Articles :

1. Lars Andersson, Dietrich Häfner, Bernard F. Whiting, Mode analysis for the linearized Einstein equations on the Kerr metric : the large a case, to appear in J. Eur. Math. Soc., arXiv:2207.12952.

2. Christian Gérard, Dietrich Häfner, Michal Wrochna, The Unruh state for massless fermions on Kerr spacetime and its Hadamard property, Ann. Sci. Ecole Norm. Sup. 56 (2023), 127-196, arXiv:2008.10995.

3. Dietrich Häfner, Mokdad Mokdad, Jean-Philippe Nicolas, Scattering theory for Dirac fields inside a Reissner-Nordström-type black hole, J. Math. Phys. 62 (2021), 081503, 15 p., arXiv:2007.16139.

4. Nicolas Besset, Dietrich Häfner, Existence of exponentially growing finite energy solutions for the charged Klein-Gordon equation on the De Sitter-Kerr-Newman metric, J. Hyperbolic Differ. Equ. 18 (2021), 293-310, arXiv:2004.02483.

5. Dietrich Häfner, Peter Hintz, Andras Vasy, Linear stability of slowly rotating Kerr black holes, Invent. Math. 223 (2021), 1227-1406, arXiv:1906.00860.

6. Dietrich Häfner, Cécile Huneau, Instability of infinitely many stationary solutions of the SU(2) Yang-Mills fields on the exterior of the Schwarzschild black hole, Adv. Diff. Equ. 24 (2019), 435-464, arXiv:1612.064596.

7. Sari Ghanem, Dietrich Häfner, The decay of the SU(2) Yang-Mills fields on the Schwarzschild black hole for spherically symmetric small energy initial data, J. Geom. Phys. 123 (2018), 310-342, arXiv:1604.04477.

8. Vladimir Georgescu, Christian Gérard, Dietrich Häfner, Asymptotic completeness for superradiant Klein-Gordon equations and applications to the De Sitter-Kerr metric, J. Eur. Math. Soc. 19 (2017), 2371-2444, arXiv: 1405.5304.

9. Vladimir Georgescu, Christian Gérard, Dietrich Häfner, Resolvent and propagation estimates for Klein-Gordon equations with non-positive energy, J. Spectr. Theory 5 (2015), no. 1, 113-192, arXiv: 1303.4610.

10. Vladimir Georgescu, Chrsitian Gérard, Dietrich Häfner, Boundary values of resolvents of self-adjoint operators in Krein spaces, J. Funct. Anal. 265 (2013), no. 12, 3245-3304, arXiv:1211.0791.

11. Jean-François Bony, Dietrich Häfner, Improved local energy decay for the wave equation on asymptotically Euclidean odd dimensional manifolds in the short range case, J. Inst. Math. Jussieu 12 (2013), no. 3, 635–650, arXiv:1107.5251.

12. Jean-François Bony, Dietrich Häfner, Local energy decay for several evolution equations on asymptotically euclidean manifolds, Ann. Sci. Ecole Norm. Sup. (4) 45 (2012), 311-335 , arXiv:1008.2357.

13.  Dietrich Häfner, Jean-Philippe Nicolas, The characteristic Cauchy problem for Dirac fields on curved backgrounds, J. of Hyperbolic Differ. Equ. 8 (2011), 437-483, arXiv:0903.0515.

14. Jean-François Bony, Dietrich Häfner, Low frequency resolvent estimates for long range perturbations of the Euclidean Laplacian, Math. Res. Lett. 17 (2010), no. 2, 301-306, arXiv:0903.5531.

15.  Jean-François Bony, Dietrich Häfner, The semilinear wave equation on asymptotically Euclidean manifolds, Comm. Partial Differential Equations 35 (2010), 23-67, arXiv:0810.0464.

16.  Dietrich Häfner, Creation of fermions by rotating charged black holes, Mémoires de la SMF 117 (2009), 158 pp,  arXiv : math/0612501.

17. Jean-François Bony, Dietrich Häfner, Decay and non-decay of the local energy for the wave equation in the De Sitter - Schwarzschild metric,
Comm. Math. Phys. 282 (2008), no. 3, 697-719,  arXiv:0706.0350.

18. Jean-François Bony, Rémi Carles, Dietrich Häfner, Laurent Michel, Scattering theory for the Schrödinger equation with repulsive potential,
J. Math. Pures Appl. 84 (9) (2005), no. 5, 509-579,  arXiv:math/0402170.

19. Jean-François Bony, Rémi Carles, Dietrich Häfner, Laurent Michel, Scattering pour l’équation de Schrödinger en présence d’un potentiel répulsif,
C.R. Acad. Sci. Paris, Ser. I 338 (2004), no. 6, 453-456.

20. Dietrich Häfner, Jean-Philippe Nicolas, Scattering of massless Dirac fields by a Kerr black hole, Rev. Math. Phys. 16 (2004), no. 1, 29-123.

21. Dietrich Häfner, Sur la théorie de la diffusion pour l’équation de Klein-Gordon dans la métrique de Kerr, Dissertationes Mathematicae 421 (2003) : 102 pp.

22. Dietrich Häfner, Complétude asymptotique pour l’équation des ondes dans une classe d’espaces-temps stationnaires et asymptotiquement plats,
Ann. Inst. Fourier (Grenoble) 51 (2001), no. 3, 779-833.

23. Dietrich Häfner, Régularité Gevrey pour un système Schrödinger-Poisson dissipatif, C.R. Acad. Sci. Paris Ser. I 326 (1998), no. 7, 829-832.

 Proceedings :

24. Asymptotic analysis in General Relativity, edited by Thierry Daudé, Dietrich Häfner and Jean-Philippe Nicolas, London mathematical Society Lecture Note Series 443, Cambridge University Press, 2018.

25. Dietrich Häfner, Boundary values of Resolvents of Self-Adjoint Operators in Krein Spaces and Applications to the Klein-Gordon Equation, Marius Mantoiu, Gregori Raikov, Rafel Tiedra de Aldecoa (Ed.), Spectral Theory and Mathematical Physics, Operator Theory Advances and Applications 254, 133-148 (2016).

26. Dietrich Häfner, Jean-François Bony, Local energy decay for several evolution equations on asymptotically euclidean manifolds, Daniel Grieser, Stefan Teufel, Andras Vasy (ed.), Microlocal Methods in Mathematical Physics and Global Analysis, Trends in Mathematics, Springer Basel, 117-120 (2013).

27. Dietrich Häfner, Some mathematical aspects of the Hawking effect for rotating black holes, Finster, Felix (ed.) et al., Quantum field theory and gravity. Conceptual and mathematical advances in the search for a unified framework. Papers based on the presentations at the conference, Regensburg, Germany, September 28 to October 1, 2010. Berlin: Springer. 121-136 (2012).

28. Dietrich Häfner, Jean-Philippe Nicolas, Théorie de la diffusion pour l’équation de Dirac sans masse dans la métrique de Kerr, Séminaire Equations aux Dérivées Partielles 2002-2003, Exp. No. XXIII, 15 pp, Ecole polytechnique, Palaiseau, 2003.

Other Publications :

29. Dietrich Häfner, Some contributions to scattering theory in general relativity, habilitation thesis, Université Bordeaux 1, 2008.

30. Dietrich Häfner, Théorie de la diffusion en relativité générale : équation des ondes dans des espaces-temps stationnaires
asymptotiquement plats et équation de Klein-Gordon dans l’espace-temps de Kerr, PhD thesis, Ecole polytechnique, 2000.

31. Dietrich Häfner, Gevrey Regularität für ein gedämpftes Schrödinger-Poisson System, diploma thesis, Universität zu Köln, 1997.