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Abstract Let X be a smooth complex projective manifold of dimension n equipped with an ample line

bundle L and a rank k holomorphic vector bundle E . We assume that 1 6 k 6 n, that X , E and L are

defined over the reals and denote by RX the real locus of X . Then, we estimate from above and below
the expected Betti numbers of the vanishing loci in RX of holomorphic real sections of E ⊗ Ld , where d
is a large enough integer. Moreover, given any closed connected codimension k submanifold Σ of Rn with
trivial normal bundle, we prove that a real section of E ⊗ Ld has a positive probability, independent of

d, of containing around
√

d
n

connected components diffeomorphic to Σ in its vanishing locus.
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1. Introduction

Let X be a smooth complex projective manifold of positive dimension n equipped with

an ample line bundle L and let E be a holomorphic vector bundle of rank k over X .

From the vanishing theorem of Kodaira and Serre, we know that the dimension Nd
of the complex vector space H0(X, E ⊗ Ld) of global holomorphic sections of E ⊗ Ld

grows as a polynomial of degree n in d. We will assume throughout this paper that

1 6 k 6 n and that X , E and L are defined over the reals. We denote by RX the real

locus of X and by RH0(X, E ⊗ Ld) the real vector space of real holomorphic sections of

E ⊗ Ld ; see (5). Its dimension equals Nd . The discriminant locus R1d ⊂ RH0(X, E ⊗ Ld)

of sections which do not vanish transversally is a codimension 1 submanifold for d large

enough, and for every σ in its complement, the real vanishing locus RCσ of σ is a smooth

codimension k submanifold of RX . The topology of RCσ drastically depends on the choice

of σ ∈ RH0(X, E ⊗ Ld) \R1d . When n = k = 1, X = CP1, L = OCP1(1) and E = OCP1

for example, σ is a real polynomial of degree d in one variable and RCσ the set of its

real roots.
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The space RH0(X, E ⊗ Ld) inherits classical probability measures. Indeed, let hE be a

Hermitian metric on E and hL be a Hermitian metric of positive curvature on L, both hE
and hL being real, that is invariant under the Z/2Z-Galois action of E and L. We denote

by hE,d = hE ⊗ hd
L the induced metric on E ⊗ Ld . Then, the vector space RH0(X, E ⊗ Ld)

becomes Euclidean, with the L2-scalar product defined by

∀σ, τ ∈ RH0(X, E ⊗ Ld), 〈σ, τ 〉 =
∫

X
hE,d(σ, τ )dx,

where dx denotes any chosen volume form on X (our results being asymptotic in d, they

turn out not to depend on the choice of dx). It thus inherits a Gaussian probability

measure µR whose density at σ ∈ RH0(X, E ⊗ Ld) with respect to the Lebesgue measure

is (1/
√
π

Nd )e−‖σ‖2 .
What is the typical topology of RCσ for σ ∈ RH0(X, E ⊗ Ld) chosen at random for

dµR? We do not know, but can estimate its average Betti numbers. To formulate our

results, let us denote, for every i ∈ {0, . . . , n− k}, by bi (RCσ ,R) = dim Hi (RCσ ,R) the

ith Betti number of RCσ and by

E(bi ) =
∫
RH0(X,E⊗Ld )\R1d

bi (RCσ ,R)dµR(σ )

its expected value.

1.1. Upper estimates

As in [14], for every i ∈ {0, . . . , n− k}, we denote by SymR(i, n− k− i) the open cone

of real symmetric matrices of size n− k and signature (i, n− k− i), by µR the classical

Gaussian measure on the space of real symmetric matrices and by eR(i, n− k− i) the

numbers

eR(i, n− k− i) =
∫

SymR(i,n−k−i)
|det A|dµR(A); (1)

see § 3.1. We then denote by VolhL (RX) the volume of RX for the Riemannian metric

induced by the Kähler metric ghL defined by the curvature form of hL ; see (3) and (4).

Theorem 1.1.1. Let X be a smooth real projective manifold of dimension n, (L , hL) be

a real holomorphic Hermitian line bundle of positive curvature over X and (E, hE ) be a

rank k real holomorphic Hermitian vector bundle, with 1 6 k 6 n, k 6= n. Then, for every

0 6 i 6 n− k,

lim sup
d→∞

1√
d

n E(bi ) 6

(
n− 1
k− 1

)
eR(i, n− k− i)

VolhL (RX)
VolF S(RPk)

.

Moreover, when k = n, (1/
√

d
n
)E(b0) converges to VolhL (RX)/VolF S(RPn) as d grows to

infinity.

In fact, the right hand side of the inequality given by Theorem 1.1.1 also involves

the determinant of random matrices of size k− 1 and the volume of the Grassmann

manifold of (k− 1) linear subspaces of Rn−1 (see Theorem 3.1.2), but these can be
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computed explicitly. Note that when E is the trivial line bundle, Theorem 1.1.1 reduces

to Theorem 1.1 of [14].

Theorem 1.1.1 relies on Theorem 3.1.3, which establishes the asymptotic equidis-

tribution of clouds of critical points; see § 3.1. We obtain a similar result in a complex

projective setting, for critical points of Lefschetz pencils; see Theorem 3.5.1.

1.2. Lower estimates and topology

Let Σ be a closed submanifold of codimension k of Rn , 1 6 k 6 n, which we do not

assume to be connected. For every σ ∈ RH0(X, E ⊗ Ld) \R1d , we denote by NΣ (σ ) the

maximal number of disjoint open subsets of RX having the property that each such open

subset U ′ contains a codimension k submanifold Σ ′ such that Σ ′ ⊂ RCσ and (U ′,Σ ′) is

diffeomorphic to (Rn,Σ). We then set

E(NΣ ) =
∫
RH0(X,E⊗Ld )\R1d

NΣ (σ )dµR(σ ) (2)

and we associate with Σ , in fact with its isotopy class in Rn , a constant cΣ which is

positive if and only if Σ has trivial normal bundle in Rn ; see (14) for its definition and

Lemma 2.2.3. The latter measures à la Donaldson the amount of transversality that a

polynomial map Rn → Rk vanishing along a submanifold isotopic to Σ may have.

Theorem 1.2.1. Let X be a smooth real projective manifold of dimension n, (L , hL) be

a real holomorphic Hermitian line bundle of positive curvature over X and (E, hE ) be

a rank k real holomorphic Hermitian vector bundle, with 1 6 k 6 n. Let Σ be a closed

submanifold of codimension k of Rn with trivial normal bundle, which does not need to

be connected. Then,

lim inf
d→∞

1√
d

n E(NΣ ) > cΣVolhL (RX).

In particular, when Σ is connected, Theorem 1.2.1 bounds from below the expected

number of connected components diffeomorphic to Σ in the real vanishing locus of a

random section σ ∈ RH0(X, E ⊗ Ld). The constant cΣ does not depend on the choice

of the triple (X, (L , hL), (E, hE )); it only depends on Σ . When k = 1 and E = OX ,

Theorem 1.2.1 coincides with Theorem 1.2 of [16]. Computing cΣ for explicit submanifolds

Σ yields the following lower bounds for the Betti numbers.

Corollary 1.2.2. Under the hypotheses of Theorem 1.2.1, for every i ∈ {0, . . . , n− k},

lim inf
d→∞

1√
d

n E(bi ) > exp(−e84+6n)VolhL (RX).

1.3. Some related results

The case where X = CP1, E = OCP1 and L = OCP1(1) was first considered by M. Kac

in [18] for a different measure. In this case and with our measure, Kostlan [19] and Shub

and Smale [34] gave an exact formula for the mean number of real roots of a polynomial,

as well as the mean number of intersection points of n hypersurfaces in RPn . Still in
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RPn , Podkorytov [27] computed the mean Euler characteristics of random algebraic

hypersufaces, and Bürgisser [4] extended this result to complete intersections. In [13], we

proved the exponential rarefaction of real curves with a maximal number of components

in real algebraic surfaces. In [14, 15], we bounded from above the mean Betti numbers

of random real hypersurfaces in real projective manifolds and in [16], we gave a lower

bound for them.

A similar probabilistic study of complex projective manifolds has been performed by

Shiffman and Zelditch (see [2, 30, 33] for example, and also [3, 36]). In particular, the

asymptotic equidistribution of critical points of random sections over a fixed projective

manifold has been studied in [8, 9, 22], and also [1, 5, 11], while we studied critical points

of the restriction of a fixed Morse function on random real hypersurfaces; see [14, 15].

A similar question concerns the mean number of components of the vanishing locus of

eigenfunctions of the Laplacian. It has been studied on the round sphere by Nazarov and

Sodin [25] (see also [35]), Lerario and Lundberg [20] and Sarnak and Wigman [28]. For a

general Riemannian setting, Zelditch proved in [38] the equidistribution of the vanishing

locus, whereas critical points of random eigenfunctions of the Laplacian were addressed

by Nicolaescu in [26].

Section 2 is devoted to lower estimates and the proof of Theorem 1.2.1. In this proof,

the L2-estimates of Hörmander play a crucial rôle (see § 2.3), and we follow the same

approach as in [16] (see also [12] for a similar construction). Section 3 is devoted to

upper estimates and the proof of Theorem 1.1.1.

2. Lower estimates for the expected Betti numbers

2.1. Statement of the results

2.1.1. Framework. Let us first recall our framework. We denote by X a smooth

complex projective manifold of dimension n defined over the reals, by cX : X → X the

induced Galois antiholomorphic involution and by RX = Fix(cX ) the real locus of X which

we implicitly assume to be non-empty. We then consider an ample line bundle L over X ,

also defined over the reals. It comes thus equipped with an antiholomorphic involution

cL : L → L which turns the bundle projection map π : L → X into a Z/2Z-equivariant

one, so that cX ◦π = π ◦ cL . We equip L in addition with a real Hermitian metric hL ,

being thus invariant under cL , which has a positive curvature form ω locally defined by

ω = 1
2iπ

∂∂̄ log hL(e, e) (3)

for any non-vanishing local holomorphic section e of L. This metric induces a Kähler

metric

ghL = ω(. , i. ) (4)

on X , which reduces to a Riemannian metric ghL on RX . Let finally E be a holomorphic

vector bundle of rank k, 1 6 k 6 n, defined over the reals and equipped with an

antiholomorphic involution cE and a real Hermitian metric hE . For every d > 0, we

denote by

RH0(X, E ⊗ Ld) = {σ ∈ H0(X, E ⊗ Ld) | (cE ⊗ cLd ) ◦ σ = σ ◦ cX } (5)
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the space of global real holomorphic sections of E ⊗ Ld . It is equipped with the L2-scalar

product defined by the formula

∀(σ, τ ) ∈ RH0(X, E ⊗ Ld), 〈σ, τ 〉 =
∫

X
hE,d(σ, τ )(x)dx, (6)

where hE,d = hE ⊗ hd
L . Here, dx denotes any volume form of X . For instance, dx can

be chosen to be the normalized volume form dVhL = ωn/
∫

X ω
n .This L2-scalar product

finally induces a Gaussian probability measure µR on RH0(X, E ⊗ Ld) whose density

with respect to the Lebesgue one at σ ∈ RH0(X, E ⊗ Ld) is written as (1/
√
π

Nd )e−‖σ‖2 ,

where Nd = dim H0(X, E ⊗ Ld). It is with respect to this probability measure that we

consider random real codimension k submanifolds (as in the works [19] and [14–16, 34]).

2.1.2. The lower estimates. The aim of § 2 is to prove Theorem 1.2.1. In addition

to Theorem 1.2.1, we also get the following Theorem 2.1.1, which is a consequence of

Proposition 2.4.2 below.

Theorem 2.1.1. Under the hypotheses of Theorem 1.2.1, for every 0 6 ε < 1,

lim inf
d→∞

µR
{
σ ∈ RH0(X, E ⊗ Ld) | NΣ (σ ) > εcΣVolhL (RX)

√
d

n}
> 0.

In fact, the positive lower bound given by Theorem 2.1.1 can be made explicit; see (30).

Let us now denote, for every 1 6 k 6 n, by Hn,k the set of diffeomorphism classes of

smooth closed connected codimension k submanifolds of Rn . For every i ∈ {0, . . . , n− k}
and every [Σ] ∈ Hn,k , we denote by bi (Σ) = dim Hi (Σ;R) its ith Betti number with

real coefficients and by mi (Σ) its ith Morse number. This is the infimum over all Morse

functions f on Σ of the number of critical points of index i of f . Then, we set c[Σ] =
supΣ∈[Σ] cΣ and

E(mi ) =
∫
RH0(X,E⊗Ld )\R1d

mi (RCσ )dµR(σ ).

Corollary 2.1.2. Let X be a smooth real projective manifold of dimension n, (L , hL) be

a real holomorphic Hermitian line bundle of positive curvature over X and (E, hE ) be

a rank k real holomorphic Hermitian vector bundle, with 1 6 k 6 n. Then, for every

i ∈ {0, . . . , n− k},
lim inf
d→∞

1√
d

n E(bi ) >

( ∑
[Σ]∈Hn,k

c[Σ]bi (Σ)

)
VolhL (RX) and likewise (7)

lim inf
d→∞

1√
d

n E(mi ) >

( ∑
[Σ]∈Hn,k

c[Σ]mi (Σ)

)
VolhL (RX). (8)

Note that in Corollary 2.1.2, we could have chosen one representative Σ in each

diffeomorphism class [Σ] ∈ Hn,k and obtained the lower estimates (7), (8) with constants

cΣ instead of c[Σ]. But it turns out that in the proof of Corollary 2.1.2 we are free to

choose the representative that we wish in every diffeomorphism class and that the higher

cΣ is, the better the estimates (7), (8) are. This is why we introduce the constant c[Σ],
which is positive if and only if [Σ] has a representative Σ with trivial normal bundle in

Rn ; see (14) and Lemma 2.2.3.
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2.2. Closed affine real algebraic submanifolds

We introduce here the notion of a regular pair (see Definition 2.2.1), and the constant

cΣ associated with any isotopy class of the smooth closed codimension k submanifold Σ

of Rn ; see (14).

Definition 2.2.1. Let U be a bounded open subset of Rn and P ∈ R[x1, . . . xn]k , 1 6 k 6 n.

The pair (U, P) is said to be regular if and only if

1. zero is a regular value of the restriction of P to U ,

2. the vanishing locus of P in U is compact.

Hence, for every regular pair (U, P), the vanishing locus of P does not intersect the

boundary of U and it meets U in a smooth compact codimension k submanifold.

In the sequel, for every integer p and every vector v ∈ Rp, we denote by |v| its Euclidean

norm, and for every integer p and q, and every linear map F : Rp → Rq , we denote by

F∗ the adjoint of F , defined by the property

∀v ∈ Rp,∀w ∈ Rq , 〈F(v), w〉 = 〈v, F∗(w)〉,
and denote by ‖F‖ its operator norm, that is

‖F‖ = sup
v∈Rp\{0}

|F(v)|/|v|.

We will also use the norm

‖F‖2 =
√

Tr F F∗.
These norms satisfy ‖F‖ 6 ‖F‖2. Finally, if P = (P1, . . . , Pk) ∈ R[x1, . . . , xn]k , we denote

by ‖P‖L2 its L2-norm defined by

‖P‖2L2 =
∫
Cn
|P(z)|2e−π |z|

2
dz =

k∑
i=1

∫
Cn
|Pi (z)|2e−π |z|

2
dz =

k∑
i=1

‖Pi‖2L2 . (9)

Definition 2.2.2. For every regular pair (U, P) given by Definition 2.2.1, we denote by

T(U,P) the set of (δ, ε) ∈ (R∗+)2 such that

1. there exists a compact subset K of U satisfying infx∈U\K |P(x)| > δ,

2. for every y ∈ U , |P(y)| < δ ⇒ ∀w ∈ Rk, |(d|y P)∗(w)| > ε|w|.

Hence, for every regular pair (U, P) given by Definition 2.2.1, (δ, ε) belongs to T(U,P)
provided that the δ-sublevel of P does not intersect the boundary of U while inside this

δ-sublevel, and P is in a sense ε-far from having a critical point. This quantifies how

much transversally P vanishes in a way similar to the one used by Donaldson in [7].

Then, for every regular pair (U, P), we set R(U,P) = max(1, supy∈U |y|), so U is

contained in the ball centered at the origin and of radius R(U,P). Finally, we set

τ(U,P) = 24kρR(U,P)‖P‖2L2 inf
(δ,ε)∈T(U,P)

(
1
δ2 +

πn
ε2

)
∈ R∗+, (10)
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where, for every R > 0,

ρR = inf
R+

gR, (11)

gR : s ∈ R∗+ 7→
(R+ s)2n

s2n eπ(R+s)2 , (12)

and so

eπR2
6 ρR 6 4ne4πR2

. (13)

This constant τ(U,P) is the main ingredient in the definition of cΣ ; see (14). The lower

τ(U,P) is, the larger cΣ is and the better the estimates given by Theorem 1.2.1 are. Note

that τ(U,P) remains small whenever δ, ε are not too small, that is when P vanishes quite

transversally in U .

Now, let Σ be a closed submanifold of codimension k of Rn , not necessarily connected.

We denote by IΣ the set of regular pairs (U, P) given by Definition 2.2.1, such that the

vanishing locus of P in U contains a subset isotopic to Σ in Rn .

Lemma 2.2.3. Let Σ be a closed submanifold of codimension k > 0 of Rn, not necessarily

connected. Then, IΣ is non-empty if and only if the normal bundle of Σ in Rn is trivial.

Proof. If (U, P) ∈ IΣ , then P : Rn → Rk contains in its vanishing locus a codimension

k submanifold Σ̂ which is isotopic to Σ in Rn . The normal bundle of Σ in Rn is thus

trivial if and only if the normal bundle of Σ̂ in Rn is trivial. But the differential of P at

every point of Σ̂ provides an isomorphism between the normal bundle of Σ̂ in Rn and

the product Σ̂ ×Rk .

Conversely, if Σ has a trivial normal bundle in Rn , it has been proved by Seifert [29] (see

also [24]) that there exist a polynomial map P : Rn → Rk and a tubular neighborhood

U of Σ in Rn such that P−1(0)∩U is isotopic to Σ in U . The strategy of the proof is to

first find a smooth function U → Rk in a neighborhood of Σ which vanishes transversally

along Σ and then to suitably approximate the coordinates of this function by some

polynomial; see [24, 29]. The pair (U, P) then belongs to IΣ by Definition 2.2.1.

We then set cΣ = 0 if Σ does not have a trivial normal bundle in Rn and

cΣ = sup
(U,P)∈IΣ

(
mτ(U,P)

2nVol(B(R(U,P)))

)
otherwise, (14)

where Vol(B(R(U,P))) denotes the volume of the Euclidean ball of radius R(U,P) in Rn ,

and where, for every τ > 0,

mτ = sup
[√τ ,+∞[

fτ , (15)

with fτ : a ∈ [√τ ,+∞[ 7→ 1/
√
π(1− (τ/a2))

∫ +∞
a e−t2

dt. For large values of mτ , such as

the ones which appear in § 2.6, the estimate

cΣ > e−2τ(U,P) (16)

holds; compare (2.8) of [16].
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2.3. Hörmander sections

Our key tool for proving Theorems 1.1.1 and 1.2.1 has been developed by L. Hörmander.

We introduce in this part, § 2.3, the material that we need. For every positive d and every

σ ∈ RH0(X, E ⊗ Ld), we set

‖σ‖2L2(hL )
=
∫

X
‖σ‖2hE,d

dVhL ,

where dVhL = ωn/
∫

X ω
n ; compare (6). Let us choose a field of hL -trivializations of L on

RX given by Definition 3.2 of [16]. It provides in particular, for every x ∈ RX , a local

holomorphic chart ψx : (Wx , x) ⊂ X → (Vx , 0) ⊂ Cn isometric at x , and a non-vanishing

holomorphic section e of L defined over Wx such that φ = − log hL(e, e) vanishes at x
and is positive elsewhere. Moreover, there exists a positive constant α1 such that

∀y ∈ Vx , |φ ◦ψ−1
x (y)−π |y|2| 6 α1|y|3. (17)

Restricting Wx if necessary, we choose a holomophic trivialization (e1, . . . , ek) of E|Wx

which is orthonormal at x . This provides a trivialization (e1⊗ ed , . . . , ek ⊗ ed) of E ⊗ Ld
|Wx

.

In this trivialization, the restriction of σ to Wx is written as

σ =
k∑

j=1

f j
σ e j ⊗ ed (18)

for some holomorphic functions f j
σ : Wx → C. We write fσ = ( f 1

σ , . . . , f k
σ ) and we set

|σ | = | fσ |, (19)

so on Wx , ‖σ‖2hE,d
= ∥∥∑k

j=1 f k
σ e j

∥∥2
hE

e−dφ and ‖σ(x)‖2hE,d
= |σ(x)|2 since the frames

(e1, . . . , ek) and e are orthonormal at the point x , and so in particular φ(x) = 0. For

every z ∈ Wx , we define

‖d|zσ‖2 = ‖d|y( fσ ◦ψ−1
x )‖2, (20)

‖d|zσ‖ = ‖d|y( fσ ◦ψ−1
x )‖, (21)

and

(d|zσ)∗ = (d|y( fσ ◦ψ−1
x ))∗, (22)

where y = ψx (z). Finally, we denote, for every small enough r > 0, by B(x, r) ⊂ Wx the

ball centered at x and of radius r for the flat metric of Vx pulled back by ψx , so

B(x, r) = ψ−1
x (B(0, r)). (23)

Proposition 2.3.1. Let X be a smooth real projective manifold of dimension n, (L , hL)

be a real holomorphic Hermitian line bundle of positive curvature over X and (E, hE )

be a rank k real holomorphic Hermitian vector bundle, with 1 6 k 6 n. We choose a

field of hL -trivializations on RX . Then, for every regular pair (U, P), every large enough

integer d, every x in RX and every local trivialization of E orthonormal at x, there exist

σ(U,P) ∈ RH0(X, E ⊗ Ld) and an open subset Ud of B(x, R(U,P)/
√

d)∩RX such that
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1. ‖σ(U,P)‖L2(hL )
becomes equivalent to ((‖P‖L2)/

√
δL) as d grows to infinity, where

‖P‖L2 is defined by (9) and δL =
∫

X ω
n,

2. (Ud , σ
−1
(U,P)(0)∩Ud) is diffeomorphic to (U, P−1(0)∩U ) ⊂ Rn,

3. for every (δ, ε) ∈ T(U,P) given by Definition 2.2.2, there exists a compact subset

Kd ⊂ Ud such that

inf
Ud\Kd

|σ(U,P)| > δ

2

√
d

n
,

while for every y in Ud ,

|σ(U,P)(y)| < δ

2

√
d

n ⇒ ∀w ∈ Rk, |(d|yσ(U,P))∗(w)| > ε

2

√
d

n+1|w|. (24)

Proof. We proceed as in the proof of Proposition 3.4 of [16]. Let (U, P) be a regular

pair, x ∈ RX and d large enough. We set Ud = ψ−1
x ((1/

√
d)U ) ⊂ B(x, R(U,P)/

√
d) and

Kd = ψ−1
x ((1/

√
d)K ). Let χ : Cn → [0, 1] be a smooth function with compact support in

B(0, R(U,P)), which equals 1 in a neighborhood of the origin. Then, let σ be the global

smooth section of E ⊗ Ld defined by σ|X\Wx = 0 and

σ|Wx = (χ ◦ψx )

( k∑
j=1

Pj (
√

dψx )e j ⊗ ed
)
,

where P = (P1, . . . , Pk) is now considered as a function Cn → Ck . From the L2-estimates

of Hörmander (see [17] or [21]), there exists a global section τ of E ⊗ Ld such that ∂̄τ = ∂̄σ
and ‖τ‖L2(hE,d )

6 ‖∂̄σ‖L2(hE,d )
for d large enough. This section τ can be chosen orthogonal

to holomorphic sections and is then unique, and in particular real. Moreover, there exist

positive constants c1 and c2, which do not depend on x , such that ‖τ‖L2(hE,d )
6 c1e−c2d

and supUd
(|τ | + ‖τ‖2) 6 c2e−c2d ; see Lemma 3.5 of [16]. We then set σ(U,P) =

√
d

n
(σ − τ).

It has the desired properties, as can be checked along the same lines as in the proof of

Proposition 3.4 of [16] and thanks to Lemma 2.3.2.

Lemma 2.3.2. Let U be an open subset of Rn, 1 6 k 6 n, f : U → Rk be a function of

class C1 and (δ, ε) ∈ (R∗+)2 be such that

1. there exists a compact subset K of U such that infU\K | f | > δ,

2. for every y in U , | f (y)| < δ ⇒ ∀w ∈ Rk, |(d|y f )∗(w)| > ε|w|.
Then, for every function g : U → Rk of class C1 such that supU |g| < δ and supU ‖dg‖ <
ε, zero is a regular value of f + g and ( f + g)−1(0) is compact and isotopic to f −1(0)
in U .

Proof. The proof is analogous to that of Lemma 3.6 of [16], since ‖(dg)∗‖ = ‖dg‖.
The following Lemma 2.3.3 establishes the existence of peak sections for higher rank

vector bundles.

Lemma 2.3.3 (Compare Lemma 1.2 of [37]). Let X be a smooth real projective manifold of

dimension n, (L , hL) be a real holomorphic Hermitian line bundle of positive curvature
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over X and (E, hE ) be a rank k real holomorphic Hermitian vector bundle, with 1 6
k 6 n. Let x ∈ RX , (p1, . . . , pn) ∈ Nn, i ∈ {1, . . . , k} and p′ > p1+ · · ·+ pn. There exists

d0 ∈ N independent of x such that for every d > d0, there exists σ ∈ RH0(X, E ⊗ Ld) with

the property that ‖σ‖L2(hL )
= 1 and if (y1, . . . , yn) are local real holomorphic coordinates

in the neighborhood of x and (e1, . . . ek) is a local real holomorphic trivialization of E
orthonormal at x, we can assume that in a neighborhood of x,

σ(y1, . . . , yn) = λy p1
1 · · · y pn

n ei ⊗ ed(1+ O(d−2p′))+ O(λ|y|2p′), (25)

where λ−2 = ∫B(x,(log d/
√

d)) |y p1
1 · · · y pn

n |2‖ed‖2
hd

L
dVhL , with dVhL = ωn/

∫
X ω

n and where e

is a local trivialization of L whose potential − log hL(e, e) reaches a local minimum at x
with Hessian πω(., i.).

Proof. The proof goes along the same lines as that of Lemma 1.2 of [37]. Let η be a

cutoff function on R with η = 1 in a neighborhood of 0, and

ψ = (n+ 2p′)η
(

d‖z‖2
log2 d

)
log
(

d‖z‖2
log2 d

)
in the coordinates z on X . Then, i∂∂̄ψ is bounded from below by −Cω, where C is some

uniform constant independent of d and x . Let s ∈ C∞(X, E ⊗ Ld) be the real section

defined by

s = η
(

d‖z‖2
log2 d

)
y p1

1 · · · y pn
n ei ⊗ ed .

Then, from Theorem 5.1 of [6], for d large enough and not depending on x , there

exists a real section u ∈ C∞(X, E ⊗ Ld) such that ∂̄u = ∂̄s, and satisfying the Hörmander

L2-estimates ∫
X
‖u‖2hE,d

e−ψdVhL 6
∫

X
‖∂̄s‖2hE,d

e−ψdVhL .

The presence of the singular weight e−ψ forces the jets of u to vanish up to order

2p′ at x . As in Lemma 1.2 of [37], we conclude that the real holomorphic section

σ = (s− u)/‖s− u‖L2(hE,d )
satisfies the required properties.

In this first section we will only need peak sections given by Lemma 2.3.3 with∑n
i=1 pi = 0, whereas in the second one we will need those given with

∑n
i=1 pi 6 2.

Definition 2.3.4. For i ∈ {1, . . . , k}, let σ i
0 be the section given by Lemma 2.3.3 with p′ = 3

and p1 = · · · = pn = 0. Likewise, for every j ∈ {1, . . . , n}, let σ i
j be a section given by (25)

with p′ = 3, p j = 1 and pl = 0 for l ∈ {1, . . . , n} \ { j}. Finally, for every 1 6 l 6 m 6 n,

let σ i
lm be a section given by (25) with p′ = 3, p j = 0 for every j ∈ {1, . . . , n} \ {l,m} and

pl = pm = 1 if l 6= m, while pl = 2 otherwise.

The asymptotic values of the constants λ in (25) are given by Lemma 2.3.5 (compare

Lemma 2.1 of [37]).
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Lemma 2.3.5. For every i ∈ {1, . . . , k}, the sections given by Definition 2.3.4 satisfy

σ i
0/
√
δLdn ∼

d→∞
ei ⊗ ed + O(‖y‖6), (26)

∀ j ∈ {1, . . . , n}, σ i
j/
√
πδLdn+1 ∼

d→∞
y j ei ⊗ ed + O(‖y‖6), (27)

∀l,m ∈ {1, . . . , n}, l 6= m, σ i
lm/
(
π
√
δLdn+2

) ∼
d→∞

yl ymei ⊗ ed + O(‖y‖6), (28)

and ∀l ∈ {1, . . . , n}, σ i
ll/
(
π
√
δLdn+2

) ∼
d→∞

1√
2

y2
l ei ⊗ ed + O(‖y‖6). (29)

Moreover, these sections are asymptotically orthonormal as d grows to infinity, as

follows from Lemma 2.3.6.

Lemma 2.3.6 (compare Lemma 3.1 of [37]). For every x ∈ RX , the sections (σ i
j )16i6k

06 j6n
and

(σ i
lm) 16i6k

16l6m6n
given by Definition 2.3.4 have L2-norm equal to 1 and their pairwise scalar

products are dominated by an O(d−1) term which does not depend on x. Likewise, their

scalar product with every section of RH0(X, E ⊗ Ld) of L2-norm equal to 1 and whose

2-jet at x vanishes is dominated by an O(d−3/2) term which does not depend on x.

Proof. The proof goes along the same lines as that of Lemma 3.1 of [37].

Lemma 2.3.7. Denote by v the density of dVhL = ωn/
∫

X ω
n with respect to the

volume form dx chosen in (6), such that dVhL = v(x)dx. Then the sections given by

Definition 2.3.4 times
√
v(x) are still asymptotically orthonormal for (6).

Proof. This is a direct consequence of Lemmas 2.3.3 and 2.3.6 and the asymptotic

concentration of the support of the peak sections near x .

Remark 2.3.8. The complex analogues of Lemmas 2.3.3, 2.3.5 and 2.3.6 hold;

compare [37].

2.4. Proof of Theorem 1.2.1

We first compute the expected local C1-norm of sections.

Proposition 2.4.1. Let X be a smooth real projective manifold of dimension n, (L , hL) be

a real holomorphic Hermitian line bundle of positive curvature over X and (E, hE ) be a

rank k real holomorphic Hermitian vector bundle, with 1 6 k 6 n. We equip RX with a

field of hL -trivializations; see § 2.3. Then, for every positive R,

lim sup
d→∞

sup
x∈RX

1
dn E

(
sup

B(x, R√
d
)

|σ |2
v(x)

)
6 6kδLρR and

lim sup
d→∞

sup
x∈RX

1
dn+1 E

(
sup

B(x, R√
d
)

‖dσ‖22
v(x)

)
6 6πnkδLρR,
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where v is given by Lemma 2.3.7 and ρR is given by (11); see (19) and (20) for the

definitions of |σ | and ‖dσ‖2.

Note that a global estimate on the sup norm of L2 random holomorphic sections is

given by Theorem 1.1 of [32].

Proof. The proof goes along the same lines as the proof of Proposition 3.7 of [16]. We

first establish from the mean value inequality that for every x ∈ RX , R > 0 and s > 0,

E
(

sup
B(x, R√

d
)

|σ |2
)
6

1

Vol
(

B
(

s√
d

)) ∫
B(x, R+s√

d
)

E(|σ |2)ψ∗x dy

for d large enough, not depending on x . Then, for every z ∈ B(x, (R+ s)/
√

d)∩RX , we

write σ =∑k
i=1 aiσ

i
0 + τ , where τ ∈ RH0(X, E ⊗ Ld) vanishes at z and (σ i

0)i=1,...k are the

peak sections at z given by Definition 2.3.4. In particular, by Lemma 2.3.5, at the point z,

for every i = 1, . . . , k, ‖σ i
0‖hE,d ∼d→∞

√
δLdn . Moreover, since (e1, . . . , en) is orthonormal

at x ,

|σ i
0(z)|2 = ‖σ i

0(z)‖2hE,d
(1+ O(|z− x |)edφ(z)

6 δLdneπ(R+s)2(1+ o(1))

from the inequalities (17), where the o(dn) term can be chosen not to depend on x ∈ RX .

Suppose that dy = dVhL . Then, by Lemma 2.3.6, the peak sections are asymptotically

orthogonal to each other for the scalar product defined by (6), and asymptotically

orthogonal to the space of sections τ vanishing at x . We deduce that

E(|σ(z)|2) = E
(∣∣∣∣ k∑

i=1

aiσ
i
0

∣∣∣∣2) (1+ o(1))

=
( k∑

i=1

|σ i
0(z)|2

)
1√
π

∫
R

a2e−a2
da (1+ o(1))

6
1
2

kδLdneπ(R+s)2(1+ o(1)).

When z /∈ B(x, (R+ s/
√

d))∩RX , the space of real sections vanishing at z becomes of real

codimension 2k in RH0(X, E ⊗ Ld). Let 〈θ i
1, θ

i
2, i ∈ {1, . . . , k}〉 be an orthonormal basis

of its orthogonal complement. From Remark 2.3.8, for every i ∈ {1, . . . , k}, j ∈ {1, 2},

lim sup
d→∞

1
dn |θ i

j (z)|2 6 2δLeπ(R+s)2 ,

an upper bound which does not depend on z. We deduce that

E(|σ(z)|2) =
∫
R2k

∣∣∣∣ k∑
i=1

(ai
01θ

i
1(z)+ ai

02θ
i
2(z))

∣∣∣∣2e−
∑k

i=1(a
i
01)

2+(ai
02)

2 1
πk5

k
i=1dai

01dai
02

6 2δLdneπ(R+s)2(1+ o(1))
k∑

i=1

∫
R2

(
(ai

01)
2+ (ai

02)
2+ 2|ai

01||ai
02|
)
. . .
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. . .
1
π

e−(a
i
01)

2−(ai
02)

2
dai

01dai
02

6 6δLdneπ(R+s)2(1+ o(1)).

We deduce the first part of Proposition 2.4.1 by taking the supremum over RX , choosing

s which minimizes gR(U,P) and taking the lim sup as d grows to infinity.

In general, the Bergman section at x for the L2-product (6) associated with the

volume form dx is equivalent to the Bergman section σ0 at x for dVh times
√
v(x);

see Lemma 2.3.7. The same holds true for the σ j , and the result follows on replacing δL
with v(x)δL .

The proof of the second assertion goes along the same lines; see the proof of Proposition

3.7 of [16] (and [31] for similar results).

As in [16], we then compute the probability of the presence of closed affine real algebraic

submanifolds, inspired by an approach of Nazarov and Sodin [25]; see also [20]. Let

(U, P) be a regular pair given by Definition 2.2.1 and Σ = P−1(0) ⊂ U . Then, for every

x ∈ RX , we set Bd = B(x, R(U,P)/
√

d)∩RX (see (23)), and denote by Probx,Σ (E ⊗ Ld)

the probability that σ ∈ RH0(X, E ⊗ Ld) has the property that σ−1(0)∩ Bd contains a

closed submanifold Σ ′ such that the pair (Bd ,Σ
′) is diffeomorphic to (Rn,Σ). That is,

Probx,Σ (E ⊗ Ld) = µR{σ ∈ RH0(X, E ⊗ Ld) | (σ−1(0)∩ Bd) ⊃ Σ ′, (Bd ,Σ
′) ∼ (Rn,Σ)}.

We then set ProbΣ (E ⊗ Ld) = infx∈RX Probx,Σ (E ⊗ Ld).

Proposition 2.4.2. Let X be a smooth real projective manifold of dimension n, (L , hL) be

a real holomorphic Hermitian line bundle of positive curvature over X and (E, hE ) be a

rank k real holomorphic Hermitian vector bundle, with 1 6 k 6 n. Let (U, P) be a regular

pair given by Definition 2.2.1 and Σ = P−1(0) ⊂ U. Then,

lim inf
d→∞

ProbΣ (E ⊗ Ld) > mτ(U,P);

see (15).

Proof. The proof is the same as that of Proposition 3.8 of [16] and is not reproduced

here.

The proof of Theorem 1.2.1 (resp. Corollary 2.1.2) then just goes along the same lines

as that of Theorem 1.2 (resp. Corollary 1.3) of [16].

2.5. Proof of Theorem 2.1.1

Let (U, P) be a regular pair given by Definition 2.2.1. For every d > 0, let 3d be

a maximal subset of RX with the property that two distinct points of 3d are at

distance greater than (2R(U,P))/
√

d. The balls centered at points of 3d and of radius

R(U,P)/
√

d are disjoint, whereas those of radius (2R(U,P))/
√

d cover RX . Note that if

we use the local flat metric given by a trivial hL -trivialization, then the associated

lattice has asymptotically the same number of balls as 3d as d grows to infinity, so

we can suppose from now on that the balls are defined for this local metric. For every
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σ ∈ RH0(X, E ⊗ Ld), denote by NΣ (3d , σ ) the number of x ∈ 3d such that the ball Bd =
B(x, (R(U,P))/

√
d)∩RX contains a codimension k submanifold Σ ′ with Σ ′ ⊂ σ−1(0) and

(Bd ,Σ
′) diffeomorphic to (Rn,Σ). By definition of NΣ (σ ), NΣ (3d , σ ) 6 NΣ (σ ) (see

§ 1.2), while from Proposition 2.4.2, for every 0 < ε < 1,

|3d |mτ(U,P) 6
∑

x∈3d

Probx,Σ (E ⊗ Ld)

6
|3d |∑
j=1

jµR{σ |NΣ (3d , σ ) = j}

6 εmτ(U,P) |3d |µR
{
σ |NΣ (3d , σ ) 6 εmτ(U,P) |3d |

}
+ |3d |µR

{
σ |NΣ (3d , σ ) > εmτ(U,P) |3d |

}
.

We deduce that

(1− ε)mτ(U,P) 6 µR
{
σ | NΣ (σ ) > εmτ(U,P) |3d |

}
(30)

and the result follows on choosing a sequence (Up, Pp)p ∈ IΣ such that

lim
p→∞mτ(Up ,Pp )

|3d | = cΣVolhL (RX)
√

d
n;

see (14).

2.6. Proof of Corollary 1.2.2

In this paragraph, for every positive integer p, S p denotes the unit sphere in Rp+1.

Corollary 1.2.2 is a consequence of Theorem 1.2.1 and the following Propositions 2.6.1

and 2.6.3.

Proposition 2.6.1. For every 1 6 k 6 n, cSn−k > exp(−e54+5n).

Recall the following.

Lemma 2.6.2 (Lemma 2.2 of [16]). If P =∑(i1,...,in)∈Nn ai1,...,in zi1
1 · · · zin

n ∈ R[z1, . . . , zn],
then

‖P‖2L2 =
∫
Cn
|P(z)|2e−π |z|

2
dz =

∑
(i1,...,in)∈Nn

|ai1,...,in |2
i1! · · · in !
π i1+···+in

.

Proof of Proposition 2.6.1. For every n > 0, we set Pk(x1, . . . , xn) =∑n
j=k x2

j − 1. For

every x ∈ Rn and δ > 0,

|Pk(x)| < δ ⇔ 1− δ <
n∑

i=k

x2
i < 1+ δ ⇒ ‖d|x Pk‖22 = 4

n∑
i=k

x2
i > 4(1− δ).

Moreover from Lemma 2.6.2,

‖Pk‖2L2 = 1+ 2(n− k+ 1)
π2 6 n− k+ 2.
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Now set PS = (P1, . . . , Pk) with Pj (x) = x j for 1 6 j 6 k− 1, so

‖PS‖2L2
6 (k− 1)/π + (n− k+ 2) 6 n+ 1 6 2n.

Since for every w = (w1, . . . , wk) ∈ Rk and every x ∈ Rn ,

|d|x P∗S (w)|2 =
k−1∑
i=1

w2
i +w2

k‖d|x Pk‖22,

we get that ‖d|x P∗S ‖2 > min
(
1, 4(1− δ)) if |Pk(x)| < δ. Choose

US = {(x1, . . . , xn) ∈ Rn |
n∑

j=1

x2
j < 4}.

Then if 0 < δ < 1,

Kδ =
{

x ∈ US | 1− δ 6
n∑

i=k

x2
i 6 1+ δ and

k−1∑
i=1

x2
k 6 1− 1

2
(1+ δ)2

}
is compact in US and taking R2

(US ,PS)
= 4, we see that the pair (US, PS) is regular in

the sense of Definition 2.2.1. The submanifold P−1
S (0) ⊂ US is isotopic in Rn to the unit

sphere Sn−k . We deduce that (3/4, 1) ∈ T(US ,PS). From (10) and (13) we deduce

τ(US ,PS) 6 24k4ne16π2n(2+πn) 6 e53+5n .

The estimate cSn−1 > exp(−e54+5n) follows then from (16).

Proposition 2.6.3. For every 1 6 k 6 n and every 0 6 i 6 n− k, cSi×Sn−i−k >
exp(−e82+6n).

Proof. For every 1 6 k 6 n and every 0 6 i 6 n− k, we set

Qk((x1, . . . , xi+1), (y1, . . . , yn−i−1)) = (|x |2− 2)2+
n−k−i∑

j=1

y2
j − 1.

For every (x, y) ∈ Ri+1×Rn−i−1 and 0 < δ < 1/2,

|Qk(x, y)| < δ ⇔ 1− δ < (|x |2− 2)2+
n−k−i∑

j=1

y2
j < 1+ δ

⇒ ‖d|(x,y)Qk‖22 = 4
n−k−i∑

j=1

y2
j + 16|x |2(|x |2− 2)2,

with |x |2 > 2−√1+ δ > 1/2. Thus ‖d|(x,y)Qk‖22 > 4(1− δ); compare Lemma 2.6 of [16].

Moreover from Lemma 2.6.2, ‖Qk‖2L2 6 13n2; compare § 2.3.2 of [16]. Now set Q =
(Q1, . . . , Qk) with Q j (x, y) = yn−i− j for 1 6 j 6 k− 1, so

‖Q‖2L2
6 (k− 1)/π + 13n2 6 13(n+ 1)2.
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For every w = (w1, . . . , wk) ∈ Rk and every (x, y) ∈ Ri+1×Rn−i−1,

|d|(x,y)Q∗(w)|2 =
k−1∑
i=1

w2
i +w2

k‖d|(x,y)Qk‖22

> min(1, 4(1− δ))|w|2

if |Qk(x, y)| 6 δ < 1/2. We choose

U = {(x, y) ∈ Ri+1×Rn−i−1 | |x |2+ |y|2 < 6},
Kδ =

{
(x, y) ∈ U | 1− δ 6 (|x |2− 2)2+∑n−k−i

j=1 y2
j 6 1+ δ and

∑k−1
j=1 y2

n−i− j 6 1− δ
}
,

and R2
(U,Q) = 6. The pair (U, Q) is regular in the sense of Definition 2.2.1 and Q−1(0) ⊂ U

is isotopic in Rn to the product Si × Sn−i−k of unit spheres in Ri+1 and Rn−i−k+1. We

deduce that for every positive ε, (1/2− ε, 1) ∈ T(U,Q), and from (10) and (13), that

τ(U,Q) 6 24k4ne24π13(n+ 1)2(4+πn) 6 e81+6n .

The estimate cSi×Sn−i−k > exp(−e82+6n) follows then from (16).

3. Upper estimates for the expected Betti numbers

3.1. Statement of the results

For every 1 6 k 6 n, we denote by Gr(k− 1, n− 1) the Grassmann manifold of (k− 1)-
dimensional linear subspaces of Rn−1. The tangent space of Gr(k− 1, n− 1) at every

H ∈ Gr(k− 1, n− 1) is canonically isomorphic to the space of linear maps L(H, H⊥)
from H to its orthogonal H⊥ and we equip it with the norm

A ∈ L(H, H⊥) 7→ ‖A‖2 =
√

T r(A∗A) ∈ R+.

The total volume of Gr(k− 1, n− 1) for this Riemannian metric is denoted by

Vol(Gr(k− 1, n− 1)) and we set

Vk−1,n−1 = 1
√
π
(k−1)(n−k)Vol(Gr(k− 1, n− 1))

as its volume for the rescaled metric A ∈ L(H, H⊥) 7→ (1/
√
π)‖A‖2. Likewise, we equip

Mk−1(R) with the Euclidean norm A ∈ Mk−1(R) 7→ ‖A‖2 =
√

T r(A∗A) and set dµ(A) =
(1/πk−1)e−‖A‖22d A as the associated Gaussian measure on Mk−1(R). Then, we set

Ek−1(|det|n−k+2) =
∫

Mk−1(R)
|det A|n−k+2dµ(A).

Remark 3.1.1.

1. The orthogonal group On−1(R) acts transitively on the Grassmannian Gr(k− 1,

n− 1) with fixators isomorphic to Ok−1(R)×On−k(R). We deduce that
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Vol(Gr(k− 1, n− 1)) = Vol(On−1(R))/(Vol(Ok−1(R))×Vol
(
On−k(R)))

=
(

n− 1
k− 1

)√
π
(k−1)(n−k)

∏k−1
j=1 0(1+ j/2)∏n−1

j=n−k+1 0(1+ j/2)
,

where 0 denotes the Gamma function of Euler; see for example Lemma 3.4 of [14].

2. From formula (15.4.12) of [23] it follows that

Ek−1(|det|n−k+2) =
k−1∏
j=1

0(
n−k+2+ j

2 )

0(
j
2 )

,

so Vk−1,n−1 Ek−1(|det|n−k+2) = (n−1)!
(n−k)!2k−1 .

We now keep the framework of § 2.1. Let us denote, for every i ∈ {0, . . . , n− k}, by

bi (RCσ ,R) = dim Hi (RCσ ,R) the ith Betti number of RCσ and by

mi (RCσ ) = inf
f Morse on RCσ

|Criti ( f )|

its ith Morse number, where |Criti ( f )| denotes the number of critical points of index i
of f . We then denote by

E(bi ) =
∫
RH0(X,E⊗Ld )\R1d

bi (RCσ ,R)dµR(σ )

and

E(mi ) =
∫
RH0(X,E⊗Ld )\R1d

mi (RCσ )dµR(σ )

their expected values. The aim of § 3 is to prove the following Theorem 3.1.2; see (1) for

the definition of eR(i, n− k− i).

Theorem 3.1.2. Let X be a smooth real projective manifold of dimension n, (L , hL) be

a real holomorphic Hermitian line bundle of positive curvature over X and (E, hE ) be

a rank k real holomorphic Hermitian vector bundle, with 1 6 k 6 n− 1. Then, for every

0 6 i 6 n− k,

lim sup
d→∞

1√
d

n E(mi ) 6
1

0( k
2 )

Vk−1,n−1 Ek−1(|det|n−k+2)eR(i, n− k− i)VolhL (RX).

Note that the case k = n is covered by Theorems 1.1.1 and 3.1.3. When k = 1 and E =
OX , VolF S(RPk) = √π (see Remark 2.14 of [14]), so Theorem 3.1.2 reduces to Theorem

1.0.1 of [14] in this case. The proof of Theorem 3.1.2 actually goes along the same lines

as that of Theorem 1.1 of [14]. The strategy goes as follows. We fix a Morse function

p : RX → R. Then, almost surely on σ ∈ RH0(X, E ⊗ Ld), the restriction of p to RCσ is

itself a Morse function. For i ∈ {0, . . . , n− k}, we denote by Criti (p|RCσ ) the set of critical

points of index i of this restriction and set

νi (RCσ ) = 1√
d

n

∑
x∈Criti (p|RCσ )

δx
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if n > k and ν0(RCσ ) = 1√
d

n
∑

x∈RCσ δx if k = n. We then set

E(νi ) =
∫
RH0(X,E⊗Ld )

νi (RCσ )dµR(σ )

and prove the following equidistribution result (compare Theorem 1.2 of [14]).

Theorem 3.1.3. Under the hypotheses of Theorem 3.1.2, let p : RX → R be a Morse

function. Then, for every i ∈ {0, . . . , n− k}, the measure E(νi ) weakly converges to

1

0( k
2 )

Vk−1,n−1 Ek−1(|det|n−k+2)eR(i, n− k− i)dvolhL

as d grows to infinity. When k = n, E(ν0) converges weakly to 1/
√
π0((n+ 1)/2)dvolhL .

In Theorem 3.1.3 dvolhL denotes the Lebesgue measure of RX induced by the Kähler

metric. Theorem 3.1.2 is deduced from Theorem 3.1.3 by integration of 1 over RX . The

following paragraphs are devoted to the proof of Theorem 3.1.3.

Proof of Theorem 1.1.1. It follows from Theorem 3.1.2, the Morse inequalities,

Remark 3.1.1 and the computation VolF SRPn = √π/0(n+ 1/2) (see Remark 2.14 of [14])

when k 6 n− 1 and from Theorem 3.1.3 when k = n.

3.2. Incidence varieties

Under the hypotheses of Theorem 3.1.3, we set

R1d
p = {σ ∈ RH0(X, E ⊗ Ld)| σ ∈ R1d or p|RCσ is not Morse}

and

Ii = {(σ, x) ∈ (RH0(X, E ⊗ Ld) \R1d
p)× (RX \Crit(p)) | x ∈ Criti (p|RCσ )}.

We set

π1 : (σ, x) ∈ Ii 7→ σ ∈ RH0(X, E ⊗ Ld) and (31)

π2 : (σ, x) ∈ Ii 7→ x ∈ RX. (32)

Then, for every (σ0, x0) ∈ ((RH0(X, E ⊗ Ld) \R1d
p)× (RX \Crit(p))), π1 is invertible in

a neighborhood RU of σ0, defining an evaluation map at the critical point

ev(σ0,x0) : σ ∈ RU 7→ π2 ◦π−1
1 (σ ) = x ∈ Criti (p|RCσ )∩RV,

where RV denotes a neighborhood of x0 in RX ; compare § 2.4.2 of [14]. We denote by

d|σ0ev⊥(σ0,x0)
the restriction of its differential map d|σ0ev(σ0,x0) at σ0 to the orthogonal

complement of π1(π
−1
2 (x0)) in RH0(X, E ⊗ Ld).

Proposition 3.2.1. Under the hypotheses of Theorem 3.1.3,

E(νi ) = 1√
d

n (π2)∗(π∗1 dµR).

Moreover, at every point x ∈ RX \Crit(p),

(π2)∗(π∗1 dµR)|x = 1√
π

n

∫
π1(π

−1
2 (x))

|det d|σ ev⊥(σ,x)|−1dµR(σ )dvolhL .
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Proof. The proof is the same as that of Proposition 2.10 of [14] and is not reproduced

here.

Fix x ∈ RX \Crit(p). Then π1(π
−1
2 (x)) is open in a subspace of RH0(X, E ⊗ Ld).

Namely,

π1(π
−1
2 (x)) = {

σ ∈ RH0(X, E ⊗ Ld) \R1d
p | σ(x) = 0 and (33)

∃λ ∈ R(E ⊗ Ld)∗|x , λ ◦∇|xσ = d|x p
}
, (34)

where R((E ⊗ Ld)∗|x ) is the real part of the fiber (E ⊗ Ld)∗|x . We deduce a well-defined

map

ρx : π1(π
−1
2 (x)) → Gr(n− k, ker d|x p)× (R(E ⊗ Ld)∗|x \ {0}) (35)

σ 7→ (ker∇|xσ, λ). (36)

For every σ ∈ RH0(X, E ⊗ Ld) \R1d
p, the tangent space of π1(π

−1
2 (x)) at σ reads

Tσπ1(π
−1
2 (x)) = {σ̇ ∈ RH0(X, E ⊗ Ld) | σ̇ (x) = 0 and

∃λ̇ ∈ R(E ⊗ Ld)∗|x | λ̇ ◦∇|xσ + λ ◦∇σ̇|x = 0}.
Likewise, for every λ ∈ R(E ⊗ Ld)∗|x \ {0}, the tangent space of ρ−1

x (Gr(n− k, ker d|x p)×
{λ}) at σ reads

Tσρ−1
x (Gr(n− k, ker d|x p)×{λ}) = {σ̇ ∈ RH0(X, E ⊗ Ld) | σ̇ (x) = 0 and λ ◦∇|x σ̇ = 0}.

Finally, for every K ∈ Gr(n− k, ker d|x p), the tangent space of ρ−1
x (K , λ) at σ reads

Tσρ−1
x (K , λ) = {σ̇ ∈ RH0(X, E ⊗ Ld)|σ̇ (x) = 0,∇|x σ̇|K = 0 and λ ◦∇|x σ̇ = 0}.

Let us choose local real holomorphic coordinates (x1, . . . , xn) of X near x such that

(∂/∂x1, . . . , ∂/∂xn) is orthonormal at x , with d|x p being collinear to dx1 and such

that K = ker∇|xσ = 〈∂/∂xk+1, . . . , ∂/∂xn〉. Let us choose a local real holomorphic

trivialization (e1, . . . , ek) of E near x that is orthonormal at x and is such that

ker λ|x = 〈e2⊗ ed , . . . , ek ⊗ ed〉|x . For d large enough, we define the following subspaces

of RH0(X, E ⊗ Ld):

Hx = 〈(σ i
0)16i6k, (σ

1
j )k+16 j6n〉 (37)

Hλ = 〈(σ 1
j )16 j6k〉 (38)

HK = 〈(σ i
j ) 26i6k

k+16 j6n
〉, (39)

where the sections (σ i
0)16i6k and (σ i

j )16i6k
16 j6n

of RH0(X, E ⊗ Ld) are given by Lemma 2.3.3

and Definition 2.3.4.

HK is a complement of Tσρ−1
x (K , λ) in Tσρ−1

x (Gr(n− k, ker d|x p)×{λ}), Hλ is a

complement of Tσρ−1
x (Gr(n− k, ker d|x p)×{λ}) in Tσπ1(π

−1
2 (x)) and Hx is a complement

of Tσπ1(π
−1
2 (x)) in RH0(X, E ⊗ Ld). Then, from Lemmas 2.3.6 and 2.3.7, up to a uniform

rescaling by
√
v(x), these complements are asymptotically orthogonal and their given

basis orthonormal. Hence, we can assume from now on that v = 1.
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Lemma 3.2.2. Under the hypotheses of Theorem 3.1.3, let (σ, x) ∈ Ii and λ ∈ R(E ⊗
Ld)∗|x \ {0} be such that λ ◦∇|xσ = d|x p. Then, λ ◦∇2σ|Kx = ∇2(p|RCσ )|x , so the quadratic

form λ ◦∇2σ|Kx is non-degenerate of index i .

Proof. The proof is similar to that of Lemma 2.9 of [14].

3.3. Computation of the Jacobian determinants

3.3.1. The Jacobian determinant of ρx . Under the hypotheses of Theorem 3.1.3,

let (σ, x) ∈ Ii . We set (K , λ) = ρx (σ ) and denote by d|σρH
x the restriction of d|σρx to

HK ⊕ Hλ. We then denote by det(d|σρH
x ) the Jacobian determinant of d|σρH

x computed

in the given basis of Hλ and HK (see (38), (39)) and in the orthonormal basis of TK
Gr(n− k, ker d|x p)×R(E ⊗ Ld)∗|x . By assumption, the operator ∇|xσ does not depend on

the choice of a connection ∇ on E ⊗ Ld and is onto. We denote by ∇|xσ⊥ its restriction

to the orthogonal K⊥ of K = ker∇|xσ ,

∇|xσ⊥ : K⊥→ R(E ⊗ Ld)|x .

Likewise, for every (σ̇K , σ̇λ) ∈ HK ⊕ Hλ, the operators ∇|x σ̇K and ∇|x σ̇λ do not depend

on the choice of a connection ∇ on E ⊗ Ld . Finally, we write at a point y ∈ RX near x

σ(y) =
k∑

i=1

(
ai

0σ
i
0 +

n∑
j=1

ai
jσ

i
j +

∑
16l6m6n

ai
lmσ

i
lm

)
(y)+ o(|y|2),

where (ai
0), (a

i
j ) and (ai

lm) are real numbers and (σ i
0), (σ

i
j ) and (σ i

lm) are given by

Definition 2.3.4. From Lemma 2.3.5 and (33), we deduce that ai
0 = 0 = a1

j for 1 6 i 6 k
and k+ 1 6 j 6 n, and that

‖λ‖
√
πδL
√

d
n+1|a1

1 | = ‖d|x p‖+ o(1), (40)

where the o(1) term is uniformly bounded over RX .

Lemma 3.3.1. Under the hypotheses of Theorem 3.1.3, let (σ, x) ∈ Ii and (K , λ) = ρx (σ ).

Then, d|xρH
x is written as

HK ⊕ Hλ → TK Gr(n− k, ker d|x p)×R(E ⊗ Ld)∗|x
(σ̇K , σ̇λ) 7→

(− (∇|xσ⊥)−1
| ker λ ◦∇|x σ̇K |K ,−λ ◦∇|x σ̇λ ◦ (∇|xσ⊥)−1).

Moreover, |det d|σρH
x |−1 = (|a1

1 |/‖λ‖k)|det(ai
j )26i, j6k |n−k+1(1+ o(1)), where the o(1) term

is uniformly bounded over RX .

Proof. Let (σ̇K , σ̇λ) ∈ HK ⊕ Hλ and (σs)s∈]−ε,ε[ be a path of π1(π
−1
2 (x)) such that σ0 = σ

and σ̇0 = σ̇K + σ̇λ. Then, for every s ∈]− ε, ε[ and every vs ∈ ker∇|xσs , there exists λs ∈
R(E ⊗ Ld)∗|x such that ∇|xσs(vs) = 0 and

λs ◦∇|xσs = d|x p.



Expected topology of random real algebraic submanifolds 693

By derivation, we deduce ∇|x σ̇0(v0)+∇|xσ(v̇0) = 0 and

λ̇0 ◦∇|xσ + λ ◦∇|x σ̇0 = 0.

By setting v̇ as the orthogonal projection of v̇0 onto K⊥, we deduce that v̇ = −(∇|xσ⊥)−1 ◦∇|x σ̇K (v0) and

λ̇0 = −λ ◦∇|x σ̇λ ◦ (∇|xσ⊥)−1.

The first part of Lemma 3.3.1 follows. Now, recall that d|x p is collinear to dx1,

that K is equipped with the orthonormal basis (∂/∂xk+1, . . . , ∂/∂xn), K⊥ with the

orthonormal basis (∂/∂x1, . . . , ∂/∂xk), and that ker λ|x is spanned by the orthonormal

basis (e2, . . . , ek)|x . From Lemma 2.3.3, the map

σ̇K ∈ HK 7→ ∇|x σ̇K |K ∈ L(K , ker λ)

just dilates the norm by the factor
√
πδLdn+1(1+ o(1)), where the o(1) term is uniformly

bounded over RX . Now, since the matrix of the restriction of ∇|xσ⊥ to K⊥ ∩ ker d|x p in

the given basis of K⊥ ∩ ker d|x p and ker λ equals√
πδLdn+1(ai

j )26i, j6k + o(
√

d
n+1

),

where the o(
√

d
n+1

) term is uniformly bounded over RX , we deduce that the Jacobian

determinant of the map

M ∈ L(K , ker λ) 7→ (∇|xσ⊥| ker λ)
−1 ◦M ∈ L(K , K⊥ ∩ ker d|x p))

equals

((
√
πδLdn+1)k−1|det(ai

j )26i, j6k |(1+ o(1)))k−n .

The Jacobian determinant of the map

σ̇K ∈ HK 7→ (∇|xσ⊥)−1
| ker λ ◦∇|x σ̇K |K ∈ TK Gr(n− k, ker d|x p)

thus equals |det(ai
j )26i, j6k |k−n + o(1), where the o(1) term is uniformly bounded over

RX . Likewise, from Lemma 2.3.3, the map

σ̇λ ∈ Hλ 7→ λ ◦∇|x σ̇λ ∈ (K⊥)∗

just dilates the norm by a factor
√
πδLdn+1‖λ‖+ o(

√
d

n+1
), where the o(

√
d

n+1
) term is

uniformly bounded over RX , while the Jacobian determinant of the map

M ∈ (K⊥)∗ 7→ M ◦ (∇|xσ⊥)−1 ∈ R(E ⊗ Ld)∗|x

equals (
√
πδL
√

d
n+1

)−k |det(ai
j )16i, j6k |−1(1+ o(1)), so the Jacobian determinant of the

map

σ̇λ ∈ Hλ 7→ λ ◦∇|x σ̇λ ◦ (∇|xσ⊥)−1 ∈ R(E ⊗ Ld)∗|x
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equals ‖λ‖k |det(ai
j )16i, j6k |−1+ o(1), with an o(1) term uniformly bounded over RX . As

a consequence,

|det d|σρH
x |−1 = ‖λ‖−k |det(ai

j )26i, j6k |n−k+1|a1
1 |(1+ o(1)),

with an o(1) term uniformly bounded over RX , since the relation λ ◦∇|xσ = d|x p implies

that a1
j vanishes for 2 6 j 6 n.

3.3.2. Jacobian determinant of the evaluation map. Again, under the

hypotheses of Theorem 3.1.3 and for (σ, x) ∈ Ii , we set for every y in a neighborhood of

x ,

σ(y) =
k∑

i=1

ai
0σ

i
0 +

n∑
j=1

ai
jσ

i
j +

∑
16l6m6n

ai
lmσ

i
lm

 (y)+ o(|y|2), (41)

where ai
0, ai

j and ai
lm are real numbers. We then set, for 1 6 l,m 6 n, ã1

ll =
√

2a1
ll , ã1

lm =
a1

lm if l < m and ã1
lm = a1

ml if l > m. We denote by d|σ evH
(σ,x) the restriction of d|σ ev(σ,x) to

Hx (see (37)) and by det d|σ evH
(σ,x) its Jacobian determinant computed in the given basis

of Hx and orthonormal basis of TxRX .

Lemma 3.3.2. Under the hypotheses of Theorem 3.1.3, let (σ, x) ∈ Ii . Then,

|det d|σ evH
(σ,x)|−1 = √πndn|a1

1 ||det(ai
j )26i, j6k ||det(ã1

lm)k+16l,m6n|(1+ o(1)),

where the o(1) term has poles of order at most n− k near the critical points of p.

Remark 3.3.3. In Lemma 3.3.2, a function f is said to have a pole of order at most n− k
near a point x if rn−k f is bounded near x , where r denotes the distance function to x .

Such a function thus belongs to L1(RX, dvolh).

Proof. We choose a torsion free connection ∇T X (resp. a connection ∇E⊗Ld
) on RX \

Crit(p) (resp. on E ⊗ Ld) such that ∇T X dp = 0. They induce a connection on T ∗X ⊗
E ⊗ Ld which makes it possible to differentiate twice the elements of RH0(X, E ⊗ Ld).

The tangent space of Ii then reads

T(σ,x)Ii =
{
(σ̇ , ẋ) ∈ RH0(X, E ⊗ Ld)× TxRX | σ̇ (x)+∇ẋσ = 0 and (42)

∃λ̇ ∈ R(E ⊗ Ld)∗|x , λ̇ ◦∇|xσ + λ ◦∇|x σ̇ + λ ◦∇2
ẋ,.σ = 0

}
. (43)

Recall that TxRX is the direct sum K ⊕ K⊥, where K = ker∇|xσ . We write ẋ = (ẋK , ẋK⊥),
the coordinates of ẋ in this decomposition. From the first equation we deduce, keeping

the notation of § 3.3.1, that ẋK⊥ = −(∇|xσ⊥)−1(σ̇ (x)). From Lemma 2.3.3, the evaluation

map at x ,

σ̇ ∈ 〈(σ i
0)16i6k〉 7→ σ̇ (x) ∈ E ⊗ Ld

|x ,

just dilates the norm by a factor
√
δLdn(1+ o(1)), where the o(1) term is uniformly

bounded over RX , while

|det(∇|xσ⊥)| = (
√
πδLdn+1)k |det(ai

j )16i, j6k |(1+ o(1)).
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We deduce by composition that the Jacobian of the map

σ̇ ∈ 〈(σ i
0)16i6k〉 7→ ẋK⊥ = −(∇|xσ⊥)−1(σ̇ (x))

equals
(√
πkdk |det(ai

j )26i, j6k ||a1
1 |
)−1

(1+ o(1)), where the o(1) term is uniformly bounded

over RX . Now, equation (43) restricted to K reads

λ ◦∇2
ẋK ,.

σ|K = −λ ◦∇|x σ̇|K .
From Lemma 2.3.3, the map

σ̇ ∈ 〈(σ 1
j )k+16 j6n〉 7→ −λ ◦∇|x σ̇|K ∈ K ∗

just dilates the norm by a factor ‖λ‖
√
πδLdn+1(1+ o(1)), where the o(1) term is uniformly

bounded over RX . Likewise, from Lemma 2.3.3, the Jacobian of the map λ ◦∇2σ|K : K →
K ∗ equals

(‖λ‖π
√
δLdn+2)n−k |det(ã1

lm)k+16l,m6n|(1+ o(1)). (44)

Here, the o(1) term is no longer uniformly bounded over RX , though. Indeed, from

Lemma 2.3.5 and (41),

λ ◦∇2σ|K = a1
1(‖λ‖

√
πδLdn+1)(∇T X dx1)+

∑
16l6m6n

ã1
lm(‖λ‖

√
πδLdn+2)dxl ⊗ dxm,

since the relation λ ◦∇|xσ = d|x p imposes that a1
j vanishes for j > 1. Moreover, since

dp =∑n
i=1 αi dxi , with α2(x) = · · · = αn(x) = 0 and |α1(x)| = ‖d|x p‖, we get that

0 = ∇T X (dp)|K = α1(∇T X dx1)|K +
n∑

i=1

(dαi ⊗ dxi )|K ,

so ‖∇T X dx1|K ‖ = 1
‖d|x p‖‖

∑n
i=1 dαi ⊗ dxi‖ has a pole of order 1 at x . In formula (44), the

o(1) term has thus a pole of order at most n− k near the critical points of p.

We deduce that the Jacobian determinant of the map

σ̇ ∈ 〈(σ 1
j )k+16 j6n〉 7→ ẋK = −(λ ◦∇2σ|K )−1 ◦ (λ ◦∇|x σ̇|K ) ∈ K

equals (
√
πn−kdn−k |det(ã1

lm)k+16l,m6n|)−1(1+ o(1)), up to sign, where the o(1) term has

a pole of order at most n− k near the critical points of p. The result follows.

3.4. Proof of Theorem 3.1.3

3.4.1. The case k < n. From Proposition 2.4.1 we know that

E(νi ) = 1√
πndn

(∫
π1(π

−1
2 (x))

|det d|σ ev⊥(σ,x)|−1dµR(σ )

)
dvolhL .

From the coarea formula (see [10]), we likewise deduce that

E(νi ) = 1√
πndn

(∫
Gr(n−k,ker d|x p)×R(E⊗Ld )∗|x\{0}

e−(a
1
1)

2 d K ∧ dλ
√
π
(n−k)(k−1)+k . . .
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. . .

∫
ρ−1

x (K ,λ)
|det d|σ ev⊥(σ,x)|−1|det d|σρ⊥x |−1dµR(σ )

)
dvolhL ,

since with the notation (41), σ ∈ ρ−1
x (K , λ) if and only if ∀i ∈ {1, . . . , k} and ∀ j ∈ {k+

1, . . . , n}, ai
0 = 0 = ai

j , while ∀ j > 2, a1
j = 0 and |a1

1 | = ‖d|x p‖/(‖λ‖√πδL
√

d
n+1

). From

Lemma 2.3.6 and the relation (40), we deduce that for every x ∈ RX \Crit(p) and every

(K , λ) ∈ Gr(n− k, ker d|x p)×R(E ⊗ Ld)∗|x \ {0},∫
ρ−1

x (K ,λ)
|det d|σ ev⊥(σ,x)|−1|det d|σρ⊥x |−1dµR(σ )

∼
d→∞

∫
ρ−1

x (K ,λ)
|det d|σ evH

(σ,x)|−1|det d|σρH
x |−1dµR(σ ).

Thus, from Lemmas 3.3.1, 3.3.2 and 3.2.2, E(νi ) converges to∫
Mk−1(R)

|det (ai
j )26i, j6k |n−k+2dµ(ai

j )

∫
SymR(i,n−k−i)

|det(ã1
lm)k+16l,m6n|dµ(ã1

lm) . . .

. . .

∫
Gr(n−k,ker d|x p)×R(E⊗Ld )∗|x\{0}

(a1
1)

2e−(a1
1)

2

‖λ‖k
d K ∧ dλ

√
π
(n−k)(k−1)+k ,

where the convergence is dominated by a function in L1(RX, dvolhL ); see Remark 3.3.3.

We deduce that E(νi ) becomes equivalent to

‖d|x p‖2
δLdn+1√πk+2 Vk−1,n−1 Ek−1(|det|n−k+2)eR(i, n− k− i)

(∫
R(E⊗Ld )∗|x\{0}

e−(a1
1)

2

‖λ‖k+2 dλ

)
dvolhL .

Now,

‖d|x p‖2
πδLdn+1

∫
R(E⊗Ld )∗|x\{0}

e−(a1
1)

2

‖λ‖k+2 dλ = Vol(Sk−1)‖d|x p‖2
πδLdn+1

∫ +∞
0

e−(a1
1)

2

‖λ‖3 d‖λ‖

= Vol(Sk−1)

∫ +∞
0

e−r2
rdr = 1

2
Vol(Sk−1).

Since Vol(Sk−1) = 2
√
π

k
/0(k/2), we finally deduce that E(νi ) weakly converges to

1
0(k/2)

Vk−1,n−1 Ek−1(|det|n−k+2)eR(i, n− k− i)dvolhL ,

where the convergence is dominated by a function in L1(RX, dvolhL ).

3.4.2. The case k = n. When the rank of E equals the dimension of X , the vanishing

locus of a generic section σ of RH0(X, E ⊗ Ld) is a finite set of points. We set ν =
(1/
√

d
n
)
∑

x∈RCσ δx , and define the incidence variety as

I = {(σ, x) ∈ (RH0(X, E ⊗ Ld) \R1d)×RX | σ(x) = 0}.
The projections π1 and π2 are defined by (31) and (32). As before, for every (σ0, x0) ∈
(RH0(X, E ⊗ Ld) \R1d)×RX , π1 is invertible in a neighborhood RU of σ0, defining an

evaluation map at the critical point

ev(σ0,x0) : σ ∈ RU 7→ π2 ◦π−1
1 (σ ) = x ∈ RCσ ∩RV,
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where RV denotes a neighborhood of x0 in RX ; compare § 2.4.2 of [14]. We denote by

d|σ0ev⊥(σ0,x0)
the restriction of its differential map d|σ0ev(σ0,x0) at σ0 to the orthogonal

complement of π1(π
−1
2 (x0)) in RH0(X, E ⊗ Ld). Then, from Proposition 3.2.1,

E(ν) = 1√
d

n (π2)∗(π∗1 dµR)|x = 1√
πd

n

∫
π1(π

−1
2 (x))

|det d|σ ev⊥(σ,x)|−1dµR(σ )dvolhL .

The space Hx = 〈(σ i
0)16i6k〉 is a complement to Tσπ1(π

−1
2 (x)) in RH0(X, E ⊗ Ld) and in

the decomposition (41), ai
0 = 0 for every i = 1, . . . , k. The tangent space of I at (σ, x)

reads

T(σ,x)I = {(σ̇ , ẋ) ∈ RH0(X, E ⊗ Ld)× TxRX | σ̇ (x)+∇|xσ(ẋ) = 0}.
As in the proof of Lemma 3.3.2, we deduce that the Jacobian determinant of the map

σ̇ ∈ Hx 7→ ẋ = −(∇|xσ⊥)−1(σ̇ (x)) ∈ TxRX

equals
√
πndn|det(ai

j )16i, j6n|(1+ o(1)), so

|det d|σ evH
(σ,x)|−1 = √πdn|det(ai

j )16i, j6n|(1+ o(1)),

where the o(1) term is uniformly bounded over RX . From lemma 2.3.6 we deduce that

E(ν) becomes equivalent to(∫
Mn(R)

|det(ai
j )16i, j6n|dµ(ai

j )

)
dvolhL = En(|det|)dvolhL .

Formula (15.4.12) of [23] (see Remark 3.1.1) now gives

En(|det|) = 0( n+1
2 )

0(1/2)
= 1

VolF S(RPn)

(see Remark 2.14 of [14]), and hence the result.

3.5. Equidistribution of critical points in the complex case

Let X be a smooth complex projective manifold of dimension n, (L , hL) be a holomorphic

Hermitian line bundle of positive curvature ω over X and (E, hE ) be a rank k holomorphic

Hermitian vector bundle, with 1 6 k 6 n. For every d > 0, we denote by Ld the dth tensor

power of L and by hd the induced Hermitian metric on Ld . We denote by H0(X, Ld)

its complex vector space of global holomorphic sections and by Nd the dimension of

H0(X, Ld). We denote then by 〈., .〉 the L2-Hermitian product on this vector space,

defined by the relation

∀σ, τ ∈ H0(X, Ld), 〈σ, τ 〉 =
∫

X
hd(σ, τ )dx . (45)

The associated Gaussian measure is denoted by µC. It is defined, for every open subset

U of H0(X, Ld), by

µC(U ) = 1
πNd

∫
U

e−‖σ‖
2
dσ, (46)
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where dσ denotes the Lebesgue measure of H0(X, Ld). For every d > 0, we denote by 1d

the discriminant hypersurface of H0(X, E ⊗ Ld), that is the set of sections σ ∈ H0(X, E ⊗
Ld) which do not vanish transversally. For every σ ∈ H0(X, E ⊗ Ld) \ {0}, we denote by

Cσ the vanishing locus of σ in X . For every σ ∈ H0(X, E ⊗ Ld) \1d , Cσ is then a smooth

codimension k complex submanifold of X . We equip X with a Lefschetz pencil p : X 99K
CP1. We then denote, for every d > 0, by 1d

p the set of sections σ ∈ H0(X, E ⊗ Ld)) such

that σ ∈ 1d , or Cσ intersects the critical locus of p, or the restriction of p to Cσ is not

a Lefschetz pencil. For d large enough, this extended discriminant locus is of measure 0

for the measure µC.

For every σ ∈ H0(X, E ⊗ Ld) \1d
p, we denote by Crit(p|Cσ ) the set of critical points of

the restriction of p to Cσ and set, for 1 6 k 6 n− 1,

ν(Cσ ) = 1
dn

∑
x∈Crit(p|Cσ )

δx , (47)

where δx denotes the Dirac measure of X at the point x . When k = n, ν(Cσ ) =
(1/dn)

∑
x∈Cσ δx .

Theorem 3.5.1. Let X be a smooth complex projective manifold of dimension n, (L , hL)

be a holomorphic Hermitian line bundle of positive curvature ω over X and (E, hE ) be

a rank k holomorphic Hermitian vector bundle, with 1 6 k 6 n. Let p : X 99K CP1 be a

Lefschetz pencil. Then, the measure E(ν) defined by (47) weakly converges to
(n−1

k−1

)
ωn as

d grows to infinity.

When k = 1, Theorem 3.5.1 reduces to Theorem 3 of [15]; see also Theorem 1.3 of [14].

Proof. The proof goes along the same lines as that of Theorem 3.1.2, so we only give a

sketch of it. Firstly, the analogue of Proposition 3.2.1 provides

E(ν) = 1
dn (π2)∗(π∗1 dµC),

and at every point x ∈ X \ (Crit(p)∪Base(p)), where Base(p) denotes the base locus of p,

(π2)∗(π∗1 dµC)|x = 1
πn

∫
π1(π

−1
2 (x))

|det d|σ ev⊥(σ,x)|−2dµR(σ )
ωn

n! ;

see Proposition 2.10 of [14]. Choosing complex coefficients in decomposition (41),

Lemmas 3.3.1 and 3.3.2 remain valid in the complex setting; see Remark 2.3.8. We deduce

that

E(ν) = 1
πndn

(∫
π1(π

−1
2 (x))

|det d|σ ev⊥(σ,x)|−2dµC(σ )

)
ωn

n!

∼
d→∞

1
πndn

(∫
GrC(n−k,ker d|x p)×(E⊗Ld )∗|x\{0}

e−|a
1
1 |2 d K ∧ dλ
π (n−k)(k−1)+k . . .

. . .

∫
ρ−1

x (K ,λ)
|det d|σ ev⊥(σ,x)|−2|det d|σρ⊥x |−2dµC(σ )

)
ωn

n! ,
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with |a1
1 | given by (40); see Lemma 2.3.6 as before. Here, GrC(n− k, ker d|x p) denotes the

Grassmann manifold of n− k-dimensional complex linear subspaces of ker d|x p. From the

complex versions of Lemma 2.3.5 and 2.3.6 (see Remark 2.3.8 and the relation (40)), we

deduce that for every x ∈ X \ (Crit(p)∪Base(p)) and every (K , λ) ∈ Gr(n− k, ker d|x p)×
(E ⊗ Ld)∗|x \ {0},∫

ρ−1
x (K ,λ)

|det d|σ ev⊥(σ,x)|−2|det d|σρ⊥x |−2dµC(σ )

∼
d→∞

|a1
1 |4πndn

‖λ‖2k

∫
Mk−1(C)

|det(ai
j )26i, j6k |2(n−k+2)dµ(ai

j ) . . .

. . .

∫
SymC(n−k)

|det(ã1
lm)k+16l,m6n|2dµ(ã1

lm).

We deduce that E(ν) is equivalent to

‖d|x p‖4
(πδLdn+1)2

1
π (n−k)(k−1)+k Vol(GrC(k− 1, n− 1)) . . .

. . . EC
k−1(|det|2(n−k+2))eC(n− k)

(∫
(E⊗Ld )∗|x\{0}

e−|a1
1 |2

‖λ‖2(k+2) dλ

)
ωn

n! ,

where eC(n− k) = ∫SymC(n−k) |det A|2dµC(A) and

EC
k−1(|det|2(n−k+2)) =

∫
Mk−1(C)

|det A|2(n−k+2)dµC(A).

Now,

‖d|x p‖4
(πδLdn+1)2

∫
(E⊗Ld )∗|x\{0}

e−|a1
1 |2

‖λ‖2k+4 dλ = Vol(S2k−1)
‖d|x p‖4

(πδLdn+1)2

∫ +∞
0

e−|a1
1 |2

‖λ‖5 d‖λ‖

= Vol(S2k−1)

∫ +∞
0

e−r2
r3dr = 1

2
Vol(S2k−1).

Hence, E(ν) is equivalent to

1
2π (n−k)(k−1)+k Vol(GrC(k− 1, n− 1))Vol(S2k−1) EC

k−1(|det|2(n−k+2))eC(n− k)
ωn

n! ,

where eC(n− k) = (n− k+ 1)! by Proposition 3.8 of [14], Vol(S2k−1) = 2πk/(k− 1)!,

EC
k−1(|det|2(n−k+2)) =

∏k−1
j=1 0((n− k+ 2)+ j)∏k−1

j=1 0( j)
=
∏n+1

j=n−k+3 0( j)∏k−1
j=1 0( j)

by formula 15.4.12 of [23] and

Vol(GrC(k− 1, n− 1)) =
∏k−1

j=1 0( j)∏n−1
j=n−k+1 0( j)

π (k−1)(n−k)
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by a computation analogous to the one given for the real case by Remark 3.1.1. We

conclude that E(ν) weakly converges to
(k−1

n−1

)
ωn , where the convergence is dominated by

a function in L1(X, (ωn/n!)), for it has poles of order at most 2(n− k) near the critical

points of p and at most 2 near the base points; see [15].

Corollary 3.5.2. Under the hypotheses of Theorem 3.5.1, for every generic σ ∈
RH0(X, E ⊗ Ld), let |Crit p|Cσ | be the number of critical points of p|Cσ . Then,

1
dn E(|Crit p|Cσ |) ∼d→∞

(
k− 1
n− 1

)∫
X

c1(L)n .

Proof. Corollary 3.5.2 follows from Theorem 3.5.1 by integration of 1 over X . A direct

proof can be given though. The modulus of p is a Morse function on Cσ \ (Base (p)∪
F0 ∪ F∞), where F0 (resp. F∞) is the fiber of 0 (resp. of ∞) of p : X 99K CP1. Moreover,

the index of every critical point of |p| is n− k. As in the proofs of Propositions 1 and 2

in [15], we deduce that E(|Crit p|Cσ |) is equivalent to |χ(Cσ )| as d grows to infinity. Now,

χ(Cσ ) =
∫

Cσ
cn−k(Cσ ) =

∫
X

cn−k(Cσ )∧ ck(E ⊗ Ld),

while from the adjunction formula, c(Cσ )∧ c(E ⊗ Ld)|Cσ = c(X). Moreover, for 0 6 i 6 k,

ci (E ⊗ Ld) = (ki )d i c1(L)i + o(d i ), so

c(E ⊗ Ld) = (1+ dc1(L))k + o((1+ dc1(L))k).

From the formula (1+ x)−k =∑∞j=0(−1) j ((k− 1+ j)!/j !(k− 1)!)x j , we then deduce that

cn−k(Cσ ) = (−1)n−k(n−1
k−1

)
dn−kc1(L)n−k + o(dn−k) and finally that

χ(Cσ ) = (−1)n−k
(

n− 1
k− 1

)
dn
∫

X
c1(L)n + o(dn).

Hence the result.
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