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Abstract. We asymptotically estimate from above the expected Betti numbers of random real hy-
persurfaces in smooth real projective manifolds. Our upper bounds grow as the square root of the
degree of the hypersurfaces as the latter grows to infinity, with a coefficient involving the Kählerian
volume of the real locus of the manifold as well as the expected determinant of random real symmet-
ric matrices of given index. In particular, for large dimensions, these coefficients get exponentially
small away from mid-dimensional Betti numbers. In order to get these results, we first establish
the equidistribution of the critical points of a given Morse function restricted to the random real
hypersurfaces.
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1. Introduction

How many real roots does a random real polynomial have? This question was answered
by M. Kac [20] in the 40’s and, for a different measure, by E. Kostlan [21] and by M. Shub
and S. Smale [36] in the 90’s. In higher dimensions, this question may become: what is the
topology of a random real hypersurface in a given smooth real projective manifold? The
mean Euler characteristic of such random real hypersurfaces in RP n has been computed
by S. S. Podkorytov [33] and P. Bürgisser [5], while the mean total Betti number has been
estimated from above by the present authors [16] (see also [14]). In the case of spherical
harmonics in dimension two, rather precise estimates have been obtained by F. Nazarov
and M. Sodin [31], partially extended to higher dimensions using the same approach by
A. Lerario and E. Lundberg [24].

Our aim is to improve our previous results [16] by getting upper bounds for all in-
dividual Betti numbers of random real hypersurfaces. Let X be a smooth n-dimensional
complex projective manifold defined over the reals and let RX be its real locus. Let L be
a real ample line bundle over X. We equip L with a real Hermitian metric h of positive
curvature ω, andX with a normalized volume form dx. These induce an L2 inner product
on all spaces of global holomorphic real sections RH 0(X,Ld) for all tensor powers Ld

of L, d > 0 (see §2.1.2). The latter spaces then inherit Gaussian probability measures
µR (see (2.3)), with respect to which we are going to consider random sections; see [16,
§3.1.1] for a discussion on this choice (previously considered in [21], [36], [33], [5], [22])
and on other possible ones (compare [35], [4], [24]).

For every generic section σ ∈ RH 0(X,Ld), the real locus RCσ of its vanishing
locus Cσ is a smooth hypersurface of RX, if non-empty. For every i ∈ {0, . . . , n− 1}, we
denote by mi(RCσ ) the infimum over all Morse functions f on RCσ of the number of
critical points of index i of f . This Morse number (compare [29, Definition 2.4]) bounds
from above all ith Betti numbers of RCσ , for any coefficient ring, as follows from Morse
theory, the upper bound being strict in general due to the Morse inequalities (see, e.g.,
[28]). We then denote by E(mi) the average value of this Morse number,

E(mi) =

∫
RH 0(X,Ld )

mi(RCσ ) dµR(σ ). (1.1)

Our aim is to prove the following upper bound for this expectation:
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Theorem 1.1. Let X be a smooth real projective manifold of dimension n > 0 and
(L, h) be a real Hermitian line bundle of positive curvature over X. Then, for every
i ∈ {0, . . . , n− 1},

lim sup
d→∞

1
√
d
nE(mi) ≤

Volh(RX)
√
π

eR(i, n− 1− i).

Moreover, when n = 1, the lim sup is a limit and the inequality an equality, so that

lim
d→∞

1
√
d
E(m0) =

Lengthh(RX)
√
π

. (1.2)

In Theorem 1.1, Volh(RX) denotes the Riemannian volume of RX for the Kähler metric
induced by the curvature form ω of h. In contrast with Volh(X) =

∫
X
c1(L)

n, it depends
on the germ of the metric h on RX. Note that for n = 1, the Morse numberm0(RCσ ) just
corresponds to the number of real zeros of the section σ . It turns out that Theorem 1.1,
as well as Theorem 1.2 and Corollary 1.5, does not depend on the normalized volume
form dx chosen on X to define the L2 inner product on RH 0(X,Ld) (compare [35]).

The coefficient eR(i, n − 1 − i) is itself part of a mathematical expectation, namely
the integral of (the absolute value of) the determinant on symmetric matrices of signa-
ture (i, n − 1 − i) (see §2.1.5). More precisely, the space Sym(n − 1,R) of symmetric
(n − 1) × (n − 1) matrices has a natural Gaussian measure that we also denote by µR.
Let Sym(i, n− 1− i,R) be the open subset of matrices of signature (i, n− 1− i). Then,
for every i ∈ {0, . . . , n− 1},

eR(i, n− 1− i) =
∫

Sym(i,n−1−i,R)
|detA| dµR(A), (1.3)

eR(n− 1) =
∫

Sym(n−1,R)
|detA| dµR(A). (1.4)

Here, by convention, eR(0) = eR(0, 0) = 1.
Note that when X = CP 1, L = OCP 1(1) and h is the Fubini–Study metric,

VolFS(RP 1) =
√
π , so that the limit (1.2) in Theorem 1.1 recovers asymptotically the

results of Kostlan and Shub–Smale, according to which a random degree d real polyno-
mial in one variable has

√
d roots for our choice of the probability measure. The initial

result of M. Kac was instead expecting asymptotically (2/π) log d real roots, but for a dif-
ferent probability measure (see [16, §3.1.1]). When X = CP 2, P. Sarnak and I. Wigman
informed us in 2011 that they were also able to bound E(b0) from above by anO(d) term
as in Theorem 1.1. It has just been shown by A. Lerario and E. Lundberg [24] in projec-
tive spaces that when the Gaussian measure arises from the L2 scalar product defined by
integration over RP n instead of CP n, the expected number of connected components of a
random real hypersurface of degree d is bounded from below by εdn for some positive ε.
They follow the approach of F. Nazarov and M. Sodin [31]. Theorem 1.1 improves our
previous results of [16], where the best upper bounds we could get wereO(

√
d log d

n
) in

some cases.
Theorem 1.1 turns out to be a consequence of a more precise equidistribution result.

Namely, when n > 1, we equip RX with a fixed Morse function p : RX→ R. Then, for
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every generic section σ ∈ RH 0(X,Ld), p restricts to a Morse function on RCσ and we
denote by Criti(p|RCσ ) the set of critical points of index i of this restriction. We set

νi(RCσ ) =
1
√
d
n

∑
x∈Criti (p|RCσ )

δx, (1.5)

the empirical measure on these critical points, where δx denotes the Dirac measure at x,
and

E(νi) =

∫
RH 0(X,Ld )

νi(RCσ ) dµR(σ ). (1.6)

When n = 1, ν0 denotes the empirical measure on RCσ . Then we get

Theorem 1.2. Let X be a smooth real projective manifold of dimension n > 0 and L
be a real ample holomorphic line bundle over X equipped with a real Hermitian metric
of positive curvature ω. Let p : RX → R be a Morse function. Then, for every i ∈
{0, . . . , n− 1}, the measure E(νi) weakly converges to (1/

√
π)eR(i, n− 1− i)dvolh as

d →∞ (see (1.3)).

In Theorem 1.2, dvolh denotes the Lebesgue measure of RX induced by its Riemannian
metric, which is itself induced by the Kähler metric of X defined by ω.

We also establish such an equidistribution result for critical points of complex hyper-
surfaces, where the Morse function p on RX is replaced by a Lefschetz pencil on X and
RH 0(X,Ld) by H 0(X,Ld). We set, for every d > 0,

E(ν) =

∫
H 0(X,Ld )

ν(Cσ ) dµC(σ ), (1.7)

where µC is the Gaussian measure on H 0(X,Ld) induced by the L2 Hermitian product
(see (2.1) and (2.2) below), Cσ is the vanishing locus of σ ∈ H 0(X,Ld), and

ν(Cσ ) =
1
dn

∑
x∈Crit(p|Cσ )

δx . (1.8)

Theorem 1.3. Let X be a smooth complex projective manifold of dimension n > 0 and
let L be an ample holomorphic line bundle on X equipped with a Hermitian metric of
positive curvature ω. Let p : X 99K CP 1 be a Lefschetz pencil. Then the measure E(ν)
defined by (1.7) weakly converges to ωn as d →∞.

By “weak convergence” in Theorem 1.3, we mean that for every continuous function
χ : X→ R, 〈E(ν), χ〉 converges to

∫
X
χωn as d →∞, where

〈E(ν), χ〉 =
1
dn

∫
H 0(X,Ld )\1dp

( ∑
x∈Crit(p|Cσ )

χ(x)
)
dµC(σ )

(see §2.1.3 for the definition of the singular locus 1dp). Note that Theorem 1.3 slightly
improves [16, Theorem 3] and that similar equidistribution results can be found in [10],
[11], [25], [16], or also [13], [2], [7], [32], where random functions are studied.
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In order to prove Theorem 1.2, we roughly follow the approach of [36]. We introduce
the incidence variety 6i = {(σ, x) ∈ RH 0(X,Ld)×RX | x ∈ Criti(p|RCσ )} and express
E(νi) as the push-forward onto RX of the Gaussian measure µR of RH 0(X,Ld) “pulled
back” on 6i . This push-forward measure is then computed asymptotically thanks to the
coarea formula and peak sections of Hörmander. The latter indeed make it possible to
compute pointwise the measure in terms of the 2-jets of sections (see Section 2).

Now, what are the values of the expectations eR(n), n > 0, and how do these distribute
between the different eR(i, n− i), 0 ≤ i ≤ n? We devote the third section to this question
and get:

Theorem 1.4. When n is odd, eR(n) = 2
√

2
π
0
(
n+2

2

)
, while when n = 2m is even,

eR(n) = (−1)m
n!

m!2n
+ (−1)m−1 4

√
2 n!

√
π m!2n

m−1∑
k=0

(−1)k
0(k + 3/2)

k!
. (1.9)

Theorem 1.4 follows from Propositions 3.9 and 3.11 and Corollary 3.13. In both cases,
eR(n) is equivalent to 2

√
2

π
0
(
n+2

2

)
as n→∞. The odd case in Theorem 1.4 was known

(see [27, §26.5]), but we could only find the even case in terms of hypergeometric func-
tions in the literature (see [8]). It turns out that eR(n) is transcendental for odd n and alge-
braic in Q(

√
2) for even n. We can now rewrite the bound deduced from Theorem 1.1 for

the expected total Morse numberE(m∗) =
∑n−1
i=0 E(mi) as follows (see Remark 2.14(3)).

Corollary 1.5. Under the hypotheses of Theorem 1.1, for every even n > 0,

lim sup
d→∞

1
√
d
nE(m∗) ≤

2
√

2
π

Volh(RX)
VolFS(RP n)

.

For odd n, this inequality holds asymptotically in n. ut

In particular, for every even-dimensional projective space, the right-hand side in Corol-
lary 1.5 turns out not to depend on the dimension of the space. Finally, we get the follow-
ing exponential decay away from the mid-dimensional Betti numbers:

Theorem 1.6. For every α ∈ [0, 1/2[, there exists cα > 0 such that for large values of
n ∈ N∗,

bαnc∑
i=0

eR(i, n− i) ≤ exp(−cαn2).

This concentration near matrices having as many positive as negative eigenvalues actually
follows from the large deviations estimates near the Wigner semi-circle law established
in [3]. As a consequence of Theorem 1.6, for large values of n, the upper bound for the
expected total Morse number of RCσ given by the right-hand side of Theorem 1.1 dis-
tributes between the individual upper bounds for the different Morse numbers in such
a way that it gets concentrated around the mid-dimensional ones and exponentially de-
creases away from them. The Betti numbers of Cσ themselves are actually concentrated
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at the mid-dimension ones, from the Lefschetz hyperplane theorem (see [16, Lemma 3]).
Note that similar phenomena are observed in [22] and [23].

Let us finally mention the recent announcements [37] and [34], the numerical esti-
mations carried out in [30] and our own papers [15] and [17]. In [15], we proved that
for every closed possibly disconnected hypersurface 6 of Rn, the expected number of
appearances of the scheme (Rn, 6) in the vanishing locus of a random real section of Ld

grows faster than a positive constant times
√
d
n

as d → ∞. In particular, we obtain a
lower estimate for the expected Betti numbers similar to the upper ones of Theorem 1.1.
In [17], we extended these results to random submanifolds of higher codimensions.

The second section of this paper is devoted to Theorems 1.1, 1.2 and 1.3. A key role is
played by Hörmander peak sections (see §2.2). The third section is devoted to Theorems
1.4 and 1.6 and the study of determinants of random symmetric matrices, where we recall
several classical results for the reader’s convenience.

2. Expected Morse numbers of random real hypersurfaces

2.1. Notation

2.1.1. The polarized projective manifold (X,L, h). Let X be a smooth complex pro-
jective manifold of positive dimension n. When X is defined over R, we denote by
cX : X → X the associated antiholomorphic involution, called the real structure, and
by RX ⊂ X the real locus of the manifold, that is, the fixed point set of cX. Likewise,
let L be an ample holomorphic line bundle over X (sometimes called a polarization)
equipped with a Hermitian metric h of positive curvature. We denote by ω the curvature
form of h, so that for every local non-vanishing holomorphic section e of L defined over
an open subset U of X,

ω|U =
1

2iπ
∂∂̄ logh(e, e).

We denote by g = ω(·, J ·) the induced Kähler metric onX, where J denotes the complex
structure of TX.

When X and L are defined over R, we denote by cL the associated real structure
of L and assume that h is real, so that c∗Lh = h. The restriction of g to RX is a Rie-
mannian metric and we denote by Volh(RX) the total volume of RX for the associated
Lebesgue measure dvolh. Note that the volume of X is independent of the metric h and
equals Vol(X) =

∫
X
ωn/n! = (1/n!)

∫
X
c1(L)

n. We denote by dx = (1/
∫
X
ωn)ωn the

normalized volume form of X, or any volume form on X with total volume one.

2.1.2. The Gaussian measures µR and µC. For every d > 0, we denote by Ld the
dth tensor power of L and by hd the induced Hermitian metric on Ld . We denote by
H 0(X,Ld) the complex vector space of global holomorphic sections of Ld and by Nd
the complex dimension ofH 0(X,Ld). In what follows, by dimension of a complex space
we will always mean its complex dimension. We denote then by 〈·, ·〉 the L2 Hermitian
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product on this vector space, defined by the relation

∀σ, τ ∈ H 0(X,Ld), 〈σ, τ 〉 =

∫
X

hd(σ, τ ) dx. (2.1)

The associated Gaussian measure is denoted by µC. It is defined, for every open subset U
of H 0(X,Ld), by

µC(U) =
1
πNd

∫
U

e−‖σ‖
2
dσ, (2.2)

where dσ denotes the Lebesgue measure of H 0(X,Ld). When L is defined over R, we
denote by RH 0(X,Ld) the real vector space of real sections of Ld , consisting of sections
σ ∈ H 0(X,Ld) satisfying cL ◦ σ ◦ cX = σ . Its real dimension equals Nd . The L2

Hermitian product 〈·, ·〉 given by (2.1) restricts to a scalar product on RH 0(X,Ld), which
we also denote by 〈·, ·〉. The associated Gaussian measure is denoted by µR and defined
for every open subset RU of RH 0(X,Ld) by

µR(RU) =
1
√
π
Nd

∫
RU
e−‖σ‖

2
dσ. (2.3)

2.1.3. The discriminant loci 1d and 1dp. For every d > 0, we denote by 1d (resp.
R1d ) the discriminant hypersurface of H 0(X,Ld) (resp. RH 0(X,Ld)), that is, the set
of sections σ ∈ H 0(X,Ld) (resp. σ ∈ RH 0(X,Ld)) which do not vanish transversely.
For every σ ∈ H 0(X,Ld) \ {0}, we denote by Cσ (resp. RCσ ) the vanishing locus of
σ in X (resp. its real locus when σ ∈ RH 0(X,Ld)). For every σ ∈ H 0(X,Ld) \ 1d ,
Cσ is then a smooth hypersurface of X. When σ is real, RCσ is of dimension n− 1 when
non-empty and we denote, for i ∈ {0, . . . , n − 1}, by mi(RCσ ) the minimum number of
critical points of index i of a Morse function on RCσ .

Definition 2.1. A Lefschetz pencil on X is a rational map p : X 99K CP 1 having only
non-degenerate critical points and defined by two sections of a holomorphic line bundle
with smooth and transverse vanishing loci.

We denote by B the base locus of a Lefschetz pencil p, given by Definion 2.1, that is, the
codimension two submanifold of X where p is not defined. A Lefschetz pencil without
base locus is called a Lefschetz fibration. Blowing up once the base locus of a Lefschetz
pencil turns it into a Lefschetz fibration. When the dimension n of X equals one, the
base locus is always empty and a Lefschetz fibration is nothing but a branched cover with
simple ramifications.

When X is real (resp. complex) and n > 1, we equip its real locus with a Morse
function p : RX → R (resp. with a Lefschetz pencil p : X 99K CP 1). We then denote,
for every d > 0, by R1dp (resp. 1dp) the set of sections σ ∈ RH 0(X,Ld) (resp. σ ∈
H 0(X,Ld)) such that either σ ∈ R1d (resp.1d ), or RCσ (resp.Cσ ) intersects the critical
locus of p, or the restriction of p to RCσ (resp. Cσ ) is not Morse (resp. not a Lefschetz
pencil). For d large enough, this extended discriminant locus is of measure 0 for the
measure µR (resp. µC) (see Lemma 2.8).
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2.1.4. The empirical measures ν and νi . For every σ ∈ H 0(X,Ld) \1dp, we denote by
Crit(p|Cσ ) the set of critical points of the restriction of p to Cσ and set

ν(Cσ ) =
1
dn

∑
x∈Crit(p|Cσ )

δx,

where δx denotes the Dirac measure of X at the point x. When σ is real, we denote
similarly, for every i ∈ {0, . . . , n − 1}, by Criti(p|RCσ ) the set of critical points of index
i of p|RCσ , and set

νi(RCσ ) =
1
√
d
n

∑
x∈Criti (p|RCσ )

δx . (2.4)

When n = 1, we set likewise ν(Cσ ) = 1
d

∑
x∈Cσ

δx , and when σ ∈ RH 0(X,Ld) \ R1d ,

ν0(RCσ ) =
1
√
d

∑
x∈RCσ

δx .

2.1.5. Random symmetric matrices. For every n ∈ N∗, denote by Sym(n,R) (resp. by
Sym(n,C)) the real (resp. complex) vector space of real (resp. complex) symmetric n×n
matrices. These vector spaces are of dimension n(n+ 1)/2 and we equip them with the
basis B given by the vectors Ẽii =

√
2Eii and Ẽij = Eij + Eji , 1 ≤ i < j ≤ n, where

for every 1 ≤ k, l ≤ n, Ekl denotes the elementary matrix whose (i, j) entry equals 1
if (i, j) = (k, l), and 0 otherwise. We then equip Sym(n,R) (resp. Sym(n,C)) with the
scalar (resp. Hermitian) product turning B into an orthonormal basis and we denote by
‖·‖ the associated norm. We denote by µR (resp. µC) the associated Gaussian probability
measure, so that for every open subset U of Sym(n,R) (resp. V of Sym(n,C)),

µR(U) =
1

√
π
n(n+1)/2

∫
U

e−‖A‖
2
dA and µC(V ) =

1
πn(n+1)/2

∫
V

e−‖A‖
2
dA,

(2.5)

where dA denotes the Lebesgue measure. This classical measure turns (Sym(n,R), µR)
into the Gaussian orthogonal ensemble GOE(n) (see [27] for instance).

For every p, q ∈ N, we denote by Sym(p, q,R) the open subset of Sym(p + q,R)
consisting of non-degenerate matrices of signature (p, q). We then define, for any integers
p, q, n, eR(n) and eR(p, q) as in (1.3) and (1.4), and

eC(n) = EC(|det|2) =
∫

Sym(n,C)
|detA|2 dµC(A). (2.6)

We note that
∑
p+q=n, p,q∈N eR(p, q) = eR(n); by convention, eR(0) = eC(0) =

eR(0, 0) = 1. Multiplication of symmetric matrices by −Id preserves the measure of
Sym(n,R) as well as the absolute value of the determinant, so that eR(p, q) = eR(q, p)
for all p, q ∈ N.
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2.2. Hörmander peak sections

Let (L, h) be a real holomorphic Hermitian line bundle of positive curvature ω over a
smooth projective manifold X. We recall in this section the construction of peak sections
used by Hörmander [18] to solve the Levi problem. These sections also played a crucial
role in the study of the Bergman kernel by Tian [39] or in the construction by Donald-
son [9] of symplectic codimension two submanifolds in any closed symplectic manifold.
The peak sections are holomorphic sections of Ld whose L2-norms get localized in the
1/
√
d-neighbourhood of some point x ∈ X. The jet at x of such a section can be con-

trolled up to any order. It is then possible to get an asymptotically orthonormal family of
sections for the Hermitian product (2.1), each section being associated to some monomial:
see Lemma 2.2 and, in the real setting, Lemma 2.3.

With the notation of §2.1, let x be a point of X (resp. RX). In a neighbourhood of x
in X there exists a local holomorphic (resp. real holomorphic) trivialization e of L whose
associated potential 8 = − logh(e, e) vanishes at x, where it reaches a local minimum
with Hessian of type (1, 1). Let (y1, . . . , yn) be holomorphic (resp. real holomorphic)
coordinates in the neighbourhood of x = (0, . . . , 0) in X such that (∂/∂y1, . . . , ∂/∂yn) is
orthonormal at x for the Kähler metric g. In these coordinates, the Taylor expansion of 8
reads

8(y) = −
1
2i
∂∂̄8(y, iy)+ o(‖y‖2) = π‖y‖2 + o(‖y‖2),

where the norm is induced by the Kähler metric g at x.
The L2-estimates of Hörmander make it possible, for every d > 0, and after a small

perturbation of ed in the L2-norm, to extend ed to a global holomorphic (resp. real holo-
morphic) section of Ld . The latter is called a Hörmander peak section. G. Tian [39,
Lemma 1.2] showed that this procedure can be controlled up to any order, as long as
d is large enough. We recall this result in the lemma below, where for every r > 0,
B(x, r) denotes the ball centred at x and of radius r in X.

Lemma 2.2 (see [39, Lemma 1.2]). Let (L, h) be a holomorphic Hermitian line bundle
of positive curvature ω over a smooth complex projective manifold X. Let x ∈ X and
(p1, . . . , pn) ∈ Nn and p′ > p1 + · · · + pn. There exists d0 ∈ N such that for every
d > d0, the bundle Ld has a global holomorphic section σ satisfying

∫
X
hd(σ, σ ) dy = 1

for the volume form dy = (1/
∫
X
ωn)ωn and∫

X\B(x,(log d)/
√
d)

hd(σ, σ ) dy = O(1/d2p′). (2.7)

Moreover, if (y1, . . . , yn) are local holomorphic coordinates in a neighbourhood of x, we
can assume that in this neighbourhood,

σ(y1, . . . , yn) = λ(y
p1
1 · · · y

pn
n +O(|y|

2p′))ed(1+O(1/d2p′)), (2.8)

where
λ−2
=

∫
B(x,(log d)/

√
d)

|y
p1
1 · · · y

pn
n |

2hd(ed , ed) dy

and e is a local trivialization of L whose potential 8 = − logh(e, e) reaches a local
minimum at x with Hessian πω(·, i·).
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This lemma admits a real counterpart, which is obtained by averaging the peak sections
with the real structure:

Lemma 2.3. Let (L, h) be a real holomorphic Hermitian line bundle of positive curva-
ture ω over a smooth real projective manifoldX. Let x ∈ RX and (p1, . . . , pn) ∈ Nn and
p′ > p1 + · · · + pn. There exists d0 ∈ N such that for every d > d0, the bundle Ld has a
global real holomorphic section σ satisfying

∫
X
hd(σ, σ ) dy = 1 for dy = (1/

∫
X
ωn)ωn

and ∫
X\B(x,(log d)/

√
d)

hd(σ, σ ) dy = O(1/d2p′).

Moreover, if (y1, . . . , yn) are local real holomorphic coordinates in a neighbourhood of x
in X, we can assume that in this neighbourhood,

σ(y1, . . . , yn) = λ(y
p1
1 · · · y

pn
n +O(|y|

2p′))ed(1+O(1/d2p′)),

where

λ−2
=

∫
B(x,(log d)/

√
d)

|y
p1
1 · · · y

pn
n |

2hd(ed , ed) dy

and e is a local real trivialization of L whose potential8 = − logh(e, e) reaches a local
minimum at x with Hessian πω(·, i·).

Definition 2.4. Let σ0 be a section as in (2.8) with p′ = 3 and p1 = · · · = pn = 0.
Likewise, for every j ∈ {1, . . . , n}, let σj be a section as in (2.8) with p′ = 3, pj = 1 and
pk = 0 for k ∈ {1, . . . , n} \ {j}. Finally, for every 1 ≤ k ≤ l ≤ n, let σkl be a section as
in (2.8) with p′ = 3, pj = 0 for every j ∈ {1, . . . , n} \ {k, l} and pk = pl = 1 if k 6= l,
while pk = 2 otherwise.

By (2.7), all these sections have norms concentrated in a neighbourhood of x, and are
close to 0 outside a ball of radius (log d)/

√
d (from the mean value inequality, see [19,

Theorem 4.2.13] for instance). Likewise, by (2.8), the Taylor expansions of these sections
satisfy

σ0(y) = (λ0 +O(‖y‖
6))ed(y)(1+O(d−6)), (2.9)

σj (y) = (λ1yj +O(‖y‖
6))ed(y)(1+O(d−6)), ∀j ∈ {1, . . . , n}, (2.10)

and for all k, l ∈ {1, . . . , n}, k 6= l,

σkl(y) = (λ(1,1)ykyl +O(‖y‖
6))ed(y)(1+O(d−6)), (2.11)

σkk(y) = (λ(2,0)y
2
k +O(‖y‖

6))ed(y)(1+O(d−6)). (2.12)

The asymptotic values of the constants λ0, λ1, λ(1,1) and λ(2,0) are given by (compare [39,
Lemma 2.1]):
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Lemma 2.5. Under the hypotheses of Lemma 2.2, let δL =
∫
X
c1(L)

n be the degree of L.
Then

lim
d→∞

1
√
d
n λ0 =

√
δL, lim

d→∞

1
√
d
n+1 λ1 =

√
π
√
δL,

lim
d→∞

1
√
d
n+2 λ(1,1) = π

√
δL, lim

d→∞

1
√
d
n+2 λ(2,0) =

π
√

2

√
δL,

for the L2 inner product induced by the volume form dy = (1/
∫
X
ωn)ωn.

These values differ from the ones given in [39, Lemma 2.1] by a constant πn since our
choice of the Kähler metric slightly differs from that in [39].

Proof. From Lemma 2.2, λ−2
0 is equivalent, as d →∞, to

1∫
X
ωn

∫
Cn
e−dπ‖y‖

2
dvol(y) =

1∫
X
dnωnπn

∫
Cn
e−‖z‖

2
dvol(z) =

1∫
X
dnωn

,

so that λ0 ∼d→∞

√∫
X
c1(L)ndn. Likewise, λ−2

1 is equivalent to

1∫
X
ωn

∫
Cn
|y1|

2e−dπ‖y‖
2
dvol(y) =

1
dπ

∫
X
dnωnπn

∫
Cn
|z1|

2e−‖z‖
2
dvol(z)

=
1

dπ
∫
X
dnωn

,

so that λ1 ∼d→∞
√
dπ λ0. In the same way we obtain λ(1,1) ∼d→∞ dπλ0, whereas

λ−1
(2,0) is equivalent to

1∫
X
ωn

∫
Cn
|y1|

4e−dπ‖y‖
2
dvol(y) =

1
(dπ)2

∫
X
dnωnπn

∫
Cn
|z1|

4e−‖z‖
2

=
2

(dπ)2
∫
X
dnωn

.

Hence, λ(2,0) ∼d→∞ (dπ/
√

2)λ0. ut

Let ∇X be a torsion-free connection on TX and ∇L be a connection (real, that is, such
that for every section σ of L, ∇L(cL◦σ ◦cX) = cL◦(∇Lσ)◦dcX) on L. The connections
∇
X and ∇L induce a connection denoted by ∇X,L on T ∗X ⊗ L. We then set

∇
2σ = ∇X,L(∇Lσ) ∈ End(T X, T ∗X ⊗ Ld).

Now, the sections (σi)0≤i≤n and (σkl)1≤k≤l≤n define a basis of a complement of the sub-
space of sections of H 0(X,Ld) (resp. RH 0(X,Ld)) whose 2-jets at x vanish, which is
denoted by

H3x = {σ ∈ H
0(X,Ld) | σ(x) = 0, ∇Lσ|x = 0 and ∇2σ|x = 0}, (2.13)

(resp. RH3x = {σ ∈ RH 0(X,Ld) | σ(x) = 0, ∇Lσ|x = 0 and ∇2σ|x = 0}). (2.14)
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This basis is not orthonormal and the subspace it spans is not orthogonal toH3x . However,
from [39, Lemma 3.1], it becomes closer and closer to being orthonormal as d → ∞
(see Lemma 2.6), as long as the chosen volume form is dx = (1/

∫
X
ωn)ωn (see Re-

mark 2.7(1)).

Lemma 2.6 (see [39, Lemma 3.1]). The sections (σi)0≤i≤n and (σkl)1≤k≤l≤n have L2-
norm equal to one and their pairwise scalar products are dominated by anO(d−1) which
does not depend on x ∈ X. Likewise, their scalar products with every unitary element
of H3x are dominated by an O(d−3/2) which does not depend on x ∈ X.

Remark 2.7. (1) If the L2 scalar product is induced by a volume form different from
dx = (1/

∫
X
ωn)ωn, say dx = (f (x)/

∫
X
ωn)ωn, then Lemma 2.6 remains unchanged

except that the L2-norms of the sections, instead of being one, would converge to
√
f (x)

from (2.7).
(2) When (X, ω, cX) is the projective space (CP n, ωFS, conj) and (L, h, cL) is

(O(1), hFS, conj), thenH 0(X,Ld) is the space of homogeneous polynomials of degree d
in the variables (X0, . . . , Xn). The real peak section at x = [1 : 0 : · · · : 0] is then
√
(d + n)!/d!Xd0 . Moreover, for every (p1, . . . , pn) ∈ Nn with

∑n
i=1 pi ≤ d , the sec-

tion σ given by Lemma 2.2 is the monomial

σ =

√
(d + n)!

(d − (p1 + · · · + pn))!p1! · · ·pn!
X
d−(p1+···+pn)
0 X

p1
1 · · ·X

pn
n .

In particular, this family of monomials is orthonormal for the Fubini–Study Hermitian
product. Now, for every x ∈ CP n (resp. x ∈ RP n), the action of the unitary group
Un+1(C) (resp. the orthogonal group On+1(R)) on sections of Ld provides the holomor-
phic (resp. real holomorphic) peak sections at every point of CP n (resp. RP n).

2.3. Example: the projective spaces

Let us sketch here the proof of Theorem 1.2 for the projective space, so that (X, ω, cX)
is (CP n, ωFS, conj) and (L, hL, cL) is (O(1), hFS, conj). In this case, RH 0(X,Ld) is
the space Rd of real homogeneous polynomials of degree d in n + 1 variables. Let p :
RP n → R be a Morse function, and for i ∈ {1, . . . , n}, xi = Xi/X0 be the affine
coordinate on U = RP n \ {X0 = 0}. For every σ ∈ Rd , set

ν(RCσ ) =
∑

x∈Crit(p|RCσ )

δx

(see (1.5)), where RCσ = σ−1(0) ∩ RP n. If x0 ∈ U is a critical point of p|RCσ , but not
of p, and if σ0 ∈ Rd vanishes transversely at x0, then for every σ ∈ Rd near σ0 there is a
unique critical point x ∈ RP n of σ near x0. We denote by ev(σ0,x0) the local map which
sends σ to x (see (2.21)). Now, let χ : RP n→ R be a test function. Then

〈E(ν), χ〉 =
1
√
d
n

∫
Rd\1dp

∑
x∈Crit(p|RCσ )

χ(x) dµR(σ ),
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where µR is the measure on Rd given by (2.3) and where 1dp is defined in §2.1.3. By the
coarea formula (see [12] and (2.22)), this equals

1
√
d
n

∫
RP n

χ(x)

(∫
σ∈Rd\1dp, x∈Crit(p|RCσ )

|det d|σ ev⊥(σ,x) |
−1 dµR(σ )

)
dvolFS(x),

(2.15)

where dvolFS denotes the Lebesgue measure of RP n induced by the Fubini–Study metric,
and d|σ ev⊥(σ,x) is the restriction of the differential d|σ ev(σ,x) to the orthogonal comple-
ment of the fibre {σ ∈ Rd \ 1dp | x ∈ Crit(p|RCσ )} in Rd (see the beginning of §2.4.2).
Now, fix x0 ∈ U which is not a critical point of p, and a smooth local framing field
(v2, . . . , vn) of the bundle ker dp. Then x is a critical point of p|RCσ near x0 if and only
if (σ, x) belongs to the vanishing locus of the map

F : (σ, x) ∈ Rd × RP n 7→ (s(x), d|xs(v2), . . . , d|xs(vn))

(see (2.26)), where s = σ/(
√
(d + n)!/d!Xd0 ) denotes the affine polynomial associated

to σ on U (see Remark 2.7(2) for the coefficient of Xd0 ). After differentiation we find that
for every (σ0, x0) ∈ F

−1(0),

d1|(σ0,x0)F + d2|(σ0,x0)F ◦ d|σ0 ev(σ0,x0) = 0

(see (2.27)). Assume that x0 = [1 : 0 : · · · : 0] and expand σ̇ ∈ Rd in the polynomial
basis given by Remark 2.7(2), so that

ṡ(x) = ȧ0 +
√
d

n∑
i=1

ȧixi +O(‖x‖
2).

We may assume that d|x0p = dx1 and vi(x0) = ∂/∂xi for every i ∈ {2, . . . , n}. Then

d1|(σ0,x0)F(σ̇ ) = (ȧ0,
√
d ȧ2, . . . ,

√
d ȧn), so that |det d1|(σ0,x0)F

⊥
| =
√
d
n−1

. Now, we
expand σ0 as

s0(x) = a0 +
√
d

n∑
i=1

aixi + d

n∑
i=1

bii
√

2
x2
i + d

∑
1≤i<j≤n

bijxixj +O(‖x‖
3)

(see (2.29)). Note that F(σ0, x0) = 0 reads a0 = a2 = · · · = an = 0 (see (2.30)). Then

d2|(σ0,x0)F =
(√
d a1dx1, d

√
2 b22dx2 + d

∑
1≤i<2

bi2dxi + d
∑

2<j≤n

b2jdxj +O(
√
d),

. . . , d
√

2 bnndxn + d
n∑

1≤i<n

bindxi +O(
√
d)
)

(see (2.38)). We conclude that |det d2|(σ0,x0)F | ∼d→∞
√
d dn−1

|a1| |detB| (see (2.44)),
where in the notation of §2.1.5, B denotes the real symmetric matrix

∑
2≤k≤l≤n bklẼkl .

Hence, ∫
σ0∈Rd , F (σ0,x0)=0

|det d|σ0 ev⊥(σ0,x0)
|
−1 dµ(σ0) ∼

d→∞

√
d
n

√
π
eR(n− 1)
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(see (1.4)), since
∫
a1∈R |a1|e

−a2
1da1/

√
π = 1/

√
π . By Remark 2.7(2), for every

x0 ∈ RP n which is not a critical point of p, we can use the orthogonal group
On+1(R) to get an orthonormal basis of Rd adapted to x0, so that the integral∫
σ0∈Rd , F (σ0,x0)=0 |det d|σ0 ev⊥(σ0,x0)

|
−1 dµR(σ0) is still equivalent to (

√
d
n
/
√
π)eR(n−1)

as d →∞. If we consider the index of the critical points, then instead of integrating over
the whole Sym(n − 1,R), we integrate over the real symmetric matrices of given index
(see Lemma 2.9), so that for every i ∈ {0, . . . , n− 1},∫

σ∈Rd , x∈Criti (p|RCσ )
|det d|σ ev⊥(σ,x) |

−1 dµR(σ ) ∼
d→∞

√
d
n

√
π
eR(i, n− 1− i)

(see (1.3)). The convergence of these integrals is uniform in x on every compact
subset of the complement of the critical points, so that E(νi) converges weakly to
(1/
√
π)e(i, n − 1 − i)dvolFS on this compact subset. A local analysis near the critical

points is handled in §2.5.1.

2.4. Incidence varieties and evaluation maps

2.4.1. Incidence varieties. Using the notation of §2.1.3, let us denote by Crit(p) (resp.
Criti(p)) the finite set of critical points of p (resp. of index i) and by Base(p) its base
locus (see Definition 2.1). Under the hypotheses of Theorem 1.3 (resp. Theorem 1.2) and
following [36], we set

6 = {(σ, x) ∈ (H 0(X,Ld)\1dp)×(X\(Crit(p)∪Base(p)) | x ∈ Crit(p|Cσ )}, (2.16)

(resp. 6i = {(σ, x) ∈ (RH 0(X,Ld)\R1dp)×(RX\Crit(p)) | x ∈ Criti(p|RCσ )}), (2.17)

and

π1 : (σ, x) ∈ 6 7→ σ ∈ H 0(X,Ld) and π2 : (σ, x) ∈ 6 7→ x ∈ X (2.18)

(resp. π1 : (σ, x) ∈ 6i 7→ σ ∈ RH 0(X,Ld) and π2 : (σ, x) ∈ 6i 7→ x ∈ RX) (2.19)

the associated projections on these incidence varieties.

Lemma 2.8. Under the hypotheses of Theorem 1.3 (resp. Theorem 1.2), let d > 0
be such that Ld is very ample. Then 6 (resp. 6i) is a codimension n submanifold of
H 0(X,Ld)×X (resp. RH 0(X,Ld)× RX). Moreover, the critical locus of π1 coincides
with1dp (resp. R1dp)). In particular,1dp and R1dp are of measure zero inH 0(X,Ld) and
RH 0(X,Ld) respectively.

Proof. Let us prove the complex case. Let d be such that Ld is very ample and

F : (σ, y) ∈ H 0(X,Ld)×(X\(Crit(p)∪Base(p))) 7→ (σ (y),∇Lσy) ∈ L
d
y×(K

∗
y⊗L

d
y),

where Ky = ker dp|y ⊂ TyX. Then 6 defined by (2.16) coincides with the vanishing
locus of F . Let (σ, y) ∈ 6. Then

∇|(σ,y)F : H
0(X,Ld)× TyX → Ldy × (K

∗
y ⊗ L

d
y),

(σ̇ , ẏ) 7→ (σ̇ (y)+∇Lẏ σ,∇
Lσ̇ +∇

X,L
ẏ ∇

Lσ).
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Since Ld is very ample, ∇|(σ,y)F is onto and even its restriction to H 0(X,Ld) × {0} is.
From the implicit function theorem it follows that 6 is a codimension n submanifold of
H 0(X,Ld)×X. Moreover, for every (σ, y) ∈ 6,

T(σ,y)6 =

{
(σ̇ , ẏ) ∈ H 0(X,Ld)× TyX

∣∣∣∣ σ̇ (y)+∇Lẏ σ = 0,

∇
Lσ̇ +∇

X,L
ẏ ∇

Lσ = 0

}
.

The differential of the first projection π1 reads

dπ1|(σ,y) : T(σ,y)6→ H 0(X,Ld), (σ̇ , ẏ) 7→ σ̇ .

It is then onto if and only if for every σ̇ ∈ H 0(X,Ld) there exists ẏ ∈ TyX such that
∇ẏσ = −σ̇ (y) and ∇X,Lẏ ∇

Lσ = −∇Lσ̇ . The first condition is satisfied if and only
if σ vanishes transversely, thus if σ does not belong to the discriminant hypersurface
1d ⊂ H 0(X,Ld). The second condition is satisfied if and only if the restriction of the
bilinear form ∇2σ to Ky ×Ky is non-degenerate. From Lemma 2.9, this holds whenever
σ does not belong to 1dp. The last part of the lemma now follows from Sard’s theorem.
The proof in the real case goes along the same lines. ut

Lemma 2.9. Under the hypotheses of Theorem 1.2, let (σ, x) ∈ 6i . Let φx : RLx → R
be an isomorphism such that φx ◦ ∇L|xσ = −dpx . Then φx ◦ ∇2σ|Kx = ∇

2(p|RCσ )|x , so
that the quadratic form φx ◦ ∇

2σ|Kx is non-degenerate of index i.

Proof. Let v,w be vector fields on RCσ in a neighbourhood of x. By definition, 0 =
∇
L
v (∇

L
wσ) = ∇

2
v,wσ +∇

L
∇Xv w

σ , so that

φx ◦ ∇
2
v,wσ = −φx ◦ ∇

L
∇Xv w

σ = dp|x(∇
X
v w).

Applying the same equality to the function p, we get

dv(dwp) = ∇
X(dp)(v,w)+ dp(∇Xv w) = dp(∇

X
v w)

by hypothesis on ∇X, so that φx ◦ ∇2
v,wσ = dv(dwp). Finally, applying this equality to

the restriction p|RCσ , we get

dv(dwp)|x = ∇
2
v,wp|RCσ |x + dp|RCσ (∇

Cσ
v w)|x = ∇

2
v,w(p|RCσ )|x,

where ∇Cσ denotes any connection on TRCσ . Hence the result. ut

2.4.2. Evaluation maps. For every (σ0, x0) ∈ 6 (resp. (σ0, x0) ∈ 6i), there exists a
neighbourhood U (resp. RU ) of σ0 in H 0(X,Ld) (resp. RH 0(X,Ld)) and a neighbour-
hood V (resp. RV ) of x0 in X (resp. RX) such that for every σ ∈ U (resp. σ ∈ RU ), the
function p|Cσ (resp. p|RCσ ) has a unique critical point (resp. critical point of index i) in
V (resp. RV ). We deduce from this an evaluation map at the critical point

ev(σ0,x0) : σ ∈ U 7→ x ∈ Crit(p|Cσ ) ∩ V (2.20)
(resp. ev(σ0,x0) : σ ∈ RU 7→ x ∈ Crit(p|RCσ ) ∩ RV ), (2.21)

so that 6 ∩ (U × V ) (resp. 6i ∩ (RU × RV )) is the graph of ev(σ0,x0). This evaluation
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map is constant on π1(π
−1
2 (x0)) ∩ U , where π1 and π2 are defined by (2.18), so that its

differential d|σ0 ev(σ0,x0) vanishes on Tσ0π1(π
−1
2 (x0)) ' π1(π

−1
2 (x0)). When n = 1, we

agree that
π1(π

−1
2 (x)) = {σ ∈ H 0(X,Ld) | σ(x) = 0}.

We denote by d|σ0 ev⊥(σ0,x0)
the restriction of d|σ0 ev(σ0,x0) to the orthogonal complement

of π1(π
−1
2 (x0)) in H 0(X,Ld) (resp. RH 0(X,Ld)).

Proposition 2.10. Under the hypotheses of Theorem 1.3 (resp. Theorem 1.2),

E(ν) =
1
dn
(π2)∗(π

∗

1 dµC) (resp. E(νi) =
1
√
d
n (π2)∗(π

∗

1 dµR)),

where E(ν) (resp. E(νi)) is defined by (1.7) (resp. (1.6)). Moreover, at every point x of
X \ (Crit(p) ∪ Base(p)) (resp. RX \ Crit(p)),

(π2)∗(π
∗

1 dµC) =
1
πn

(∫
π1(π

−1
2 (x))

|det d|σ ev⊥(σ,x)|
−2 dµC(σ )

)
ωn

n!

(resp. (π2)∗(π
∗

1 dµR) =
1
√
π
n

(∫
π1(π

−1
2 (x))

|det d|σ ev⊥(σ,x)|
−1 dµR(σ )

)
dvolh).

Note that π1 is a map between manifolds of the same dimension, while µR and µC are
absolute values of volume forms, so that the pull-backs π∗1 dµR and π∗1 dµC are well
defined.

Proof. Let χ : X→ R be a continuous function. By definition,

〈E(ν), χ〉 =
1
dn

∫
H 0(X,Ld )\1dp

( ∑
x∈Crit(p|Cσ )

χ(x)
)
dµC(σ )

=
1
dn

∫
6

(π∗2χ)(π
∗

1 dµC) =
1
dn

∫
X

χ (π2)∗(π
∗

1 dµC).

But from the coarea formula (see [12, Theorem 3.2.3] or [36, Theorem 1]), for every
x ∈ X \ (Crit(p) ∪ Base(p)),

(π2)∗(π
∗

1 dµC)|x =
1
πNd

(∫
π1(π

−1
2 (x))

|det d|σ ev⊥(σ,x)|
−2e−‖σ‖

2
dσ

)
ωn

n!
,

since the Jacobian of d|σ ev⊥(σ,x), which is C-linear and computed with respect to the vol-
ume forms dσ at the source and ωn/n! at the target, equals |det d|σ ev⊥(σ,x)|

2. Hence

(π2)∗(π
∗

1 dµC)|x =
1
πn

(∫
π1(π

−1
2 (x))

|det d|σ ev⊥(σ,x)|
−2 dµC(σ )

)
ωn

n! |x
.
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Under the hypotheses of Theorem 1.2, if χ now denotes a continuous function χ :
RX→ R, we obtain likewise

〈E(νi), χ〉 =
1
√
d
n

∫
6i

(π∗2χ)(π
∗

1 dµR) =
1
√
d
n

∫
RX
χ(π2)∗(π

∗

1 dµR).

The coarea formula implies now for every x ∈ RX \ Crit(p) the relation

(π2)∗(π
∗

1 dµR)|x =
1
√
π
n

(∫
π1(π

−1
2 (x))

|det d|σ ev⊥(σ,x)|
−1 dµR(σ )

)
dvolh|x . (2.22)

ut

Remark 2.11. The pointwise expression for (π2)∗(π
∗

1 dµC) (resp. (π2)∗(π
∗

1 dµR)) is in-
variant under dilation of the L2 inner product 〈·, ·〉 onH 0(X,Ld) (resp. on RH 0(X,Ld)).
Indeed, for every λ ∈ C (resp. λ ∈ R), (σ0, x0) in 6 (resp. in 6i) and σ in a neighbour-
hood of σ0, ev(σ0,x0)(σ ) = ev(λσ0,x0)(λσ) so that d|σ0 ev(σ0,x0) = λd|λσ0 ev(λσ0,x0). We
deduce that

det d|σ0 ev⊥(σ0,x0)
= λn det d|λσ0 ev⊥(λσ0,x0)

if both determinants are computed in the orthonormal basis for the same inner product
〈·, ·〉 at the source; but det d|σ0 ev⊥(σ0,x0)

becomes equal to det d|λσ0 ev⊥(λσ0,x0)
when the

latter is computed in an orthonormal basis for the inner product dilated by λ2. Since
under such a dilation the associated Gaussian measures are just push-forwards of each
other by the corresponding homothety, the invariance follows.

Combined with Remark 2.7(1), Remark 2.11 explains why Theorems 1.1, 1.2 and 1.3 do
not depend on the choice of a normalised volume form dx on X to define the L2-product
(2.1) on H 0(X,Ld) and RH 0(X,Ld).

2.4.3. Computation of the Jacobian. We are going to compute the Jacobian
|det d|σ ev⊥(σ,x)| appearing in Proposition 2.10. For every x ∈ X \ (Crit(p) ∪ Base(p))
(resp. x ∈ RX \ Crit(p)), we denote by

Kx = ker dxp ⊂ TxX
(resp. RKx = ker dxp ⊂ TxRX)

the kernel of dxp and set

Hx = {σ ∈ H
0(X,Ld) | σ(x) = 0} (2.23)

(resp. RHx = {σ ∈ RH 0(X,Ld) | σ(x) = 0}). (2.24)

We now assume that the torsion-free connection ∇X preserves the distribution K on X \
(Crit(p) ∪ Base(p)). This means that for every local vector field v of X taking values
in K , ∇Xv also has values in K . For every (σ, x) ∈ 6, we set

λ′(σ,x) =
∇
Lσ

σ̇
σ̇ ∈ End(TxX/Kx, H 0(X,Ld)/Hx),
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where σ̇ denotes any non-trivial element of H 0(X,Ld)/Hx . We consider ∇2σ as a bilin-
ear form on Kx , that is, ∇2σ ∈ End(Kx,K∗x ⊗ L

d
x). Hence,

det(∇2σ) ∈ End(
∧n−1

Kx,
∧n−1

K∗x ⊗ L
d(n−1)
x ).

Define also the bilinear form

∇
L
: (v, σ̇ ) ∈ Kx ×Hx/π1(π

−1
2 (x)) 7→ ∇Lv σ̇ ∈ L

d
x

which we consider as an element of End(Kx, (Hx/π1(π
−1
2 (x)))∗ ⊗ Ldx) and denote abu-

sively by ∇L. It follows that

det(∇L) ∈ End
(∧n−1

Kx,
∧n−1

(Hx/π1(π
−1
2 (x)))∗ ⊗ L

d(n−1)
x

)
and we set

λ′′(σ,x) =
det(∇2σ)

det(∇L)
∈ End

(∧n−1
Kx,

∧n−1
(Hx/π1(π

−1
2 (x)))

)
.

Finally, we set

λ(σ,x) = λ
′

(σ,x) ∧ λ
′′

(σ,x) ∈ End
(∧n

TxX,
∧n
(H 0(X,Ld)/π1(π

−1
2 (x)))

)
(2.25)

when n > 1 and λ(σ,x) = λ′(σ,x) when n = 1.
In the real case, ∇X denotes a torsion-free connection on TRX|RX\Crit(p) which pre-

serves the distribution RK , while ∇L is real. For every (σ, x) ∈ 6i , λ′(σ,x) then belongs
to End(TxRX/RKx,RH 0(X,Ld)/RHx) and ∇2σ to End(RKx,RK∗x ⊗ RLdx), so that

det(∇2) ∈ End(
∧n−1 RKx,

∧n−1 RK∗x ⊗ RLd(n−1)
x ).

The bilinear form

(v, σ̇ ) ∈ RKx × RHx/π1(π
−1
2 (x)) 7→ ∇Lv σ̇ ∈ RLdx

is considered as an element of End(RKx, (RHx/π1(π
−1
2 (x)))∗ ⊗ RLdx), so that

det(∇L) ∈ End
(∧n−1 RKx,

∧n−1
(RHx/π1(π

−1
2 (x)))∗ ⊗ RLd(n−1)

x

)
.

Finally,

λ′′(σ,x) ∈ End
(∧n−1 RKx,

∧n−1
(RHx/π1(π

−1
2 (x)))

)
,

while λ(σ,x) ∈ End
(∧n

TxRX,
∧n
(RH 0(X,Ld)/π1(π

−1
2 (x)))

)
when n > 1, and λ(σ,x) = λ′(σ,x) when n = 1.

Proposition 2.12. Under the hypotheses of Theorem 1.3 (resp. Theorem 1.2), let (σ0, x0)

∈ 6 (resp. (σ0, x0) ∈ 6i). Then

det(d|σ0ev⊥(σ0,x0)
)−1
= (−1)nλ(σ0,x0),

where λ(σ0,x0) is given by (2.25).
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Proof. Consider neighbourhoods U and V of σ0 and x0 respectively such that the eval-
uation map ev(σ0,x0) : U → V is well defined (see (2.20)). Under the hypotheses of
Theorem 1.3, 6 ∩ (U × V ) is the vanishing locus of the map

F : (σ, y) ∈ U × V 7→ (σ (y),∇Lσ|y) ∈ L
d
y × (K

∗
y ⊗ L

d
y), (2.26)

where we recall that Ky = ker dp|y . It follows that for every σ ∈ U , F(σ, ev(σ0,x0)(σ ))

= 0. By hypothesis ∇X restricts to a connection on the subbundle K∗. Hence, ∇X,L

restricts to a connection on K∗ ⊗ Ld , denoted by DX,L2 . The latter makes it possible to
differentiate F with respect to the second variable. After differentiation we deduce that

d1F|(σ0,x0) +D
X,L
2 F|(σ0,x0) ◦ d|σ0 ev(σ0,x0) = 0, (2.27)

where d1F and DX,L2 denote the partial derivatives of F with respect to the first and
second variables respectively. Hence the relation

d|σ0ev(σ0,x0) = −(D
X,L
2 F)−1

|(σ0,x0)
◦ d1F|(σ0,x0).

But the matrix of DX,L2 F ∈ End(K⊥x0
⊕Kx0 , L

d
x0
⊕ (K∗x0

⊗ Ldx0
)) at the point (σ0, x0) is

trigonal of the form
(
∇
Lσ0 0
∗ ∇

2σ0

)
, so that

detDX,L2 F|(σ0,x0) = ∇
Lσ0 ∧ det(∇2σ0).

Likewise, let σ̇0 be a Bergman section at x0, that is, a unitary vector in the orthogonal
complement of Hx0 (see (2.23)) in H 0(X,Ld). The restriction of

d1F ∈ End
(
〈σ̇0〉 ⊕Hx0/π1(π

−1
2 (x0)), L

d
x0
⊕ (K∗x0

⊗ Ldx0
)
)

at the point (σ0, x0) to the orthogonal complement of π1(π
−1
2 (x0)) in H 0(X,Ld) has

matrix
( σ̇0(x0) 0
∗ ∇

L

)
, so that

det d1F|(σ0,x0) = σ̇0(x0) det(∇L).

Taking the quotient, we deduce the result under the hypotheses of Theorem 1.3. The proof
goes along the same lines under the hypotheses of Theorem 1.2. ut

2.5. Proofs of Theorems 1.1–1.3

The proofs of Theorems 1.2 and 1.3 are mostly based on Proposition 2.13 below which
computes asymptotically the Jacobian given by Proposition 2.12. This yields the push-
forward measure given by Proposition 2.10. This asymptotic computation is carried out
using the peak sections of Hörmander introduced in §2.2.
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Proposition 2.13. Under the hypotheses of Theorem 1.3,

lim
d→∞

1
dn

∫
π1(π

−1
2 (x))

λ(σ,x) ∧ λ(σ,x) dµC(σ ) = π
neC(n− 1) dvolh, (2.28)

whatever normalized volume form dx on X is chosen to define dµC (see §2.1.2), and
where the convergence is dominated by a function in L1(X, dvolh).

Likewise, under the hypotheses of Theorem 1.2,

lim
d→∞

1
√
d
n

∫
π1(π

−1
2 (x))

|λ(σ,x)| dµR(σ ) =
√
π
n−1

eR(i, n− 1− i)dvolh,

whatever normalized volume form dx onX is chosen, where the convergence is dominated
by a function in L1(RX, dvolh).

In Proposition 2.13, the dominating function in L1(X, dvolh) (resp. L1(RX, dvolh)) has
a pole of order at most 2n − 2 (resp. n − 1) along Crit(p) and at most 2 along Base(p),
whereas it is continuous everywhere else. Here, a function f is said to have a pole of
order at most k along a submanifold Y if rk|f | is bounded near Y , where r denotes the
distance function to Y .

2.5.1. Proof of Proposition 2.13 in the complex case. We begin by computing the various
derivatives of the random section σ ∈ H 0(X,Ld) involved in the integral (2.28). We are
then able to estimate the integrand in (2.28) and to conclude the proof, the domination of
the integrand by an L1 function being a consequence of the last paragraph devoted to the
study of the integral near the critical and base points.

Let x ∈ X \ (Crit(p) ∪ Base(p)) (resp. x ∈ RX \ Crit(p)) and (x1, . . . , xn) be local
holomorphic (resp. real holomorphic) coordinates in the neighbourhood of x = (0, . . . , 0)
such that (∂/∂x1, . . . , ∂/∂xn) is orthonormal at x and (∂/∂x2, . . . , ∂/∂xn) spans Kx =
ker dp|x .

The derivatives of σ . Every element σ ∈ H 0(X,Ld) (resp. σ ∈ RH 0(X,Ld)) can be
written, in the notation (2.9)–(2.12),

σ =

n∑
j=0

ajσj +
∑

1≤k≤l≤n

bklσkl + τ, (2.29)

where aj , bkl ∈ C (resp. aj , bkl ∈ R) and τ ∈ H3x (resp. τ ∈ RH3x)—see (2.13) (resp.
(2.14)). In the previous equality,

σ ∈ π1(π
−1
2 (x)) ⇔ ∀j ∈ {0, . . . , n} \ {1}, aj = 0, (2.30)

and we assume that this condition holds true. Moreover, from Lemmas 2.2 and 2.5,

σ0 = λ0e
d(x)(1+O(d−6)), (2.31)

∇
Lσj |x =

√
πd λ0e

d(x)(1+O(d−6))dxj , (2.32)

∇
2σjj |x =

πdλ0
√

2
ed(x)(1+O(d−6))(2dxj ⊗ dxj ), (2.33)
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for all j ∈ {1, . . . , n}, while for 1 ≤ k < l ≤ n,

∇
Lσkl|x = 0, (2.34)

∇
2σkl|x = πdλ0e

d(x)(1+O(d−6))(dxk ⊗ dxl + dxl ⊗ dxk). (2.35)

These equations do not depend on the chosen connections ∇L,∇X. It follows from (2.32)
that

∇
2σ1|Kx =

√
πd λ0e

d(x)(1+O(d−6))∇X(dx1) (2.36)

since by hypothesis, the restriction of dx1 to Kx vanishes. Likewise,

1
πdλ0

∇
2σ|Kx

ed(x)
=

n∑
j=2

bjj

πdλ0

∇
2σjj |Kx

ed(x)
+

∑
2≤k<l≤n

bkl

πdλ0

∇
2σkl|Kx

ed(x)

+
a1

πdλ0

∇
2σ1|Kx

ed(x)
, (2.37)

so that this restriction reads
n∑
j=2

√
2 bjjdxj ⊗ dxj

+

∑
2≤k<l≤n

bkl(dxk ⊗ dxl + dxl ⊗ dxk)+ a1r(d, x)+ s(d, x, B), (2.38)

where, using the notation of §2.1.5, B denotes the matrix
∑

2≤k≤l≤n bklẼkl , while
‖r(d, x)‖ = O(d−1/2

‖∇
Xdx1‖) and ‖s(d, x, B)‖ = O(d−6

‖B‖). In particular, the norm
‖a1r(d, x)+ s(d, x, B)‖ is dominated by c(|a1|‖∇

Xdx1‖+ ‖B‖) for some positive con-
stant c.

The estimation of the integrand in (2.28). Let us first assume that dx = (1/
∫
X
ωn)ωn,

so that from Lemma 2.6, the sections (σj )0≤j≤n and (σkl)0≤k≤l≤n are asymptotically
orthonormal. We deduce from (2.32) and (2.38) that pointwise onX\(Crit(p)∪Base(p)),

1
√
πd

n−1

∣∣∣∣ det(∇2σ|Kx )

det(∇L∂/∂xkσl|x)2≤k≤l≤n

∣∣∣∣
= |detB + Pn−1(B, a1r(d, x)+ s(d, x, B))| |dx2 ∧ · · · ∧ dxn|, (2.39)

where Pn−1(X, Y ) is a polynomial of degree less than n in the coefficients of the matrices
X, Y such that Pn−1(X, 0) = 0. Moreover by (2.31) and (2.32),

1
√
πd

∇
Lσ

σ0(x)
= a1(1+O(d−6))dx1,

so that from (2.25),

1
(πd)n

λ(σ,x) ∧ λ(σ,x)

= |a1(1+O(d−6))|2|detB + Pn−1(B, a1r(d, x)+ s(d, x, B))|
2dvolh|x, (2.40)
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which converges to |a1|
2
|detB|2dvolh|x as d grows to infinity, where the convergence is

dominated by the limit density plus |a1|
2 times a polynomial function in |a1| ‖∇

Xdx1‖

and ‖B‖ of degree less than 2n− 1.

The integration space in (2.28). Now, we decompose π1(π
−1
2 (x)) (see (2.18)) as

π1(π
−1
2 (x)) = (H3x ∩ π1(π

−1
2 (x)))⊕ (H3x ∩ π1(π

−1
2 (x)))⊥

(resp. π1(π
−1
2 (x)) = (RH3x ∩ π1(π

−1
2 (x)))⊕ (RH3x ∩ π1(π

−1
2 (x)))⊥)

(see (2.13) and (2.14)). Denote by H ′ the vector space spanned by σ1 and σkl , 1 ≤ k ≤
l ≤ n, and denote by

π ′ : (H3x ∩ π1(π
−1
2 (x)))⊥→ H ′

the projection onto H ′ along H3x (resp. RH3x). The coordinates on H ′ in this basis are
a1 and B ′ = (bkl)1≤k≤l≤n (while B = (bkl)2≤k≤l≤n) (see (2.29)). We deduce that

1
dn

∫
π1(π

−1
2 (x))

λ(σ,x) ∧ λ(σ,x) dµC(σ ) =
1
dn

∫
(H3x∩π1(π

−1
2 (x)))⊥

λ(σ,x) ∧ λ(σ,x) dµC(σ )

= πn
∫
H ′
|a1(1+O(d−6))|2|detB + Pn−1(B, a1r(d, x)+ s(d, x, B))|

2

· (π ′∗ dµC)(a1, B
′)) dvolh|x .

Asymptotical estimation of the measure. Let us compare the push-forward measure
π ′∗ dµC with the Gaussian measure given by the coordinates a1 and B ′ = (bkl)1≤k≤l≤n.
We decompose σ1 = σ̂1+ σ̌1 and for every 1 ≤ k ≤ l ≤ n, σkl = σ̂kl+ σ̌kl, where σ̂1, σ̂kl
are the orthogonal projections of σ1, σkl onto (H3x ∩π1(π

−1
2 (x)))⊥ so that σ̌1, σ̌kl ∈ H3x .

By Lemma 2.6, ‖σ̌1‖ = 〈σ1, σ̌1/‖σ̌1‖〉 = O(d
−3/2) and likewise,

∀1 ≤ k ≤ l ≤ n, ‖σ̌kl‖ = 〈σkl, σ̌kl/‖σ̌kl‖〉 = O(d
−3/2).

As a consequence,

‖σ̂1‖
2
= 〈σ1 − σ̌1, σ1 − σ̌1〉 = 1+O(d−3/2), (2.41)

and for all 1 ≤ k ≤ l ≤ n, ‖σ̂kl‖2 = 1+O(d−3/2). Moreover, the scalar product between
two of these elements is an O(d−1) as follows from Lemma 2.6. Let P be the matrix of
the basis σ̂1, (σ̂kl)1≤k≤l≤n written in an orthonormal basis of (H3x ∩π1(π

−1
2 (x)))⊥. Then

tPP is the Gram matrix of these vectors and it follows from (2.41) that

G = tPP − Id = O(d−1), (2.42)

where the O(d−1) does not depend on x ∈ X. The Gaussian measure of (H3x ∩

π1(π
−1
2 (x)))⊥ reads then, in the coordinates a1, B ′ = (bkl)1≤k≤l≤n,

e−
t(a1,B

′)tPP(a1,B
′)
|Jac(P )|

da1 dB
′

√
π
n(n+1)/2+1

= e−
t(a1,B

′)G(a1,B
′)
|Jac(P )|e−‖a1‖

2
−‖B ′‖2 da1 dB

′

√
π
n(n+1)/2+1 = f (a1, B

′) dµC(a1, B
′).
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By (2.42), f (a1, B
′) = |Jac(P )|e−

t(a1,B
′)G(a1,B

′)
∈ R+ converges to 1 as d grows to

infinity and is dominated by a function with the same property which does not depend on
x ∈ X. We deduce that

1
dn

∫
π1(π

−1
2 (x))

λ(σ,x) ∧ λ(σ,x) dµC(σ ) = π
n

∫
H ′
|a1(1+O(d−6))|2

· |detB + Pn−1(B, a1r(d, x)+ s(d, x, B))|
2

· f (a1, B
′) dµC(a1, B

′) dvolh|x .

Since ∫
H ′
|a1|

2
|detB|2 dµC(a1, B

′) =

∫
Sym(n−1,C)

|detB|2 dµC(B) = eC(n− 1),

we finally get

lim
d→∞

1
dn

∫
π1(π

−1
2 (x))

λ(σ,x) ∧ λ(σ,x) dµC(σ ) = π
neC(n− 1) dvolh|x, (2.43)

where the convergence is dominated by a polynomial function in ‖∇Xdx1‖ of degree less
than 2n− 1.

This result remains unchanged if a different normalized volume form dx is used
on X to define the L2 scalar product, since from Remark 2.7(1), this asymptotically has
the effect of dilating the scalar product on the subspace (H3x ∩ π1(π

−1
2 (x)))⊥, while

from Remark 2.11 and Proposition 2.12, such a dilation does not affect the integral∫
(H3x∩π1(π

−1
2 (x)))⊥

λ(σ,x) ∧ λσ,x dµC(σ ).

The computation near critical and base points. Since ∇X is not defined at the critical
and base points of p, we have now to estimate the singularities of ∇X(dx1) near these
loci. In the coordinates (x1, . . . , xn) around x, let us write dp =

∑n
i=1 αidxi , so that at

the point x, α2(x) = · · · = αn(x) = 0 and |α1(x)| = ‖dpx‖. Then

0 = ∇X(dp)|Kx = α1(∇
Xdx1)|Kx +

n∑
i=1

(dαi ⊗ dxi)|Kx

so that ‖∇Xdx1|Kx‖ = (1/‖dp|x‖)‖
∑n
i=1 dαi⊗dxi|Kx‖ has a pole of order one at x, since

by definition of a Lefschetz pencil, dp vanishes transversely at x. As a consequence, the
domination in (2.43), which is polynomial in ‖∇Xdx1‖ of degree less than 2n − 1, has
poles at order at most 2n− 2 near the critical points.

Near the base points, these are poles of order at most 2. Indeed, the normal form for p
near a base point reads p : (y1, . . . , yn) ∈ Cn 7→ y1/y2 ∈ C, so that

dp|(y1,...,yn) =
y2 dy1 − y1 dy2

y2

is not well defined along y2 = 0. Denote by β the numerator one-form y2dy1 − y1dy2,
which is well defined everywhere. When the point x lies in such a chart, there is no
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obstruction to finding local coordinates around x which are orthonormal at x and such
that in these coordinates, β reads α1dx1 + α2dx2 where α1, α2 only depend on x1, x2,
α2(x) = 0 and α1(x) is a function of x having a simple zero along the base locus. Then,
by hypothesis on ∇X,

0 = ∇Xβ|Kx = α1∇
X(dx1)|Kx +

∂α2

∂x2
dx2 ⊗ dx2|Kx .

It follows that ∇X(dx1)|Kx has a simple pole along the base locus, and by (2.36) the
matrix of ∇2σ1|Kx in the basis (∂/∂x2, . . . , ∂/∂xn) is elementary, with only one diagonal
coefficient having a simple pole along the base locus. After developing the determinant,
we deduce that the polynomial Pn−1 in (2.39) is only of degree one, so that the dominating
function in (2.43) has a pole of order at most two near the base locus. ut

2.5.2. Proof of Proposition 2.13 in the real case. In the real case, we get likewise

1
√
πd

n |λ(σ,x)| = |a1(1+O(d−6))| |detB + Pn−1(B, a1r(d, x)+ s(d, x, B))| dvolh|x .

(2.44)
After integration, we deduce that

1
√
d
n

∫
π1(π

−1
2 (x))

|λ(σ,x)| dµR(σ ) =
√
π
n
∫
H ′i

|a1(1+O(d−6))|

· |detB + Pn−1(B, a1r(d, x)+ s(d, x, B))|(π
′
∗ dµR(a1, B

′)) dvolh|x,

where from Lemma 2.9, H ′i = {σ ∈ H
′
| φx ◦ ∇

2σ|Kx is of index i}. Again, we deduce
from Lemma 2.6 that

lim
d→∞

1
√
d
n

∫
π1(π

−1
2 (x))

|λ(σ,x)| dµR(σ ) =
√
π
n
∫
R
|a1| dµR(a1)

·

∫
Sym(i,n−1−i,R)

|detB| dµR(B)|dvolh|x |

=
√
π
n−1

eR(i, n− 1− i)|dvolh|x |,

where the convergence is dominated by a polynomial function in ‖∇Xdx1‖ of degree less
than n, so that it has poles of order less than n near the critical points of p. This result
remains unchanged if a different normalized volume form dx is used on X. ut

2.5.3. Proofs of the theorems. Proof of Theorems 1.3 and 1.2. From Proposition 2.13 it
follows that under the hypotheses of Theorem 1.3 (resp. Theorem 1.2), the measure

1
dn

∫
π1(π

−1
2 (x))

λ(σ,x) ∧ λ(σ,x) dµC(σ ) (resp.
1
√
d
n

∫
π1(π

−1
2 (x))

|λ(σ,x)| dµR(σ ))

weakly converges to the measure

πneC(n− 1)dvolh (resp.
√
π
n−1

eR(i, n− 1− i)dvolh ).

Theorems 1.3 and 1.2 then follow from Propositions 2.10, 2.12 and 3.8, for any normal-
ized volume form dx on X chosen to define the L2 scalar product 〈·, ·〉 in (2.1). ut
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Proof of Theorem 1.1. By definition, for every σ ∈ RH 0(X,Ld) \ R1dp,

1
√
d
nmi(RCσ ) ≤

∫
RX
νi(RCσ ),

with equality when n = 1 (and i = 0), where νi is the empirical measure defined by (1.5)
and mi is the ith Morse number (see (1.1)). By integration over RH 0(X,Ld) \ R1dp, we
deduce that

1
√
d
nE(mi) ≤

∫
RX
E(νi),

with equality when n = 1. Now, from Theorem 1.2,∫
RX
E(νi) −−−→

d→∞

1
√
π
eR(i, n− 1− i)

∫
RX
dvolh,

hence the result. ut

Remark 2.14. (1) Theorem 1.1 substantially improves [16, Theorem 4].
(2) When X is the Riemann sphere CP 1, L = OCP 1(1) and h is the Fubini–Study

metric, X equipped with its Kählerian metric is isometric to the round sphere of ra-
dius 1/(2

√
π) in the Euclidean three-space, so that its volume equals 1. It follows that

VolFS(RX) =
√
π , and Theorem 1.1 then gives E(b0) ∼d→∞

√
d , which is consistent

with Kostlan’s [21] and Shub–Smale’s [36] results.
(3) When X = CP n, L = OCP n(1) and h is the Fubini–Study metric, the geodesics

RP 1 of RP n have length
√
π , so that RP n is isometric to the quotient of the sphere of

radius 1/
√
π by the antipodal relation. Hence,

VolFS(RP n) =
1

2
√
π
n Vol(Sn) =

√
π

0
(
n+1

2

) ,
where Sn denotes the unit sphere in Rn+1.

3. Expected determinant of random symmetric matrices

In §3.1 we study the asymptotic distribution of eR(p, q) for large n = p + q. We then
compute eC(n) in §3.2.1 and eR(n) in §§3.2.2 and 3.2.3. We also give in §3.2.4 the values
of eR(p, q) for p + q ≤ 3.

3.1. Large random real symmetric matrices

3.1.1. The energy functional. Let

f : R2
→ R ∪ {∞}, (x, y) 7→

{ 1
2 (x

2
+ y2)− log |x − y| if x 6= y,

∞ if x = y.
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Let M+

1 (R) be the space of probability measures on R, and H be the energy functional
defined by

H :M+

1 (R)→ R ∪ {∞},

µ 7→

{ 1
2

∫∫
R2 f (x, y) dµ(x) dµ(y) if

∫
R log(|x| + 1) dµ(x) <∞,

∞ otherwise.

This functional is lower semicontinuous, strictly convex and reaches its unique minimum
at the semicircle lawµW of Wigner (see [1, §2.6.1]). Moreover,H(µW ) = 1

4 (3/2+log 2).
For every 0 ≤ α ≤ 1, define

M+

α,1−α(R) = {µ ∈M+

1 (R) | µ(R
∗
−) = α and µ(R∗+) = 1− α}.

Since the functionalH is strictly convex and equals∞ on atomic measures, its restriction
to M+

α,1−α reaches its minimum at a unique measure µα ∈M+

α,1−α which has no atom.
In particular, µ1/2 = µW . For every 0 ≤ α ≤ 1, we set

Mα = min
M+

α,1−α(R)
H = H(µα).

Lemma 3.1. The function M : α ∈ [0, 1] 7→ Mα ∈ R+ is strictly decreasing over
[0, 1/2] and strictly increasing over [1/2, 1]. More precisely, for every α ∈ [0, 1] \ {1/2},
there exists cα > 0 such that for all t ∈ [0, 1], Mtα+(1−t)·1/2 ≤ Mα + (t

2
− 1)cα.

Proof. Let α ∈ [0, 1]\{1/2} and f α ∈ L1(R, dx) be the density of µα with respect to the
Lebesgue measure dx. We decompose f α = fe + fo into even and odd functions, so that
fe =

1
2 (f

α
+ f α ◦ (−Id)) and fo = 1

2 (f
α
− f α ◦ (−Id)). Likewise, we set µe = fedx

and µo = fodx, so that µα = µe + µo. Then, for every t ∈ [−1, 1],

H(µe + tµo) =
1
2

∫∫
R2
f (x, y)

(
dµe(x)dµe(y)+ tdµe(x)dµo(y)+ tdµo(x)dµe(y)

)
+
t2

2

∫∫
R2
f (x, y)dµo(x)dµo(y) = H(µe)+ t

2H(µo)

from Fubini’s theorem, since
∫
R

1
2 (x

2
+ y2) dµo(x) =

∫
R

1
2 (x

2
+ y2) dµo(y) = 0 while

likewise
∫
R log |y − x| dµe(x) and

∫
R log |y − x| dµe(y) are even functions of y and x

respectively. Since H is strictly convex, so is its restriction to {µe + tµo | t ∈ [−1, 1]},
so that H(µo) has to be positive. However, for every t ∈ [0, 1], µe + tµo belongs to
M+

(tα+(1−t)·1/2,(1+t)·1/2−tα)(R) and we deduce thatMtα+(1−t)·1/2 ≤ H(µe)+t
2H(µo) =

Mα + (t
2
− 1)H(µo), hence the result. ut

Remark 3.2. It would be of interest to explicitly compute the function α ∈ [0, 1] 7→
Mα ∈ [M1/2,∞] and the measure µα . With the help of some physical considerations, the
case α = 0 has been performed in [6] and the asymptotic of Mα near α = 1/2 has been
obtained in [26, (10)]. It reads

Mα −M1/2 ∼
α→1/2

−
π2

2
(α − 1/2)2

log |α − 1/2|
.
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3.1.2. Measure concentration around matrices of vanishing signature. Let us now prove
Theorem 1.6, closely following the proof of [3, Theorem 3.2].

Proof of Theorem 1.6. The orthogonal groupOn(R) acts by conjugation on real symmet-
ric matrices and a fundamental domain for this action is given by diagonal matrices with
stabilizer {±1}n. From the coarea formula (see [12, Theorem 3.2.3] or [36, Theorem 1]),
we deduce that for every 0 ≤ i ≤ n,

eR(i, n− i) =
Vol(On(R))

2n
√
π
n(n−1)/2

∫
λ1<···<λi<0

0<λi+1<···<λn

∣∣∣ n∏
i=1

√
2 λi

∣∣∣ ∏
1≤i<j≤n

√
2 |λj − λi | dµ(λ),

where the volume of On(R) is computed with respect to the right invariant metric for
which the basis (Eij − Eji)1≤i<j≤n of its Lie algebra is orthonormal (see §3.1.3),
√

2 λ1, . . . ,
√

2 λn denote the eigenvalues of the diagonal matrices and dµ(λ) denotes
the Gaussian measure on Rn. As a consequence, for every 0 ≤ i ≤ n,

eR(i, n− i) =
Vol(On(R))

√
2
n(n−1)/2

√
2
n√
π
n(n+1)/2

·

∫
λ1<···<λi<0

0<λi+1<···<λn

exp
(
−

n∑
j=1

λ2
j +

∑
1≤j<k≤n

log |λj − λk|
) n∏
j=1

(|λj |dλj )

= cnn!

∫
γ1<···<γi<0

0<γi+1<···<γn

exp
( ∑

1≤j<k≤n

log |γj − γk| −
1
2

∑
1≤j<k≤n

(γ 2
j + γ

2
k )

)

· exp
(
−

1
2

n∑
j=1

γ 2
j

) n∏
j=1

(|γj |dγj )

where

cn =

√
2
n(n−1)/2

Vol(On(R))
n!
√

2
n√
π
n(n+1)/2

(
n

2

)n(n−1)/4+n

,

and where we wrote, for every 1 ≤ j ≤ n, λj =
√
n/2 γj . We now proceed as in [3, §3.1]

(or [1, §2.6.1]). Define, for every γ1 < · · · < γi < 0 < γi+1 < · · · < γn,

µn =
1
n

n∑
j=1

δγj ∈M+

i/n,1−i/n(R),

so that∑
1≤j<k≤n

log |γj − γk| −
1
2

∑
1≤j<k≤n

(γ 2
j + γ

2
k ) = −n

2
∫∫

x<y

f (x, y) dµn(x) dµn(y).

For R ∈ R, let fR = min(f, R) and

∀µ ∈M+

1 (R), HR(µ) =
1
2

∫∫
R2
fR(x, y) dµ(x) dµ(y).
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We set
Mα,R = min⋃

β≤αM
+

β,1−β (R)
HR.

For every 0 ≤ i ≤ bαnc,∫∫
x<y

fR(x, y) dµn(x) dµn(y) = HR(µn)−
R

2n
≥ Mα,R −

R

2n
.

Moreover, by Lemma 3.5 (see §3.1.3 below) and Stirling’s formula, log(cn) =
n2M1/2 +O(n). Hence, there exists a constant D > 0 such that

bαnc∑
i=0

eR(i, n− i) ≤ exp
(
−n2(Mα,R −M1/2)+ (D + R/2)n

)(∫
R
|γ |e−γ

2/2 dγ

)n
.

From [3, Property 2.1], limR→∞Mα,R = Mα since HR weakly converges to H .
Hence, Theorem 1.6 follows once R is chosen large enough, since Mα > M1/2 and
by Lemma 3.1, Mα = min⋃

β≤αM
+

β,1−β (R)
H . ut

Remark 3.3. (1) Note that under the hypotheses of Theorem 1.6, Theorem 3.2 in [3]
likewise implies that

µR
(bαnc⋃
i=0

Sym(i, n− i,R)
)
≤ exp(−cαn2).

(2) An estimation of how the R in the proof of Theorem 1.6 grows to infinity as α→
1/2, combined with an asymptotic of Mα near α = 1/2 (see Remark 3.2), would make
it possible to improve Theorem 1.6. However, Proposition 3.9 seems to imply that we
cannot hope for a better estimate than up to an O(n log n) error term using this approach.
More precisely, [26, (10)] leads, for any diverging sequence δn, to

log
(n/2−δn∑

i=0

eR(i, n− i)
)
≤
π2

2
δ2
n

log(δn/n)
+O(n log n)

(see Remark 3.2).

3.1.3. Volume of the orthogonal group. Let us equip the vector space of real antisym-
metric matrices with the scalar product turning the basis (Eij − Eji)1≤i<j≤n into an
orthonormal one. This scalar product on the Lie algebra of On(R) induces on On(R) a
Riemannian metric for which multiplications on the right by elements are isometries. In
the following lemma we recall the value of the total volume of On(R) for this metric.

Lemma 3.4. For every positive integer n,

Vol(On(R)) =
n−1∏
k=0

Vol(Sk) =
n!
√
π
n(n+1)/2∏n

j=1 0(1+ j/2)
.



Betti numbers of random real hypersurfaces 761

Proof. The orthogonal group On(R) acts by isometries on the unit sphere Sn−1 with sta-
bilizers conjugate to On−1(R). From the coarea formula, we deduce that Vol(On(R)) =
Vol(On−1(R))× Vol(Sn−1), and the result follows by induction. ut

Lemma 3.5. The following asymptotic development holds:

log
(

Vol(On(R))
√

2
n(n−1)/2

√
2
n√
π
n(n−1)/2

)
= −

n2 log n
4
+ n2

(
3
8
+

log 2
2

)
+

1
4
n log n+O(n).

Proof. From Lemma 3.4, when n = 2m is even,

Vol(On(R))
√

2
n(n−1)/2

√
2
n√
π
n(n−1)/2 =

n!
√
π
n√2

n(n−3)/2∏n/2
j=1(j !0(j + 1/2))

.

From Stirling’s formula, n! ∼ nne−n
√

2πn as n→∞ and 0(j+1/2) ∼ (j−1)!
√
j − 1.

It follows that

log
( m∏
j=1

(j !0(j + 1/2))
)
= 2

m−1∑
j=1

(
j log j − j + 3

4 log j
)
+m logm+O(n)

=

m−1∑
j=1

(
(j+1)2 log(j+1)−j2 log j−3j+ 1

2 (j+1) log(j+1)− 1
2j log j

)
+m logm+O(n)

=
n2

4
log
(
n

2

)
−

3
8
n2
+

3n
4

log
(
n

2

)
+O(n).

Finally, we obtain

log
(

Vol(On(R))
√

2
n√
π
n(n−1)/2

)
=n log n+

n2

4
log 2+

n2

4
log 2−

n2

4
log n+

3
8
n2
−

3n
4

log n+O(n),

which gives the result when n is even. When n = 2m+ 1, we have

Vol(On(R))
√

2
n(n−1)/2

√
2
n√
π
n(n−1)/2 =

√
2
m+n

πm2m
2∏m−1

j=0 (j !0(j + 3/2))
.

But

log
(m−1∏
j=0

(j !0(j+3/2))
)
= 2

m−1∑
j=1

(
j log j−j+

3
4

log j
)
+O(n)

=
(n−1)2

4
log
(
n−1

2

)
−

3
8
(n−1)2+

n−1
4

log
(
n−1

2

)
+O(n).
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We deduce that

log
(

Vol(On(R))
√

2
n(n−1)/2

√
2
n√
π
n(n−1)/2

)
=
n2

4
log 2−

n2

4
log n+

n

2
log n+

n2

4
log 2+

3
8
n2
−
n

4
log n

+O(n),

proving the result. ut

3.2. Determinants of random symmetric matrices

3.2.1. Complex symmetric matrices. For every n ∈ N∗, denote by Sn the group of permu-
tations of {1, . . . , n}, and for every σ ∈ Sn, let Cycles(σ ) be the set of cycles appearing
in the decomposition of σ into a product of cycles with disjoint supports. For instance, if
σ denotes the permutation

(
1 2 3 4 5
3 2 1 5 4

)
of {1, . . . , 5}, then Cycles(σ ) = {(13), (2), (45)}.

Lemma 3.6. For every n ∈ N∗, eC(n) =
∑
σ∈Sn

2#Cycles(σ ).

Proof. For everyA ∈ Sym(n,C), writeA =
∑

1≤i≤j≤n aij Ẽij and set aji = aij if i > j .
By definition,

eC(n) =

∫
Sym(n,C)

(detA)(detA) dµC(A)

=

∑
σ∈Sn

(−1)ε(σ )
∑
τ∈Sn

(−1)ε(τ )
∫

Sym(n,C)

√
2

#Fix(σ )+#Fix(τ )
· · ·

· · · a1σ(1)a1τ(1) · · · anσ(n)anτ(n) dµC(A),

since the diagonal entries of A have weight
√

2. Now, the integral
∫
C z

α z̄β dµC(z) van-
ishes when α 6= β, so that for every σ ∈ Sn, the only permutations τ ∈ Sn which con-
tribute to the integral are the ones for which {a1σ(1), . . . , anσ(n)} = {a1τ(1), . . . , anτ(n)}.
This implies that {ajσ (j), aσ−1(j)j } = {ajτ(j), aτ−1(j)j } for every j ∈ {1, . . . , n}.

If j belongs to a cycle of length 1 or 2 of σ , we deduce that σ(j) = τ(j). More gen-
erally, if σ̃ ∈ Cycles(σ ), then either σ̃ or σ̃−1 is in Cycles(τ ). In particular, ε(σ ) = ε(τ ).
Conversely, every permutation τ which can be written as a product

∏
σ̃∈Cycles(σ ) σ̃

±1

contributes to the integral. There are 2#Cycles≥3(σ ) such permutations, where Cycles≥3(σ )

denotes the set of elements of Cycles(σ ) having length ≥ 3. As a consequence,

eC(n) =
∑
σ∈Sn

2#Cycles6=2(σ )

∫
Sym(n,C)

n∏
i=1

|aiσ (i)|
2 dµC(A),

where Cycles 6=2(σ ) denotes the subset in Cycles(σ ) of elements having length differ-
ent from 2. Now,

∫
C |z|

2 dµC(z) = 1 whereas
∫
C |z|

4 dµC(z) = 2. Every transposition
of Cycles(σ ) produces an element of this second type whereas the other elements of
Cycles(σ ) give rise to products of the first type. Hence the result. ut
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Lemma 3.7. For every n ∈ N∗,
∑
σ∈Sn

2#Cycles(σ )
= (n+ 1)!.

Proof. When n = 1, the equality is satisfied. Assume that it is satisfied up to a rank n and
let us prove it for rank n + 1. Let σ ∈ Sn+1 and let σ = σ̃1 · · · σ̃k be its decomposition
into a product of cycles with disjoint supports. If we remove n+ 1 from the cycle which
contains it, we get a permutation τ of Sn together with its decomposition into a product
of cycles with disjoint supports. We deduce from this an (n + 1)-to-1 forgetful map fn :
σ ∈ Sn+1 7→ τ ∈ Sn such that #Cycles(σ ) = #Cycles(fn(σ )) if n + 1 is not fixed by σ
and #Cycles(σ ) = #Cycles(fn(σ ))+ 1 otherwise. Hence,∑

σ∈Sn+1

2#Cycles(σ )
=

∑
τ∈Sn

∑
σ∈f−1

n (τ )

2#Cycles(σ )
= (n+ 2)

∑
τ∈Sn

2#Cycles(τ )
= (n+ 2)!

by induction. ut

Proposition 3.8. For every n ∈ N, eC(n) = (n+ 1)!.

Proof. This is a consequence of Lemmas 3.6 and 3.7 when n > 0 and of our convention
when n = 0. ut

3.2.2. Real symmetric matrices of odd size. We recall here the values of eR(n), n > 0,
distinguishing between the cases of n even and n odd (see [27, §25.5 and §26.6]). The
odd-dimensional case turns out to be easier:

Proposition 3.9 ([27, formula 26.5.2]). For every odd integer n,

eR(n) =
2
√

2
π
0

(
n+ 2

2

)
.

Let us briefly recall the proof of this proposition as given in [27].

Proof. As in the proof of Theorem 1.6, it follows from the coarea formula that

eR(n) =
Vol(On(R))

2n
√
π
n(n−1)/2

∫
λ1<···<λn

∣∣∣ n∏
i=1

√
2 λi

∣∣∣ ∏
1≤i<j≤n

√
2 |λj − λi | dµ(λ),

where as before the volume ofOn(R) is computed with respect to the right invariant met-
ric for which the basis (Eij − Eji)1≤i<j≤n of its Lie algebra is orthonormal (see §3.1.3),
and where dµ(λ) denotes the Gaussian measure on Rn. The integrand is a Vandermonde
determinant. Integrating the odd lines of this determinant and then expanding by pairs of
rows in the Laplace manner, we get the relation

eR(n) =
Vol(On(R))

√
2
n(n−1)/2

√
2
n√
π
n(n−1)/2 detB.

Here, writing n = 2m+1,B denotes an (m+1)×(m+1)matrix with entries (bij )0≤i<j≤m
defined by

∀0 ≤ i ≤ m, ∀0 ≤ j < m, bij = 2(ψij + η2iη2j+1),
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and bim = 2η2i where

ψij =

∫
0≤x<y<∞

|xy|(x2iy2j+1
− y2ix2j+1) dµ(x) dµ(y), (3.1)

ηk =

∫
∞

0
xk+1 dµ(x) =

1
2
√
π
0

(
k + 2

2

)
.

Using linear combinations of rows and columns of B with the help of the relations

∀i, j ≥ 0, ψi+1,j = (i + 1)ψij −
1

π2i+j+7/20(i + j + 5/2)

and η2i+2 = (i + 1)η2i , we get

detB =
1

√
π
n√2

m
2m(m+1)

det (0(i + j + 5/2))0≤i,j≤m−1

=
1

√
π
n√2

m
2m(m+1)

m−1∏
j=0

(j !0(5/2+ j))

(see [27, formula A.18.7]). When n = 2m+ 1 we deduce from this that

eR(n) =
Vol(On(R))

√
2
n(n−1)/2

√
π
n(n+1)/2√2

m+1
2m(m+2)

m−1∏
j=0

(j !0(5/2+ j)).

The result now follows from Lemma 3.4. ut

The proof of Proposition 3.9 may also provide an alternative proof of Lemma 3.4 for odd
n’s, as suggested in [27].

Alternative proof of Lemma 3.4 in odd dimensions. Proceeding as in the proof of
Proposition 3.9, we get

1 =
Vol(On(R))

2n
√
π
n(n−1)/2

∫
λ1<···<λn

∏
1≤i<j≤n

√
2(λj − λi) dµ(λ)

=
Vol(On(R))

√
2
n(n−1)/2

2n
√
π
n(n−1)/2 detB ′,

where B ′ denotes an (m+ 1)× (m+ 1) matrix (b′ij )0≤i,j≤m defined by

∀0 ≤ i ≤ m, ∀0 ≤ j < m, b′ij = 2(ψ ′ij + η2i−1η2j )

and b′im = 2η2i−1, whereas

ψ ′ij =

∫
0≤x<y≤∞

(x2iy2j+1
− y2ix2j+1) dµ(x) dµ(y) = −ψj (i−1).
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From linear combinations and the relation

∀i, j ≥ 0, ψ ′i+1,j =
2i + 1

2
ψ ′ij −

1
π2i+j+5/20(i + j + 3/2),

we get

detB ′ =
1

πm
√

2
m

2m2

m−1∏
j=0

(j !0(3/2+ j)).

Finally,

Vol(On(R)) =
√
π
m(n+2)√2

m
2m

2
+n∏m−1

j=0 (j !0(3/2+ j))
√

2
n(n−1)/2 (3.2)

and eR(n) = 2
√

2
π
0
(
n+2

2

)
, since 0(1/2) =

√
π . ut

Remark 3.10. The first values given by Proposition 3.9 are

eR(1) =

√
2
π
, eR(3) =

3
√

2π
, eR(5) =

15

2
√

2π
.

Moreover, from Stirling’s formula, eR(n) is equivalent to 2
√

2
π

√
mm! as n = 2m+1→∞.

3.2.3. Real symmetric matrices of even size. When the dimension n = 2m is even, the
value of eR(n) is given by the following proposition.

Proposition 3.11. For every even positive integer n = 2m,

eR(n) = (−1)m
n!

m!2n
+ (−1)m−1 4

√
2 n!

√
π m!2n

m−1∑
k=0

(−1)k
0(k + 3/2)

k!
.

This expression can be rewritten as

eR(n) = (−1)m
4
√

2 n!
√
π m!2n

∫
∞

0

√
t

(
e−t −

m−1∑
k=0

(−t)k

k!

)
e−t dt.

The first term on the right-hand side of the expression in Proposition 3.11 is alternat-
ing and negligible for large values of n with respect to the second one which is always
nonnegative. The latter can be checked by pairing the terms of the sum (see the proof of
Corollary 3.13).

Remark 3.12. The first values of eR(n) for even n’s are

eR(0) = 1, eR(2) =
√

2− 1/2, eR(4) = 3
4 (
√

2+ 1),

eR(6) = 165
32

√
2− 15

8 , eR(8) = 3×5×7
16

( 13
8

√
2+ 1

)
.

Note that eR(n) is algebraic in Q[
√

2] for even n and transcendental for odd n.
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Corollary 3.13. Whatever the parity of n, eR(n) ∼ 2
√

2
π
0(n+2

2 ) as n→∞.

Proof. For every odd n, eR(n) = 2
√

2
π
0
(
n+2

2

)
from Proposition 3.9. When n = 2m

is even, the first term on the right-hand side in Proposition 3.11 is equivalent to
(−1)mmme−m

√
2, that is, (−1)m0

(
n+2

2

)
/
√
πm from Stirling’s formula. Pairing the terms

of the sum in the second one, we get

m−1∑
k=0

(−1)k
0(k + 3/2)

k!
= −

1
2

m/2−1∑
j=0

0(2j + 3/2)
(2j + 1)!

when m is even, and

m−1∑
k=0

(−1)k
0(k + 3/2)

k!
=
0(m+ 1/2)
(m− 1)!

−
1
2

(m−1)/2−1∑
j=0

0(2j + 3/2)
(2j + 1)!

when m is odd. In both cases, this sum gets equivalent to (−1)m−1√m/2 as n → ∞,
hence the result. ut

In order to prove Proposition 3.11, we first compute eR(n) in terms of a sequence (bm)m∈N
which we now introduce (see Proposition 3.14). Let (aj )j=0 be the sequence defined by
the relations a0 = (8

√
2− 7)/3 and

∀j > 0, aj =
4j + 2
2j + 3

aj−1 + 1.

Let b1 = a0 + 1 = 4
3 (2
√

2− 1) and for every m > 1,

bm =

m−1∑
j=0

(−1)m−1−j
(
m− 1
j

)
aj .

Proposition 3.14. For every even integer n = 2m > 0,

eR(n) =
n!0

(
n+3

2

)
bm

m!(m− 1)!2n
√
π
.

Proof. As in the proof of Proposition 3.9, we establish that

eR(n) =
Vol(On(R))

√
2
n(n−1)/2

√
2
n√
π
n(n−1)/2 detC,

where C denotes an m×m matrix (cij )0≤i,j≤m−1 defined by

∀0 ≤ i, j ≤ m− 1, cij = 2(ψij + η2iη2j+1)

with
ψij =

∫
0≤x<y≤∞

|xy|(x2iy2j+1
− y2ix2j+1) dµ(x) dµ(y)

and ηk =
∫
∞

0 xk+1 dµ(x) = 1
2
√
π
0
(
k+2

2

)
. Following [27, §26.6], we get
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detC = −2m
∣∣∣∣ −1 (η2j+1)0≤j≤m−1
(η2i)0≤i≤m−1 (ψij )0≤i,j≤m−1

∣∣∣∣
= −2m

∣∣∣∣∣∣∣∣
−1 (η2j+1)0≤j≤m−1
η0 (ψ0j )0≤j≤m−1

0 (ψij − iψi−1j = −
0(i+j+3/2)
π2i+j+5/2 )1≤i≤m−1, 0≤j≤m−1

∣∣∣∣∣∣∣∣
=

(−1)m

πm2m2√2
m−1

∣∣∣∣∣∣∣∣∣∣
−1 0

2
√
π 2j (4πψ0j +0(j +3/2))0≤j≤m−1

0 0(5/2) 0(j +5/2)1≤j≤m−1
0 0 (0(i+ j +3/2)− (i+1/2)0(i+ j +1/2)

= j0(i+ j +1/2))2≤i≤m−1, 1≤j≤m−1

∣∣∣∣∣∣∣∣∣∣
,

which equals

(−1)m−1∏m−1
j=0 (j !0(j + 5/2))

πm2m2√2
m−1

∣∣∣∣∣∣∣∣∣∣∣

2j
j !0(j+5/2) (4πψ0j + 0(j + 3/2))0≤j≤m−1

1 (1/j !)1≤j≤m−1
0 1 (1/(j − 1)!)2≤j≤m−1
...

. . .
. . .

...

0 . . . 0 1 1

∣∣∣∣∣∣∣∣∣∣∣
,

so that the (i, j) entry, 1 ≤ i, j ≤ m − 1, equals 1/(j − i + 1)! if j − i + 1 ≥ 0 and
0 otherwise. Subtracting from the m − 1 first lines multiples of the last one, we obtain
zeros in the last column, whereas the entry of the penultimate column in the ith line,
1 ≤ i ≤ m− 2, equals (m− 1− i)/(m− i)!. Then, subtracting from the m− 2 first lines
multiples of the penultimate one, we get zeros in the penultimate column whereas the
(i,m−2) entry, 1 ≤ i ≤ m−3, equals (m− 1− i)(m− 2− i)/(m− i)!. By recurrence,
we get a lower triangular matrix and

detC =
(−1)m−1∏m−1

j=0 (j !0(j + 5/2))

πm2m2√2
m−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

α 0 . . . 0

1 1
m−1

. . .

0
. . .

. . .
...

...
. . . 1

2 0
0 . . . 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
with

α =

m−1∑
j=0

(−1)j
2j
∏m−1
k=m−j k

j !0(j + 5/2)
(4πψ0j + 0(j + 3/2)).

We then deduce from Lemma 3.4 the relation

eR(n) =
n!0(n+3

2 )

m!(m− 1)!2n
√
π

2
√

2
m−1∑
j=0

(−1)m−1−j
2j
(
m−1
j

)
0(j + 5/2)

(4πψ0j + 0(j + 3/2)).
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The result follows by setting, for every j ∈ {0, . . . , m− 1},

aj =
2j+1
√

2
0(j + 5/2)

(4πψ0j + 0(j + 3/2))− 1.

Indeed,

ψ00 =
1

8
√

2π
(
√

2− 1) (3.3)

so that a0 = (8
√

2− 7)/3 and the recurrence relation satisfied by (aj )j≥0 follows from

∀j > 0, ψ0j = (j + 1/2)ψ0j−1 +
1

π2j+5/20(j + 3/2)

(compare [27, formula 26.4.13]). ut

Remark 3.15. As in the alternative proof of Lemma 3.4, we may show that for every
n = 2m > 0,

Vol(On(R)) =
2m(m+1)

√
2
m√

π
n(n+1)/2

(m− 1)!
√

2
n(n−1)/2∏m−1

j=0 (j !0(j + 3/2))b′m
,

where b′1 = a
′

0 + 1 and for every m > 1, b′m =
∑m−1
j=0 (−1)m−1−j (m−1

j

)
a′j . The sequence

(a′j )j≥0 is defined by a′0 = 1 and aj =
4j

2j+1aj−1 + 1 for j > 0.

Proof of Proposition 3.11. When m = 1, Proposition 3.11 is a consequence of Propo-
sition 3.14 since b1 =

4
3 (2
√

2 − 1). From Proposition 3.14, when m > 1, we have to
compute the values of bm ∈ Q[

√
2]. For every j ≥ 0, we deduce from the recurrence

relation that

aj =
2j

2j + 3

(
8
√

2− 7+ 2
j∑
k=2

2k + 1
2k

)
+ 1.

Writing
∑j

k=0
2k+1

2k =
(∑j

k=0
x2k+1

2k
)′
|x=1 = 6− 2j+5

2j , we deduce

∀j > 0, aj = 8
√

2
2j

2j + 3
−

4
2j + 3

− 1,

and as a consequence

bm = 4
m−1∑
j=0

(−1)m−1−j
(
m− 1
j

)
2
√

2 2j − 1
2j + 3

.

Now,(m−1∑
j=0

(−1)m−1−j
(
m− 1
j

)
2
√

2 2j − 1
2j + 3

x2j+3
)′

=

m−1∑
j=0

(−1)m−1−j
(
m− 1
j

)
(2
√

2 2j −1)x2j+2
= x2(2

√
2(2x2

−1)m−1
− (x2

−1)m−1),
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so that

bm = 8
√

2
∫ 1

0
x2(2x2

− 1)m−1 dx − 4
∫ 1

0
x2(x2

− 1)m−1 dx.

From the relations

∀j > 0,
∫ 1

0
x2(x2

− 1)j dx =
−2j

2j + 3

∫ 1

0
x2(x2

− 1)j−1,∫ 1

0
x2(2x2

− 1)j dx =
−2j

2j + 3

∫ 1

0
x2(2x2

− 1)j−1
+

1
2j + 3

,

it follows that

bm = (−1)m−1 4
√

2(m− 1)!
0(m+ 3/2)

m−1∑
k=0

(−1)k
0(k + 3/2)

k!
+ (−1)m

(m− 1)!
√
π

0(m+ 3/2)
.

Now, Proposition 3.11 follows from Proposition 3.14. ut

Remark 3.16. An expression of eR(n) in terms of hypergeometric series can be extracted
from [8], whereas an equivalent in logarithmic scale can be deduced from [38].

3.2.4. Values of e(p, q) for p + q ≤ 3 . We have not been able to compute the numbers
eR(p, q) in general and only give their values for p + q ≤ 3. These values make the
upper bounds given by Theorem 1.1 explicit for every smooth real projective manifold X
of dimension less than or equal to four.

Lemma 3.17.

eR(1, 0) = eR(0, 1) =
1
√

2π
,

eR(2, 0) = eR(0, 2) =
1
4
(
√

2− 1), eR(1, 1) =
1
√

2
,

eR(p, 3− p) =
3

4
√

2π
−
(−1)p

2
√
π
, ∀p ∈ {0, . . . , 3}.

Proof. First note that eR(1, 0) = eR(0, 1) = 1
2eR(1) = 1/

√
2π from Proposition 3.9,

since 0(3/2) =
√
π/2. Proceeding as at the beginning of the proof of Proposition 3.9,

we get

eR(2, 0) =
Vol(O2(R))

√
2

2
√
π

∫
0<λ1<λ2<∞

det

(
|λ1| λ2

1

|λ2| λ2
2

)
dµ(λ1) dµ(λ2) = 2

√
2π ψ00,

by (3.1) and Lemma 3.4 according to which Vol(O2(R)) = 4π. But ψ00 =
1

8
√

2π
(
√

2−1)

by (3.3), so that eR(2, 0) = eR(0, 2) = 1
4 (
√

2− 1). Likewise,

eR(1, 1) =
Vol(O2(R))

√
2

2
√
π

∫ 0

−∞

∫
∞

0
det

(
|λ1| λ2

1

|λ2| λ2
2

)
dµ(λ1) dµ(λ2)

(3.1)
= 4
√

2π η0η1 =
1
√

2
.
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Along the same lines we get

eR(3, 0)=
Vol(O3(R))

√
2

3

√
2π

3

(
η2ψ00−η0ψ10−η1

∫
0≤x<y<∞

|xy|(y2
−x2) dµ(x) dµ(y)

)
.

From (3.2), Vol(O3(R)) = 16π2. From the recurrence relation in the proof of Proposition
3.9, we deduce that ψ10 =

1
8
√
π
−

7
√

2
64
√
π
. Finally, for all i ≥ 0 and j > 0,

∫
0≤x<y<∞

|xy|(x2iy2j
− x2jy2i) dµ(x) dµ(y)

= j

∫
0≤x<y<∞

|xy|(x2iy2j−2
− x2j−2y2i) dµ(x) dµ(y)+

(i + j)!

π2i+j+2 ,

so that
∫

0≤x<y<∞ |xy|(y
2
− x2) dµ(x) dµ(y) = 1

8π . It follows that

eR(3, 0) = eR(0, 3) = 16
√
π

(
(
√

2− 1)

16
√

2π
−

1
16π
+

7

64
√

2π
−

1
32π

)
= −

1
2
√
π
+

3

4
√

2π
.

Likewise,

eR(2, 1) = eR(1, 2)

=
Vol(O3(R))

√
2

3

√
2π

3

(
−η0ψ10 + η2ψ00 + η1

∫
0≤x<y<∞

|xy|(y2
− x2) dµ(x) dµ(y)

)
= 16
√
π

(
(
√

2− 1)

16
√

2π
−

1
16π
+

7

64
√

2π
+

1
32π

)
=

1
2
√
π
+

3

4
√

2π
. ut
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Boston, MA (2007) Zbl 1108.32001 MR 2311920

[20] Kac, M.: On the average number of real roots of a random algebraic equation. Bull. Amer.
Math. Soc. 49, 314–320 (1943) Zbl 0060.28602 MR 0007812

[21] Kostlan, E.: On the distribution of roots of random polynomials. In: From Topology to Com-
putation: Proceedings of the Smalefest (Berkeley, CA, 1990), Springer, New York, 419–431
(1993) Zbl 0788.60069 MR 1246137

[22] Lerario, A.: Random matrices and the average topology of the intersection of two quadrics.
Proc. Amer. Math. Soc. 143, 3239–3251 (2015) Zbl 06445537 MR 3348768

[23] Lerario, A., Lundberg, E.: Gap probabilities and Betti numbers of a random intersection of
quadrics. Discrete Comput. Geom. 55, 462–496 (2016)

[24] Lerario, A., Lundberg, E.: Statistics on Hilbert’s 16th problem. Int. Math. Res. Notices 2015,
4293–4321 Zbl 06471152 MR 3356754

[25] Macdonald, B.: Density of complex critical points of a real random SO(m + 1) polynomial.
J. Statist. Phys. 141, 517–531 (2010) Zbl 1202.82033 MR 2728843

[26] Majumdar, S. N., Nadal, C., Scardicchio, A., Vivo, P.: How many eigenvalues of a gaussian
random matrix are positive?. Phys. Rev. E 83, 041105, 18 pp. (2011)

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1141.60033&format=complete
http://www.ams.org/mathscinet-getitem?mr=2375112
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1228.82035&format=complete
http://www.ams.org/mathscinet-getitem?mr=2274338
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1143.65039&format=complete
http://www.ams.org/mathscinet-getitem?mr=2400310
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1195.81062&format=complete
http://www.ams.org/mathscinet-getitem?mr=1797664
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0883.53032&format=complete
http://www.ams.org/mathscinet-getitem?mr=1438190
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1103.32011&format=complete
http://www.ams.org/mathscinet-getitem?mr=2104882
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1236.32013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2219939
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0176.00801&format=complete
http://www.ams.org/mathscinet-getitem?mr=0257325
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1267.82055&format=complete
http://www.ams.org/mathscinet-getitem?mr=2115095
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1227.32028&format=complete
http://www.ams.org/mathscinet-getitem?mr=2805598
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1326.14139&format=complete
http://www.ams.org/mathscinet-getitem?mr=3245138
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06296367&format=complete
http://www.ams.org/mathscinet-getitem?mr=3187930
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1326.32040&format=complete
http://www.ams.org/mathscinet-getitem?mr=3394124
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0138.06203&format=complete
http://www.ams.org/mathscinet-getitem?mr=0203075
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1108.32001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2311920
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0060.28602&format=complete
http://www.ams.org/mathscinet-getitem?mr=0007812
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0788.60069&format=complete
http://www.ams.org/mathscinet-getitem?mr=1246137
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06445537&format=complete
http://www.ams.org/mathscinet-getitem?mr=3348768
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06471152&format=complete
http://www.ams.org/mathscinet-getitem?mr=3356754
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1202.82033&format=complete
http://www.ams.org/mathscinet-getitem?mr=2728843


772 Damien Gayet, Jean-Yves Welschinger

[27] Mehta, M. L.: Random Matrices. 3rd ed., Pure Appl. Math. (Amsterdam) 142, Else-
vier/Academic Press, Amsterdam (2004) Zbl 1107.15019 MR 2129906

[28] Milnor, J.: Morse Theory. Ann. of Math. Stud. 51, Princeton Univ. Press, Princeton, NJ (1963)
Zbl 0108.10401 MR 0163331

[29] Milnor, J.: Lectures on the h-cobordism Theorem. Princeton Univ. Press, Princeton, NJ (1965)
Zbl 0161.20302 MR 0190942

[30] Nastasescu, M.: The number of ovals of a real plane curve. BA thesis, Dept. Math., Princeton
Univ. (2011)

[31] Nazarov, F., Sodin, M.: On the number of nodal domains of random spherical harmonics.
Amer. J. Math. 131, 1337–1357 (2009) Zbl 1186.60022 MR 2555843

[32] Nicolaescu, L. I.: Critical sets of random smooth functions on compact manifolds. Asian J.
Math. 19, 391–432 (2015) Zbl 06470465 MR 3361277

[33] Podkorytov, S. S.: The mean value of the Euler characteristic of an algebraic hypersurface.
Algebra i Analiz 11, no. 5, 185–193 (1999) (in Russian) Zbl 1002.14018 MR 1734353

[34] Sarnak, P., Wigman, I.: Topologies of nodal sets of random band limited functions.
arXiv:1312.7858 (2013)

[35] Shiffman, B., Zelditch, S.: Equilibrium distribution of zeros of random polynomials. Int.
Math. Res. Notices 2003, 25–49 Zbl 1006.60003 MR 1935565

[36] Shub, M., Smale, S.: Complexity of Bezout’s theorem. II. Volumes and probabilities. In:
Computational Algebraic Geometry (Nice, 1992), Progr. Math. 109, Birkhäuser Boston, 267–
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