
Nonlinear Ekman Dynamics



Linear solution: Ekman (1905)
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Ekman Transport and Pumping



Ekman Transport and Pumping



Adding the atmospheric boundary layer



Nonlinear boundary layer



Nonlinear boundary layer

Interior, balanced, …



Nonlinear boundary layer

Self-advection 
(Higher higher order)

Stern(1965) Ekman(1905) Higher order 
Niiler(1969) 
Hart(2000) 
W&T(2016)



Stern (1965):  
Interaction of a uniform wind stress with a geostrophic vortex



Stern (1965): 

If  constant:f

Assuming uniform wind stress 
over a nondivergent circular 
eddy (Gaussian streamfunction)

 if  is constant= 0 τa

Rossby Number:
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Stern (1965): 

If  constant:f

Using a velocity dependent stress :

Assuming uniform wind stress 
over a nondivergent circular 
eddy (Gaussian streamfunction)
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x
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Wind stress



Wenegrat and Thomas (2017):  
Ekman Transport in Balanced Currents with Curvature

Balanced natural coordinate system

Transport equations



Solution for a mesoscale vortex ϵ = 0.003
Response to a uniform wind stress over a horizontally nondivergent circular eddy (Gaussian streamfunction)

w′ = we − wStern

Wind stress



Solution for a submesoscale anticyclone ϵ = 0.3

w′ = we − wStern

Wind stress



What about the tendency and self-advection?

Geostrophic currents influence Ekman pumping 

Above: Stern (1965), Niiler(1969), Hart(2000), Wenegrat and Thomas (2016) 

Geostrophic currents influence near-inertial oscillations 

NI energy quickly imprinted on mesoscale eddies by refraction, from cyclones to anticyclones 
-> wave energy exits surface layer (Rocha et al. 2018; Asselin and Young 2020). 

Ekman—Near-Inertial interactions?



Part 1:  
Interaction of Nonlinear Ekman Pumping,  

Near-Inertial Oscillations, and Geostrophic Turbulence 
(With Yanxu Chen and David Straub)

Using a "slab layer" :  
Consider that boundary layer correction is embedded near the top of 
the surface layer of a shallow water model   



Self-advection Stern Ekman Higher order

Interaction of Nonlinear Ekman Pumping,  
Near-Inertial Oscillations, and Geostrophic Turbulence 

(With Yanxu Chen and David Straub)

Tendency

S1:

S2:

2 slab models :



Stand-alone slab model

Response to a uniform 
wind stress blowing over a 
horizontally nondivergent 
circular eddy 

- fast time scale transients 

- transients are evident 
even when forcing is 
ramped up over several 
inertial periods

S1

S2

Wind stress



Stand-alone S1 slab model for a cyclone



Stand-alone S1 slab model using variable wind τ = [τ0 + τ1(t)]



S1:

S2:

Coupled model

Slab

Shallow 
Water
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S2:

Coupled model

Slab

Shallow 
Water



Coupled model Forcing/Dissipation

Wind 
Forcing

Dissipation

 chosen to correspond to an 
Ornstein–Uhlenbeck process 
with damping time scale of 5 
days

An



S1 coupled model results with steady forcing (τ1(t) = 0)



Spinup under  
steady forcing  

using the S2 model
(pumping velocity)



Spinup instability using the S2 model

S2:



Coupled model results with synoptic wind



Interior response



Projections onto  
surface pressure

How does the high-frequency signals project 
onto surface pressure?



Vertical advection terms

S2:



Ongoing work diagnosing non-linear pumping from GCM results 

(Jan Klaus Rieck and David Straub)

All fields are daily averages

… going back to S1 :



Diagnosing non-linear pumping from GCM results



Diagnosing non-linear pumping from GCM results

NL Ekman solver interpolates ug,vg, tau to 
an A grid and uses a vorticity-Bernoulli 
form of the equations. The interpolation 
may serve to reduce the effective 
resolution. Also, the viscous term may be 
too big.

Smoothed version of 
model w-fieldGCM



Diagnosing non-linear pumping from GCM results

Linear Ekman Pumping 
(ocean-dependent stress) NL Ekman Pumping Calculated for the same u_g 

but using atm-only stress



Part 1: Future work

Goal: to ‘disentangle’ submesoscale w into Ekman, waves, … 

Ideally doing so from altimetry/scatterometer data 

Various refinements: e.g. adding info from tendency and self-advection



Part 2: Linear Kinematic Features in sea ice 
(with P. Bourgault, K. Duquette, D. Straub, B. Tremblay )



Vertical ocean heat fluxes beneath Linear Kinematic Features in the Arctic Ocean 

sea-ice divergencesea-ice stress curl

sea-ice shear strain rate w at 40m



Vertical ocean heat fluxes beneath Linear Kinematic Features in the Arctic Ocean 
sea-ice shear strain rate



Model Setup: 3D LES  



Vertical Velocity  



Sensitivity on the size of the periodic domain  



y-averaged circulation 

Deviations 



Vertical heat content change



What explains the Upwelling/Downwelling asymmetry ?

1st possibility, Stern:



Revisiting Stern (1965) using the self-advection term
2nd possibility,



Body force in y direction 
in order to impose  vg = 0

Modified model Setup with 2D LES  
τy



Body force in y direction 
in order to control  vg

Modified model Setup with 2D LES  
τy



Spinup using the body force (vg = 0)

ϵe = 0.01 ϵe = 1

Short ramp

Long ramp



Pumping asymmetry using body force (vg = 0)

ϵe = 0.01

ϵe = 0.5

ϵe = 1



Pumping asymmetry using the body force (vg = 0)



Comparison with Stern:

ϵg = 0.01

ϵg = 0.5

ϵg = 1

Remove body force, varying   while fixing ϵg = ζg/f ϵe = 0.01



Pumping asymmetry comparison: self-advection vs Stern

self-advection

Stern



Addition of both regimes



Addition of both regimes: Spinup (no ramp)



Mechanistic model

Consider the j component of the vorticity :

System of equations at steady state :



A mechanistic model
Assume v is given by (symmetric) linear Ekman solution :



Conclusion Part 1 & 2

Fun !! 
Instability 

 is small 
 approaches 1 

ug

ϵe

First order 
 approaches 1ϵg

Ekman(1905) Higher order 
Curvature of ug

Near-Inertial 
Oscillations 


