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2D inhomogeneous incompressible Euler
The inhomogeneous and incompressible Euler equations are

∂tρ+ u · ∇ρ = 0, (x , y) ∈ T× R, t ≥ 0

ρ(∂tu + u · ∇u) +∇P = −ρ(0, g),
div(u) = 0.

▶ Well posedness? Problem: for w := ∇⊥ · u = ∂xu
y − ∂yu

x there is the
baroclinic vorticity production by ρ−2∇⊥ρ · ∇P

▶ Boussinesq approximation (A. Oberbeck 1879 and J. Boussinesq 1903):

ρ̄(∂tu + u · ∇u) +∇P = −ρ(0, g)

with ρ̄ constant

▶ Well posedness Boussinesq? ...Blow-up Elgindi ’19, Chen/Hou ’20,’22,
Elgindi/Pasqualotto ’23...

▶ Long-time behavior Boussinesq? ...Elgindi/Widmayer ’14,
Castro/Cordoba/Lear ’18, Kukavica/Wang ’19, Kiselev/Park/Yao ’22
Zillinger ’20, Masmoudi/Said-Houari/Zhao ’20...

M. Dolce 2D Euler around stratified Couette 2 / 20



2D inhomogeneous incompressible Euler
The inhomogeneous and incompressible Euler equations are

∂tρ+ u · ∇ρ = 0, (x , y) ∈ T× R, t ≥ 0

ρ(∂tu + u · ∇u) +∇P = −ρ(0, g),
div(u) = 0.

▶ Well posedness? Problem: for w := ∇⊥ · u = ∂xu
y − ∂yu

x there is the
baroclinic vorticity production by ρ−2∇⊥ρ · ∇P

▶ Boussinesq approximation (A. Oberbeck 1879 and J. Boussinesq 1903):

ρ̄(∂tu + u · ∇u) +∇P = −ρ(0, g)

with ρ̄ constant

▶ Well posedness Boussinesq? ...Blow-up Elgindi ’19, Chen/Hou ’20,’22,
Elgindi/Pasqualotto ’23...

▶ Long-time behavior Boussinesq? ...Elgindi/Widmayer ’14,
Castro/Cordoba/Lear ’18, Kukavica/Wang ’19, Kiselev/Park/Yao ’22
Zillinger ’20, Masmoudi/Said-Houari/Zhao ’20...

M. Dolce 2D Euler around stratified Couette 2 / 20



Stable steady state: uE = 0, ρ′E (y) < 0

Images from G. Li et al. Nature climate change ’20 (not the coffee).
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Perturbing a stably stratified shear flow

Consider the equilibrium

uE = (U(y), 0), ρE = e−by (Boussinesq : ρE = 1− γy)

with b > 0 (γ > 0). Let w = −U ′(y) + ω, ρ = ρE + ρ̃. Define

θ =
ρ̃

−ρ′E
, β2 = −ρ

′
E

ρE
g = bg (θ =

ρ̃

−ρ′E
, β2 = γg)

(∂t + U(y)∂x)θ = ∂xψ +NLθ

(∂t + U(y)∂x)(ω − b∂xψ) = −β2∂xθ + (U ′′ − bU ′)∂xψ +NLω

∆ψ = ω, v = ∇⊥ψ, (b = 0)

Goal: study the long-time behavior of (ω, θ).
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Linearized Boussinesq Couette: t = 0

Let us consider the Boussinesq case b = 0 with U(y) = y (the Couette flow).

(∂t + y∂x)θ = ∂x∆
−1ω,

(∂t + y∂x)ω = −β2∂xθ,

ωin = 0,∥∥θin∥∥
L2 = 0.524,
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t = 0.1

(∂t + y∂x)θ = ∂x∆
−1ω,

(∂t + y∂x)ω = −β2∂xθ.

Plots of ∥θ∥2,∥ω∥2,∥v x∥2,∥v y∥2 on the left, velocity field on the right.
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t = 16

(∂t + y∂x)θ = ∂x∆
−1ω,

(∂t + y∂x)ω = −β2∂xθ.

Plots of ∥θ∥2,∥ω∥2,∥v x∥2,∥v y∥2 on the left, velocity field on the right.
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Theorem (Bianchini/Coti Zelati/D ’20)

Let β2 > 1/4, b ≥ 0, ρin, v in ∈ H10(T× R). Assuming that U(y) ≈ y , i.e.

∥U ′ − 1∥H6 + ∥U ′′∥H5 ≤ ε, we have

∥(θ − ⟨θ⟩x)(t)∥L2 + ∥(v x − ⟨v x⟩x)(t)∥L2 + (1 + t) ∥v y (t)∥L2 ≲
C in

(1 + t)1/2−
√
ε
.

When U(y) = y , i.e. ε = 0, we have

∥(ω − ⟨ω⟩x)(t)∥L2 + ∥∇(θ − ⟨θ⟩x)(t)∥L2 ≈ c in
√
1 + t.

▶ Upper bounds Boussinesq: Hartman ’75 with asymptotics of hypergeometric
functions for Couette (rigorous by Yang/Lin ’18).
Nualart/Coti Zelati ’23 also in the channel T× [0, 1] with spectral method.

▶ Proof based on energy method in the spirit of Antonelli/D/Marcati ’20 for
compressible fluids around Couette with constant density.
Works in other models as well (also with dissipation): 2D NS-Boussinesq
Zhai-Zhao, 2D NS-MHD D 23, 3D NS-Boussinesq Coti Zelati/Del
Zotto/Widmayer ’24
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Linearized Boussinesq Couette: Fourier analysis

(∂t + y∂x)∂xθ = ∂xx∆
−1ω, (x , y) ∈ T× R

(∂t + y∂x)ω = −β2∂xθ.

Change of coordinates: z = x − yt, v = y . Ω,Θ in the new frame.

Fourier transform: Ω(z , v) = (2π)−1
∑

k∈Z e
ikz
´
R e iηv Ω̂k(η)dη.

d

dt

(
∂̂zΘk

Ω̂k

)
=

 0
1

pk(t, η)
−β2 0

(∂̂zΘk

Ω̂k

)

where p is the symbol of ∂−1
xx ∆ in the new coordinates

pk(t, η) = 1 + (η/k − t)2
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The symmetrization scheme
pk(t, η) = 1 + (η/k − t)2. Define

Z (t) = (p−1/4Ω̂)k(t, η), Q(t) = β(p1/4∂̂zΘ)k(t, η).

Then

d

dt

(
Q(t)
Z (t)

)
=

(
d(t) a(t)
−a(t) −d(t)

)(
Q(t)
Z (t)

)
, d(t) =

1

4

∂tp

p
, a(t) =

β
√
p
.

For k ̸= 0, let

E (t) =
1

2

(
|Z |2 + |Q|2 + 2

d

a
Re(ZQ)

)
(t)

Since |d/a| ≤ 1/(2β), E is coercive if β2 > 1/4 (Miles-Howard criterion).
With a Grönwall type estimate we deduce

cβE
in ≤ E (t) ≤ CβE

in, =⇒ |Z (t)|+ |Q(t)| ≈β E in
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Orr mechanism and the echoes in a nutshell

Since div(v) = 0 =⇒ v · ∇ = v x
0 ∂x + v ̸= · ∇. 2D Euler around Couette is

∂tω + (y + v x
0 (t, y))∂xω = −v ̸= · ∇ω, v = ∇⊥∆−1ω.

An echo. Numerics by Shnirelman ’13.
See also Vanneste et al. ’98.
High-to-low (inverse) frequencies cascade

Toy model used by
Bedrossian/Masmoudi ’13
See also Ionescu/Jia ’19, ’20,
Masmoudi/Zhao ’20

Toy Model: z = x − yt. Then
∇⊥∆−1ω · ∇ω → ∇⊥∆−1

L Ω · ∇Ω.
Approximation:

∂tΩ̂k ≈ F(∂y∆
−1
L Ω ∂zΩ)k .

Bad term for t ≈ η/k and η/k2 ≫ 1

F(∂v∆
−1
L Ω)k =

η

k2

1

1 + |η/k − t|2
Ω̂k .

High-to-low cascade k → k − 1 → . . . 1( η
k2

)( η

(k − 1)2

)
. . .
( η
12

)
≈ e

√
η.
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Rewrite 2D Euler-Boussinesq as

∂tθ + (y + v x
0 (t, y))∂xθ = ∂xψ − v ̸= · ∇θ,

∂tω + (y + v x
0 (t, y))∂xω = −β2∂xθ − v ̸= · ∇ω,

∆ψ = ω, v = ∇⊥ψ.

Consider an initial perturbation θin, ωin ≈ ε (in some space).

▶ v x
0 : perturbative at most on a time-scale O(ε−1). Change of coordinates

z = x − vt, v = y +
1

t

ˆ t

0

v x
0 (τ, y)dτ , (mix Eulerian & Lagrangian)

▶ v ̸=: echoes instability (at least). Some decay from inviscid damping.

▶ From the linearized dynamics, ω,∇θ ≈ t1/2

On a time-scale O(ε−2) they might become of size O(1).
Out of a perturbative regime.

Claim: the linearized behavior persists up to t = O(ε−2).

M. Dolce 2D Euler around stratified Couette 12 / 20



Fix s > 1/2, the Gevrey-1/s is ∥f ∥2Gλ =
∑

k∈Z
´
R e2λ(|k|+|η|)s |f̂k(η)|2dη.

Theorem (Bedrossian/Bianchini/Coti Zelati/D ’21)

Let λ0 > λ′ > 0 and 0 < ε≪ δ < 1. Assume ∥v in∥L2 + ∥ωin∥Gλ0 + ∥θin∥Gλ0 < ε.
For all 0 ≤ t ≤ δ2ε−2 we have ∥v x

0 (t)∥Gλ′ ≲ ε and

∥ω(t, x + vt, y)∥Gλ′ + (1 + t)∥(∂xθ)(t, x + vt, y)∥Gλ′ ≲ ε(1 + t)
1
2 ,

∥∂xθ(t)∥L2 + ∥(v x − ⟨v x⟩x)(t)∥L2 + (1 + t)∥v y (t)∥L2 ≲
ε

(1 + t)
1
2

.

There exists K = K (β, λ0, s) > 0 such that if
∥∥ωin

∥∥
H−1 + ∥θin∥L2 ≥ Kδε then

∥(ω − ⟨ω⟩x)(t)∥L2 + ∥∇(θ − ⟨θ⟩x)(t)∥L2 ≈ ε(1 + t)
1
2 .

▶ Stratified fluids without gravity: same setting of us, modified scattering
(t → ∞) and nonlinear inviscid damping Chen/Wei/Zhang/Zhang ’23.
Zhao ’23 in T× [0, 1], general strictly monotone shear and density ρE .
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The nonlinear change of coordinates

The shear flow profile is now y + ux0 (t, y). The natural change of coordinates is

z = x − vt, v = y +
1

t

ˆ t

0

ux0 (τ, y)dτ

v̇ := ∂tv , v ′ := ∂yv , ∇ = (∂z , ∂v ),

∆NL := ∂zz + (v ′)2(∂v − t∂z)
2 + v ′′(∂v − t∂z).

Let (Ω,Θ,Ψ)(t, z , v) = (ω, θ, ψ)(t, x , y). Then

∂tΘ = ∂zΨ− U · ∇Θ,

∂tΩ = −β2∂zΘ− U · ∇Ω,

U := (0, v̇) + v ′∇⊥Ψ ̸=, ∆NLΨ = Ω.

Remark: Equations for the coordinate change are the same as 2D Euler, but

∂t(t(1− v ′)) = −ω0 ≲ εt
1
2 =⇒ |1− v ′| ≲ εt

1
2

M. Dolce 2D Euler around stratified Couette 14 / 20



Nonlinear Symmetrization scheme
Recall that pk(t, η) = 1 + (η/k − t)2 and Z = p−1/4Ω̂, Q = βp1/4∂̂zΘ.

∂tZ = −1

4

∂tp

p
Z − β

√
p
Q −p−1/4F(U · ∇Ω)

∂tQ =
β
√
p
Z +

1

4

∂tp

p
Q −βp1/4F(∂z(U · ∇Θ)) −βp3/4F((∆NL −∆L)Ψ)

▶ Goal: ∥Z (t)∥Gλ + ∥Q(t)∥Gλ ≲ ε. A direct estimate does not work (there are
regularity losses).

▶ Blue term is subtle: upper bound O(ε2t−1/2). Integrated in time
O(ε2t1/2) = O(εδ).

▶ Red terms are clearly dangerous: toy model to estimate high-to-low cascade.

▶ Based on toy model, design a weight Ak(t, η) to weaken the norms in energy
estimates (e.g. Nirenberg, Foias/Temam, Alinhac...).
Weight ∼ artificial damping: choose A > 0 s.t. ∂tA < 0:

∂t(AZ ) = −|∂tA/A|(AZ ) + A∂tZ

▶ Use the linear energy functional (at least).
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Nonlinear growth: towards a Toy model

Consider the approximations

∂tZk ≈ p1/4F(∇⊥∆−1
L Ω · ∇Ω)k ≈ p1/4F(∂v∆

−1
L Ω ∂zΩ)k .

Note that

F(∂v∆
−1
L Ω)k =

η

k2

1

1 + |t − η/k |2
Ω̂k =

η

k2

1

(1 + |t − η/k|2)3/4
Zk

The Orr mechanism: if η/k2 ≫ 1 at time t ≈ η/k we have a growth.

Paraproduct: fg = fHiglo + flogHi +R. We are concerned with

∂tZk ≈ p1/4F((∂v∆
−1
L Ω)Hi (∂zΩ)lo)k ,

since we expect (∂v∆
−1
L Ω)lo ≈ εt−3/2.
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The toy model: resonant vs non-resonant
▶ (∂zΩ)lo ≈ εt

1
2 : concentrated at frequencies k ± 1 and η = 0.

▶ High-to-low cascade. Interactions k → k − 1. For times |t − η/k| ≤ η/k2

∂tZk =

(
k2

η

)1/2
εt

1
2

(1 + |t − η/k |2)1/4
Zk−1

∂tZk−1 =
( η
k2

)1/2 εt
1
2

(1 + |t − η/k |2)3/4
Zk

▶ When εt
1
2 ≤ 1, maximal growth of order (η/k2)c .

Then, k − 1 → k − 2 at time t ≈ η/(k − 1) will grow (η/(k − 1)2)c . Overall(
η

k2

η

(k − 1)2
. . .

η

1

)c

=

(
ηk

(k!)2

)c

≈ 1
√
η
ec

√
η, when k =

√
η

▶ Our toy model predicts a different regularity unbalance between Zk and Zk−1

w.r.t. the homogeneous case (B/M ’13).
In Zillinger ’22 a more refined toy model potentially usefull for ε−2 < t < ε−q

(with more regularity).
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Let σ > 10, s > 1/2. The weight A is chosen as follows

Ak(t, η) = ⟨|k |+ |η|⟩σ eλ(t)(|k|+|η|)s (m−1w−1)k(t, η),

where ∂tλ = −1/ ⟨t⟩1+δ, mk(t, η) = exp(Cβ arctan(t − η/k)).
w−1 is built on the toy model (different regularity unbalances w.r.t. B/M ’13).

(
η
k2

)c+1/2

(
η
k2

)c
w−1
k (t, η)

e
√
η

1 √
η η

k+1
η
k

η
k−1

2η t

▶ w is for nonlinear errors, m for the linear ones. Useful when
√
η ≤ t ≤ 2η

▶ λ(t) is “classical” and useful when t ≤ √
η and t ≥ 2η.
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Energy functionals and their bounds to bootstrap

Energy estimates are made in a bootstrap scheme up to times t ≤ δ2ε−2.

▶ The linear energy functional (coercive if β2 > 1/4).

EL(t) =
1

2

(
∥AZ∥2L2 + ∥AQ∥2L2 −

1

2β

〈
∂tp√
p
AZ ,AQ

〉
L2

)
.

Goal: EL(t) ≲ ε2.
Bounds on Z ,Q are not enough to control the nonlinearities.

▶ The natural nonlinear energy (∇L = (∂z , ∂v − t∂z))

En(t) =
1

2

(
∥AΩ∥2L2 + β2∥A∇LΘ∥2L2

)
.

Goal: En(t) ≲ ε2t ≲ δ2.
At the highest level of regularity. Control on Z ,Q is crucial to bound En.

▶ Energy for the coordinate change Ev (t) = . . . (awful).
Goal: Ev (t) ≲ ε2t ≲ δ2.
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Instability
Call X (t) = (Z (t),Q(t)), then

d

dt
X (t) = L(t)X (t) +N (t,X (t)), L(t) =

(
−d(t) −a(t)
a(t) d(t)

)
,

d(t) = 1
4 (∂tp)/p, a(t) = β/

√
p, p = 1 + (η/k − t)2 and N contains all the

nonlinearities.

▶ Let ΦL(t, τ) be the solution operator of the linear problem, we rewrite

X (t) = ΦL(t, 0)X (0) +

ˆ t

0

ΦL(t, s)N (s,X (s))ds.

▶ From the linearized analysis, point-wise in t, k , η we have

cβ |F | ≤ |ΦL(t, s)F | ≤ Cβ |F |.

▶ Combining these information with the stability part, we show that

∥(ω − ⟨ω⟩x)(t)∥L2 + ∥∇(θ − ⟨θ⟩x)(t)∥L2 ≈ ε ⟨t⟩
1
2
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Possible future directions

▶ Energy approach for β2 ≤ 1/4?

▶ What happens for times t > δε−2? Zillinger ’22 has a toy model that might
be useful (but not with lower bounds).

▶ The analogous result without the Boussinesq approximation should be true.
Can one use the method of Zhao ’23 for inhomogeneous Euler without gravity
to address general strictly monotone shear flows and densities in T× [0, 1]?

▶ Long time growth as ∥ωθ/r∥2 + ∥rvθ∥2 ≈
√
t in 3D axi-symmetric Euler?

▶ Many questions are still unanswered also in the 2D homogeneous case...
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