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A few introductory facts
on Statistical Modeling



Statistical Modeling

• Some natural phenomena may be too complex or 
too noisy to be described adequately by analytical 
equations alone.

• Nondeterministic models, based on observations : 
deterministic part + stochastic component.

• Small-scale processes : benefit from local 
observations.



Some possible features of statistical methods

• Parametric : simple to very large…
or
Nonparametric methods : flexibility, hyperparameters…
• Underfitting and Overfitting
• Interpretability vs black box : parametric, graphical

aspect, variable importance…
• Computing time

• Several trade-offs to be found.



A short example : 
downscaling for wind
speed



Example : Downscaling for wind speed

For a given location,
using past observations and past forecasts,

can we improve forecasts for a small-scale variable ?

Example : Prediction of wind energy production at a given location.

Data considered :
True observations : one specific location + stations over France
Model data : Numerical Weather Prediction Model outputs from 
the European Center for Medium-Range Weather Forecasts
(ECMWF)



SIRTA Data Alonzo et al., 2018

« Site Instrumental de Recherche 
par Télédétection Atmosphérique »

Atmospheric Remote Sensing 
Instrumental Site

Palaiseau (49N, 2E)
20 km south of Paris (France)
Semi-urban environment



SIRTA Data

Variable of interest : wind speed 
at 10m and 100m.
→  Significant improvement for 
10m wind speed.

Linear regression (parametric)

Random forests (nonparametric, 
based on trees)

Study of the relevance of the 
different explanatory variables



Data over France Goutham et al., 2021

171 locations 

Results : 
• Comparisons of methods
• Study of relevant variables
• Geographical pattern

Reduction of RMSE for 10m wind, in %
→ big improvement in coastal stations
→ moderate inland



Gravity waves and 
parameterizations



Waves due to gravity and to a contrast in density in the vertical (denser fluid below...)

Gravity waves
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Discontinuity in density → Surface gravity waves

Continuous decrease in density → Internal gravity waves
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Gravity waves

Air displaced in the vertical :
- due to mountains (orographic waves)
- by jet streaks, fronts, convection

Impact for the general circulation : vertical transfer of momentum from 
the troposphere to the stratosphere and mesosphere.

Important role in daily weather + long-term climate fluctuations.

 One of the wave families forcing the Quasi-Biennal Oscillation (QBO)

Quantity of interest = GW momentum fluxes
accelerate or decelerate flow higher up = change in air momentum



.

Need of parameterizations

Bauer et al 2015



GW are subgrid scale, unresolved processes

→ necessary to parameterize GW

.

Need of parameterizations

Bauer et al 2015



In climate and weather models, workaround to represent subgrid-scale = 
unresolved processes.

→ Even if unable to include GW in the model, using the knowledge of their
actions, represent their impacts on the resolved flow.

 Universal : in any location, relies on resolved physical variables, not 
location-specific.

 Physics-based : ideally, should be based on physical laws, as the equations
of motions are for the resolved flow.

Example : orographic waves

Parameterizations

Real / realistic Idealized, analytic Parameterization



Parameterizations

GW dynamics simplified to minimum :
- source specification
- vertical propagation
- dissipation and forcing of the flow

Much research targeting sources.
- Fairly arbitrary, poorly constrained.
- Parameters conveniently tuned.
→ Errors, uncertainty

Sources
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Various uses in the field
of Statistics / Machine 
Learning



Some examples of machine learning
applications

Emulate parameterizations to save computing time

« Metamodel » from higher resolution simulations

Data-driven parameterizations built using machine learning

Relate large scale flow to local observations (gravity waves
momentum fluxes) 



Amiramjadi et al, 2020

ECMWF moderate resolution → GW information (target = model information )
ECMWF low resolution → Large-scale flow

Random Forests to reconstruct GWs

Metamodeling



For processes that are resolvable (gravity waves, clouds), short high-
resolution simulations provide information.

→ Capture relationship between resolved and unresolved processes

NN after training Hi-res simulations

Example for convection (clouds) Gentine et al 2018

Data-driven parameterizations using ML



Our framework ERA5 & 
balloons



ECMWF data → Information on the large-scale flow

Stratospheric balloons → Accurate observations on 
gravity waves

ML to reconstruct observed GW momentum fluxes 
from large-scale.



Observations : stratospheric balloons

Superpressure balloons, 11 and 13 m in diameter

Flight levels : ~18 and ~20 km Lifetime : 2 to 3 months



Observations : stratospheric balloons

Stratéole 2 French-US project

2019 campaign C0 :
8 balloons,
November 2019 to February 2020, along the tropics,
680 days of measurements.

Data registered = 30s observations of position (wind), in-situ air 
pressure + temperature.



Observations : stratospheric balloons

Stratéole 2

2021 campaign C1 :
17 balloons
October 2021 to January 2022.



Observations : stratospheric balloons

Unique and valuable source of information on GW :

Quasi-Lagrangian behavior.
→ Direct access to the intrinsic frequency of the GW, thanks to 
in situ measurements
(not remote sensing, from temperature data : incertainty).

→ accurate estimate of key quantities, using wavelet analysis : 
momentum fluxes (Hertzog et al., 2012).

→ Large spatial cover since the balloons drift.



Some remarks on the balloons

Direction :
Surface wind near the Equator has direction EastWest
At balloon altitude, winds alternate between westerlies and 
easterlies, period of ~28 months (QBO)  East
+ reversal
+ 2 balloonsWest (further from the Equator, in South 
hemisphere)

Oscillation period 3min : high frequency GW → period 15min



Explanative variables from Reanalysis ERA5

5th generation of the European Reanalysis

Reanalysis : historical observations + numerical models
→ weather/climate datasets

ERA5 : state-of-the-art global atmospheric reanalysis dataset (hourly
from 1 to 137 vertical levels).

Extracted variables : precipitation, pressure, wind and temperature
profile (67 vertical levels) at 5 x 5 horizontal grid points of 1° x 1°
(100km) resolution.

Question : Which large-scale variables are most informative about GW ?



Explanative variables from Reanalysis ERA5

Inputs :
Temperature : temp
Zonal and meridional wind : u and v

4 levels : 19, 9, 2km and surface level (0km).
log surface pressure: Insp
Solar zenith angle : sza
Precipitation: tp, tpmean, tpsd

Targets : two types of absolute, eastward and westward GWMFs
 High frequency waves (HF) : period 15mn to 1h.
Wide frequency waves (WF) : period 15mn to 1 day.



Statistical learning
framework



We observe a sample from a generic 
random pair taking its values in .

Explain the variable of interest / output using the different features
or inputs 

In other words, based on the data , we look for some function 
such that .

For new , predict associated by .

Statistical learning setting



Cross-validation

Given a number , we divide the sample into blocks (for 
example, or ). 

The -fold cross-validation consists then in giving successively
the status of validation sample to each block, the other blocks 
forming the learning sample.



Cross-validation algorithm

Random partition of into subsets of similar sizes. 

For ,

learning set, validation set.

For a set of values of a parameter to be calibrated , 

construction of the learning method on the set and computation 

of the error on the set : ∈ .

For every value of , average error on the blocks.

Choose the parameter value minimizing the error.



Statistical methods

• Parametric :
• Linear regression : .
• Neural networks

• Nonparametric :
• Neighborhood, proximity notion : nearest neighbor, 

kernel rule
• Trees & aggregation



Statistical methods

Principle of a regression tree.



Statistical methods
Nonparametric tree-based methods : combining several 

regression trees.
 Random forests : bootstrap samples (resampling) = 

bagging + subset of variables, at random.

 ExtraTrees : initial sample, subset of split thresholds, 
at random.

 Boosting : weak estimators, iterative, based on 
weights.



Out of bag samples

For each observation on may construct the 
aggregated rule corresponding to the trees built on 
bootstrap samples in which this observation does 
not appear.

OOB error Cross-validation



Variable importance

At each split in each tree, the improvement in the split-
criterion is  attributed to the splitting variable.
For each variable, values are accumulated over all trees 
in the forest.

When a tree is grown, the prediction accuracy is 
compared with the prediction accuracy when the values 
for the -th variable are randomly permuted in the OOB 
samples.
The decrease in accuracy due to this permuting is 
averaged over all trees and used as a measure of the 
importance of variable . 



Some results on the 
2019 campaign



Predicted and actual absolute GWMF of HF (top) and WF (bottom) waves in 24h 
resolution 

Absolute GWMF : Balloon 2



Predicted and actual eastward GWMF of HF (top) and WF (bottom) waves in 24h resolution 

Eastward GWMF : Balloon 7



Predicted and actual westward GWMF of HF (top) and WF (bottom) waves in 24h resolution 

Westward GWMF : Balloon 8



Feature importance : HF

In general, 
precipitation and 
zonal wind are the 
most important 
features

Wind at balloon
level u19 first in 
eastward case for all 
models

Surface wind also 
very informative in 
many cases



Feature importance : WF

Importance of zonal 
wind for absolute
GWMF 

Wind at balloon
level u19 in 
eastward case for all 
models

Precipitations more 
informative in 
westward cases



Correlations HF (50 runs)

ML methods
perform
similarly

Balloons 2, 6, 8 
well predicted
(cor > 0.7)

Westward
GWMF more 
challenging



Correlations WF (50 runs)

Balloons 2 and 8 
still well
predicted (cor > 
0.7), but not 6

Performance on 
WF often lower



Absolute GWMF vs important variables : Balloon 2

Precipitations correspond 
well to GWMF

Winds seem informative as 
well, both at balloon level
and below



Eastward GWMF vs important variables : Balloon 7

Precipitations not very
informative.



Westward GWMF vs important variables : Balloon 8

Precipitations and wind
seem more informative 
than in previous case



Remark

• Differences HF / WF ?

• Frequency determined by the angle of the phase lines : 
• HF : almost vertical (gravity effective as a restoring force)
• LF : oblique, almost horizontal.

• Air motion parallel to phase lines.

• Local information corresponds well to HF waves propagating 
vertically.

• WF background noise difficult to link to a source.



Some conclusions

• Reconstruction of GWMF up to an encouraging 
level (correlation > 0.7)

→ lower bound on how much can be reconstructed 
from large-scale flow described by reanalysis
• Most informative variables : precipitations + zonal 

wind at and below balloon level
• Ocean / land



Aggregation : statistics & 
parameterizations



Aggregation ML & parameterization (learning on 
2021 observations : Balloon 1



A few thoughts on the results

• Parameterizations catch relevant, valuable and 
nontrivial physics (for some balloons, some 
parameterizations score better)

• There is a wide variety of parameterizations.

• Machine learning extracts information from the 
background flow : good results, but limitations. 
Purely data-driven parameterizations ?



Some perspectives

More data ?
Exploration thanks to high resolution
simulations.

More informative inputs ?
Different kinds of satellite image data : 
knowledge about convection, 
precipitations.


