On Shear-Banding in the Arrhenius Model

Th. Katsaounis¹ J. Olivier² A. Tzavaras³

¹University of Crete

²Institut de Mathématiques de Marseille University of Aix-Marseille

³KAUST

March 2, 2023

- Shear-banding
- Modelling
- Arrhenius' Law

- Linear Analysis of Uniform Shear
- Effective Equation

- Multiple Transformations
- Existence Theorem

- Shear-banding
- Modelling
- Arrhenius' Law

In/stability

- Linear Analysis of Uniform Shear
- Effective Equation

- Multiple Transformations
- Existence Theorem

Shear-banding

Modelling

Arrhenius' Law

In/stabilit

- Linear Analysis of Uniform Shear
- Effective Equation

- Multiple Transformations
- Existence Theorem

Principles

- Raised temperatures "softens" the material in some way.
- Temperature heterogeneities: localizing effect. Hot spots' local viscosity drop and material will flow.
- Heat dissipation smoothes heterogeneities: stabilizing effect. Homogeneizing the temperature homogeneizes the flow.

Mathematical Description

٩	Relevant quantities in simple	shear:
	deformation (shear)	: γ
	shear-rate	: $\dot{\gamma} = u$
	velocity field (lagrangian)	: <i>V</i>
	scalar stress	: σ
	temperature	: <i>θ</i>

Equations (dimensionless)

$$\partial_t \mathbf{v} = \partial_x \sigma,$$

$$\dot{\gamma} = \partial_x \mathbf{v},$$

$$\partial_t \theta = \kappa \partial_{xx} \theta + \sigma \dot{\gamma}$$

$$\sigma = f(\theta, \gamma, \dot{\gamma})$$

• In the following Arrhenius law: $\sigma = e^{-\alpha\theta}\dot{\gamma}^n$

Uniform Shear

Definition: solution whose shear-rate is independent of time and space:

 $\dot{\gamma}_{s}(t, x) = 1,$ $\gamma_{s}(t, x) = t,$ $v_{s}(t, x) = x,$

 θ_s and σ_s depend only on time and solve equations

$$\dot{ heta}_{s} = f(heta_{s}, t, 1)$$

 $\sigma_{s} = \dot{ heta}_{s}$

Questions

- Mathematical indication of the competition between dissipation and thermal softening?
- Mathematical description of the shear band velocity profile (if any)?

- Shear-banding
- Modelling
- Arrhenius' Law

In/stability

- Linear Analysis of Uniform Shear
- Effective Equation

- Multiple Transformations
- Existence Theorem

Shearing System

Shearing system is

$$\begin{cases} \partial_t \mathbf{v} = \partial_x \sigma, \\ \partial_t \gamma = \partial_x \mathbf{v}, \\ \partial_t \theta = \sigma \partial_t \gamma + \kappa \partial_{xx} \theta, \\ \sigma = \mathbf{e}^{-\alpha \theta} (\partial_t \gamma)^n. \end{cases}$$

Setting $\boldsymbol{u} = \dot{\boldsymbol{\gamma}} = \partial_{\boldsymbol{x}} \boldsymbol{v}$ it reduces to

$$\begin{cases} \partial_t u = \partial_{xx}\sigma, \\ \partial_t \theta = \sigma u + \kappa \partial_{xx}\theta, \\ \sigma = e^{-\alpha\theta}u^n. \end{cases}$$

Rk: $\int_0^1 u(t, x) dx = v(t, 1) - v(t, 0).$

Uniform Shear

The uniform shear reads

$$u_s(t,x) = 1,$$
 $\theta_s(t,x) = \frac{1}{\alpha} \log(\alpha t + k_0),$ $\sigma_s(t,x) = \frac{1}{\alpha t + k_0},$

Note that

$$\lim_{t\to+\infty}\theta_s(t,x)=+\infty$$

What is an unstable perturbation of $(u_s, \theta_s, \sigma_s)$?

Relative Perturbation

• Introduce $(\widetilde{\mathcal{U}}, \widetilde{\mathcal{T}}, \widetilde{\mathcal{S}})$ the relative perturbation to the uniform shear:

$$\widetilde{\mathcal{U}} = \frac{u}{u_s}, \qquad \mathbf{e}^{-\alpha\widetilde{\mathcal{T}}} = \frac{\mathbf{e}^{-\alpha\theta}}{\mathbf{e}^{-\alpha\theta_s}}, \qquad \widetilde{\mathcal{S}} = \frac{\sigma}{\sigma_s}.$$

• $(\widetilde{\mathcal{U}},\widetilde{\mathcal{T}},\widetilde{\mathcal{S}})$ satisfies

$$\begin{cases} u_{s}\partial_{t}\widetilde{\mathcal{U}} = \sigma_{s}(t)\partial_{xx}\widetilde{\mathcal{S}}, \\ \partial_{t}\widetilde{\mathcal{T}} = \sigma_{s}(t)u_{s}\widetilde{\mathcal{S}}\widetilde{\mathcal{U}} - \partial_{t}\theta_{s}(t) + \kappa\partial_{xx}\widetilde{\mathcal{T}}, \\ \sigma_{s}(t)\widetilde{\mathcal{S}} = e^{-\alpha\theta_{s}(t)}u_{s}^{n}e^{-\alpha\widetilde{\mathcal{T}}}\widetilde{\mathcal{U}}^{n} \end{cases}$$

Time Change

Introduce a new time variable τ such that

$$\begin{cases} \partial_t \tau(t) = \sigma_s(t), \\ \tau(0) = 0. \end{cases}$$

For Arrhenius' Law

$$\tau(t) = \frac{1}{\alpha} \log\left(\frac{\alpha}{k_0}t + 1\right)$$

Obtain the system

$$\begin{cases} \partial_{\tau} \mathcal{U} = \partial_{xx} \mathcal{S}, \\ \partial_{\tau} \mathcal{T} = \mathcal{S} \mathcal{U} - 1 + \kappa k_0 e^{\alpha \tau} \partial_{xx} \mathcal{T}, \\ \mathcal{S} = e^{-\alpha T} \mathcal{U}^n, \end{cases}$$

- Shear-banding
- Modelling
- Arrhenius' Law

In/stability

• Linear Analysis of Uniform Shear

Effective Equation

- Multiple Transformations
- Existence Theorem

Linearization around Uniform Shear

- Investigate the linear stability of the uniform shear $(\mathcal{U}, \mathcal{T}, \mathcal{S}) = (1, 0, 1)$
- Linearized system:

$$\begin{cases} \partial_{\tau} \mathcal{U} = \partial_{xx} \mathcal{S} \\ \partial_{\tau} \mathcal{T} = \mathcal{U} + \mathcal{S} + \widetilde{\kappa} \partial_{xx} \mathcal{T} \\ \mathcal{S}_{1} = n \mathcal{U} - \alpha \mathcal{T} \end{cases}$$

• Study the differential system

$$\begin{cases} \partial_{\tau} \mathcal{U} = \mathbf{n} \partial_{\mathbf{x}\mathbf{x}} \mathcal{U} - \alpha \partial_{\mathbf{x}\mathbf{x}} \mathcal{T} \\ \partial_{\tau} \mathcal{T} = (\mathbf{n} + 1) \mathcal{U} - \alpha \mathcal{T} + \widetilde{\kappa} \partial_{\mathbf{x}\mathbf{x}} \mathcal{T} \end{cases}$$

Fourier Analysis

• Apply Fourier transform in x:

$$\begin{cases} \partial_{\tau}\widehat{\mathcal{U}}_{j} = -j^{2}n\widehat{\mathcal{U}}_{j} + j^{2}\alpha\widehat{\mathcal{T}}_{j} \\ \partial_{\tau}\widehat{\mathcal{T}}_{j} = (n+1)\widehat{\mathcal{U}}_{j} - \alpha\widehat{\mathcal{T}}_{j} - j^{2}\widetilde{\kappa}\widehat{\mathcal{T}}_{j} \end{cases}$$

- In the following, either $\kappa = 0$ or $\kappa e^{\alpha \tau}$ is frozen to a constant value
- Always diagonalizable
- Sum of eigenvalues < 0. Product of eigenvalues:

$$j^2\left(\mathbf{n}\widetilde{\kappa}j^2-\alpha\right)$$

- If $\kappa = 0$ all modes unstable;
 - ▶ if n = 0 Hadamard instability
 - if n > 0 Turing instability
- if $\widetilde{\kappa} > 0$ a few modes linearly unstable

A word of caution

Frozen coefficient analysis can be misleading

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -1 + \frac{3}{2}\cos(t)^2 & 1 - \frac{3}{2}\cos(t)\sin(t) \\ -1 - \frac{3}{2}\cos(t)\sin(t) & -1 + \frac{3}{2}\sin(t)^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

- $\forall t \text{ fixed, eigenvalues are } -\frac{1}{4} \pm i \frac{\sqrt{7}}{4}$
- $x(t) = -e^{t/2} \cos(t), y(t)e^{t/2} \sin(t)$ is a solution.

Linear stability with time

When $\kappa > 0$:

Theorem

• Linearized system is L^2 stable in the sense that $\forall \varepsilon > 0, \exists \delta > 0$,

$$\|(\mathcal{U}(\mathsf{0}),\mathcal{T}(\mathsf{0}))\|_{\mathrm{L}^2} \leq \delta \implies \sup_{ au > \mathsf{0}} \|(\mathcal{U}(au),\mathcal{T}(au)\|_{\mathrm{L}^2} \leq arepsilon$$

• (u_s, θ_s) is linearly asymptotically stable.

Ideas of proof

Take appropriate boundary conditions.

Lemma

There exists A, c > 0, and T > 0 such that for all $\tau > T$:

$$\int_0^1 \frac{A}{2} \mathcal{U}^2(\tau) + \frac{1}{2} \mathcal{T}^2(\tau) \leq \left(\int_0^1 \frac{A}{2} \mathcal{U}^2(T) + \frac{1}{2} \mathcal{T}^2(T) \right) e^{-c(\tau-T)}.$$

Lemma

There exists $B, C_B > 0$ such that for all $\tau > 0$:

$$\int_0^1 rac{1}{2} \mathcal{U}^2(au) + rac{B}{2} \mathcal{T}^2(au) \leq \left(\int_0^1 rac{1}{2} \mathcal{U}^2(0) + rac{B}{2} \mathcal{T}^2(0)
ight) e^{C_B au}.$$

Introductior

- Shear-banding
- Modelling
- Arrhenius' Law

2

In/stability

- Linear Analysis of Uniform Shear
- Effective Equation

- Multiple Transformations
- Existence Theorem

Framework

κ = 0

- Introduce a large time scale T and $s = \tau/T$, $y = x/\sqrt{T}$.
- Rescaled equation:

$$egin{cases} \partial_{s}\mathcal{U} &= \partial_{yy}\mathcal{S} \ rac{1}{T}\partial_{s}\mathcal{T} &= \mathcal{U}\mathcal{S} - 1 \ \mathcal{S} &= \mathbf{e}^{-lpha\mathcal{T}}\mathcal{U}^{n} \end{cases}$$

• and expand in 1/T

Main Order

• Main order system:

$$\left\{egin{aligned} \partial_{s}\mathcal{U}_{0}&=\partial_{yy}\mathcal{S}_{0}\ \mathbf{0}&=\mathcal{U}_{0}\mathcal{S}_{0}-\mathbf{1}\ \mathcal{S}_{0}&=oldsymbol{e}^{-lpha\mathcal{T}_{0}}\mathcal{U}_{0}^{n} \end{aligned}
ight.$$

• How to solve:

$$\mathcal{S}_0 = \frac{1}{\mathcal{U}_0}, \qquad \mathcal{T}_0 = \frac{n+1}{\alpha} \log(\mathcal{U}_0), \qquad \partial_s \mathcal{U}_0 = \partial_{yy} \left(\frac{1}{\mathcal{U}_0}\right)$$

Linearized Order

• System:

$$\begin{cases} \partial_{s} \mathcal{U}_{1} = \partial_{yy} \mathcal{S}_{1} \\ \partial_{s} \mathcal{T}_{0} = \mathcal{U}_{0} \mathcal{S}_{1} + \mathcal{S}_{0} \mathcal{U}_{1} \\ \mathcal{S}_{1} = e^{-\alpha \mathcal{T}_{0}} \left(n \mathcal{U}_{0}^{n-1} \mathcal{U}_{1} - \alpha \mathcal{U}_{0}^{n} \mathcal{T}_{1} \right) \end{cases}$$

• Only \mathcal{U}_1 needed for the sequel. From 2^{nd} equation:

$$S_1 = -\frac{\mathcal{U}_1}{\mathcal{U}_0^2} + \frac{1}{\mathcal{U}_0} \partial_s \left(\frac{n+1}{\alpha} \log \mathcal{U}_0\right)$$

• Conclusion:

$$\partial_{s}\mathcal{U}_{1} = \partial_{yy}\left(-\frac{\mathcal{U}_{1}}{\mathcal{U}_{0}^{2}} + \frac{1}{\mathcal{U}_{0}}\partial_{s}\left(\frac{n+1}{\alpha}\log\mathcal{U}_{0}\right)\right)$$

Chapman-Enskog

- Goal: find an effective equation approximating the system at order $1/T^2$.
- Define $\widetilde{u} = \mathcal{U}_0 + \frac{1}{T}\mathcal{U}_1$
- Combine equations for \mathcal{U}_0 and \mathcal{U}_1 :

$$\partial_{s}\widetilde{u} = \partial_{yy}\left(\frac{1}{\widetilde{u}}\right) + \frac{1}{T}\frac{n+1}{\alpha}\partial_{yy}\left(\frac{1}{\widetilde{u}^{2}}\partial_{yy}\left(\frac{1}{\widetilde{u}}\right)\right) + O\left(\frac{1}{T^{2}}\right)$$

- Red part: backward parabolic; unstable
- Green part: fourth order; stabilizing as $\frac{n+1}{\alpha} > 0$

Linearization+Fourier

• Linearization around $\tilde{u} = 1$:

$$\partial_{s}h = -\partial_{yy}h - \frac{n+1}{T\alpha}\partial_{yyyy}h.$$

$$\partial_s \hat{h} = \xi^2 \left(1 - \frac{n+1}{\alpha T} \xi^2 \right) \hat{h}.$$

Introduction

- Shear-banding
- Modelling
- Arrhenius' Law

In/stability

- Linear Analysis of Uniform Shear
- Effective Equation

- Multiple Transformations
- Existence Theorem

Localization

• Go back to the perturbation system ($\kappa = 0$)

$$\begin{cases} \partial_{\tau} \mathcal{U} = \partial_{xx} \mathcal{S}, \\ \partial_{\tau} \mathcal{T} = \mathcal{S} \mathcal{U} - \mathbf{1}, \\ \mathcal{S} = \mathbf{e}^{-\alpha \mathcal{T}} \mathcal{U}^{n}, \end{cases}$$

• Goal: examine the possibility for some solutions to concentrate.

Self-similarity

Looking for concentrating solution set

$$\xi(\tau, \mathbf{X}) = \frac{\mathbf{X}}{\mathbf{R}(\tau)}$$

- Find R such that $\lim_{\tau\to\infty} R(\tau) = 0$
- Find profile solutions satisfying:

$$\begin{aligned} \mathcal{U}(\tau, x) &= \frac{1}{R(\tau)} U\left(\frac{x}{R(\tau)}\right), \\ \mathcal{T}(\tau, x) &= \Theta\left(\frac{x}{R(\tau)}\right) - \frac{n+1}{\alpha} \log R(\tau), \\ \mathcal{S}(\tau, x) &= R(\tau) \Sigma\left(\frac{x}{R(\tau)}\right), \end{aligned}$$

Profile Equations

• Plugging the ansaetze for $(\mathcal{U}, \mathcal{T}, \mathcal{S})$ yields

$$\begin{cases} -\frac{\partial_{\tau}R}{R}\left(U+\frac{x}{R}\partial_{\xi}U\right) = \partial_{\xi\xi}\Sigma, \\ -\frac{\partial_{\tau}R}{R}\frac{x}{R}\partial_{\xi}\Theta - \frac{n+1}{\alpha}\frac{\partial_{\tau}R}{R} = \Sigma U - 1, \\ \Sigma = e^{-\alpha\Theta}U^{n} \end{cases}$$

• Set
$$-rac{\partial_{ au}R}{R}=arepsilon$$
 ($R(au)=e^{-arepsilon au}$)

- Define $c_{\varepsilon} = 1 + \frac{n+1}{\alpha}\varepsilon$
- Assume U, Θ, Σ even

Introduction

- Shear-banding
- Modelling
- Arrhenius' Law

2 In/stability

- Linear Analysis of Uniform Shear
- Effective Equation

- Multiple Transformations
- Existence Theorem

Goal

We aim to find solutions to

$$\begin{cases} \Sigma' = \xi U, \\ \varepsilon \xi \Theta' = \Sigma U - \underbrace{\left(1 + \varepsilon \frac{n+1}{\alpha}\right)}_{c_{\varepsilon}}, \\ \Sigma = e^{-\alpha \Theta} U^{n}. \end{cases}$$

- Singular when $\xi \to 0$
- Singular when $\varepsilon \rightarrow 0$
- We want C¹ solutions on [0, +∞[.
 Consequence: Σ(0) and U(0) are positive

"Algebraicity"

- Set $\Psi = e^{-\frac{\alpha}{n}\Theta}$.
- Obtain the system

$$\begin{cases} \Sigma' = \xi \frac{\Sigma^{1/n}}{\Psi}, \\ \varepsilon \xi \Psi' = \frac{\alpha}{n} \left(c_{\varepsilon} \Psi - \Sigma^{1+1/n} \right), \\ U = \frac{\Sigma^{1/n}}{\Psi}. \end{cases}$$

• Same singularity, no exponential

Far-field

• For ξ away from 0: exact solution

$$U(\xi) = \frac{1}{\xi}, \qquad \Psi(\xi) = \xi^{1+1/n}, \qquad \Sigma(\xi) = \xi;$$

corresponds physically to $\mathcal{U}(t, x) = \frac{1}{|x|}$

- Correct features but unbounded at x = 0.
- Build on that solution: introduce

$$U(\xi) = \frac{1}{\xi}\overline{U}(\xi), \qquad \Psi(\xi) = \xi^{1+1/n}\overline{\Psi}(\xi), \qquad \Sigma(\xi) = \xi\overline{\Sigma}(\xi).$$

• $\lim_{\xi \to 0} \overline{\Sigma}(\xi) = +\infty$, $\lim_{\xi \to 0} \xi^{1+1/n} (c_{\varepsilon} \overline{\Psi}(\xi) - \overline{\Sigma}(\xi)^{1+1/n}) = 0$

Near-field

• The system on $(\overline{U}, \overline{\Psi}, \overline{\Sigma})$:

$$\begin{cases} \boldsymbol{\xi} \overline{\boldsymbol{\Sigma}}' = \frac{\overline{\boldsymbol{\Sigma}}^{1/n}}{\overline{\boldsymbol{\Psi}}} - \overline{\boldsymbol{\Sigma}}, \\ \boldsymbol{\xi} \overline{\boldsymbol{\Psi}}' = \frac{\alpha}{n\varepsilon} \left(\overline{\boldsymbol{\Psi}} - \overline{\boldsymbol{\Sigma}}^{1+1/n} \right), \\ \overline{\boldsymbol{U}} = \frac{\overline{\boldsymbol{\Sigma}}^{1/n}}{\overline{\boldsymbol{\Psi}}}. \end{cases}$$

• Singularity at $\xi = 0$: now removable!

Near-field

• The system on $(\overline{U}, \overline{\Psi}, \overline{\Sigma})$:

$$\begin{cases} \boldsymbol{\xi}\overline{\boldsymbol{\Sigma}}' = \frac{\overline{\boldsymbol{\Sigma}}^{1/n}}{\overline{\boldsymbol{\Psi}}} - \overline{\boldsymbol{\Sigma}}, \\ \boldsymbol{\xi}\overline{\boldsymbol{\Psi}}' = \frac{\alpha}{n\varepsilon} \left(\overline{\boldsymbol{\Psi}} - \overline{\boldsymbol{\Sigma}}^{1+1/n}\right), \\ \overline{\boldsymbol{U}} = \frac{\overline{\boldsymbol{\Sigma}}^{1/n}}{\overline{\boldsymbol{\Psi}}}. \end{cases}$$

- Singularity at $\xi = 0$: now removable!
- Set $\eta = \log \xi$ and $\overline{f}(\xi) = \widehat{f}(\eta)$:

$$\xi \partial_{\xi} \overline{f}(\xi) = \partial_{\eta} \widehat{f}(\eta)$$

Resulting system is autonomous

From Infinite to Finite

• $(\widehat{\Sigma}, \widehat{\Psi})$ now satisfies:

$$\begin{cases} \widehat{\Sigma}' = \frac{\widehat{\Sigma}^{1/n}}{\widehat{\Psi}} - \widehat{\Sigma} \\ \widehat{\Psi}' = \frac{\alpha}{n\varepsilon} \left(\widehat{\Psi} - \widehat{\Sigma}^{1+1/n} \right) \end{cases}$$

• Its asymptotic properties:

$$\lim_{\eta \to -\infty} \widehat{\Sigma}(\eta) = +\infty \qquad \qquad \lim_{\eta \to +\infty} \widehat{\Sigma}(\eta) = 1$$
$$\lim_{\eta \to -\infty} \widehat{\Psi}(\eta) = +\infty \qquad \qquad \lim_{\eta \to +\infty} \widehat{\Psi}(\eta) = 1$$

• Bring infinite to finite:

$$\widehat{B} = \frac{1}{\widehat{\Sigma}}, \qquad \qquad \widehat{\Lambda} = \frac{\widehat{\Psi}}{\widehat{\Sigma}^{1+1/n}}$$

Final System

• $(\widehat{B},\widehat{\Lambda})$ satisfies:

$$\begin{cases} \widehat{B}' = \widehat{B}\left(1 - \frac{\widehat{B}^2}{\widehat{\Lambda}}\right) \\ \widehat{\Lambda}' = \frac{\alpha}{n\varepsilon} \left(\left(1 + \varepsilon \frac{n+1}{\alpha}\right)\widehat{\Lambda} - 1 - \varepsilon \frac{n+1}{\alpha}\widehat{B}^2\right) \end{cases}$$

• We look for solutions satisfying:

$$\begin{split} &\lim_{\eta \to -\infty} \widehat{B}(\eta) = \mathbf{0}, & \lim_{\eta \to +\infty} \widehat{B}(\eta) = \mathbf{1}, \\ &\lim_{\eta \to -\infty} \widehat{\Lambda}(\eta) < +\infty, & \lim_{\eta \to -\infty} \widehat{\Lambda}(\eta) = \mathbf{1} \end{split}$$

Theoretical Result

Theorem

- The $(\widehat{B},\widehat{\Lambda})$ system has the following properties:
 - Exactly two stationary hyperbolic points $P = (0, 1/c_{\varepsilon}) Q = (1, 1)$. *P* is a pure node while Q is a saddle point.
 - 2 For all $\varepsilon > 0$, there exists an heteroclinic orbit that connects P to Q.
- Let $(\widehat{B}_0, \widehat{\Lambda}_0)$ generate the heteroclinic orbit and let $\widehat{B}_{\eta_0}(\eta) = \widehat{B}_0(\eta + \eta_0)$ and $\widehat{\Lambda}_{\eta_0}(\eta) = \widehat{\Lambda}_0(\eta + \eta_0)$. We have

$$\lim_{\eta \to -\infty} \frac{e^{\eta}}{\widehat{B}_{\eta_0}(\eta)} = \Sigma_{\eta_0} > 0$$

and the function $\eta_0 \mapsto \Sigma_{\eta_0}$ is a bijection from **R** to **R**_+^*.

Proof

Phase portrait

• Global estimation:

$$0\leq \widehat{B}'\leq \widehat{B}(1-\widehat{B}^2) ext{ implies } rac{e^\eta}{\widehat{B}(\eta)}\geq rac{\sqrt{1+C_0^2e^{2\eta}}}{C_0}$$

Existence of Shear Band Profiles

Theorem

The family (depending on r > 0)

$$\begin{aligned} \mathcal{U}(t,x) &= \left(\frac{\alpha}{k_0}t+1\right)^{1/r} \frac{\widehat{B}_{\eta_0}\left(\log\xi\right)}{\xi\widehat{\Lambda}_{\eta_0}\left(\log\xi\right)},\\ \mathcal{T}(t,x) &= \frac{n+1}{\alpha r}\log\left(\frac{\alpha}{k_0}t+1\right) - \frac{n}{\alpha}\log\left(\xi^{1+1/n}\frac{\widehat{\Lambda}_{\eta_0}(\log\xi)}{\widehat{B}_{\eta_0}(\log\xi)^{1+1/n}}\right)\\ \mathcal{S}(t,x) &= \frac{1}{\left(\frac{\alpha}{k_0}t+1\right)^{1/r}}\frac{\xi}{\widehat{B}_{\eta_0}(\log\xi)},\\ \end{aligned}$$
where $\xi(t,x) = \left(\frac{\alpha}{k_0}t+1\right)^{\frac{1}{\alpha r}} x$, describes a shear-band.

Numerical illustration

Summary

- In adiabatic regime, perturbations of the uniform shear are Hadamard unstable for fluids following Arrhenius' Law.
- In the long time asymptotics, an effective equation recovers some stability.
- There exist a solution describing a shear band.