Olivier Graf

Maître de conférences à l'Institut Fourier.

firstname.lastname at univ-grenoble-alpes.fr

Bureau 206
Université Grenoble Alpes
Institut Fourier
100 rue des maths
38610 Gières, France


Séminaire de physique mathématique

Page de l'IF, Calendrier prévisionnel



Research interests

I study the Einstein equations of general relativity. My general goal is to understand the long time behaviour (local/global existence, stability) of the solutions to the associated Cauchy problem. During my PhD, I obtained results when part of the initial data for the Cauchy problem are prescribed on characteristic hypersurfaces. Now I am also working on the (in)stability of the Kerr-anti-de Sitter family of black holes.


Publications and preprints

  • O. Graf, G. Holzegel, Linear Stability of Schwarzschild-Anti-de Sitter spacetimes III: Quasimodes and sharp decay of gravitational perturbations, October 2024, 37 pages, arXiv.
  • O. Graf, G. Holzegel, Linear Stability of Schwarzschild-Anti-de Sitter spacetimes II: Logarithmic decay of solutions to the Teukolsky system, August 2024, 48 pages, arXiv.
  • O. Graf, G. Holzegel, Linear Stability of Schwarzschild-Anti-de Sitter spacetimes I: The system of gravitational perturbations, August 2024, 54 pages, arXiv.
  • O. Graf, G. Holzegel, Mode stability results for the Teukolsky equations on Kerr-anti-de Sitter spacetimes, Class. Quantum Grav. 40, 4 (2023), 43 pages, arXiv, journal.
  • O. Graf, Global nonlinear stability of Minkowski space for spacelike-characteristic initial data, to appear in Mémoires de la SMF, October 2020, 252 pages, arXiv.
  • O. Graf, S. Czimek, The spacelike-characteristic Cauchy problem of general relativity in low regularity, Ann. PDE 8, 22 (2022), 63 pages, arXiv, journal.
  • O. Graf, S. Czimek, The canonical foliation on null hypersurfaces in low regularity, Ann. PDE 8, 23 (2022), 77 pages, arXiv, journal.


Miscellaneous

  • Le problème de Cauchy spatial-caractéristique avec courbure L2 en relativité générale, proceedings of the Séminaire Laurent Schwartz (here is a link).
  • Les défis mathématiques des équations d'Einstein, article dans la revue publiée pour le 22ème Salon Culture et Jeux Mathématiques.
  • Ma thèse dans Tangente, article pour l'édition de Janvier-Février 2022 du magazine Tangente, en partenariat avec la SMF.
  • The manuscript of my PhD thesis.
  • A short CV in french.

Un trou noir à Grenoble ! (Graphisme: Fanny Bastien CNRS / Image: Alain Riazuelo, IAP/UPMC/CNRS)