Inertial effects in the Lubrication Limit. (1) Landau-Levich drag-out problem, (2) Bubble rise in Hele-Shaw cells

J John Soundar Jerome

LMFA CNRS UMR -5509

Université Claude-Bernard Lyon1 (France)

Historical background

Reynolds' lubrication theory (Art. 11). Also that the forces arising from weight and inertia are altogether small compared with the stresses arising from viscosity.

Liquid entrainment problem Introduction

Bico et al. (PoF 2009);

(b) Wheels on wet tracks

(c) Off-set printing

Brumm et al. (Coll. Int. 2009);

Coating flows in scientific literature Introduction

Speeds less than a few cm/s .. & Thin films -> Lubrication approximation in thin gaps

Rotary drag-out on a disk (4 cm wide)

Landau-Levich flow at Relub > > 1

Rotating disc Diameter = 0.2, 0.27, 0.42 m Width =4.5 , 13.5 cm

Plexiglass tank Height = 0.415 m Width = 0.4 m Length = 1 m

Asynchronous Motor (IP55) coupled with a Parker AC10 frequency controller (10 – 400 rpm)

Sébastien Thévenin @CEA/Paris-Saclay

Mickaël Bourgoin @LPENS/ENS

Jean-Philippe Matas @LMFA/UCBL

Life of a liquid sheet on a rotating disc

Water drag-out on a rotating disc

...at moderately LOW speeds

Drag-out flow rate (time-average)

The drag-out, or the entrainment problem (at Re_f << 1) Deryaguin's model

Viscosity-Gravity regime

 $ho g \sim \mu U / \delta_{\rm f}^2$ (grad(p) – hydrostatic) (plate drag/unit volume)

$$\Rightarrow \delta_{f} \sim \sqrt{\frac{\mu U}{\rho g}}$$

Jeffreys (1930) ; Deryaguin (1945) ;

Deryaguin's drag out problem

The drag-out, or the entrainment problem (at Re_f << 1) Morey's experiments for the bureau of standards to check Jeffrey's drainage law.

Morey (1940);

The drag-out, or the entrainment problem (at Re_f << 1 and Ca << 1) Landau-Levich's model

Photograph of the streamlines during withdrawal of a viscous liquid

Landau-Levich flow

Capillary number, $Ca = \mu U/\gamma$

 $\Rightarrow \lambda \simeq l_c C a^{1/3}$

Landau & Levich (1942) ; Wilson (1982) ;

$$R e_{lub} = U^2 / g l_c$$

The drag-out, or the entrainment problem (at Re_f << 1) Overview

Capillary number, $Ca = \mu U/\gamma$

11

Comparison with Landau-Levich-Deryaguin flow rate scaling Our experiments

[Wilson (1982)'s 2nd order Ca - corrections where used for viscous UCON/Water mixtures]

Comparison with Landau-Levich flow rate scaling Critical Weber for inertial effects

13 [Wilson (1982)'s 2nd order Ca - corrections where used for viscous UCON/Water mixtures]

..as in fiber coating, de Ryck & Quéré (JFM 1996)

Inertial effect in rotating drum

Revisiting the Landau-Levich curvature matching

Capillary number, $Ca = \mu U/\gamma$; Morton number, $Mo = \mu^4 g/\rho \gamma^3$; $l_c^2 = \gamma/\rho g$;

Jerome et al. (JFM 2021)

Inertial effect in rotating drum

Revisiting the Landau-Levich curvature matching

Inertial effect in rotating drum

Revisiting the Landau-Levich curvature matching

- Inertia effect in rotary flow manifests in an unsteady and non-uniform flow with strong 3D effects (liquid sheet formation)
- \bullet Surprisingly, the classical Landau-Levich (LL) model "holds on an average" despite of these inertial effects if the sheet width is small (h/R < 0.5) !
 - § Strong impact of inertia when $U^2/g\lambda > 10$
 - § A modified LL provides an order of magnitude :

$$\Rightarrow \dot{Q}_{f} \sim \dot{Q}_{LLD} R e_{lub}^{1/3}$$

$$\Rightarrow H_{m} \propto \frac{U^{2}}{g} C a^{-1/3} M o^{1/6}$$
Reynolds number:
Relub = U^{2}/gl_{c}

Axial-patterns in coating flows

Film-splitting flows at Re << 1 and thin gaps

Thoroddsen & Mahadevan (1997) ;

Rotary drag-out on a drum (30 cm wide)

Landau-Levich flow at Re_{lub} > 1

Wider discs = Multiple ribs occur!!

UCON/Water

20 Rotary LLD flow at $\text{Re}_{\text{lub}} > 1$ is 3D (strong axial flow) !!!

(front view)

Rotating drum – rib detection

(a) UCON oil

21

Rotating drum – rib spacing evolution

Axial pattern formation mechanism Film-splitting flows

Rabaud's printer

(b) Schéma d'une section du montage.

Adverse pressure gradient from lubrication model

Film region

Meniscus region

Overlap

 $a = \sqrt{3}Ca^{1/2}l_c/h_f$

Groenveld (1970);

Reynolds' Lubrication approximation and Mass conservation between *Film* region and *Overlap* region...

X

J g

R

h(s)

$$\frac{\partial p}{\partial s} = -\rho \tilde{g} \left(1 - \frac{h_f}{h} \right) \left(1 + \frac{h_f}{h} - \left(a^2 - 1 \right) \frac{h_f^2}{h^2} \right)$$

24

Rotating drum – Comparaison with Saffman-Taylor wavelength

 $\lambda_{\iota} = 2 \pi l_c \sqrt{3} f(Ca)$

WATER

 $l_{c}^{2} = \gamma/\rho g;$

Rotating drum – Comparaison with Saffman-Taylor wavelength

UCON/WATER (~100 times more viscous)

 $l_{c}^{2} = \gamma/\rho g;$

Rotating drum – numerical experiments (basilisk)

(a) Basic case

(b) $\rho = 4\rho_0$

...by Pierre Trontin (LMFA, UCBL)

27

 $l_c^2 = \gamma/\rho g;$

Rotating drum – numerical experiments (basilisk)

...by Pierre Trontin (LMFA, UCBL)

Conclusions: Ribbing patterns on a rotating drum

 \bullet Inertia effect in rotary flow leads to axial flow patterns resulting in multiple liquid sheets with a rim

 \bullet This can be related to the diverging flow near the meniscus in the classical Landau-Levich (LL) flow – <u>Adverse pressure gradient</u>

§ Estimations based on free-surface flow with lubrication approximation

$$\Rightarrow \left(\frac{\partial p}{\partial s}\right)_* = \rho \tilde{g} \mathcal{F}\left(\frac{\mu U}{\gamma}\right) > 0$$

§ Wavelength order of magnitude from Saffman-Taylor instability

 $\Rightarrow \lambda_{\iota} = 2 \pi \sqrt{3 \gamma (\partial p / \partial s)^{-1}}$

• Numerical simulations using BASILISK for a longer cylinder : good match with experiments, confirms scaling with density and surface tension

Bubble rise in Hele-Shaw

Christopher Madec (Thèse 2021)

Sylvain Joubaud @ LPENS/ENS

Benjamin Monnet (Thèse 2024)

Valérie Vidal @ LPENS/ENS

Speed of a freely-rising single bubble

...in an infintely large tank (historical backgound)

Reynolds number, $\text{Re} = U_b l_b / \nu$

Rohr

Speed of a freely-rising single bubble The Objective ..

Speed of a freely-rising single bubble (small Re ?) Previous works – Inclinced Hele-Shaw cell

Eck & Siekmann (Ing. Arv 1978)

Fig. 7. Reduced gravity simulator

Maxworthy (JFM 1986) $4 \,\mathrm{cm}$ $\sin\alpha = 0,00891$ sinα ≃0 30 cm Air ou $sin \alpha = 0.0575$ sin a = 0,0359 90 cm Spacer sin α = 0,1495 $sin \alpha \approx 0,1765$ Support .90 cn

Scale

Hele-Shaw cell & Lubrication approximation Taylor-Saffman bubble

34

Hele-Shaw cell & Lubrication approximation Taylor-Saffman flow

Bubble rise in Hele-Shaw

...lubrication approximation in thin gaps (historical backgound)

IV. On the Theory of Lubrication and its Application to Mr. BEAUCHAMP TOWER'S Experiments, including an Experimental Determination of the Viscosity of Olive Oil.

By Professor Osborne Reynolds, LL.D., F.R.S.

Received December 29, 1885,-Read February 11, 1886.

(II.) Mathematical Proof of the Identity of the Stream Lines obtained by Means of a Viscous Film with those of a Perfect Fluid moving in Two Dimensions. By Sir G. G. STOKES, F.R.S. Stokes (1898)

The beautiful photographs obtained by Professor Hele-Shaw of the stream lines in a liquid flowing between two close parallel walls are of very great interest, because they afford a complete graphical solution, experimentally obtained, of a problem which, from its complexity, baffles the mathematician, except in a few simple cases.

Depth-averaged velocity field is irrotational !!

$$\frac{dp}{dx} = -\frac{3\mu}{c^2}u^1, \quad \frac{dp}{dy} = -\frac{3\mu}{c^2}v^1, \quad \frac{du^1}{dx} + \frac{dv^1}{dy} = 0.$$

Bubble rise in Hele-Shaw

...lubrication approximation in thin gaps (historical backgound)

A NOTE ON THE MOTION OF BUBBLES IN A HELE-SHAW CELL AND POROUS MEDIUM By SIR GEOFFREY TAYLOR and P. G. SAFFMAN (Cavendish Laboratory, Cambridge)

[Received 12 August 1958. Revise received 13 November 1958]

$$\widetilde{u} = -\frac{h^2}{12\mu}\frac{\partial p}{\partial x} = \frac{\partial \phi}{\partial x} = \frac{\partial \psi}{\partial y} \quad \widetilde{v} = -\frac{h^2}{12\mu}\frac{\partial p}{\partial y} = \frac{\partial \phi}{\partial y} = -\frac{\partial \psi}{\partial x}$$

- Depth-averaged velocity field is irrotational,
- Constant pressure at the bubble interface,
- Absence, or weak, Surface Tension,

+ a lot of calculus, analysis complex-plane...

Hele-Shaw cell & Lubrication approximation Taylor-Saffman speed as rederived by Maxworthy (JFM 1986)

Remember that the depth-averaged velocity field is irrotational

$$\boldsymbol{v_f} = \frac{3v_b}{2} \left(\frac{d_b/2}{r}\right)^2 \left[1 - \left(\frac{y}{h/2}\right)^2\right] (\sin(\theta)\boldsymbol{e_r} - \cos(\theta)\boldsymbol{e_\theta}) \quad \forall r > d_b/2. \quad [..circular !]$$

 \mathbf{P}_n : Dissipation rate

$$\mathcal{P}_{\eta} = \int_{d_b/2}^{+\infty} \int_{-\pi}^{\pi} \int_{-h/2}^{h/2} \eta_f \left| \frac{\partial \boldsymbol{v_f}(r,\theta,y)}{\partial y} \right|^2 r \mathrm{d}r \mathrm{d}\theta \mathrm{d}y = \frac{3\pi \eta_f v_b^2 d_b^2}{h} \bullet$$

 $P_{\mbox{\tiny B}}$: Injected power to generate the flow ..

$$\mathcal{P}_{B} = \Delta \rho g \left(\frac{\pi d_{b}^{2} h}{4} \right) v_{b}$$

$$\mathbf{Taylor-Saffman bubble speed}$$

$$v_{M} = \frac{\Delta \rho g h^{2}}{12\eta} \frac{a}{b}$$

$$\ddagger_{\text{elliptical}}$$

[‡]a little more elaborate for an elliptical bubble..

Hele-Shaw cell & Lubrication approximation Taylor-Saffman bubble

$$v_M = \frac{\Delta \rho g h^2}{12\eta} \frac{a}{b}$$

Madec et al. (PRL 2020)

Speed of a freely-rising single bubble (increasing Re_{lub})

.. from Taylor-Saffman bubble to Taylor bubbles ?

Monnet (Thèse ENS Lyon – en cours)

 $\Delta \rho g h^2 a$

 12η

 $v_M =$

Speed of a freely-rising single bubble (increasing Re_{lub}) ...from Taylor-Saffman bubble to Taylor bubbles ?

41

Hele-Shaw cell & Lubrication approximation ... in the inertial limit ?

 $v_M = \frac{\Delta \rho g h^2}{12\eta} \frac{a}{b}$

P : Viscous dissipation rate to push the flow in the thin gap..

$$\mathcal{P}_{\eta} = \int_{d_b/2}^{+\infty} \int_{-\pi}^{\pi} \int_{-h/2}^{h/2} \eta_f \left| \frac{\partial \boldsymbol{v_f}(r,\theta,y)}{\partial y} \right|^2 r \mathrm{d}r \mathrm{d}\theta \mathrm{d}y = \frac{3\pi \eta_f v_b^2 d_b^2}{h}$$

 $P_{\rm I}$: Energy required to move liquid per unit time..

$$\mathcal{P}_{I} = \frac{1}{2} \rho v_{b}^{2} (\pi d_{b}^{2} h) \left(\beta \frac{v_{b}}{d_{3}} \right)$$

$$\mathcal{P}_{B} = \mathcal{P}_{\eta} + \mathcal{P}_{I}$$

$$\mathcal{P}_{B} = \Delta \rho g \left(\frac{\pi d_{b}^{2} h}{4} \right) v_{b}$$

$$v_{b} = \frac{2 v_{M}}{1 + \sqrt{1 + 2\beta \left(\frac{v_{M}}{\sqrt{g d_{3}}} \right)^{2}}$$

Speed of a freely-rising single bubble (large Re) Viscous to Inertial regimes

Solution	Viscosity η (mPa s)	Density $\rho (\text{kg m}^{-3})$	Surface Tension $\gamma \ (mN \ m^{-1})$	gap h (mm)	Symbol
water	0.94	997	72	2.3	•
ethanol (95 %)	1.2	789	22	2.3	•
WG3	3.0	1100	67 ± 3	2.3	
WG13	13	1187	67 ± 3	2.3	
WG24	24	1208	67 ± 3	2.3	•
WU8	8	1011	53 ± 1	2.3	•
WU17	17	1020	52 ± 1	2.3	•
WU42	42	1032	52 ± 1	2.3	•
WU80	80	1041	52 ± 1	2.3	•
WU140	140	1048	51 ± 1	2.3	٠
WU152	152	1051	51 ± 1	2.3	•
WU210	210	1057	50 ± 1	2.3	•
WU260	260	1058	49 ± 1	5.2	•
WU620	620	1066	47 ± 1	2.3	+
WU930	930	1074	47 ± 1	2.0	•
WU1120	1120	1075	46 ± 1	2.3	+
WU2890	2890	1085	45 ± 1	2.0	+
WT2700	2700	1187	32 ± 1	5.2	

Speed of a freely-rising single bubble (inclined cell)

.. from Taylor-Saffman bubble to Taylor bubbles ?

Monnet et al. (PoF 2024)

Speed of a freely-rising single bubble (inclined cell) ..from Taylor-Saffman bubble to Taylor bubbles ?

Monnet et al. (PoF 2024)

Speed of a freely-rising single bubble (inclined cell) ..from Taylor-Saffman bubble to Taylor bubbles ?

Monnet et al. (PoF 2024)

 $\Delta \rho \widetilde{g} h^2 a$

12n

b

 $v_M =$

Speed of a freely-rising single bubble (inclined cell) ..from Taylor-Saffman bubble to Taylor bubbles ?

47

$$\widetilde{g} = g \cos \theta$$

$$\widetilde{g} = g \cos^2 \theta$$

 $\Delta \rho \widetilde{g} h^2 a$

 v_M

Conclusions : bubble rise speed in thin gaps

- Taylor-Saffman bubble speed is verified for vertical bubble rise in thin gap cells
- Bubble aspect ratio is crucial and inertia flattens the bubbles ! (but why?)
- Bubble speed between <u>viscous and inertial regime</u> is modeled by an power balance argument
- Bubble speed in <u>inclined cells depends</u> non-trivially on the inclination angle due to symmetry loss in lubrication films

<u>Perspectives :</u>

48

$$v_M = \frac{\Delta \rho g h^2}{12\eta} (1 - \kappa \tan \theta) \frac{a}{b}$$

- Bubble pair interactions
- Lubrication films ? Taylor-Saffman analysis with symmetry loss near bubble ?

$$v_b = \frac{2v_M}{\left(1 + 2n\left(\frac{v_M}{v_M}\right)^2\right)}$$

$$v_M = \frac{\Delta \rho g h^2}{12\eta} \frac{a}{b}$$

Taylor-Saffman bubble in suspensions

Faster than a TS bubble without particles?

Madec et al. (PRL 2021)

Taylor-Saffman bubble in suspensions

Shear-induced migration => less dissipation in the gap !

Conclusions : bubble rise speed in suspensions within thin gaps

• Taylor-Saffman bubble speed is verified for vertical bubble rise in thin gap cells, if the dissipation is appropriately modified !

- § Shear-Induced-Migration increases particle fraction at the center of the cell gap
- § This in turn decreases local viscosity and hence the shear near the wall
- § Overall dissipation is smaller than in a Newtonian fluid of same bulk viscosity § Bubble rise is thus faster !
- Bubble aspect ratio remains unchanged (but why ?)

<u>Perspectives :</u>

- Shear Induced Migration during bubble ? How much ?
- Effect of inclination and inertia ?

J John Soundar Jerome

LMFA CNRS UMR – 5509

Université Claude-Bernard Lyon1 (France)

The drag-out, or the entrainment problem (at Re_f << 1 and Ca << 1) Landau-Levich's asymptotics

The drag-out, or the entrainment problem (at Re_f << 1 and Ca << 1) Landau-Levich's asymptotics

So,
$$u(\pi, \gamma) = U + \frac{1}{2} h(x) y(\gamma - 2k) \longrightarrow (4)$$

b $h(\alpha) = -\frac{(9)}{\mu} - \frac{(\sigma h'')}{(1 + h'^2)^{3/2}}$
Note that the film flow rate par what width is given by
 $h(\alpha)$
 $G(\alpha) = \int u(\alpha, \gamma) d\gamma d \Rightarrow Uh + \frac{1}{3} h(\alpha) h^3$,
where $h(\alpha) = -\frac{(9)}{\mu}$ and $h(\alpha) = \delta_f$ when $n \to -\infty$,
 $Uh + \frac{1}{3} h(\alpha) h^3 = U\delta_f - \frac{(9)}{3\mu} \delta_f^3$
 $\int b h(\alpha) = -\frac{(9)}{\mu} - \frac{(\sigma h'')}{(1 + h'^2)^{3/2}}$

Capillary number, $Ca = \mu U/$

The drag-out, or the entrainment problem (at Re_f << 1 and Ca << 1) Landau-Levich's asymptotics

Inertial effect in rotating drum: depth effect

$$\frac{\left(\frac{\gamma}{l_c}\right)}{\lambda} \sim \frac{\mu U}{\delta_f^2}$$
splace pressure drop) (plate drag)

$$\frac{\lambda}{\delta_f^2} \sim \frac{g}{U^2}$$
(Curvature matching)

$$\frac{U^2}{l}\Big|^{1/3} \Rightarrow \dot{Q}_f \sim We^{1/3}$$

Inertial effect in rotating drum: depth effect

Inertial effect in rotating drum: We \gg 1

Jerome et al. (JFM 2020)

A wiggling rib (sheet)

Water sheet height Vs Linear speed & Depth

Rib height: ballistic mechanism

J John Soundar Jerome et al. (2020)

Rotating drum – Maximum rib spacing

Speed of a freely-rising single bubble (small Re ?) ...in large Hele-Shaw cell

Bubbles in Hele-Shaw cells

Speed of a freely-rising single bubble (large Re) ...in large Hele-Shaw cell

Monnet et al. (JFM 2022)

Hele-Shaw cell & Lubrication approximation Taylor-Saffman flow

$$\frac{v_b}{4} \left(\frac{d_b}{r}\right)^2 \left[\sin(\theta)\boldsymbol{e}_r - \cos(\theta)\boldsymbol{e}_\theta\right]$$

71