Nonlinear Ekman Dynamics

Linear solution: Ekman (1905)

Start from Boussinesq

 $D_t \boldsymbol{u} + \boldsymbol{f} \times \boldsymbol{u}$

Assume: steady state, geostrophy, hydrostasy and incompressibility

 $oldsymbol{f} imes oldsymbol{u} = oldsymbol{d}_z oldsymbol{\phi} = oldsymbol{l}$

$$= -\nabla \phi + \hat{z}b + \nabla \cdot \boldsymbol{\tau} / \rho_0$$
$$\nabla \cdot \boldsymbol{u} = 0$$

$$= -\nabla \phi + \partial_z \boldsymbol{\tau} / \rho_0 \quad \boldsymbol{\tau} / \rho_0 = A \partial_z \boldsymbol{u}$$

$$b \quad \longrightarrow \quad \partial_z \phi = 0$$

$$\nabla \cdot \boldsymbol{u} = 0$$

Linear solution

Separate into interior and boundary solutions

$$\boldsymbol{u} = \boldsymbol{u}_g + \boldsymbol{u}_E$$
 ; $\boldsymbol{\phi} = \boldsymbol{\phi}_g + \boldsymbol{\phi}_E$

$$\boldsymbol{f} \times (\boldsymbol{u}_g + \boldsymbol{u}_E) = -\nabla(\boldsymbol{\phi}_g + \boldsymbol{\phi}_E) + A\partial_{zz}(\boldsymbol{u}_g + \boldsymbol{u}_E)$$

$$\partial_z \phi_g = 0 \longrightarrow$$

$$\partial_z \phi_E = 0 \longrightarrow \phi_E = 0$$

Linear solution

 $\boldsymbol{f} \times (\boldsymbol{u}_g + \boldsymbol{u}_E)$

Geostrophic component

 $\frac{\partial^4 u_E}{\partial z^4}$

$$u_{E} = \operatorname{Re}\left(C_{1}e^{(1+i)z/\delta_{E}} + C_{2}e^{(1-i)z/\delta_{E}} + C_{3}e^{-(1+i)z/\delta_{E}} + C_{4}e^{-(1-i)z/\delta_{E}}\right), \qquad \delta_{E} = \sqrt{2A/f}$$
Surface
Bottom

$$(z_E) = -\nabla \phi_g + A \partial_{zz} \boldsymbol{u}_E$$

$$\boldsymbol{f} \times \boldsymbol{u}_g = -\nabla \phi_g$$

$$u_E = A \partial_{zz} u_E$$

$$= -\left(\frac{f}{A}\right)^2 u_E$$

Bottom

$$u_E = \mathbf{Re} \left(C_1 e^{(1+i)z/\delta_E} + C_2 e^{(1-i)z/\delta_E} + C_3 e^{-(1+i)z/\delta_E} + C_4 e^{-(1-i)z/\delta_E} \right)$$

Surface boundary condition and solution

$$A\partial_z \boldsymbol{u}_E(z=0) = \boldsymbol{\tau}_a/\rho_0$$
; $\boldsymbol{u}_E(z \to -\infty) = 0$

Surface
$$\begin{cases} u_E = \frac{\sqrt{2}}{f\delta_E} e^{z/\delta_E} \left(\tau^x \cos(z/\delta_E - \pi/4) - \tau^y \sin(z/\delta_E - \pi/4) \right) \\ v_E = \frac{\sqrt{2}}{f\delta_E} e^{z/\delta_E} \left(\tau^x \sin(z/\delta_E - \pi/4) + \tau^y \cos(z/\delta_E - \pi/4) \right) \end{cases}$$

Bottom boundary condition and solution

$$u(z = -H) = 0 \; ; \; u_E(z \to +\infty) = 0$$

Bottom
$$\begin{cases} u_E = -e^{-(z+H)/\delta_E} \left(u_g \cos((z+H)/\delta_E) + v_g \sin((z+H)/\delta_E) \right) \\ v_E = e^{-(z+H)/\delta_E} \left(u_g \sin((z+H)/\delta_E) - v_g \cos((z+H)/\delta_E) \right) \end{cases}$$

Linear solution

Ekman Transport and Pumping

Top layer Ekman Transport

$$\int_{-h_E}^0 (\boldsymbol{f} \times \boldsymbol{u}_E = \partial_z \boldsymbol{\tau} / \boldsymbol{\rho}_0) \, dz \quad \text{with} \quad \int_{-h_E}^0 (\nabla \cdot \boldsymbol{u}_E = \partial_z \boldsymbol{\tau} / \boldsymbol{\rho}_0) \, dz$$

$$\boldsymbol{f} \times \boldsymbol{U}_E = \boldsymbol{\tau}_{\boldsymbol{a}} / \rho_0$$
 with $\nabla \cdot \boldsymbol{U}_E = -w_E$

$$w_E = -\nabla \cdot \boldsymbol{U}_E = \nabla \cdot \left(\frac{\boldsymbol{\tau}_{\boldsymbol{a}} \times \hat{\boldsymbol{z}}}{\rho_0 f}\right) = \hat{\boldsymbol{z}} \cdot \nabla \times \left(\frac{\boldsymbol{\tau}_{\boldsymbol{a}}}{\rho_0 f}\right)$$

Bottom layer Ekman Transport

$$\boldsymbol{f} imes \boldsymbol{U}_E = \boldsymbol{ au}_{ ext{Bottom}} / oldsymbol{
ho}_0$$

$$w_E = \frac{\hat{\boldsymbol{z}} \cdot \nabla \times \boldsymbol{\delta}_E \boldsymbol{u}_g}{2\rho_0 f} = \frac{\boldsymbol{\delta}_E \boldsymbol{\zeta}_g}{2\rho_0 f}$$

Ekman Transport and Pumping

Adding the atmospheric boundary layer

Nonlinear boundary layer

Steady state equations

 $\boldsymbol{u}\cdot\nabla\boldsymbol{u}+\boldsymbol{f}$

Separate into interior and boundary solutions similarly to Ekman

U

$$(\boldsymbol{u}_g + \boldsymbol{u}_E) \cdot \nabla(\boldsymbol{u}_g + \boldsymbol{u}_E) + \boldsymbol{f} \times (\boldsymbol{u}_g + \boldsymbol{u}_E) = -\nabla(\boldsymbol{\phi}_g) + \partial_z \boldsymbol{\tau} / \boldsymbol{\rho}_0$$

Define the geostrophic component

 $u_g \cdot \nabla u_g$ -

Equations for the boundary layer

 $\boldsymbol{u}_E\cdot\nabla\boldsymbol{u}_E + \boldsymbol{u}_E\cdot\nabla\boldsymbol{u}_g$

Nonlinear boundary layer

$$imes oldsymbol{u} = -
abla \phi + \partial_z oldsymbol{ au} /
ho_0$$

$$u = u_g + u_E$$

$$+ \boldsymbol{u}_g \cdot \nabla \boldsymbol{u}_E + \boldsymbol{f} \times \boldsymbol{u}_E = \partial_z \boldsymbol{\tau} / \boldsymbol{\rho}_0$$

Nonlinear boundary layer

Stern (1965):

 $\boldsymbol{u}_E \cdot \nabla \boldsymbol{u}_g$

 $(\boldsymbol{f} + \boldsymbol{\zeta}_g)$

Transport and Pumping

 $(\boldsymbol{f} + \boldsymbol{\zeta}_g) \times \boldsymbol{U}$

 $w_E = -\nabla \cdot$

But notice that

Interaction of a uniform wind stress with a geostrophic vortex

$$_{g} + \boldsymbol{f} \times \boldsymbol{u}_{E} = \partial_{z} \boldsymbol{\tau} / \rho_{0}$$

$$imes \boldsymbol{u}_E = -
abla B + \partial_z \boldsymbol{\tau} / \boldsymbol{
ho}_0$$

$$U_E = -\nabla \int_{-h_E}^0 B + \boldsymbol{\tau}_{\boldsymbol{a}} / \rho_0$$

$$\boldsymbol{U}_E = \nabla \cdot \left(\frac{\boldsymbol{\tau}_{\boldsymbol{a}} \times \hat{\boldsymbol{z}}}{\boldsymbol{\rho}_0(f + \boldsymbol{\zeta}_g)} \right)$$

$$\frac{\boldsymbol{\tau}_{\boldsymbol{a}} \times \hat{\boldsymbol{z}}}{\rho_0(f + \zeta_g)} + \nabla \times \boldsymbol{A}$$

$$w_E = \nabla \cdot \left(rac{\boldsymbol{\tau}_{\boldsymbol{a}} \times \hat{\boldsymbol{z}}}{
ho_0(f + \zeta_g)}
ight)$$

$$\frac{\boldsymbol{\tau}_{a}}{\boldsymbol{\tau}_{g}} + \frac{1}{\rho_{0}(f + \zeta_{g})^{2}} (\boldsymbol{\tau}_{a}^{x} \partial_{y} \zeta_{g} - \boldsymbol{\tau}_{a}^{y} \partial_{x} \zeta_{g})$$

$$y$$

$$y$$

$$Wind stress$$

$$y$$

$$y$$

Assuming uniform wind stress over a nondivergent circular eddy (Gaussian streamfunction)

Wenegrat and Thomas (2017): Ekman Transport in Balanced Currents with Curvature

$$\boldsymbol{u}_g\cdot\nabla\boldsymbol{u}_E + \boldsymbol{u}_E\cdot$$

Balanced natural coordinate system $\begin{cases}
\mathbf{u} = (\overline{u} + u_e)\hat{\mathbf{s}} + v_e\hat{\mathbf{n}} + w_e\hat{\mathbf{z}} \\
\Omega \equiv \overline{u}k \\
\zeta \equiv -\partial\overline{u}/\partial n + \Omega \\
k \equiv (\partial\hat{\mathbf{s}}/\partial s) \cdot \hat{\mathbf{n}} = 1/R
\end{cases}$

$$\varepsilon \overline{u} \frac{\partial v_e}{\partial s} + (1 + \varepsilon 2\Omega)u_e = \frac{\partial v_n}{\partial z} \longrightarrow (M_s, M_n)$$
$$\varepsilon \overline{u} \frac{\partial u_e}{\partial s} - (1 + \varepsilon \zeta)v_e = \frac{\partial \tau_s}{\partial z}$$

 $\nabla \boldsymbol{u}_g + \boldsymbol{f} \times \boldsymbol{u}_E = \partial_z \boldsymbol{\tau} / \boldsymbol{\rho}_0$

Transport equations

$$\left(\int u_e dz, \int v_e dz\right) \longrightarrow$$

$$\varepsilon \overline{u} \frac{\partial M_n}{\partial s} + (1 + \varepsilon 2\Omega) M_s = \tau_n$$
$$\varepsilon \overline{u} \frac{\partial M_s}{\partial s} - (1 + \varepsilon \zeta) M_n = \tau_s$$

Solution for a mesoscale vortex $\epsilon = 0.003$

Response to a uniform wind stress over a horizontally nondivergent circular eddy (Gaussian streamfunction)

Solution for a submesoscale anticyclone $\epsilon = 0.3$

What about the tendency and self-advection?

Geostrophic currents influence Ekman pumping

Above: Stern (1965), Niiler(1969), Hart(2000), Wenegrat and Thomas (2016)

Geostrophic currents influence near-inertial oscillations

NI energy quickly imprinted on mesoscale eddies by refraction, from cyclones to anticyclones -> wave energy exits surface layer (Rocha et al. 2018; Asselin and Young 2020).

Ekman-Near-Inertial interactions?

Interaction of Nonlinear Ekman Pumping, **Near-Inertial Oscillations, and Geostrophic Turbulence** (With Yanxu Chen and David Straub)

Using a "slab layer" :

Consider that boundary layer correction is embedded near the top of the surface layer of a shallow water model

Part 1:

Interaction of Nonlinear Ekman Pumping, **Near-Inertial Oscillations, and Geostrophic Turbulence** (With Yanxu Chen and David Straub)

- 2 slab models :
- **S1:** $\frac{\partial}{\partial t} \mathbf{U}_s +$

Stand-alone slab model

Response to a uniform wind stress blowing over a horizontally nondivergent circular eddy

- fast time scale transients
- transients are evident even when forcing is ramped up over several inertial periods

Stand-alone S1 slab model for a cyclone

Uek

Vek

Ekman curl ×10⁻⁶

Stand-alone S1 slab model using variable wind $\tau = [\tau_0 + \tau_1(t)]$

Coupled model

Shallow $\frac{\partial}{\partial t} \mathbf{u}_1 + (\mathbf{u}_1 \cdot \nabla) \mathbf{u}_1 + f \hat{\mathbf{z}} = \mathbf{z} =$

$$-(\mathbf{U}_{s}\cdot\nabla)\mathbf{u}_{1} + (\mathbf{u}_{1}\cdot\nabla)\mathbf{U}_{s} + f\hat{\mathbf{z}}\times\mathbf{U}_{s} = \frac{\boldsymbol{\tau}}{\rho_{0}} + \mathbf{D}_{s}$$
$$-(\mathbf{U}_{s}\cdot\nabla)\mathbf{u}_{1} + (\mathbf{u}_{1}\cdot\nabla)\mathbf{U}_{s} + f\hat{\mathbf{z}}\times\mathbf{U}_{s} = \frac{\boldsymbol{\tau}}{\rho_{0}} + \mathbf{D}_{s}$$

$$\begin{split} \hat{\mathbf{z}} \times \mathbf{u}_1 &= -\nabla \phi_1 + \mathbf{D}_1 + \delta_{\mathrm{BF}} \frac{\tau}{\rho_0 d_1} \\ \hat{\mathbf{z}} \times \mathbf{u}_2 &= -\nabla \phi_2 + \mathbf{D}_2, \\ (\mathbf{u}_1 d_1) &= (\delta_{\mathrm{BF}} - 1) \nabla \cdot \mathbf{U}_s, \\ (\mathbf{u}_2 d_2) &= 0, \end{split}$$

Coupled model

Shallow Water $\begin{cases} \frac{\partial}{\partial t}\mathbf{u}_{1} + (\mathbf{u}_{1}\cdot\nabla)\mathbf{u}_{1} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}\mathbf{u}_{2} + (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{1} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{1} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z}} \\ \frac{\partial}{\partial t}d_{2} + \nabla \cdot (\mathbf{u}_{2}\cdot\nabla)\mathbf{u}_{2} + f\hat{\mathbf{z$

$$-(\mathbf{U}_{s}\cdot\nabla)\mathbf{u}_{1} + (\mathbf{u}_{1}\cdot\nabla)\mathbf{U}_{s} + f\hat{\mathbf{z}}\times\mathbf{U}_{s} = \frac{\boldsymbol{\tau}}{\rho_{0}} + \mathbf{D}_{s}$$
$$-(\mathbf{U}_{s}\cdot\nabla)\mathbf{u}_{1} + (\mathbf{u}_{1}\cdot\nabla)\mathbf{U}_{s} + f\hat{\mathbf{z}}\times\mathbf{U}_{s} = \frac{\boldsymbol{\tau}}{\rho_{0}} + \mathbf{D}_{s}$$

$$\hat{\mathbf{z}} \times \mathbf{u}_{1} = -\nabla \phi_{1} + \mathbf{D}_{1} + \delta_{\mathrm{BF}} \frac{\boldsymbol{\tau}}{\rho_{0} d_{1}}$$
$$\hat{\mathbf{z}} \times \mathbf{u}_{2} = -\nabla \phi_{2} + \mathbf{D}_{2},$$
$$(\mathbf{u}_{1} d_{1}) = \left(\delta_{\mathrm{BF}} - 1\right) \nabla \cdot \mathbf{U}_{s},$$
$$(\mathbf{u}_{2} d_{2}) = 0,$$

Coupled model Forcing/Dissipation

$$[\tau_0 + \tau_1(t)] \cos\left(\frac{2\pi y}{L}\right) \hat{\mathbf{x}}$$

$$= \sum_{n=1}^{30\,000} A_n \sin(\omega_n t + \varphi_n)$$

 A_n chosen to correspond to an Ornstein-Uhlenbeck process with damping time scale of 5 days

$$\begin{aligned} \mathbf{A}_{\rm bh} \nabla^4 \mathbf{U}_s \\ \mathbf{A}_{\rm Lap} \nabla^{-2} \mathbf{u}_1 &- \mathbf{A}_{\rm bh} \nabla^4 \mathbf{u}_1 \\ \mathbf{A}_{\rm Lap} \nabla^{-2} \mathbf{u}_2 &- \mathbf{A}_{\rm bh} \nabla^4 \mathbf{u}_2 - \mathbf{r}_{\rm drag} \mathbf{u}_2 \end{aligned}$$

S1 coupled model results with steady forcing ($\tau_1(t) = 0$)

Spinup under steady forcing using the S2 model (pumping velocity)

y (×10³ km) -0. 20 y (×10³ km) 0 5.0--1

0

Spinup instability using the S2 model

$$\mathbf{S2:} \quad \frac{\partial}{\partial t} \mathbf{U}_{s} + \frac{1}{H_{s}} (\mathbf{U}_{s} \cdot \nabla) \mathbf{U}_{s} + (\mathbf{U}_{s} \cdot \nabla) \mathbf{u}_{1} + (\mathbf{u}_{1} \cdot \nabla) \mathbf{U}_{s} + f\hat{\mathbf{z}} \times \mathbf{U}_{s} = \frac{\tau}{\rho_{0}} + \mathbf{D}_{s}$$

$$\mathbf{U}_{s} \approx V_{\mathrm{Ek}} \hat{\mathbf{y}} + \mathbf{U}' \quad V_{\mathrm{Ek}} = -\tau^{x} / (\rho_{0} f) \quad w_{\mathrm{Ek}} = (\partial/\partial y) V_{\mathrm{Ek}}$$

$$\mathbf{u}_{1} \text{ small compared to } \mathbf{U}' / H_{s}$$

$$\int \frac{\partial}{\partial t} U' + \frac{V_{\mathrm{Ek}}}{H_{s}} \frac{\partial}{\partial y} U' = fV',$$

$$\frac{\partial}{\partial t} V' + \frac{V_{\mathrm{Ek}}}{H_{s}} \frac{\partial}{\partial y} V' = -fU' - \frac{w_{\mathrm{Ek}}}{H_{s}} V'$$

$$\int \sigma = w_{\mathrm{Ek}} / H_{s}$$

Coupled model results with synoptic wind

Interior response

Projections onto surface pressure

How does the high-frequency signals project onto surface pressure?

 $\nabla^2 \psi - \frac{f^2}{gH_{\text{eff}}} \psi = \zeta_{\text{BC}} - \frac{f}{H_{\text{eff}}} \eta$

 $\mathrm{S1}^{\mathrm{HP}}$

Vertical advection terms

S2:

$$\frac{\partial}{\partial t}\mathbf{U}_{s} + \frac{1}{H_{s}}(\mathbf{U}_{s}\cdot\nabla)\mathbf{U}_{s} + (\mathbf{U}_{s}\cdot\nabla)\mathbf{u}_{1} + (\mathbf{u}_{1}\cdot\nabla)\mathbf{U}_{s} + f\hat{\mathbf{z}}\times\mathbf{U}_{s} = \frac{\tau}{\rho_{0}} + \mathbf{D}_{s} \quad \stackrel{\text{(0)}}{\longrightarrow} \quad\stackrel{\text{(0)}}{\longrightarrow} \quad \stackrel{\text{(0)}}{\longrightarrow} \quad\stackrel{\text{(0)}}{\longrightarrow} \quad \stackrel{\text{($$

1

-1

-2

Ongoing work diagnosing non-linear pumping from GCM results (Jan Klaus Rieck and David Straub)

... going back to S1 :

 $\boldsymbol{u}_g\cdot\nabla\boldsymbol{U}_E + \boldsymbol{U}_E\cdot\nabla\boldsymbol{u}_g$

Given u_q , this is linear $\Rightarrow Ax = b$

$$+ \boldsymbol{f} imes \boldsymbol{U}_E = rac{\boldsymbol{ au}}{
ho_0} + A_h
abla^2 \boldsymbol{U}_E$$

Diagnosing non-linear pumping from GCM results

Diagnosing non-linear pumping from GCM results

NL Ekman solver interpolates ug,vg, tau to an A grid and uses a vorticity-Bernoulli form of the equations. The interpolation may serve to reduce the effective resolution. Also, the viscous term may be too big.

GCM

Smoothed version of model w-field

Diagnosing non-linear pumping from GCM results

Part 1: Future work

Goal: to 'disentangle' submesoscale w into Ekman, waves, … Ideally doing so from altimetry/scatterometer data Various refinements: e.g. adding info from tendency and self-advection

Part 2: Linear Kinematic Features in sea ice (with P. Bourgault, K. Duquette, D. Straub, B. Tremblay)

Vertical ocean heat fluxes beneath Linear Kinematic Features in the Arctic Ocean

Vertical ocean heat fluxes beneath Linear Kinematic Features in the Arctic Ocean

Model Setup: 3D LES

Surface Forcings

Vertical Velocity

Sensitivity on the size of the periodic domain

[m s_ ≽

y-averaged circulation

Deviations

Vertical heat content change

What explains the Upwelling/Downwelling asymmetry ?

Ist possibility, Stern: $w_E = \nabla \cdot \left(\frac{\boldsymbol{\tau}_{\boldsymbol{a}} \times \hat{\boldsymbol{z}}}{\rho_0(f + \zeta_g)} \right) = \nabla \cdot \left(\frac{\boldsymbol{\tau}_{\boldsymbol{a}} \times \hat{\boldsymbol{z}}}{\rho_0 f(1 + \varepsilon)} \right)$

 $\mathcal{E} = \frac{\mathbf{I}}{fL} = \frac{\mathbf{I}}{f}$

2nd possibility, Revisiting Stern (1965) using the self-advection term

 $u_E \cdot \nabla u_E$

 $(\boldsymbol{f} + \boldsymbol{\zeta}_E) imes$

Transport and Pumping

 $(\boldsymbol{f} + \boldsymbol{\zeta}_E) \times \boldsymbol{U}$

$$w_E = \hat{\boldsymbol{z}} \cdot \nabla \times \left(\frac{\boldsymbol{\tau}_a}{\rho_0(f + \zeta_E)} \right) = \hat{\boldsymbol{z}} \cdot \nabla \times \left(\frac{\boldsymbol{\tau}_a}{\rho_0 f(1 + \boldsymbol{\varepsilon}_E)} \right)$$

$$\varepsilon_E = rac{\mathrm{U_E}}{fL} = rac{1}{fL} \left(rac{\tau}{
ho_0 f \delta_E} \right)$$

$$+ \boldsymbol{f} \times \boldsymbol{u}_E = \partial_z \boldsymbol{\tau} / \rho_0$$

$$imes oldsymbol{u}_E = -
abla B + \partial_z oldsymbol{ au} /
ho_0$$

$$J_E = -\nabla \int_{-h_E}^0 B + \boldsymbol{\tau_a} / \rho_0$$

Modified model Setup with 2D LES

Modified model Setup with 2D LES

 $\epsilon_e = 0.01$

w (m/s)

Spinup using the body force $(v_g = 0)$

 $\epsilon_e = 1$

Pumping asymmetry using body force $(v_g = 0)$ $\zeta({ m s}^{-1})$ Vertical velocity (m s^{-1})

Pumping asymmetry using the body force $(v_g = 0)$

Pumping asymmetry comparison: self-advection vs Stern

Addition of both regimes

Addition of both regimes: Spinup (no ramp)

Mechanistic model

Consider the j component of the vorticity : $\hat{m{j}}\cdot abla$

System of equations

$$\times [D_{t}\boldsymbol{u} + \boldsymbol{f} \times \boldsymbol{u} = -\nabla\phi + \hat{\boldsymbol{z}}b + A\nabla^{2}\boldsymbol{u}]$$

at steady state :
$$\nabla^{2}\boldsymbol{\omega} = \frac{1}{A}(J(\boldsymbol{\psi}, \boldsymbol{\omega}) - \boldsymbol{f}\partial_{z}\boldsymbol{v})$$

$$\nabla^{2}\partial_{z}\boldsymbol{v} = \frac{1}{A}(J(\boldsymbol{\psi}, \partial_{z}\boldsymbol{v}) + \boldsymbol{f}\partial_{zz}\boldsymbol{\psi})$$

$$\nabla^{2}\boldsymbol{\psi} = \boldsymbol{\omega}$$

$$u = \partial_z \psi$$

;
$$w = -\partial_x \psi$$

A mechanistic model

Assume v is given by (symmetric) linear Ekman solution :

$$v = v_E = \frac{\sqrt{2}\tau^y}{f\delta_E} e^{z/\delta_E} \cos(z/\delta_E - \pi/4)$$

$$\nabla^2 \boldsymbol{\omega} = \frac{1}{A} (J(\boldsymbol{\psi}, \boldsymbol{\omega}) - f \partial_z v_E)$$
$$\nabla^2 \boldsymbol{\psi} = \boldsymbol{\omega}$$

Conclusion Part 1 & 2

 $\partial_t u_E + u_E \cdot \nabla u_E + u_E \cdot \nabla u_g + u_g \cdot \nabla u_E + f \times u_E = \partial_z \tau / \rho_0$ First order Ekman(1905) Higher order Curvature of u_g ϵ_g approaches 1

Near-Inertial Oscillations

Fun !! Instability u_g is small ϵ_e approaches 1

