycle is integrable for µ, i.e.,

∫
log‖GKZ±t ‖opdµ <∞ for all t ≥ 0. The multiplicative

ergodic theorem of Oseledets guarantees the existence of Lyapunov exponents λµ1 > · · · > λµk
and a GKZt -equivariant measurable decompositionH1(X,R) = E1(ω)⊕. . .⊕Ek(ω) at µ-almost
every (X,ω) ∈ N (1) such that

lim
t→±∞

1

t
log‖GKZt (X,ω)v‖= λµi ∀ v ∈ Ei(ω) \ {0}.

In general, we will write the Lyapunov exponent λµi with multiplicity dimEi(ω) in order to
obtain a list of 2g = dimH1(X,R) Lyapunov exponents. Since GKZt is a symplectic cocycle
(the action of MCG(M,Σ) on H1(X,R) preserves the natural symplectic intersection form
{c, c′} :=

∫
X c ∧ c′), the Lyapunov exponents are symmetric with respect to 0.

By definition, GKZt acts on the tautological plane H1
st(X,ω) := R.Re(ω) ⊕ R. Im(ω) ⊂

H1(X,R) by the matrix gt = diag(et, e−t). This implies that ±1 are extremal Lyapunov
exponents. Hence the Lyapunov spectrum is

1 = λµ1 ≥ λµ2 ≥ . . . ≥ λµg ≥ −λµg ≥ . . . ≥ −λµ2 ≥ −λµ1 = −1.

3.5. Computing the KZ cocycle. In general, it is difficult to exhibit matrices of the KZ
cocycle. However there is a particular setting which allows to have a nice description: this is
the case when the orbit closure of (X,ω) covers a Teichmüller curve. One can then describe
the KZ cocycle by the cohomological action of affine homeomorphisms of a Veech surface.

More concretely, the automorphism group Aut(X,ω) (resp. the affine group Aff(X,ω)) of
(X,ω) is the group of orientation-preserving homeomorphisms of X which preserve Σ and
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whose restrictions to X −Σ read as translations (resp. affine maps) in the translation charts.
The embedding of Aut(X,ω) into Aff(X,ω) is completed into an exact sequence

1 −→ Aut(X,ω) −→ Aff(X,ω) −→ SL(X,ω) −→ 1,

where Γ := SL(X,ω) ⊂ SL(2,R) is the Veech group of (X,ω): it is the stabilizer of (X,ω)
under SL(2,R). The map from Aff(X,ω) onto Γ is defined by associating to each φ ∈ Aff(X,ω)
its derivative (linear part) Dφ ∈ Γ in translation charts.

When (X,ω) is a Veech surface, that is, its Veech group is a lattice in SL(2,R), its SL(2,R)-
orbit N is closed and is naturally isomorphic to SL(2,R)/Γ.

The Teichmüller geodesic flow on N coincides with the geodesic flow on the finite-area
hyperbolic surface H/Γ, that is with the (left) action of the diagonal group of matrices{(

et/2 0
0 e−t/2

)
, t ∈ R

}
on PSL(2,R)/Γ. Moreover the affine group Aff(X,ω) embeds natu-

rally in the mapping-class group MCG(M,Σ) and its image is the stabilizer of N in T (1)(κ).
Therefore, the restriction of the KZ cocycle to N is simply the quotient of the trivial cocycle

GKZt : PSL(2,R)× R2g → PSL(2,R)× R2g

by the affine group, where we have identified R2g with H1(X,R).

3.6. Lyapunov exponents and pseudo-Anosov maps. An affine map φ ∈ Aff(X,ω) is
a pseudo-Anosov map if Dφ is a hyperbolic matrix. In this case, up to conjugacy and up
to take the inverse, the derivative map has the form Dφ =

(
θ1 0

0 θ−1
1

)
where |θ1|> 1. This

determines a periodic orbit (not necessarily simple) on H(1)(κ) for gt of length T = log(|θ1|).
By definition of the KZ cocycle, one has GKZT (X,ω) = φ∗ where φ∗ is acting on H1(X,R).
Thus the eigenvalues θ±1i , i = 1, . . . , g, of φ∗ (where |θ1|> |θ2|≥ . . . ≥ |θg|) are related to the
Lyapunov exponents associated to ergodic (gt)-invariant probability measure µ supported on
the periodic orbit by

λµi =
log(|θi|)
log(|θ1|)

. (1)

4. Diffusion rates and Lyapunov exponents

The main goal of this section is to relate the diffusion rate of the wind-tree model to the
Lyapunov exponents of the KZ cocycle. See [DHL14; DZ20] for more details.

4.1. From wind-tree model to translation surfaces. The following is a summary of the
content of [DHL14, Section 3] needed for our purposes.

Let a, b ∈ (0, 1). The wind-tree model corresponds to a billiard in the plane endowed with
Z2-periodic, horizontally and vertically symmetries. By the classical unfolding procedure, we
can glue a translation surface (X∞, ω∞) out of four copies of the original billiard table and
unwind billiard trajectories to flat geodesics on X∞. The resulting surface X∞ is Z2-periodic
with respect to translations by vectors of the original lattice. Passing to the Z2-quotient we get
a compact flat surface (Xa,b, ωa,b) ∈ H(2, 2, 2, 2) of genus 5, as in Figure 3. For simplicity, we
denote it by (X,ω). The Z2 coveringX∞ overX is defined by the Poincaré dual f ∈ H1(X,Z2)
of the cycle (

v
h

)
=

(
v00 + v01 − v10 − v11
h00 − h01 + h10 − h11

)
∈ H1(X,Z2) ∼= H1(X,Z)2, (2)

where the cycles hi,j and vi,j , i, j ∈ {0, 1}, are as in Figure 3.
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h00

v00

h01

v01

h10

v10

h11

v11

Figure 3. The compact translation surface (X,ω) obtained as quotient over
Z2 of an unfolded wind-tree billiard table (cf. [DZ20, Figure 5]).

Observe that (Z2)
2 is a subgroup of Aut(X,ω): it is generated by two isometries τh, τv.

More precisely (see Figure 3), τh interchanges the pairs of flat tori with holes in the same rows
by parallel translations while the isometry τv, the flat tori with holes in the same columns.

This produces a flat symplectic decomposition of the bundle

H1(X,R) = E++ ⊕ E+− ⊕ E−+ ⊕ E−−, (3)

over N , the GL(2,R) orbit closure of (X,ω) in H(2, 2, 2, 2), where E++ is the vector space
invariant by τh and τv, E+− the vector space invariant by τh and anti-invariant by τv, etc.
In the sequel we will simply denote E+− by E+ and E−+ by E−. It follows that we have
E++ ' H1(X/〈τh, τv〉,R) and thus, H1

st(X,ω) ⊂ E++. Moreover E++ is real 4-dimensional
since X/〈τh, τv〉 ∈ H(2) has genus 2. We can also check that the other three subbundles
are real 2-dimensional. Note that the cocycle f = (h, v)∗ ∈ H1(X,Z2) defining the Z2-cover
satisfy h∗ ∈ E+ and v∗ ∈ E−, where (·)∗ denotes Poincaré duality.

The splitting (3) extends as a constant splitting of the trivial bundle PSL(2,R)×H1(X,R)

over the SL(2,R)-orbit of (X,ω) ∈ T (1)(κ). The quotient by the action of the affine group
Aff(X,ω) ⊂ MCG(M,Σ) is a well-defined splitting of the real Hodge bundle H1(X,R) over
N (1), which is invariant under the KZ cocycle.1

Remark 4.1. In the case of the Delecroix–Zorich variant, the corresponding subspaces to
consider are E+ ' H1(X/〈τh, ι ◦ τv〉,R) and E− ' H1(X/〈ι ◦ τh, τv〉,R), where ι is the
involution that rotates in π each one of the four copies of the fundamental domain inX (flat tori
with holes). In this case, the quotient surfaces are half-translation surfaces of genus one and
therefore E+ and E− are still (virtually) Aff(X,ω)-invariant real 2-dimensional subspaces of
H1(X,R) and symplectic-orthogonal to H1

st(X,ω). Together with the fact that the underlying
surface X is a Veech surface (since the side-lengths are rational), these are the only conditions

1To be very precise, one should consider orbifold vector bundles instead of vector bundles since the spitting
is not invariant by the full group Aff(X,ω) but only by a subgroup of finite index. Since it does not affect the
rest of the paper, we will not enter this technicality.
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actually needed to our result to hold. See [DZ20, Section 3.2] and [Par18b, Section 2.4] for
further details.

4.2. The Kontsevich–Zorich cocycle as a suspension of a representation. We now
assume (a, b) ∈ E . By [McM03], the surface (X,ω) = (Xa,b, ωa,b) is a Veech surface. We denote
by Γ its Veech group. This group does not necessarily preserve the bundles E±, but there is
a finite index subgroup Γ0 fixing globally each sub-bundle. The Teichmüller geodesic flow on
N (1) coincide with the geodesic flow on the unit bundle of the finite-area hyperbolic surface
H/Γ. There are two representations ρ− (resp. ρ+) of Γ0 into Aut(E−) (resp. Aut(E+)) given
by the restriction of the associated affine map on the subbundle E+ (resp. E−). We denote by
At the restriction of the KZ cocycle to the subbundle E+⊕E−: it is obtained as the product
of the suspensions of the representations ρ+, ρ−. In the sequel we will denote ρ = (ρ+, ρ−).

LetM be the set of ergodic (gt)-invariant probability measure µ whose support is contained
in N (1). Given any ergodic µ ∈ M whose support is contained in N (1), we let λ+(µ) and
λ−(µ) be the two non negative Lyapunov exponents of At. We set λ(µ) = max{λ+(µ), λ−(µ)}
and Λ = {(λ+(µ), λ−(µ)), µ ∈M}.
4.3. Lyapunov exponents and diffusion rate. The next result is proved in [DHL14] only
for SL(2,R)-invariant measure. However, it is possible to strengthen the conclusion to any
(gt)-invariant measure.

Theorem 4.2. For any (a, b) ∈ E, for any ergodic (gt)-invariant probability measure µ on
N (1), there exists θ ∈ D such that δθ = λ(µ).

Proof. For any translation surface (Y, η) ∈ H(κ), and any t ∈ R, y ∈ Y we define γt(Y, y) ∈
H1(Y,Z) a vertical geodesic segment of length t from y that is closed by a uniformly bounded
curve. Let f ∈ H1(X,Z2) be the cocycle in (2) that defines the wind-tree model. Then [DHL14,
Proposition 1] establishes that for a given θ and x

δθ(x) = lim sup
T→+∞

log‖〈f, γT (rθX,x)〉‖
log T

,

where γT (rθX,x) ∈ H1(X,Z). Given a small neighbourhood U of (X,ω) in N (1), for which
there is a trivialization of the Hodge bundle, for any (Y, η) ∈ U one naturally defines, for
y ∈ Y

F (Y, y) := lim sup
T→+∞

log‖〈f, γT (Y, y)〉‖
log T

.

Observe that F (Y, y) is constant (equal to F (Y )) for Lebesgue almost every y ∈ Y . A quick
inspection of the proof of [DHL14, Lemma 11] (related to Oseledets theorem) reveals that in
fact its conclusion holds for any (gt)-invariant ergodic measure µ. Namely, for µ almost every
(Y, η) ∈ U

F (Y ) = λ(µ). (4)
(The proof is identically to the one of Delecroix–Hubert–Lelièvre. The additional step to check
is that the restriction of f to E+ ⊕ E− ⊂ H1(Y,R) does not belong to the stable subspace.
But this restriction is an integer covector and the KZ cocycle takes values in the set of integer
matrices of determinant 1 so ‖GKZt (Y )f‖ cannot go to zero as t goes to infinity as it is bounded
from below by a positive constant). Hence (4) holds.

Next we want to rely (4) to the diffusion rate δθ(x). We follow ideas in a previous ver-
sion of [DHL14] (precisely, [DHL11, Section 6], in the third arXiv version of [DHL14]), prior
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to [CE15] . Since the support of µ is contained in N (1), U can be locally identified with a
neighbourhood of SL(2,R) (recall that (a, b) ∈ E , so Xa,b is a Veech surface). The Iwasawa
decomposition implies that the set

{hsgtrθX; s, t ∈ R, θ ∈ S1}
contains a generic point (s, t, θ) of the measure µ. Hence λ(µ) = F (Y ) = F (hsgtrθX). But
the function F (·) is invariant under the geodesic flow and the horocyclic flow. It follows that
λ(µ) = F (hsgtrθX, y) = F (rθX,hsgt(y)) = δθ(x), where x = hsgt(y) is the affine action of
hsgt on Y . This holds for Lebesgue almost every x ∈ X thus θ ∈ D and δθ(x) = δθ = λ(µ) as
required. �

We end this section with two remarks.

Remark 4.3. We can easily extend the previous theorem to join diffusions. Namely, by
considering dh and dv instead of the distance d, we construct the function F and show that
F (Y ) is equal to (λ(µ), λ′(µ)) for µ almost every (Y, η). We then use [DHL11, Section 6] to
rely this quantity to the join diffusion (δhθ , δ

v
θ ) for some θ. More precisely, the following result

holds: For any (a, b) ∈ E and any ergodic (gt)-invariant probability measure µ on N (1), there
exists θ ∈ D such that (δhθ , δ

v
θ ) = (λ(µ), λ′(µ)).

Remark 4.4. Forni [For02] showed that the maximal Lyapunov exponent associated to any
ergodic (gt)-invariant measure is always simple. In our situation the KZ cocycle restricted to
the subbundle whose fiber above (X,ω) is E++ ⊕ E+ ⊕ E− has non negative spectrum

1, λ++(µ), λ+(µ), λ−(µ).

Since the maximal Lyapunov exponent is 1 we have λ(µ) = max{λ+(µ), λ−(µ)} < 1.

5. Parabolic elements

In order to prove Theorem 1.1 and Theorem 1.4 we use the existence of some parabolic
elements in the Veech group outside the kernel of the representations ρ+ and ρ−. In this
direction, in this section we give a geometric criterion in order to classify parabolic elements
in the kernel of these representations.

5.1. Parabolic elements and cylinder decompositions. A cylinder on a translation sur-
face (X,ω) is a maximal open annulus filled by isotopic simple closed regular geodesics, iso-
metric to R/wZ × (0, h), for some w, h > 0. Its modulus is the ratio m = w/h and its core
curve is the simple closed geodesic identified with R/wZ × {h/2}. A cylinder decomposition
of X is a collection of parallel cylinders with disjoint interiors and whose closures cover X.
The direction of a cylinder or a cylinder decomposition corresponds to the angle between the
horizontal direction and the core curves.

The following result is needed for what follows.

Theorem 5.1. Let (a, b) ∈ E. Then, for any pair of regular Weierstrass points in La,b there
is a cylinder in La,b whose core curve passes through these two points.

Proof. This is a direct corollary of [Par20a, Theorem 1], which states that the number of
cylinders whose core curve passes through any pair of marked regular Weierstrass points has
quadratic growth rate (positive area Siegel–Veech constant). In particular, there are infinitely
many such cylinders for any pair of regular Weierstrass points in La,b. �
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By the work of Veech [Vee89], cylinder decompositions are related to parabolic elements in
the following way. Let Rθ be the matrix rotating the plane (counterclockwise) by θ ∈ [0, 2π)
and let T t = ( 1 t

0 1 ), t ∈ R. Then, a matrix of the form P tθ = RθT
tR−1θ belongs to SL(X,ω)

if and only if there exists a cylinder decomposition {Ci}i∈I of X in direction θ such that the
moduli mi of the cylinders Ci are pairwise rationally related, that is, if rij = mi

mj
∈ Q for

every i, j ∈ I. Furthermore, if t ∈ R is an integer multiple of the modulus of each cylinder,
that is, for each i ∈ I there exist ki ∈ Z such that t = kimi, then P tθ ∈ SL(X,ω). The
corresponding affine transformation preserves the cylinder decomposition, as it twists each
cylinder Ci exactly ki times along itself.

5.2. Geometric criterion. The aim of this section is to prove a geometric criterion for a
parabolic element in Γ to be in K± := ker(ρ±) (Theorem 5.2 below). But we first give the
actual geometric intuition and motivation in terms of the symmetries of the wind-tree model.
These ideas date back to [HLT11] and have been used in several other works on the wind-tree
model, in particular, in [AH20] to provide a geometric criterion for the recurrence of the model
or further, in [Par18b], to prove asymptotic formulas for the number of periodic trajectories.
Even if we do not use explicitly this approach in the proofs, this is very much the actual ideas
behind them. We supply them for the reader’s convenience.

Recall that a wind-tree billiard covers an L-shaped translation surface La,b = Xa,b/〈τh, τv〉 ∈
H(2), for some a, b ∈ (0, 1), as in Figure 4 (left). The surface L = La,b is thus hyperelliptic and
its six Weierstrass points are labeled A,B,C,D,E, F as depicted in Figure 4 (right). When
the parameters a, b are rational, the surface L is a square-tiled surface.

•

•

• •

• •

••

1

1

b

a

•
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• •

• •

••

• •
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•

• •
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D

D D

D D
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•
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• •
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Figure 4. The surface La,b (left) and its six Weierstrass points (right).

In H(2), as in any hyperelliptic component, every cylinder is invariant under the hyperel-
liptic involution and, in particular, the core curve of any cylinder contains exactly two regular
Weierstrass points (see, e.g., [Par20a, Remark 5]). At the level of the wind-tree model, points
in the fibers over the five regular Weierstrass points A,B,C,E, F ∈ L give raise to symme-
tries of the infinite billiard table. Thus, as can be seen in Figure 5, the points over A,B,C
give central symmetries, while the points over E (resp. F ) give axial symmetries through the
corresponding vertical (resp. horizontal) lines passing through.

Because of these symmetries, it is easy to see, for example, that a closed geodesic passing
though the pointA is necessarily unbounded in the corresponding wind-tree billiard. Moreover,
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•A
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•E

•E

•F •F •F •F

Figure 5. The wind-tree model and some points over the regular Weierstrass
points of L ∈ H(2) labeled as their image in L. The points over A,B,C give
central symmetries. The point over E (resp. F ) gives an axial symmetry
through the corresponding vertical (resp. horizontal) line passing through.

by the same reasons, the only possibilities for a closed geodesic in L passing through two regular
Weierstrass points to lift into a periodic trajectory in the wind-tree model is that either

• it passes through E and F ; or
• it passes through E and B (resp. F and C) in such a way that the corresponding
points in the fiber in the wind-tree model are in the same vertical (resp. horizontal)
line;

and any such trajectory is indeed periodic. See Figure 5. However, the last case can be easily
broken through the action of the affine group.

On the other hand, parabolic elements in the Veech group of L acts on the homology of
the wind-tree model as an affine multi-twists through the core curves of the cylinders in the
corresponding direction. Thus, in order to act trivially in E+ and E−, the corresponding
affine multi-twists have to, in particular, fix the cocycles h ∈ E+ and v ∈ E− defining the
Z2-covering. In other words, the core curves have to have trivial monodromy or, what is the
same, give raise to periodic trajectories in the wind-tree model (closed curves in the Z2-cover).
Moreover, the spaces E+ and E− are virtually invariant under the action of the affine group
and this action is irreducible. It follows from the previous discussion that the only possibility
left for a parabolic element to be in the kernel of both representations is that the core curves
of the cylinders in the corresponding direction passes through E and F .

The previous discussion can be formalized (and refined) as the following geometric criterion.

Theorem 5.2. Let p ∈ Γ be a parabolic element. Then, p ∈ K+ (resp. K−) if and only if
the direction fixed by p is a one-cylinder direction in L and E (resp. F ) is in the core curve
of that cylinder.

Before proving Theorem 5.2, we give the following two results needed for the proof of
Theorem 1.1. The first, on the existence of parabolic elements outside of the kernel of both
representations, allows to ensure that 0 ∈ Λ.
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Corollary 5.3. Let Γ0 be any finite index subgroup of Γ. Then, there is a parabolic element
γ ∈ Γ0 not in either K+ = ker(ρ+) or K− = ker(ρ−).

Proof. Take any two-cylinder decomposition of L. Let p ∈ Γ be the parabolic element associ-
ated to the corresponding cylinder decomposition on X. Since Γ0 has finite index in Γ, some
power of p is in Γ0. But, by Theorem 5.2, no power of p can be in K+ or K−. �

Remark 5.4. In the case of the Delecroix–Zorich variant, a geometric description of parabolic
elements in the kernels of the representation is also possible but significantly more intricate
(cf. [Par18b, Section 6.1]). Nonetheless, Corollary 5.3 is still valid for the Delecroix–Zorich
variant. In fact, it is enough to exhibit one such parabolic element and it is possible to verify
that the horizontal and the vertical directions give parabolic elements that are in neither of
the representations.

The following result shows the existence of strip decompositions, ensuring that almost every
trajectory in that direction escapes linearly to infinity, that is, 1 ∈ {δθ; θ ∈ D}. More precisely,
a strip on a (necessarily infinite) translation surface is an isometrically embedded product of
an open interval and a straight line. In Figure 6 we depict several strips embedded in the
wind-tree billiard.

In our context, strips arises as lifts of cylinders having non-trivial Z2-monodromy. Thus,
for example, the horizontal and vertical foliations on X∞ decomposes as a reunion of (the
closure of) strips and cylinders. A strip decomposition of X∞ is then a collection of parallel
strips whose closures cover X∞.

Now, if X∞ allows a strip decomposition in a direction θ ∈ S1, it is clear that θ ∈ D and
δθ = 1 as any trajectory inside a strip escapes linearly.

Figure 6. Some cylinders in X lift to strips in X∞. They correspond to
unbounded drift-periodic billiard trajectories in the wind-tree model.

Proposition 5.5. For any (a, b) ∈ E, there is a strip decomposition on X∞ = X∞(a, b).

Proof. By Theorem 5.1, there is a cylinder in L = La,b whose core curve passes through E
and C. By our discussion on the symmetries of the model, it is clear that such a cylinder
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lifts as a strip on X∞. If this cylinder determines a one-cylinder decomposition of L, then we
get a strip decomposition of X∞ and we are done. Otherwise, it belongs to a two-cylinder
decomposition. But then, the core curve of the other cylinder passes either by {A,B}, {A,F}
or {B,F}. Again, by the symmetries of the model, it lifts as a strip on X∞ in any case, and
we get a strip decomposition of X∞. �

5.3. Proof of the geometric criterion Theorem 5.2. We need first the two following
results.

Lemma 5.6. The core curve γC of a cylinder C ⊂ X is in Ann(E+) (resp. Ann(E−)) if and
only if it passes through some preimage of E (resp. F ).

Proof. By [Par18b, Proposition 6.3], the core curve γC of a cylinder C ⊂ X is in Ann(E+)
if and only if its projection in L passes through at most one of the points A,B,C, F . In
particular, since the core curve of any cylinder in a surface in H(2) passes through exactly two
regular Weierstrass points, this happens if and only if γC passes through some preimage of
E ∈ L. Similarly, γC ∈ Ann(E−) if and only if γC passes through some preimage of F ∈ L. �

Lemma 5.7. Let γ be the core curve of a cylinder in L and (γ̂i)i be the lifts of γ to X. Then,
the multi-twist defined (in cohomology) by (γ̂i)i and α 6= 0 as

T :H1(X)→ H1(X)

f 7→ f + α
∑
i

f([γ̂i])[γ̂i]
∗

acts trivially in E+ (resp. E−) if and only if E ∈ γ (resp. F ∈ γ).
Proof. If E ∈ γ, by Lemma 5.6, γ̂i ∈ Ann(E+) and T acts trivially in E+.

For the converse, let n be the number of lifts of γ to X and γ̂ ⊂ X be one of those lifts.
By Lemma 5.6 again, if E /∈ γ, then there exists f ∈ E+ such that f([γ̂]) 6= 0. Moreover, it is
clear that {γ̂i}i = 〈τh, τv〉.γ̂ and # Stab〈τh,τv〉(γ̂) = 4/n. Using this and the fact that f ∈ E+,
it follows that

T (f) = f + α
n

4
(f([γ̂])[γ̂]∗ + f([τhγ̂])[τhγ̂]∗ + f([τvγ̂])[τvγ̂]∗ + f([τhτvγ̂])[τhτvγ̂]∗)

= f + αnf([γ̂])
1

4
([γ̂]∗ + [τhγ̂]∗ − [τvγ̂]∗ − [τhτvγ̂]∗)

= f + αnf([γ̂])prE+([γ̂]∗).

But γ̂ /∈ Ann(E+), prE+([γ̂]∗) 6= 0 and, by the choice of f ∈ E+, f([γ̂]) 6= 0. It follows that
T (f) 6= f and, thus, T does not act trivially in E+. �

Proof of Theorem 5.2. Let p ∈ Γ be a parabolic element. Then p acts as an affine multi-twist
Tp along a cylinder decomposition in X. That cylinder decomposition descends to L ∈ H(2).

Suppose that we get a one-cylinder decomposition in L, say by C. Then, the multi-twist Tp
in X acts in cohomolgy as the multi-twist defined in Lemma 5.7, with α = 1 as every lift of
the one-cylinder in L has the same modulus. By Lemma 5.7, this action is trivial if and only
if E ∈ γ, the core curve of C. That is to say, for one-cylinder decompositions in L, p ∈ K+ if
and only if E is in the core curve of the one-cylinder.

Suppose now that we get a two-cylinder decomposition in L, say by Ci, i = 0, 1. Then,
(in cohomology) the multi-twist Tp in X is the product of two (commutative) multi-twist as
in Lemma 5.7, say Ti, corresponding to a twist along the core curve of Ci, with appropriate
αi > 0, for i = 0, 1. Thus Tp = T1T0 = T0T1.
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• Suppose E is in the core curve of one of the two cylinders, say in C0. Then, by
Lemma 5.7, T0 acts trivially in E+ and Tp|E+= T1|E+ which is non-trivial since E
cannot be in the core curve of C1 as well. In particular, p /∈ K+.
• Suppose E is not in any of the core curves γ(i) of Ci, i = 0, 1. It follows, by Lemma 5.6,
that any lift γ̂(i) of γ(i) to X does not belong to Ann(E+), that is, fi = prE+ [γ̂(i)]∗ 6= 0,
fi ∈ E+, i = 0, 1. Note that for f ∈ E+, we have f([γ̂(i)]) = 〈f, fi〉. Then, analogously
to the proof of Lemma 5.7 we get that, for f ∈ E+,

Tp(f) = T1T0(f) = f + α0n0〈f, f0〉f0 + α1n1〈f, f1〉f1.
– If f0 and f1 are not collinear, since E+ is symplectic and dimE+ = 2, we get

that 〈f1, f0〉 6= 0. Then, Tp(f1) = f1 + α1n1〈f1, f0〉f0 6= f1.
– If f0 and f1 are collinear, consider 0 6= f = λ0f0 = λ1f1 ∈ E+. Since E+ is

symplectic, it follows that there exists f ′ ∈ E+ with 〈f, f ′〉 6= 0. Thus,

Tp(f
′) = f ′ +

(
α0n0
λ20

+
α1n1
λ21

)
〈f, f ′〉f.

But αi > 0 and ni ∈ N, for i = 0, 1. It follows that Tp(f ′) 6= f ′.
Thus, in both cases, Tp does not act trivially in E+ and therefore, p /∈ K+.

It follows that for two-cylinder decompositions in L, p is never in K+. �

6. Endpoints

In this section we conclude the proof of Theorem 1.1 by showing that (0, 0) ∈ Λ and
(1, 1) ∈ Λ. We will first establish a result on the kernel of the representations ρ+ and ρ−.

Theorem 6.1. Let H1(X,R) = E ⊕W be a virtually Aff(X,ω)-invariant splitting such that
H1
st(X,ω) ⊂ E. If rank(W ) = 2, then the representation ρ: Γ → Aut(W ) is not faithful.

Moreover, the limit set of the Fuchsian group ker(ρ) is the full circle at infinity.

Proof. The proof follows the same line of ideas as [HW12, Theorem 5.5 and Theorem 5.6]. �

Since the representation ρ+ (resp. ρ−) takes values in Aut(E+) = SL(2,Z) (resp. Aut(E−) =
SL(2,Z)) (see Section 4.1 and (3)), we have the following.

Corollary 6.2. The limit sets of ker(ρ+) ⊂ Γ and ker(ρ−) ⊂ Γ is the full circle at infinity.

Proof of Theorem 1.1. By Theorem 4.2 we have that the set

Λmax = {max{λ+(µ), λ−(µ)}, µ ∈M}
satisfies Λmax ⊂ {δθ; θ ∈ D}. The representations ρ+ and ρ− of the wind-tree model are irre-
ducible (see, e.g., [Par20a, Section 4.2.1], where we show that their images are non-elementary
and, in particular, strongly irreducible and Zariski dense). Thus, by Theorem 1.6, the set

Λ = {(λ+(µ), λ−(µ)), µ ∈M}
has convex relative interior and therefore Λmax is an interval. Remark 4.4 shows that 1 6∈ Λmax.
Let us prove that Λmax = [0, 1).
Left endpoint (0 ∈ Λmax): By Corollary 6.2, let γ+ ∈ K+ = ker(ρ+) be any hyperbolic

element. Let φ ∈ Aff(X,ω) be a pseudo-Anosov map with Dφ = γ+. The maximal
eigenvalues of the action of φ∗ on E++ and E+ are θ1 and 1, respectively (since γ+
belongs to ker(ρ+), the action of φ∗ restricted to E+ is trivial). By equation (1), the
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top Lyapunov exponent of the KZ cocycle restricted to E+ associated to this periodic
orbit is simply

λ+ =
log(1)

log(|θ1|)
= 0.

Similarly for any hyperbolic element γ− ∈ K− = ker(ρ−), one has λ− = 0.
Now, since Γ is Fuchsian, any non-trivial normal subgroup has the same limit set (see

e.g. [HW12, Lemma 5.4]). Thus, it is enough to prove that K := ker(ρ) = K+∩K− is
non-trivial. Since in any Fuchsian group, the set of points in the boundary of H fixed
by an element of the group is dense in the limit set, we can find elements γ± ∈ K±
that fix different points in the limit set. In particular, γ+ and γ− do not commute. It
follows that id 6= [γ+, γ−] ∈ K+ ∩K− and K is not trivial (cf. [Par18a, Theorem 2]).
Hence, by the previous discussion, (0, 0) ∈ Λ and 0 ∈ Λmax.

Right endpoint (1 ∈ Λmax): For a matrix
(
a b
c d

)
∈ Γ, we denote by

(
a± b±

c± d±

)
∈ ρ±(Γ) its

image by the representation ρ±. Let Γ0 be the finite index subgroup introduced in
Section 4.2. By Corollary 5.3, we can take γ ∈ Γ a parabolic element in Γ0 that is
not in either of the kernels K±. Up to conjugacy, we can assume that γ = ( 1 t

0 1 ) and
ρ±(γ) =

(
1 t±
0 1

)
, with t, t± 6= 0. Now let γ′ =

(
a b
c d

)
∈ Γ0 hyperbolic such that ρ±(γ′)

is also hyperbolic. Since Γ0 is discrete, γ and γ′ do not fix the same point at infinity,
and the same is true for ρ±(γ) and ρ±(γ′) (indeed, the images of Γ0 by ρ± belong to
Aut(E±(Z)) = SL(2,Z) so they are discrete). It follows that c, c± 6= 0.

From the equality Tr(γnγ′) = ntc + Tr(γ′), we deduce that γnγ′ is hyperbolic for
n large enough. In particular, the top Lyapunov exponent (on the bundle E± ⊂
H1(X,R)) associated to this periodic orbit is given by equation (1):

λ±n =
log(nt±c± + Tr(ρ±(γ′)))

log(ntc+ Tr(γ′))
+ o(1) = 1 + o(1).

Thus, (λ−n , λ
+
n ) = (1, 1)+o(1) ∈ Λ. In particular, 1+o(1) ∈ Λmax and hence 1 ∈ Λmax.

It follows that Λmax = [0, 1) ⊂ {δθ; θ ∈ D}.
Now, recall that D ⊂ S1 is the full measure set of directions θ such that δθ(x) is constant

for almost every x ∈ T (a, b).
To conclude, we need to show that 1 belongs to {δθ; θ ∈ D}. But this follows from Propo-

sition 5.5. In fact, given a strip decomposition in a direction θ ∈ S1, it is clear that θ ∈ D and
δθ = 1 as any trajectory inside a strip scapes linearly. �

7. Joint diffusion

In this section we prove Theorem 1.4 exhibiting an infinite family of wind-tree billiards
for which the Lyapunov spectrum contains the full square (0, 1)2 and thus, that exhibit all
possible joint diffusion rates. To our knowledge, this is a phenomenon that has not been
previously exhibited, even for general Fuchsian groups.

In order to prove Theorem 1.4, we use the following.

Proposition 7.1. Suppose that there are parabolic elements in ker(ρ+) \ ker(ρ−) and in
ker(ρ−) \ ker(ρ+). Then, the Lyapunov spectrum Λ contains (0, 1)2.

Proof. In the proof of Theorem 1.1, we showed that (0, 0) ∈ Λ and (1, 1) ∈ Λ. In order to prove
that (1, 0) ∈ Λ, we follow the same strategy of the proof of Theorem 1.1 (right endpoint), but



22 SYLVAIN CROVISIER, PASCAL HUBERT, ERWAN LANNEAU, AND ANGEL PARDO

taking now γ′ ∈ ker(ρ−) hyperbolic element with ρ+(γ′) hyperbolic instead. This is possible
because ker(ρ−) \ ker(ρ+) 6= ∅.

More precisely, let γ ∈ ker(ρ−) \ ker(ρ+) be a parabolic element and γ′ ∈ ker(ρ−) \ ker(ρ+)
be a hyperbolic element such that ρ+(γ′) is also hyperbolic. Then, for n large enough, the
element γn = γnγ′ is hyperbolic and λ+n = 1 + o(1), as in the proof of Theorem 1.1 (right
endpoint). However, in this case γn ∈ ker(ρ−) and therefore λ−n = 0. It follows that (1, 0) ∈ Λ.
And, by symmetry, (0, 1) ∈ Λ as well.

By Remark 4.4, Λ ⊂ [0, 1)2. Then, by Theorem 1.6, Λ ⊂ [0, 1)2 has convex and dense interior
and Λ contains the four corners of the square [0, 1]2. In particular, {(0, 0)} ∪ (0, 1)2 ⊂ Λ. �

Hence, in order to prove Theorem 1.4, it is enough to show that ker(ρ+) \ ker(ρ−) and
ker(ρ−) \ ker(ρ+) are non-empty and that there are parabolic elements in both differences.

By Theorem 5.2, in order to classify parabolic elements in K± = ker(ρ±), it is enough to
understand one-cylinder directions in L = La,b ∈ H(2).

Recall that we are interested in parameters (a, b) in the set

E� =

{(
p

q
,
r

s

)
∈ (0, 1)2; gcd(p, q) = gcd(r, s) = 1, p, q, r, s ∈ 2N− 1

}
,

from Theorem 1.4.
As in the work of Hubert–Lelièvre–Troubetzkoy [HLT11], we first rescale L in such a way

that it is a surface tiled by 1 × 1 squares, and distinguish the regular Weierstrass points
A,B,C,E, F by their projection into the squares, as in Figure 7. In our particular case of
(a, b) ∈ E�, if N ∈ N is the number of squares, then N = qs − pr is even and N ≥ 8, where
a = p/q and b = r/s are in lowest terms. Moreover, the projection of the regular Weierstrass
points A,B,C,E, F into the unit squares is always as follows:

• A projects to a corner,
• B and E project to the center of a horizontal side, and
• C and F project to the center of a vertical side.
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Figure 7. The surface L(3/7, 7/15) after rescaling and its regular Weiestrass
points A,B,C,E, F .

Now, given a one-cylinder decomposition of such a surface L, it can be rotated, rescaled and
sheared in a way to obtain a horizontal cylinder of height one and length N , as in Figure 8.
Since N is even, both Weierstrass points in the core curve projects to the same point in
the unit square. Thus, there are only two possible pairs of Weierstrass points in the same
one-cylinder core curve, namely, (B,E) or (C,F ), as shows the preceding list.
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Figure 8. A one-cylinder from L(2/3, 2/3) in direction with slope 1/2, after
rotating, rescaling and shearing.

By our geometric criterion of Theorem 5.2, the previous remark proves that K+ 4 K− 6= ∅,
since there are always one-cylinder directions in the square-tiled case (see [HL06, Proposi-
tion 5.1] or [McM05, Corolary A.2]). However, in order to have elements in both differences
we have to show that both combinations, (B,E) and (C,F ), occur indeed. To do this, we
need the following.

Lemma 7.2. For every (a, b) ∈ E�, there is φ ∈ Aff(La,b) such that its restriction to the
regular Weierstrass points corresponds to the permutation (B,C)(E,F ).

Proof. Let (a, b) ∈ E� and L = La,b. By Theorem 5.1, there is a cylinder in L such that its
core curve passes through B and C. Since (a, b) ∈ E�, this cylinder is part of a two-cylinder
decomposition, call X and Y the regular Weierstrass points in the core curve of the second
cylinder, X,Y ∈ {A,E, F}.

Let T ∈ Aff(L) be the (primitive) affine multi-twist corresponding to this two-cylinder de-
composition. Note that an affine transformation sends regular Weierstrass points to regular
Weierstrass points and, in the primitive square-tiled case, respecting its projections into the
square torus. Moreover, T does not fix all the regular Weierstrass points. In fact, the Weier-
strass points in the core curves of the corresponding cylinders are interchanged if and only if
the curve appears an odd number of times in the affine multi-twist. But the number of times
that each core curve appears in the multi-twist are coprime. So both cannot be even and at
least one pair is exchanged.

It follows that T transposes at least one of the pairs (B,C) or (X,Y ).
• If T interchanges B with C, then it has to interchange E with F . In fact, at the level
of the square torus, it interchanges the center of a horizontal side with the center of
a vertical side. In other words, any affine transformation exchanges B with C if and
only if it exchanges E with F .
• If T interchanges X with Y , then necessarily {X,Y } = {E,F}. In fact, A is fixed by
any affine transformation since it is the only integral regular Weierstrass point. Thus,
T interchanges E with F , and, by the same previous argument, it has to interchange
B with C.

It follows that {X,Y } = {E,F} and T interchanges both pairs B,C and E,F . �

Remark 7.3. Using similar ideas, Gutiérrez-Romo and the fourth named author give in
[GP21] a complete description of the action of the affine group on Weierstrass points for every
Veech surface in H(2).
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Corollary 7.4. For every (a, b) ∈ E�, there are one-cylinder decompositions of La,b such that
the core curve of the cylinder passes through B and E (resp. C and F ).

Proof. Since L = La,b is a square-tiled surface, it has a one-cylinder decomposition (see [HL06,
Proposition 5.1] and [McM05, Corolary A.2]). It follows that its core curve passes through
either B and E, or C and F . If it passes through B and E, then we can apply φ ∈ Aff(L)
from Lemma 7.2 to obtain a one-cylinder decomposition of L whose core curve passes through
C and F , or viceversa. �

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. By Corollary 7.4, there is a one-cylinder decomposition in L = La,b
such that the core curve γ of the cylinder passes through B and E. But then, by Theorem 5.2,
the corresponding parabolic element belongs to K+ since E ∈ γ, but it does not belong to
K− since F /∈ γ. Thus, K+ 6⊂ K−. Analogously, K− 6⊂ K+, and both differences contain
parabolic elements. By Proposition 7.1, it follows that the Lyapunov spectrum contains the
full square (0, 1)2 and so, by Remark 4.3, it is contained in the set of joint diffusion rates. �

Appendix A. Weak convexity of the set of ergodic measures

Sigmund has proved [Sig77] that the space of ergodic measures on a transitive subshift of
finite type is arcwise connected with respect to the weak-∗ topology. This can be generalized
as follows. The proof is standard, but we could not find any reference for that.

Theorem A.1. Let Σ be a transitive subshift of finite type and ϕ1, . . . , ϕd: Σ → R be con-
tinuous functions. Then for any periodic orbits O1, . . . , O` and α1, . . . , α` > 0 satisfying∑

k αk = 1, there exists an ergodic measure m such that
∫
ϕidm =

∑
k αk

∫
ϕidν(Ok) for each

i = 1, . . . , d, where ν(Ok) denotes the invariant probability measure supported on Ok.

Proof. We build inductively a sequence of `-uples of periodic orbits (On1 , . . . , O
n
` ) such that the

simplex in Rd with vertices (
∫
ϕ1dν(Onk ), . . . ,

∫
ϕddν(Onk )) for 1 ≤ k ≤ ` decreases towards

the point (
∑

k αk
∫
ϕ1dν(Ok), . . . ,

∑
k αk

∫
ϕddν(Ok)). This is done as follows. We choose

small neighborhood U1, . . . , U` of the periodic orbits On1 , . . . , On` . Given numbers b1, . . . , b`,
the specification property of the subshift allows to build a periodic orbit O′ with arbitrarily
large period which spends a proportion of time arbitrarily close to bi in Ui, for each 1 ≤ i ≤ `.
By adjusting the values of the bi, the values (

∫
ϕ1dν(O′), . . . ,

∫
ϕddν(O′)) in Rd can be chosen

arbitrarily close any point inside the simplex with vertices (
∫
ϕ1dν(Onk ), . . . ,

∫
ϕddν(Onk )). One

can in this way build ` periodic orbits On+1
1 , . . . , On+1

` as wanted.
Note that at each step n of the construction, the ` measures ν(On+1

k ) can be chosen arbi-
trarily close together for the weak-∗ topology. More precisely, let F = (ψj) be a countable
collection which is dense in the space of continuous functions from Σ to R. In the previous
construction, one can require that for each function ψj , the values

∫
ψjdν(Onk ) converge as

n→ +∞ to a number which does not depend on k. This implies that for each k the sequence
ν(Onk ) converges towards an invariant probability measure m which does not depend on k.
Moreover

∫
ϕidm =

∑
k αk

∫
ϕidν(Ok) for each i = 1, . . . , d, as required.

It remains to check that m can be chosen ergodic: we prove that for any ψi ∈ F and q ≥ 1,
there exists L large such that for m-almost every point x, the next property P(x, L, i, q) holds:∣∣∣∣[ψi(x) + ψi(σ(x)) + · · ·+ ψi(σ

L−1(x))]/L−
∫
ψidm

∣∣∣∣ < 1/q. (P(x, L, i, q))
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By construction, for n large, any periodic orbit Onk satisfies |
∫
ψidν(Onk ) −

∫
ψidm|< 1/(4q).

Hence there exists L0 large such that for any x ∈ ∪kOnk the property P(x, L0, i, 3q) holds.
Since the periodic orbits Onk induce measures that are close, they contain points that are

close. One can thus find finite words wnk such that wnk ∈ Onk for each k, and such that all
the wnk have the same initial symbol. Periodic points in On+1

k may be built as periodic words
of the form (wn1 )β

n
1 (wn2 )β

n
2 · · · (wn` )β

n
` . Consequently, choosing L� L0 large, and the integers

βni much larger, for any point x in an orbit On+1
k , the piece of orbit x, σ(x), . . . , σL−1(x)

decomposes into pieces of orbits of length L0 arbitrarily close to pieces of orbits inside the Onk
and a subset of iterates whose cardinal is small relative to L. Then, by continuity of ψi, the
property P(x, L, i, 2q) holds. One builds the subsequent orbits On′k in the same way, hence
the property P(x, L, i, 2q) holds for any point in any orbit On′k for n′ large enough, so that
taking the limit the property P(x, L, i, q) holds for any point x in the support of µ.

At each step of the construction, one can require the βni to be large enough and control a
larger number of conditions P(x, L, i, q). Since the set of pairs (ψi, q) is countable, one deduces
that for any (i, q), there exists L ≥ 1 such that P(x, L, i, q) holds on any point of the support
of m, concluding the ergodicity. �
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