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Abstract

These lecture notes are an expanded version of courses I gave for graduate students at the
Université de Grenoble in the second semester of 2018-2019. I present some old and recent
results on the topology and geometry of real random algebraic hypersurfaces, beginning with
the average of the number of real roots of real polynomials of one variable. The measure is
mainly the very natural so-called Kostlan or complex Fubini-Study measure. In higher di-
mensions I compute the average of the volume of the vanishing locus of a random polynomial
of degree d in the real projective space, and of a random linear sum of eigenfunctions of the
Laplacian over a compact Riemannian manifold. Then, I explain that every topology arises
with uniform positive probability as part of the random hypersurface of degree d in any
prescribed ball B(x, 1/

√
d). Finally, I present a link between percolation and the vanishing

locus of random Gaussian analytic functions on the real plane, if the measure is the local
rescaled measure given by the Kostlan polynomials. I tried to give the whole proofs. I did
not try to give general results for Gaussian �elds or even random functions, but I try to
separate what is general and what is proper to the algebraic world.
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Chapter 1

Introduction

Roughly speaking, algebraic geometry is the study of the vanishing locus of polynomials.
The general question is

Question 1.0.1 Can we describe for a given degree d, the possible geometries or topologies
of the vanishing locus of all degree d polynomials?

In this course, we will study algebraic geometry for �elds equal to R or C, and the
ambient space will be either the a�ne spaces Rn or Cn, or the projective spaces RPn or
CPn. The a�ne spaces are more intuitive, however the projective ones are much natural,
since the space is compact and have simple symmetries.

1.1 Deterministic answers

1.1.1 Generalities

Notation: for any n ≥ 1, any space M and any mapping f : M → Rn, let

Z(f) := f−1(0).

Recall the following fundamental result in di�erential geometry:

Proposition 1.1.1 ([20, p. 29]) Let Mm a m-dimensional manifold and f : M → Rn a
C1 function, such that

∀x ∈ Z(f), df(x) : TxM → Rn is onto.

Then Z(f) is a submanifold of codimension n in M .

In particular, if m = n, Z(f) is a discrete number of points without any accumulation. If
moreover M is compact, then Z(f) is the union of a �nite number of points.

1.1.2 Roots (n=1)

In the complex case, the Gauss theorem asserts that the topological situation for ZC(p) ⊂ C
is simple, where p : C→ C is a polynomial:

Theorem 1.1.2 (Friedrich Gauss) For d ≥ 1, a degree d polynomial in one variable
complex variable has always d roots (with multiplicity).

7
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Remark 1.1.3 1. For any set Z of d distinct points, there exists a polynomial p ∈ C[z],
such that Z(p) = Z.

2. When p ∈ R[x], the topology of ZR(p), that is its number of points, is more... complex:
for any d ≥ 1, p can have between 0 (if d is even) or 1 (if d is odd) and d real roots,
and every situation can be achieved.

1.1.3 Homogeneous polynomials and projective spaces

Before going on with n = 2, we urge the reader not familiar with the projective spaces
to read in the Annex the associated reminder 5.2. In projective spaces, we will deal with
homogeneous polynomials

P ∈ Kd
hom[X0, · · ·Xn] := {P ∈ K[X0, · · ·Xn]

∣∣ ∀λ ∈ K, X ∈ Kn+1, P (λX) = λdP (X).}

This is easy to see that the set of degree dhomogeneous monomials {Xi0
0 · · ·Xin

n , i0 + · · · in =
d} is a basis of Kd

hom[X0, · · ·Xn]. Why do we use homogeneous polynomials? Because their
vanishing locus has a sense in the projective spaces, since

∀t ∈ K∗, P (X) = 0⇔ P (tX) = 0,

so that we can de�ne Z(P ) ⊂ KPn.
Note that KPn \ {X0 = 0} (removing one line) is di�eomorphic to Kn by the map

[X0 : · · ·Xn] 7→ (
X1

X0
, · · · , Xn

X0
),

and in these coordinates on this chart, an homogeneous polynomial can be canonically
transformed into a polynomial in n variables by

p(x1, · · · , xn) := P (1 : X1 : · · · : Xn).

We see that Z(P ) ∩ {X0 = 0}c ⊂ KPn is homeomorphic to Z(p) ⊂ Kn. Conversely, given
p(x) ∈ R[x1, · · · , xn] and any degree d, we can homogenize p into

P (X0, · · · , Xn) := Xd
0p(

X1

X0
, · · · , Xn

X0
).

By Proposition 1.1.1, if P ∈ Rdhom (resp. P ∈ Cdhom) is a submersion on its vanishing locus,
then Z(P ) ⊂ RPn (resp. Z(P ) ⊂ CPn) is a (resp. complex) submanifold of dimension
n− 1, that is an hypersuface.

1.1.4 Algebraic curves (n=2)

In this case, when P is not singular and K = R, that is when Z(P ) is a submanifold of RP 2,
it is a �nite number of topological circles, since a compact smooth manifold of dimension
one is homeomorphic to a circle. These circles are its connected components. In R2, the
connected components of Z(p) can be topological lines (hence, going ton in�nity) or circles.

1. d = 1 case: Z(p) is a straight line in R2, so has one component. In RP 2, by a linear
change of variables, we can assume that P = X0, so that its vanishing locus is one
topological circle.
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2. d = 2. In R2, Z(p) is a conic, so has between 0 and two components. In RP 2, there
is 0 or one component. In general, we denote:

b0(P ) := #{ connected components of Z(P )}.

The �rst general result in higher dimensions (that is n ≥ 2) was proved in 1876:

Theorem 1.1.4 (Axel Harnack Theorem 1876 [15], [9, Theorem 11.6.2]) For any
degree d ≥ 1,

1. b0 ≤ bmax(d) := 1
2(d− 1)(d− 2) + 1.

2. For any d, there exists P such that b0(P ) = bmax(d).

In complex, we have a di�erent situation:

Theorem 1.1.5 For any degree d ≥ 1, if P ∈ C2
hom[X0, · · · , X2] is not singular, then

Z(P ) ⊂ CP 2 is a connected compact surface of genus bmax(d)− 1.

The latter theorem says that the whole topology of the complex vanishing locus Z(P ) ⊂ CP 2

is always the same, on the contrary to the Z(P ) ⊂ RP 2 when P is a real polynomial.

In RP 2, 16th David Hilbert famous problem is the following:

Question 1.1.6 (Hilbert 1900) Describe relative positions of ovals originating from a real
algebraic curve [...].

The ovals are the connected components of Z(P ). For instance, there cannot be more than
d/2 components encircling each other. Indeed, by Bézout's theorem, #(Z(P ) ∩ Z(Q)) ≤
deg(P )deg(Q), so that Z(P ) intersect at most d times a line. However the number of in-
tersections of a line passing by the inner of the smallest oval must intersect Z(P ) at least 2
times the number of circles, so that N ≤ d/2.

1.1.5 Higher dimensions.

Theorem 1.1.7 ([37, p. 263], see also [24, Corollary 3]) For any real homogeneous poly-
nomial P of degree d in n+ 1 real variables,

b0(Z(P )) ≤ d

d− 1
(dn − 1).

More precisely,
∑

i bi(Z(P ),R) ≤ d(2d − 1)n where bi is the i−th Betti number, that is
bi = dimHi(Z(P ),R). In fact,∑

i

bi(ZC(P ),R) ≤
∑
i

bi(ZC(P ),R).

Again, the complex situation is far more clearer:

Theorem 1.1.8 ([37, p. 264]), [14, p. 157] The complex hypersurface Z(P ) ∈ CPn is
always connected, and always simply connected for n ≥ 3. In fact any two smooth complex
hypersurfaces Z(P ) and Z(Q) are isotopic, so that they are homeomorphic. The sum of the
Betti numbers is a polynomial in d of degree n.
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The reader can check that these bounds are coherent with the Gauss and Harnack inequal-
ities. For n = 3, Z(P ) is a union of real compact surfaces. The former bound implies
that

(2b0 + b1)(ZR(P )) ≤ 8d3.

In particular, b0 ≤ 4d3.
We have an equality versus a bound for the volume of Z(P ).

Theorem 1.1.9 For any homogeneous polynomial of degree d,

1. if P is complex then V olZC(P ) = d (Wirtinger) ;

2. if P is real then V olZR(P ) ≤ dV ol(RP
n)

V ol(CPn) (Cauchy-Crofton).

1.2 Probabilistic questions

We sum up the results exposed in the latter section.

1. in the complex projective case, the topology and the volume of ZC(P ) depend only
on the degree of the polynomial, not on the particular polynomial itself, as long as P
vanishes transversally;

2. in the real projective case, already with the d = 2 case, we see that the answer for the
topology or the volume depend on the particular polynomial.

3. However, we saw that there is an upper bound for the Betti numbers (resp. the volume)
of ZR(P ) by the the complex hypersurface ZC(P ).

In conclusion,

1. as far is the global topology (and even the global volume) of Z(P ) is concerned, there
is no need to take at random polynomials.

2. On the contrary, It is very natural to take real polynomials at random and look at the
statistics of the topology of ZR(P ), beginning with the mean number of real roots.

3. In fact, even in the complex case, there are very interesting observable to look at, for
instance, the spatial distribution of the roots (in dimension 1) or in general Z(P ). The
main general result in this case is [34].

We will be interested in three questions:

1. What is the average volume of an algebraic hypersurface?

2. What is its mean topological type?

3. Are there large connected components of these hypersurfaces, that is larger than the
natural scale?

1.3 Other models

This section is very short, because the author does not want to enter into the bibliographical
maelstrom.
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Figure 1.1: Repartition of roots of degree d = 4, 10, 36 of random Kac real polynomials.
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1.3.1 Sections of ample line bundles

Everything that is proved in sections 2 and 3.2 has been in fact proved in a far more general
situation. Namely, let M be a compact complex manifold equipped with a holomorphic line
bundle L→ X equipped itself with an hermitian product h with positive curvature equal to
ω. This implies that ω is a Kähler manifold. If c : X → X is a anti-holomorphic involution,
and cL : L → L compatible with c. Since L has a positive curvature, then H0(X,L⊗d) the
set of holomorphic sections has a dimension which grows like dn. The real part of it, that is

RH0(X,L⊗d) := {s ∈ H0(X,L⊗d), cL ◦ s = s ◦ c}

has the same real dimension.

Example 1.3.1 The main example, and the only one that will be treated here is M = CPn
and c is the conjugation, if L = O(1) the hyperplane bundle, then cL can be chosen to be the
natural conjugation. In this case, RH0(X,L⊗d) = Rdhom[X0, · · · , Xn].

1.3.2 Eigenfunctions of the Laplacian.

On (M, g) a compact Riemannian manifold, the Laplacian has a discrete in�nite number
of eigenvalues. As a random space we can take the sum of eigenspaces with eigenvalues
less than a growing parameter L. We handle this kind of model for the mean volume in
paragraph 2.3.1.

1.3.3 Gaussian �elds on Rn

There is a lot of work for Gaussian �elds f : Rn → R. Even if Rn has a trivial geometry, the
vanishing locus of f has not. See the books [1], [3] for results on the Euler Characteristics
for instance. In these lectures, we will assume that the covariance function of f depends
only on the distance between points. This allows us to use tools of percolation theory for
the study of long connected components of the vanishing locus of f in R2 , see chapter 4.

1.3.4 Complex hypersurfaces

It is very natural to study the complex vanishing locus of a polynomial or a holomorphic
section. As said before, [34] is one of the main reference. Other past results are referenced
inside.
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Repartition of roots of degree d = 100 random Kac complex polynomials.

Repartition of roots of degree d = 100 random for complex Fubini-Study or (Kostlan)
polynomials.
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Repartition of nodal lines for Kostlan random polynomials (d = 300), eigenfunctions
(d = 80) and real Fubini-Study real polynomials (d = 80). Images Alex Barnett.



Chapter 2

Mean volume of random

hypersurfaces

We saw in the introduction that the volume of ZC(P ) ⊂ CPn is always the same, whereas
ZR ⊂ RPn depends on P . In this section we estimate the average of this volume in the real
case. Since for n = 1, the volume equals the number of roots of P , it is natural to begin
with this case. Besides, this is an historical case.

2.1 Roots of random polynomials

2.1.1 Kac model

In 1943, Marek Kac's studied the following question:

Question 2.1.1 Let

p =
d∑

k=0

akx
k

be a random polynomial with independent coe�cients following the same normal law :

∀k ∈ {0, · · · , d}, ak ∼ N(0, 1).

What is the mean number of real roots?

Note that by Gauss theorem, the number of complex roots is always d with probability one.

Notation. We will write in general, for any manifold Mn, U ⊂ M an open set in M , and
f : U → Rn,

N(f, U) := #{x ∈ U, f(x) = 0} ∈ N ∪ {+∞}

and N = N(f) := N(f,M) when ambiguities are absent. Here we are interested in the case
n = 1. Let us compute two simple cases.

1. For d = 1, p = a0 + a1x has one real root i� a1 6= 0 which happens with probability
one, so

E(N) = 1.

2. For d = 2, p = a0 + a1x+ a2x
2. The two complex roots are real i�

∆ := a2
1 − 4a0a2 ≥ 0,

15
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so that

E(N) =

∫
∆>0

2e−
1
2
‖a‖2 da
√

2π
3

with ‖a‖2 :=
∑2

i=0 a
2
i and da =

∏3
i=0 dai. Try to compute this.

Theorem 2.1.2 (Marek Kac 1943 [17]) For a random polynomial of degree d as before,

E(N(p)) ∼d→+∞
2

π
log d.

2.1.2 Kac-Rice formula

The latter was originally proved by Kac by proving the following general formula:

Theorem 2.1.3 (Kac-Rice formula ([3, Theorem 3.2])Let I ⊂ R be a segment, f : I → R a
random Gaussian �eld such that almost surely, f is C1 on I, and for any x ∈ I, Var f(x) 6= 0.
Then,

E
(
N(f, I)

)
=

∫
I
E
(
|f ′(x)|

∣∣ f(x) = 0
)
φf(x)(0)dx.

Here, for any random Gaussian vector X, φX(x) denotes the density of X at x ∈ R, see the
probability toolbox for the Gaussian case. We emphasize that this formula does not depend
on the law of f(x). However when f is a random Gaussian �eld, it gives a very nice explicit
computation:

Theorem 2.1.4 (Kac 1943, Kostlan 1993) Under the same hypotheses than Theorem 2.1.3,
assume moreover that f is centered, that is E(f(x)) = 0 for any x ∈ I. Then, if e : I2 → R
denote the two-point correlation function of f , then

E(N(f, I)) =
1

π

∫
x∈I

√
∂2
x,y log e(x, y)|x=ydx.

Proof. Since f(x) is a centered Gaussian �eld,

∀u ∈ R, φf(x)(u) = e
− 1

2
u2

Var(f(x))
du√

Var(p(x))
√

2π
.

For u = 0, this gives, using the correlation function,

φf(x)(0) =
du√

e(x, x))
√

2π
.

We apply the regression formula given by Proposition 5.1.12 this to X = (X1, X2) =
(f ′(x), f(x)). By Theorem 5.1.10,

Cov(f ′(x), f ′(y)) := E(f ′(x)f ′(y)) =
∂2

∂x∂y
E(f(x)f(y)) = ∂2

x,ye,

in particular
Var(f ′(x)) = ∂2

x,ye|x=y.

and similarly

Cov(f ′(x), f(x)) = E(f ′(x)f(x)) =
∂

∂x
E(f(x)f(y))|x=y = ∂xe|x=y.
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By Proposition 5.1.12,
E(|f ′(x)|

∣∣ f(x) = 0) = E(|X3|),
where

X3 ∼ N
(
0, ∂2

xye|x=y − ∂xe2
|x=ye(x, x)−1

)
.

Since for a centered X ∼ N(0,Σ),

E(|X|) =

∫
x∈R
|x|e−

1
2
x2

Σ
dx√

Σ
√

2π
= 2
√

Σ

∫
R+

ue−
1
2
u2 du√

2π
=

√
2Σ

π

This implies

E
(
N(f, I)

)
=

1

π

∫
x∈I

√
e(x, x)∂2

xye|x=y − ∂xe2
|x=y

e2(x, x)
dx.

2

2.1.3 Kostlan polynomials

There is another, more natural in fact than Kac polynomials, random model for polynomial,
the complex Fubini-Study, or Kostlan measure:

p(x) =
d∑

k=0

ak

√(
d

k

)
xk,

where the (ak)k are still independent and follow the same centered normal law. We will see
later why this is a good measure to choose, which is not really clear at �rst sight! For the
moment, we see that the 2-point correlatione equals:

e(x, y) =
d∑

k=0

(1 + xy)d.

Theorem 2.1.5 (Kostlan [19], Shub-Smale [35] 1993) For Kostlan polynomials,

∀d ≥ 0, E(b0(P )) =
√
d.

We apply now theorem 2.1.4 for Kostlan polynomials and then for the Kac.

Proof of Theorem 2.1.5.. The Kostlan polynomials are in fact easier than Kac's one.
For it, √

∂2
xy log e(x, y)|x=y =

√
d

1 + x2
,

so that Theorem 2.1.4 gives

E(N(pKostlan)) =

√
d

π

∫
R

1

1 + x2
dx =

√
d.

We will recover this result in section 2.2 with a more geometric point of view. 2

Proof of Theorem 2.1.2.. Now for the Kac polynomials, e(x, y) = 1−(xy)d+1

1−xy , so that

√
∂2
xy log e(x, y)|x=y =

√
1

(1− x2)2
− (d+ 1)2

x2d

1− t2d+2)2
,

�nir 2
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2.1.4 Sketchy proof of Kac-Rice formula

We begin by a deterministic relation which expresses N as an integral, and which has its
own interest.

Lemma 2.1.6 Let I ⊂ R be a closed interval, f : I → R C1, f 6= 0 on ∂I and f(x) = 0
implies f ′(0) = 0 (transversality). Then,

N(f, I) = lim
δ→0

1

2δ

∫
x∈I,|f(x)|≤δ

|f ′(x)|dx.

Proof. The transversality assumption implies (why?) that there exists a �nite number of
zeros of f , a < x1 < · · · < xN < b. For δ > 0 small enough, f−1([−δ, δ]) is a union of
disjoint intervals (Jk 3 xk)k∈{0,···N} (why?). Then,

∫
x∈I,|f(x)|≤δ

|f ′(x)|dx =
N∑
i=0

∫
Jk

|f ′(x)|dx (2.1.1)

=

N∑
i=0

sgn(f ′(xk))[f ]∂Jk (2.1.2)

=

N∑
i=0

2δ = 2Nδ, (2.1.3)

hence the result. 2

Proof of Kac-Rice. We have, admitting that every inversion of integral and limits are
allowed,

E(N(p, I)) = lim
δ→0

1

2δ

∫
I
E
(
1{|f(x)|<δ}|f ′(x)|

)
dx. (2.1.4)

Now for any x ∈ I, f(x) is a random variable which law can be denoted by dµf(x), so
that

Pr(f(x) ∈ [u, v]) =

∫ v

u
dµf(x)(s).

Using formula ?? we obtain

E
(
1|f |<δ|f ′(x)|

)
=

∫
(u,v)∈R2

1|p|<δ|f ′(x)|p(f(x),f ′(x))(u, v)dudv (2.1.5)

=

∫
u∈R

1|p|<δ

(∫
v∈R
|f ′(x)|p

[f ′(x)
∣∣f(x)]

(v|u)dv
)
pf(x)(u)du (2.1.6)

=

∫
R
Ef ′(x)

(
|f ′(x)|

∣∣ f(x) = u
)
dpf(x)(u)1|p|<δdu (2.1.7)

so that

lim
δ→0

1

2δ
E
(
1|p|<δ|f ′(x)|

)
= Ef ′(x)

(
|f ′(x)|

∣∣ f(x) = 0
)
dµf(x)(0). (2.1.8)

2
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2.2 Algebraic hypersurfaces

The aim of this paragraph is to prove the following theorem:

Theorem 2.2.1 (see [19]) If P of degree d is chosen at random with the Kostlan measure,
then

∀d, E
(

Vol(ZR(P ))
)

=
√
dVol(RPn−1).

For n = 1, this gives E(N(P )) =
√
d since RP 0 = {1}, which was already proved by

theorem 2.1.5. In section 5.3 we recall the de�nition of the Riemannian volume. There
exists an estimate for the variance:

Theorem 2.2.2 (Letendre [23] 2018) The variance of the volume of algebraic hypersufaces
satis�es the estimate

Var
(

Vol(ZR(P ))
)
∼d→∞ Cnd

1−n
2 ,

where Cn is a universal constant. Besides, for any ε > 0,

Pr
(
|Vol(Z)− EVol | >

√
d

1−n/2+ε
)
≤ Cεd−ε

We will not prove this theorem.

2.2.1 General Kac-Rice formula for volumes

For Theorem 2.2.1, we begin with a general formula for computing the expectation of the
volumes of random hypersurfaces in Riemannian manifolds:

Theorem 2.2.3 (Kac-Rice formula for volumes [3, Theoreom 6.8]) Let (M, g) be a Rie-
mannian manifold and f : M → R a Gaussian �eld on M , such that almost surely, f is
C1 and regular, and Var(f(x)) > 0 for any x ∈ M . Then, for any integrable open subset
U ⊂M ,

E
(

Vol(f−1(0) ∩ U)
)

=

∫
U
E
(
‖∇f(x))‖

∣∣ f(x) = 0
)
φf(x)(0)dvolM (x).

We will use for he proof of this theorem the famous co-area formula, which is a kind of
wonder formula which allows to compute an integral using the geometry given by levels of a
given function. This generalizes the Fubini theorem, where the function equals a particular
coordinate.

Theorem 2.2.4 (Coarea Formula [10, Exercise III.12 (c)] Let M be a smooth Riemannian
manifolds of dimension m, U ⊂ M be any measurable subset of M , and f : M → Rn be a
smooth function with n ≤ m. Then, for any continuous and bounded g : M → R, one has∫

U
g
√

det df ◦ df∗dvolM =

∫
y∈Rm

∫
f−1(y)∩U

g|f−1(y)dvolf−1(y)dy.

Recall that if f : (E, g) → (E′, f) is a linear map between spaces equipped with scalar
products, f∗ : E′ → E is de�ned by

∀u′ ∈ E′, u ∈ E, g′(u′, f(u)) = g(f∗(u′), u).

This implies that for two ONB B and B′, Mat(f∗, B′, B) = Mat(f,B,B′)t.
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Exercise 2.2.5 Prove that it is well de�ned.

Example 2.2.6 Let us give a simple example for M = I ⊂ R and N = R with the standard
metric. Here f−1(y) is a discrete number of points, df = f ′(x)dx and df∗ = f ′(x)dx, so
that

√
det df ◦ df∗ = |f ′(x)|. so that∫

I
g|f ′(x)|dx =

∫
R

∑
x∈f−1(y)

g(x)dy.

Note that if f vanishes transversally at its zeros, choosing g as 1{|f |≤δ}, we obtain∫
I∩{|f |≤δ}

|f ′(x)|dx =

∫
[−δ,δ]

#{x ∈ I ∩ f−1(y)}dy.

If the set of zeros of f is �nite, f is transverse, then for δ is small enough, the right hand
side equals 2δN(f, I), and we recover Lemma 2.1.6.

Exercise 2.2.7 Volume of the spheres Sn. Using the function f(x) = ‖x‖2 and the coarea
formula, show that

Vol(Sn) = (
√

2π)n(

∫
R
tne−

1
2
t2 dt√

2π
)−1.

and Vol(RPn) = 1
2 Vol(Sn).

The following proposition is the higher dimensional equivalent of Proposition 2.1.6

Proposition 2.2.8 Let f : M → R a C1. Then, for any measurable U ⊂M ,

Vol(Z(f) ∩ U) = lim
δ→0

1

2δ

∫
x∈U,|f(x)|≤δ

‖∇f(x)‖dvolM (x).

Proof. We apply the coarea formula given by Proposition 2.2.4. Note that by de�nition of
the gradient of f ,

df(x)(v) = 〈∇f(x), v〉TxM ,
and by de�nition of the adjoint,

df(x)(v)× t = 〈v, df(x)∗(t)〉,

so that
df(x)∗ = ∇f(x)dt,

and
df(x) ◦ df(x)∗ = ‖∇f(x)‖2dt.

This implies √
det df ◦ df∗ = ‖∇f(x)‖.

Consequently by Proposition 2.2.4, for any bounded continuous g and any measurable U ⊂
M , and in fact by any characteristic function of any measurable subset,∫

U
g‖∇f(x)‖dvolM (x) =

∫
R

∫
x∈f−1(y)∩U

g(x)dvol|f−1(y)(x)dy.

Choose g = gδ := 1[−δ,δ] ◦ f. Then,∫
U∩{|f |≤δ}

‖∇f(x)‖dvolM (x) =

∫ δ

−δ
Vol(f−1(y))dy.

Now, 1
2δ

∫ δ
−δ Vol(f−1(y))dy → Vol(f−1(0)) gives the result. 2
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2.2.2 Computation

Proof of Theorem 2.2.3. Taking the average in f in the volume formula given by
Proposition 2.2.8 gives, if we do not care for the inversion of limits and integral:

E(Vol(f−1(0))) = E lim
δ→0

1

2δ

∫
U∩{|f |≤δ}

‖∇f(x)‖dvolM (x) (2.2.1)

= lim
δ→0

1

2δ

∫
U
E
(
1{|f |≤δ}‖∇f(x)‖

)
dvolM (x) (2.2.2)

= lim
δ→0

1

2δ

∫
U

∫ δ

u=−δ
E
(
‖∇f(x)‖

∣∣ f(x) = u
)
pf(x)(u)dudvolM (x)(2.2.3)

=

∫
U
E
(
‖∇f(x))‖

∣∣ f(x) = 0
)
pf(x)(0)dvolM (x). (2.2.4)

2

Let us apply Theorem 2.2.3 for random algebraic hypersurfaces in RPn. Recall that P ∈
Rdhom[X1, · · · , Xn]. I emphasize that the computation holds for far more general situations,
see [22] for hypersurfaces which are the vanishing loci of random sums of eigenfunctions of
the Laplace operator on a compact manifold.

Proof of Theorem 2.2.1. Firstly, since the integrand is invariant under isometries, we
have for x = [1 : 0 · · · : 0],

E(Vol(Z(p)) = E
(
‖∇f(x))‖

∣∣ f(x) = 0
)
pf(x)(0) Vol(RPn),

and f = P
Xd

0
(locally f and P have the same vanishing locus).

The law of f(x) is

e
− 1

2
u2

e(x,x)
du√

e(x, x)
√

2π
,

so that

pf(x)(0) =
1√

e(x, x)
√

2π
.

Let (x1, · · · , xn) be local coordinates, such that (∂x1 , · · · , ∂xn) form an orthonormal basis
of TxRPn. Then, in this basis, ∇f(x) writes X1 := (∂if)i=1,··· ,n) and ‖∇f(x)‖ = ‖X1‖. The
random vector X1 has covariance :

Σ1 = ((∂2
xi,yje(x, y)|x=y)i,j=1,··· ,n).

The random vector X2 = f(x) has covariance e(x, x). Lastly, the covariance

Cov(X1, X2) = ((∂xie(x, y)|x=y)i=1,··· ,n).

By Proposition ??, the conditioned vector (X1|X2 = 0) follows the normal law

N(0,Σ1)− e−1(x, x) Cov(X1, X2)t Cov(X1, X2)).

So,

E
(

Vol(Z(p))
)

= E
(
‖X1‖)

1√
2πe(x, x)

Vol(RPn).
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Since RPn is locally isometric to the sphere Sn, we can assume that x = (1, 0, · · · , 0) ∈ Rn+1

and we can choose the local coordinates

(y1, · · · , yn) 7→ (
√

1− ‖y‖2, y1, · · · , yn).

We see that these coordinates satisfy the former orthonormal condition. Now, the a�ne
coordinates x = (x1, · · ·xn) on RPn equal

x =
y√

1− ‖y‖2
.

This implies that at x = [1 : 0 : · · · : 0], the a�ne coordinates satisfy the orthonormal
condition too. We have

f(x) = f([1 : 0 : · · · : 0]) = ad0···0
√
dn,

so that e(x, x) = dn. Moreover,

df(x) = a(d−1)0···1···0d
n/2
√
ddxk,

so that E‖X1‖ = dn/2
√
dE
(
‖a‖
)
with a = (ak)k=1···n,

Σ(a) = In,

and Cov(X1, X2) = 0, so that, using polar coordinates,

E(‖a‖) =

∫
a∈Rn

‖a‖e−
1
2
‖a‖2 da√

2π
n (2.2.5)

=

∫ ∞
0

re−
1
2
r2 rn−1dr√

2π
n Vol(Sn−1), (2.2.6)

and �nally

E(Vol(Z(P ))) =
√
d

1
√

2π
n+1 Vol(RPn) Vol(Sn−1)

∫ ∞
0

rne−
1
2
r2
dr.

By 5.3, this is
√
dVol(RPn)

Vol(Sn−1)

V ol(Sn)
=
√
dVol(RPn−1)

2

2.3 Nodal hypersurfaces

2.3.1 Covariant function and spectral kernel

We will apply the Kac-Rice formula 2.2.3 for a di�erent class of functions, namely the
random sum of eigenfunctions of the Laplacien. Let (M, g) be a compact smooth Riemannian
manifold, and de�ne

∆ := d∗d : C∞(M,R) → C∞(M,R) (2.3.1)

the Laplacian, where d∗ : Ω1(M,R) → C∞(M,R) is the adjoint of the di�erential d :
C∞(M,R)→ Ω1(M,R). The �rst main fact is the following:
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Theorem 2.3.1 ([10, Theorem III.9.1.]) The set of eigenvalues with C2 eigenfunctions
consists of a sequence

0 ≤ λ1 < · · · < λ2 · · · ↑ +∞,

and each associated eigenspace is �nite dimensional. Eigenspaces belonging to distinct eigen-
values are orthogonal in L2(M), and L2(M) is the direct sum of all the eigenspaces. Fur-
thermore, each eigenfunction is in C∞(M).

Example 2.3.2 If (M, g) is the round sphere (Sn, g0), then the eigenvalues of the Laplacian
are the λd = d(d+ n− 1), and the associated eigenspace is

Eλd = {P|Sn | P ∈ Rdhom[X0, · · · , Xn] and ∆Rn+1P = 0}.

This implies that NL := dim⊕λ≤L →L→∞ +∞. In fact, we have more:

Theorem 2.3.3 (Weyl 1911)

NL ∼L→∞
VolBn

(2π)n
Ln/2 Vol(M).

Now, we can take at random a function f in the following way: choose an L2-orthonormal
basis (φi)

∞
i=0, where the φi's are eigenfunctions of the Laplacian ordered with their eigenval-

ues. Then,
fL =

∑
λi≤L

aiφi,

where as usual the (ai)i are independent normal law following the same N(0, 1). The two-
point correlation equals

eL(x, y) =
∑
λi≤L

φi(x)φi(y).

In fact, this correlation has a geometrical interpretation. Let

πL : L2(M)→ EL

be the orthogonal projection (for the L2-metric on the functions). Then, by de�nition,

∀f ∈ L2(M), πL(f) =
∑
λi≤L
〈f, φi〉φi (2.3.2)

⇔ ∀x ∈M, πL(f)(x) =

∫
y∈M

∑
λi≤L

φi(x)φi(y)f(y)dVolM (y), (2.3.3)

so that

πL(f)(x) =

∫
y∈M

eL(x, y)f(y)dVolM (y).

In orther termes, eL(x, y) is the spectral kernel or Schwartz kernel associated to EL. It
happens that there exists a precise result due to Hörmander (after others) about this kernel:

Theorem 2.3.4 ([16, Theorem 5.1] Fix x ∈M and choose (xi)i normal coordinates. Then,
uniformly in x, for any α, β ∈ Nn and L ≥ 1,

∂|α|

∂xα0
0 · · · ∂x

αn
n

∂|β|

∂xβ0
0 · · · ∂x

βn
n

eL(x, y)|x=y = L
n+|α|+|β|

2
1

(2π)n

∫
‖ξ‖≤1

(iξ)α(−iξ)βdξ

+o(L
n+|α|+|β|

2 )
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This implies three things :

1. When α = β = 0,

∀x ∈M, eL(x, x) ∼L→∞
1

(2π)n
L
n
2 Vol(B),

2. which itself implies the Weyl theorem. Indeed, let us integrate this equation over M .
Then, the left hand side gives∫

M
eL(x, x)dvolM =

∑
λi≤L

∫
M
φi(x)2dvolM = dimEL,

while the right-hand side gives∫
M

1

(2π)n
L
n
2 Vol(B)dVolM =

1

(2π)n
L
n
2 Vol(B) Vol(M).

3. For any i, ∂xjeL = o(L
n
2

+1);

4. For any i, j,

∂2
xjyjeL = δij

1

(2π)n
L
n
2

+1 Vol(Bn)(n+ 2) + o(L
n
2

+1). (2.3.4)

Exercise 2.3.5 Show it.

Exercise 2.3.6 Let M = S1 ⊂ R2 be the unit circle parametrized by

θ ∈ [0, 2π] 7→ eiθ.

The Laplacian ∆ reads ∆f = −∂2f
∂θ2 acting on C2 2π-periodic functions.

1. What are the eigenfunctions of ∆?

2. We de�ne the L2-scalar product on C2 2π-periodic real functions par

〈f, g〉 :=

∫ 2π

0
fg(θ)

dθ

2π
.

For any L ≥ 0, �nd an ONB (fi)i∈A(L) of eigenfunctions with eigenvalues less or equal
to L.

3. For any N ∈ N, let L = N2 and fL : S1 → R the random Gaussian �eld

fL := a0 +
√

2

N∑
k=1

ak cos(kx) + bk sin(ky),

where the ai and bj are independent and ai, bj ∼ N(0, 1). Show that the covariance
function eL : [0, 2π]2 → R of fL satis�es

∀(x, y) ∈ [0, 2π]2, x 6= y ⇒ eL(x, y) =
sin((N + 1

2)(x− y))

sin(x−y2 )
.
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2.3.2 Computation

We can now apply this situation to the computation of the mean volume.

Theorem 2.3.7 (Bérard 1985 [8]) Under the hypotheses from above,

E(Vol(Z(fL)) ∼L→∞
√

L

n+ 2
Vol(M)

Vol(Sn−1)

VolSn
.

Remark 2.3.8 1. Recall by Example 2.3.2 that in the case of the round sphere,

∀d ≥ 1, Ed(d+n−1) ⊂ Rdhom[X0, · · · , Xn]|Sn ,

as for the Kostlan measure. But for the latter, E(Vol(Z(f)) ∼d C
√
d, when for the

former, E(Vol(Z(f)) ∼d Dd.

2. Hörmander theorem says a bit more:

L−n/2eL(x, x+ Ln/2h)→L→∞
1

(2π)n

∫
‖ξ‖≤1

e−i〈ξ,h〉dξ.

This means that when we look at the neighborhood of a point at the scale L−n/2, then the
geometry of the nodal random hypersurface does not change with L. Moreover, since
the kernel measures the dependency of the Gaussian �eld, we see that at distances far
from Ln/2, the values are almost independent. This can explain heuristically the

√
L

term in the mean volume. Indeed, a ball B(x, L−n/2) has a volume equal to L−n, so
that we cans if we cover M with almost VolMLn such disjoint balls. If we assume
that the �eld is independent in these balls, then, since the natural scale is L−n/2, the
volume of f−1(0) is close to the volume of an n− 1-ball in the small ball, so that

Vol f−1(0) ∩B(x, 1/Ln/2) ≈ C ′L(n−1)

Proof. Here, as before, X1 = (∂if)i=1,···n in the normal coordinates, X2 = f so that
Var(X2) = eL(x, x). This implies

pX2(0) =
1√

2πeL(x, x)
.

If

a :=
1

(2π)n
L
n
2

+1 Vol(Bn)(n+ 2),

then
Var(X1) = (∂2

i,jeL|x=y)i,j=1,··· ,n = a1n + o(Ln+2),

Cov(X1, X2) = o(L
n
2

+1). This implies that the variance matrix of (X1 | X2) is

Σ1 := Var(X1)− o(Ln+2L−n/2) = a1n + o(Ln+2).

Applying Theorem 2.2.3 gives

E(Vol(Z(fL))) =

∫
M

∫
x∈Rn

‖x‖e−
1
2
〈Σ−1

1 x,x〉 dx

(2π)n/2
√

det Σ1

1√
2πeL(x, x)

dvolM .
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Making the change of variables x = y
√
a and noting that

a = eL(x, x)L(n+ 2)(1 + o(L)),

so that

E(Vol(Z(fL))) =

∫
M

∫
x∈Rn

‖y‖
√
ae−

1
2

(1+o(1)〈y,y〉an/2
dy

(2π)n/2an/2(1 + o(1))

∼L→+∞

√
L

n+ 2
Vol(M) Vol(Sn−1)

∫ +∞

0
rne−

1
2
r2 dr

(2π)n/2

=

√
L

n+ 2
Vol(M)

Vol(Sn−1)

VolSn

2



Chapter 3

Topology of random algebraic

hypersurfaces

Let P ∈ Rdhom[X0, · · · , Xn] be a homogeneous polynomial of degree d. We can look at its
vanishing locus Z(P ) in the real projective space RPn, or on the unit sphere of Rn+1, but
it doubles the locus since it is invariant under antipodal transformation.

3.1 The Kostlan or complex Fubini-Study measure

We use the following non-intuitive, but miraculous, scalar product :

〈P,Q〉 =
1

(d+ n)!πn+1

∫
Cn+1

P (Z)Q̄(Z)e−‖Z‖
2 |dZ|2,

with

|dZ|2 =
n∏
k=0

dXk ⊗ dYk,

where Zk = Xk + iYk. Of course the constant is not the origin of the miracle, but the
integration over the complex space instead the real one.

Lemma 3.1.1 The monomials(√ (d+ n)!

i0! · · · in!
Xi0

0 · · ·X
in
n

)
i0+···+in=d

form an orthonormal basis of (Rdhom[X0, · · · , Xn], 〈, 〉).

Proof. Let us compute 〈XI , XJ〉 = 1
(d+n)!πn+1

∫
Cn+1 Z

I Z̄Je−
∑
i |Zi|2 |dZ1|2 ⊗ · · · ⊗ |dZn|2.

By Fubini, this is

〈XI , XJ〉 =
1

(d+ n)!πn+1

n∏
k=0

∫
C
Zikk Z̄

jk
k e
−|Zk|2 |dZk|2

=
1

(d+ n)!πn+1

n∏
k=0

∫ +∞

0

∫ 2π

0
ρik+jkei(ik−jk)e−ρ

2
ρdρdθ

=
1

(d+ n)!πn+1
δI,J(2π)n+1

n∏
k=0

∫ +∞

0
ρ2ike−ρ

2
ρdρ

= δI,J
i0! · · · in!

(d+ n)!
.

27
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2

Our random polynomials write,

P =
∑

i0+···+in=d

ai0···in

√
(d+ n)!

i0! · · · in!
Xi0

0 · · ·X
in
n

with independent normal ai0···in . However, any orthonormal basis (Pi)i=0,···n could be used
instead.

Lemma 3.1.2 The scalar product is invariant under the action on Rdhom[X] by the orthonor-
mal group O(n+1), that is for any g ∈ O(n+1), any polynomials P,Q, 〈P ◦g,Q◦g〉 = 〈P,Q〉.

Proof. One implicit a�rmation of the lemma is that Rdhom[X] is invariant under the action
of O(n+ 1). This is an exercise. Indeed, for any g ∈ O(n+ 1).

〈P ◦ g,Q ◦ g〉 =
1

(d+ n)!πn+1

∫
Cn+1

P ◦ g(Z)Q̄ ◦ (Z)e−‖Z‖
2 |dZ|2.

Using the change of variable Z ′ = g(Z), we obtain

〈P ◦ g,Q ◦ g〉 =
1

(d+ n)!πn+1

∫
Cn+1

P (Z ′)Q̄(Z ′)e−‖g
−1Z′‖2 |det dg−1||dZ ′|2.

However, det dg−1 = det g−1 = ± and ‖g−1Z ′‖2 = ‖Z ′‖2. 2

3.2 All topologies happen

3.2.1 In a small ball

Figure 3.1: Left: a �nite arrangement Σ of ovals in R2. Right: for any x ∈ RP 2 there exists
cΣ > 0, such that for any d� 1, B(x, 1/

√
d)∩Z(P ) ∼ (Σ,R2) with probability at least cΣ.

In a way, there is no random Hilbert problem.

De�nition 3.2.1 A smooth hypersurface Σ ⊂ Rn is said algebraic if this is the vanishing
locus of some polynomial.

Example 3.2.2 Let C be any union of topological circles in R2. Then, it is isotopic to a
union of geometrical circles, so that it is isotopic to an algebraic curve.
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Of course not any smooth hypersurface is not algebraic. In particular, it must be analytic,
so that for instance in R2, any compact connected curve containing a straight segment is
not algebraic. However, we have:

Theorem 3.2.3 (Herbert Seifert (1936) [32]) Let Σ ⊂ Rn be any compact smooth hy-
persurface. Then, there exists a polynomial p and a di�eotopy of Rn sending Σ onto some
connected components of p−1(0). The di�eotopy can be chosen as close as the identity as we
want.

It is not known which hypersufaces are di�eotopic to algebraic ones, see [9, Remark 14.1.1],
and this reference for the state of art for these questions.

In the next theorem, for any x ∈ RPn, any d,R > 0, we denote by Bx,R the ball B(x, R√
d
)

de�ned by the natural distance on RPn.

Theorem 3.2.4 (G.-Welschinger 2014 [12]) Let Σ ⊂ Rn be any compact algebraic hy-
persurface, not necessarily connected, R > 0 and x ∈ RPn. Then, there exists c > 0,

∀d� 1, Pr
(

(Z(P ) ∩Bx,R, Bx,R) ∼diff (Σ, B(0, 1))
)
> cΣ.

The notation (Z,Bx) ∼ (Σ, B) means that there exists a di�eomorphism φ : Bx → B such
that φ(∂Bx) = ∂B and φ(Z) = Σ.

Remark 3.2.5 1. If Σ is not algebraic, we can prove, using Seifert's theorem, the same
with the following di�erence: there can be other components of Z(P ) in the ball that
the ones associated to Σ. Indeed, if Σ in not algebraic, it can be a bit displaced such
that it becomes part of the vanishing locus of some polynomial. The di�erence here
are the other components.

2. If Σ is a union of circle as in example 3.2.2, then the Theorem says that for any
x ∈ RPn, with uniform positive probability Z(P ) ∩ D(x, 1/

√
d) is di�eomorphic to

the arrangement Σ. This means that in a way, there is no local random 16th Hilbert
problem, since every arrangement arises locally, see Figure 3.1.

3. This bound is not surprising: for Kostlan polynomials, the kernel has natural scale
1/
√
d and converges after rescaling, so that we expect that in a ball of size 1/

√
d, a

universal geometry arises. In particular, the number of connected components, the
Betti numbers and so on should be uniformly bounded. Since there are something like√
d
n
such disjoint balls in RPn, we have the order

√
d
n
.

3.2.2 On the whole manifold

Denote by NΣ(P ) the maximal number of disjoint balls b in RPn such that

(b ∩ Z(P ), b) ∼diff (Σ,Bn).

We can now give a lower bound of the average number of apparitions of Σ in Z(P ):

Corollary 3.2.6 Under the hypotheses of Theorem 3.2.4, there exists c > 0, such that

∀d� 1, ENΣ(P ) ≥ c
√
d
n
.
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Figure 3.2: Left: Σ ⊂ R3 is the union of a torus and as sphere, which is an algebraic subset.

Right: There exists c > 0 such that in average, Σ appears at least c
√
d

3
times in Z(P ). We

can even assume that Σ appears in a set of disjoint balls B(x, 1/
√
d), represented here by

violet spheres.

Remark 3.2.7 In a the more general setting of holomorphic sections of an ample line bundle
over a projective manifold M , see paragraph 1.3, the estimate writes

ENΣ(P ) ≥ cΣ VolRM
√
d
n
,

where cΣ depends only on Σ ⊂ Rn and not on RM .

Proof of Corollary 3.2.6. For any x ∈ RPn, denote by Ax the event that (Z(P ) ∩
Bx, Bx) ∼ (Σ,B). By Lemma 3.2.8 below, for any d large enough there exists a set Λd ⊂ RPn
such that Bx ∩By = ∅ for Λd 3 x 6= y ∈ tΛd, and such that

#Λd ≥
√
d
n Vol(M)

2n+1 VolBn
.

Then,

ENΣ(P ) ≥ E
∑
x∈Λd

1Ax =
∑
x∈Λd

Pr(Ax).

By Theorem 3.2.4, there exists cΣ > 0, such that for any d large enough independent of x,
Pr(Ax) ≥ cΣ. This concludes. 2

Lemma 3.2.8 Let (M, g) be a Riemannian smooth compact manifold. For any ε > 0,
denote by Nε the maximal number of disjoint round balls of size ε in M . Then,

lim inf
ε→0

εnNε ≥
Vol(M)

2n VolBn
.

Proof. Let Λε be a maximal set of points on M , such that the balls B(x, ε) centered at
points x ∈ Λε are disjoint. Then M ⊂ ∪x∈ΛεB(x, 2ε). Indeed, if not, it contradicts the
maximal character of Λε. This implies

VolM ≤
∑
x∈Λε

Vol(B(x, 2ε).
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But VolB(x, 2ε) ∼ε→0 2n Vol(Bn). This can be seen choosing coordinates near x such that
dVol(x) = dx1 · · · dxn at x, and since M is compact, the asymptotic is uniform in x, so that

VolM ≤
∑
x∈Λε

2n Vol(Bn)
(
ε+ o(ε)

)n
,

hence the result. 2

3.2.3 Betti numbers

Corollary 3.2.6 has itself an interesting corollary about Betti numbers:

Corollary 3.2.9 For any i ∈ {0, · · ·n− 1}, there exists c > 0,

∀d� 1, E(bi(Z(P ))) ≥ c
√
d
n
.

For i = 0, this corollary was proved �rst by Lerario and Lunberg [21].

Proof. We �rst prove that for any i ∈ {0, · · ·n − 1}, Si × Sn−i−1 can be embedded in Rn
as a compact submanifold. Note �rst that R × Si embeds in Ri+1 by (t, x) 7→ etx. This
implies that Rn−i × Si = Rn−i−1 × R × Si embeds in Rn−i−1 × Ri+1 = Rn. In particular,
Sn−i−1 × Si embeds in Rn.

Now by Künneth formula,

bi(S
i × Sn−i−1,R) =

k∑
j=0

bj(S
i,R)bk−j(S

n−i−1,R).

If k ≥ 1 then bj(Sk) = 0 if j 6= 0 or k, and b0(Sk) = bk(S
k) = 1. And b0(S0) = 2. we obtain

bi(Σi) ≥ 1 in any cases. A priori the embedding is not algebraic, but Seifert's theorem
shows that a perturbation of it is a connected component of an algebraic hypersurface, so
that Corollary 3.2.6 concludes. 2

Exercise 3.2.10 In fact, Sn−i−1 × Si embeds in Rn as an algebraic hypersurface not only
as the perturbation of a connected component of an algebraic hypersurface. For this, use the
polynomial

qi : (x, y) ∈ Ri+1 × Rn−i−1 7→ (‖x‖2 − 2)2 + ‖y‖2 − 1 ∈ R.

Question. What about an upper bound for Betti numbers? It does exist:

Theorem 3.2.11 (G.-Welschinger [13]). For any i ∈ {0, · · · , n − 1}, there exists C > 0,
such that

∀d, E(bi(Z(P ))) ≤ C
√
d
n
.

Ideas of the proof. It holds on Morse theory. Let p : RPn → R be a smooth Morse func-
tion, that is with non degenerate critical points. Then almost surely pP := p|Z(P ) is Morse.
Morse theory implies that the number of critical points of given index i ∈ {0, · · · , n − 1}
(that is, the number of negative eigenvalues of the Hessian at the critical point) is bounded
from above by the bi(Z(P )). A Kac-Rice-type formula allows to compute the average of the
number of critical points of pP , and this number grows like

√
d
n
, which gives the bound.

Question: Is there true that E(bi) has an asymptotic? Answer: it is only known for i = 0.
This is due to Nazarov and Sodin:
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Theorem 3.2.12 (Nazarov-Sodin 2016[26]) There exists a > 0, such that

E(b0(Z(P )) ∼d→∞ a
√
d
n
.

In fact, the result is far more general and holds for very general Gaussian �elds on compact or
non-compact manifolds, at least when their covariance function satis�es certain conditions.
They also prove a concentration in probability. As far as concentration is concerned, there
is another result in dimension 2 and dimension 1:

Theorem 3.2.13 (G.-Welschinger [11]) For any degree d, de�ne M the event that Z(P )
has the maximal number of connected components in RP 2, that is b0(P ) = 1

2(d−1)(d−2)+1,
up to a linear term in d. Then, there exists a constant c > 0, such that

Pr(P ∈M) ≤ e−cd.

In dimension 1, for any ε > 0, there exists c > 0,

Pr(b0(P ) ≥
√
d

1+ε
) ≤ e−cdε .

These two last theorems use extensively the complex part ZC(P ) of the vanishing locus of
P in CP 2 and CP 1.

Exercise 3.2.14 Let n ≥ 1 and f : Rn → Rn be a Gaussian �eld, where f = (f1, · · · , fn).
The goal of this problem is, in a simple case, to estimate the number of zeros of f in an
bounded open set of Rn. We assume that there exists a Gaussian centered �eld g : Rn → R,
such that for any i ∈ {1, · · · , n}, fi is a copy of g, and all the f ′is are independent. We
denote by e : (Rn)2 → R the covariance function associated to g, and we assume that e is
C1.

1. For any x ∈ Rn, write the variance matrix of the vector f(x) as related to e.

2. For any x ∈ Rn, compute the density φf(x)(0) as a function of e.

3. For any x ∈ Rn, denote by Df(x) ∈ Mn(R) the Jacobian matrix of f at x in the
canonical basis. Write the variance matrix of the vector Df(x) as a function of e
and its derivative. In this question we consider that a matrix in Mn(R) is a vector
(mij)1≤i,j≤n ∈ Rn2

, however we keep the notations 1 ≤ i, j ≤ n instead of 1 ≤ k ≤ n2.

4. Write Cov(f(x), Df(x)).

Til the end of the problem we assume that there exists a smooth ρ : R+ → R such that

∀x, y ∈ Rn, e(x, y) = ρ(−1

2
‖x− y‖2).

5. Write V arf(x), V arDf(x) and Cov(f(x), Df(x)) as a function of ρ and its deriva-
tives.

6. Let U ⊂ Rn be an open subset and

N(f, U) := #{x ∈ U, f(x) = 0}.

Show that
EN(f, U) = cV ol(U)αρ(0)βρ′(0)γ ,

with α, β, γ and c constants which depend only on n. Give the values of α, β and γ
and write c as an integral over Mn(R).



3.3. PROOF OF THEOREM ?? 33

7. Let M ∈Mn(R), and C1, · · · , Cn its column vectors. Show that

| detM | =
n∏
i=1

‖C⊥i ‖,

where for any i ≥ 2, C⊥i denotes the orthogonal projection onto V ect⊥(C1, · · · , Ci−1),
and C⊥1 = C1.

8. Let M ∈ Mn(R) be random, such that its coe�cients are independent and follow a
normal law N(0, 1).

(a) Show that

E(|detM |) =
n∏
k=1

E(‖Xk‖),

where for any k, Xk ∈ Rk is a random vector which coe�cients are independent
and follow a normal law N(0, 1).

(b) Show that E(‖Xk‖) =
√

2π V ol(S
k−1)

V ol(Sk)
.

(c) Deduce E(|detM |) as a function for V ol(Sn).

3.3 Proof of theorem 3.2.4

Proof of Theorem 3.2.4. By the invariance Lemma 3.1.2, it is enough to prove the
theorem for x = [1 : 0 : · · · : 0], since the property is invariant under isometries of RPn.
Then there is a local chart

φ : [X0 : · · · : Xn] 7→ (
X1

X0
, · · · , Xn

X0
) = (x1, · · · , xn).

Let q ∈ R[x1, · · · , xn] be a polynomial such that some of its components are close to Σ.
After an homothetic transformation and a translation, we can assume that Σ ⊂ B(0, 1). Let

qd(x) := q(x
√
d).

Note that some of the components of qd = 0 are di�eotopic in B(0, 1/
√
d) to Σ/

√
d. Then

Qd := Xd
0 qd(

X1

X0
, · · · , Xn

X0
) ∈ Rdhom[X0, · · · , Xn],

and its vanishing locus contains a copy of Σ in φ−1(B(0, 1/
√
d)).

Now de�ne HQ := Q⊥d the orthogonal space to Qd in Rdhom[X], 〈, 〉. We would like to
use a decomposition for our random polynomials adapted to Qd an HQ. However, we must
compute the L2-norm of Q.

Lemma 3.3.1
‖Q‖ ∼d→∞ d−n/2‖q‖exp,

where ‖q‖2exp := 1
πn

∫
Cn |q|

2(w)e−|w|
2
dw.
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Proof. We have

‖Q‖22 =

∫
Cn+1

|Z0|2d|q|2(
√
d
Z ′

Z0
)e−‖Z‖

2
dZ,

where Z ′ = (Z1, · · · , Zn). We use the change of variable (W0, w) = (Z0,
Z′

Z0
), then (w0, w) =

(W0

√
1 + |w|2, w), and �nally y =

√
dw so that

‖Q‖22 =
1

(d+ n)!πn+1

∫
Cn+1

|W0|2(d+n)|q(
√
dw)|2e−|W0|2(1+‖w‖2)dW0dw

=
1

(d+ n)!πn+1

∫
Cn+1

|w0|2(d+n)|q(
√
dw)|2e−|w0|2 1

(1 + ‖w‖2)d+n+1
dw0dw

= d−n
1

(d+ n)!πn+1

∫
Cn+1

|w0|2(d+n)|q(w)|2e−|w0|2 1

(1 + 1
d‖w′‖2)d+n+1

dw0dw
′

∼d→∞ d−n
1

(d+ n)!πn+1

∫
C
|z|2(d+n)e−|z|

2
dz

∫
Cn
|q|2(w)e−|w|

2
dw

= d−n‖q‖2exp.

2

We follow the barrier method of [25, p. 1343]. Since the random polynomial can be written
in any �xed orthonormal basis, we can decompose our random polynomial P as

P = a
Qd
‖Qd‖

+R, (3.3.1)

where a ∼ N(0, 1) and R ∈ Q⊥ is Gaussian random for the induced law on Q⊥ and indepen-
dent of a. More explicitly, R =

∑
i biφi for (φi)i an ONB of Q⊥ and the bi are independent

and independent of a. We want to prove that with uniform positive lower bound, R does
not perturb too much the �rst term, such that the former still vanishes on a hypersurface
di�eomorphic to Σ. Hence, we need to know when the vanishing locus of a perturbation of
a function gives a di�eotopic perturbation of the vanishing locus of the function.

Proposition 3.3.2 Let f : B̄(0, 1) → R be a C1-function such that there exists a, η > 0,
such that :

1. (compact vanishing locus) |f |∂B(0,1) ≥ a.

2. (transversality) ∀x ∈ B(0, 1), |f(x)| < a⇒ ‖df(x)‖ > η.

Then for any g ∈ C1(B̄(0, 1)) such that |g|∞ < a/2 and ‖dg‖L∞(B) < η/2,
(
(f+g)−1(0), B̄(0, 1)

)
is di�eotopic to

(
f−1(0), B̄(0, 1)

)
.

The conclusion means that is there exists :

ψ : B̄(0, 1)× [0, 1]→ B̄(0, 1)

such that

1. ψ is continuous in the second variable

2. ∀t ∈ [0, 1], ψ(·, t) is a di�eomorphism

3. ψ(·, 0) = Id
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4. ψ(·, 1)
(
f−1(0)

)
= (f + g)−1(0).

De�nition 3.3.3 Let k ≥ 1, M be a smooth manifold and a, η > 0. Then, a C1 mapping
f : M → Rk is said to be (a, η)-transverse to 0, if whenever |f(x)| ≤ a, then df(x) has an
right inverse whose norm is smaller than η−1.

We prove the more general :

Proposition 3.3.4 Let k ≥ 1, M be a smooth manifold, and f : M × [0, 1] → R such that
∀t ∈ [0, 1], ft := f(·, t) : M → R is a submersion. Then, there is an isotopy (φt)t from Z(f0)
to Z(ft).

Proof. The condition implies that f is a submersion, so that Z(f) ⊂M × [0, 1] is a smooth
submanifold. Moreover, π : Z(f)→ [0, 1] is a submersion. Indeed,

∀(x, t) ∈ Z(f), Tx,tZ(f) = {(X, τ) ∈ TXM × R,−∂tf(x, t)τ = dft(x)(X)}.

Let

Xt := −∇ft(x)

‖∇ft‖2
∂tf(x, t).

Then, Xt is a smooth vector �eld on M such that (1, Xt) ∈ TZ(f). �nir 2

Proof of Proposition 3.3.2. 2

We want to apply this to

f := a
Qd

Xd
0‖Qd‖

and g :=
R

Xd
0

in our previous decomposition (3.3.1) of the random P and in the projective coordinates
(x1, · · · , xn). Then, f = a‖q‖expd

n/2q(
√
dx). This implies that there is c > 0,

|f ||∂Bx ≥ acd
n/2

since q does not vanish on ∂B(0, 1). Moreover,

df(x) = a‖q‖expd
n/2d−1/2dq(

√
dx).

since q vanishes transversally on B(0, 1), there exists c′ > 0, such that

|f(x)| < ac′dn/2 ⇒ |df | > ac′dn/2d−1/2.

For g := R/X0, we write it

g = p1 + p2 :=
1

2
(g + f) +

1

2
(g − f).

Note that the law of p1 := g + f is the same of a general polynomial p, as well as for
p2 := g − f . We will use the trivial

E‖g‖ ≤ 1

2
(E‖p1‖+ E‖p2‖) ≤ E(‖p‖),

and similarly for the average of the derivative of g, where p is a general polynomial. Hence,
it is enough too bound from above the norms of a general polynomial p. We have, for p = p1

or p2,

p =

√
(d+ n)!

d!

(
ad0···0 +

n∑
k=1

a(d−1)0···1···0
√
dxk +O(‖

√
dx‖2)

)
.
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For the C0 bound, we write it

dn/2
(
ad0···0 +O(‖

√
dx‖)

)
,

so that
E(|g|∞) ≤ dn/2(E(|a|) + C) ≤ C ′dn/2.

Now

dp =

√
(d+ n)!

d!

√
d
( n∑
k=1

a(d−1)10···0dxk +O(
√
dx)
)
,

so that on the ball B(0, 1
√
d),

E(|dg|) ≤ dn/2
√
d
∑(

E(|a(d−1)0···1···0|) + C
)

≤ Cdn/2
√
d.

Lemma 3.3.5 (Tchebychev Inequality) Let X be a non negative random variable. Then for
any M > 0,

Pr(X > M) ≤ E(X)

M
.

Proof.

E(X) =

∫
R
Xdµ(X) ≥

∫
X>M

Xdµ(X) ≥
∫
X>M

Mdµ(X) = M Pr(X > M).

2

Now, for any M > 0, by what have been said,

Pr(Bx contains a Σ) ≥ Pr
(
|a|cdn/2 > Mdn/2 and |g|∞ <

M

2
dn/2

and |a|cdn/2dn/2
√
d > M

√
d and |g|∞ <

M

2
dn/2
√
d
)

= Pr
(
|a|cdn/2 > Mdn/2 and |a|cdn/2dn/2

√
d > Mdn/2

√
d
)

Pr
(
|g|∞ <

M

2
dn/2 and |g|∞ <

M

2
dn/2
√
d
)

≥ 2

∫ +∞

M/c
e−

1
2
a2 da√

2π
(1− 2C ′/M − 2C/M).

For M large enough, this is larger than cM > 0 independently of d. 2



Chapter 4

Percolation and random analytic

nodal lines

4.1 Introduction

Figure 4.1: A realization of bond percolation for p = 0.25, p = 0.51 and p = 0.75 on the
integer lattice. We see the existence of a large connected component in the two latter cases.

4.1.1 Bernoulli bond percolation

Let Z2 be the integer lattice over the real plane, and denote by E its set of edges, and
by V its set of vertices. The so-called Bernoulli bond percolation is the following random
geometrical model: With probability p ∈ [0, 1], color independently in black (open) every

37
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edges. We would like to know if there exists large connected components formed by the
black set of edges. The question is a bit blur. Let us be more speci�c. Choose a rectangle
R ⊂ R2. What is the probability that there is a black crossing of R in its length, that is a
continuous arc in R through black edges from the left side to the right side of R? We will
denote Cross(R) the event that there is such a crossing. In these lecture notes we will work
at criticality, that is we make p = 1/2. We will explain later the sense of this term.

Theorem 4.1.1 (Russo [31], Seymour-Welsh [33] 1978) Fix R ⊂ R2 a rectangle. Then,
there exists c > 0, such that for

n ≥ 1,Pr(Cross(nR)) ≥ c.

4.1.2 Site percolation

Figure 4.2: Left: examples of site percolation on the integer lattice in a box. Note that
the dual faces are black i� the associate vertex is positive, so that an open edge correspond
to two positive adjacent squares. Right: an example of site percolation on the triangular
lattice, represented on the dual lattice, that is the hexagonal one.

In the results we present, the so-called site percolation will be preferred.

De�nition 4.1.2 Let ⊂R2 be a planar lattice, V its set of vertices, and E its set of edges.
Let f : V → {−1, 1} be a random sign over the vertices. For any rectangle R, we say that
R is positively crossed if there exists a continuous path in E, such that for any edge in the
path, f = +1 at its extremities.

Often the site percolation is represented by the dual lattice: the positive vertices of T
correspond to positive faces of T ∗, and an open edge correspond to two adjacent faces. For
the triangular lattice, the dual lattice is the hexagonal lattice.

Theorem 4.1.3 (Russo [31], Seymour-Welsh [33] 1978) Let T be a planar triangu-
lation lattice invariant by orthogonal rotations and horizontal symmetry. Fix R ⊂ R2 a
rectangle. Then, for the site Bernoulli site percolation on T at criticality p = 1/2, there
exists c > 0, such that for

n ≥ 1,Pr(Cross(nR)) ≥ c.

In fact, the theorem holds for more general lattices, like the triangular lattice. le rÃ©sultat
gÃ©nÃ©ral ?
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Figure 4.3: The Union-Jack lattice, an example of triangulation invariant under π/2-
rotations, horizontal and vertical integer translations, and horizontal symmetries.

4.1.3 Continuous �elds and percolation

It is very natural to ask the following question:

Question 4.1.4 Let f : R2 → R be a random function, such that almost surely, f is smooth,
f−1(0) is smooth, such that the measure of f is invariant under the symmetries of R2 and
under the action f 7→ −f . Does f−1(R+) satis�es a Russo-Seymour-Welsh property, that
is: is it true that for any rectangle R ⊂ R2, there exists c > 0, such that

∀n� 1, Pr(Cross+(nR)) > c?

Here Cross+(R) is the event that a connected component of f−1(R+) ∩R intersects the two
small sides of R.

Note that by the symmetry f 7→ −f , the answer is identical for the negative crossings
Cross−(R). It is very natural to precise the question for random Gaussian �elds. In this
direction, a negative result was proved in 1996 :

Theorem 4.1.5 (Alexander 1996 [2] ) Assume that the correlation function of f de-
pends only on the distance between the two points, and is non-negative. Then, almost surely,
all the connected components of f−1(R+) are bounded.

We will explain the following positive result:

Theorem 4.1.6 (Be�ara-G. 2017 [4]) Let f : R2 → R be a Gaussian �eld whose corre-
lation e function is smooth, depends only on the distance between points and is non negative.
If there exists C > 0, such that ∀e(x, y) ≤ C‖x− y‖−D, with D > 12, then

∀n ≥ 1, Pr(Cross+(nR)) ≥ c

and the same is true for nodal crossings, that is for Cross0(nR), that is for the connected
components of f−1(0), for n large enough.

In the original article, D = 325. Then, Belyaev and Muirhead proved it for D = 16 [5] and
Rivera and Vanneuville proved it for D = 4 [30]. They all simpli�ed the proof. Note that if
the �eld is constant and almost surely not the function zero over R2, then almost surely it
does not vanish, so there is no percolation of nodal lines. Even with the latter decorrelation,
over smaller and smaller balls, the sign of the function f is constant and f does not vanish.
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Figure 4.4: Percolation and Bargmann-Fock random functions: in black, the set f−1(R+)
and in red, a connected component of f−1(R−) highlighted.

Example 4.1.7 The Bargmann-Fock model. The kernel of the BF model is e(x, y) =
exp(−‖x− y‖2). It is positive and decreases exponentially fast, so that Theorem 4.1.6 holds.

Let P be of degree d, and consider π := P
‖X‖d , which vanishes on the same hypersurface as

P and a well de�ned smooth function on RP 2. If P is chosen at random for the Kostlan
measure, denote by ed the associate kernel for π.

Lemma 4.1.8 The BF kernel is the rescaled limit of the kernel for Kostlan polynomials.
More precisely, for any x0 ∈ RPn, in the a�ne coordinates,

ed(x0 +
x√
d
, x0 +

y√
d

)→ exp(−‖x− y‖2).

Proof. By symmetry of the problem, we can assume that x0 = [1 : 0 · · · : 0] = 0 in the the
a�ne coordinates. Then

π =
p

(1 + ‖x‖2)d/2
,

where p is the a�ne polynomial associated to P in the chart X0 6= 0. The associate
covariance function writes

ed(x, y) =
(1 + 〈x, y〉)d

(1 + ‖x‖2)d/2(1 + ‖y‖2)d/2

so that
ed
( x√

d
,
y√
d

)
=→d→∞ e

1
2

(2〈x,y〉−‖x‖2−‖y‖2) = e−
1
2
‖x−y‖2 .

This Gaussian correlation function has two important features: it is non negative, and it
decreases very fast. 2

Remark 4.1.9 1. In fact, the BF kernel limit is very universal: it holds for the general
setting for holomorphic sections over projective manifolds, see paragraph 1.3.1. The 2-
point correlation function for random holomorphic sections is the well-known Bergman
kernel and is very important in complex analysis and complex geometry. The Szegö
kernel used in [34] is essentially the same.
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2. A natural question is: is there a similar result for Kostlan polynomials? That is,
for any topological rectangle on RP 2, is it true that there exists c > 0, such that for
any degree d large enough, with probability at least c there exists a nodal line crossing
this rectangle? The answer is yes, and has been proved by Dmitry Beliaev, Stephen
Muirhead and Igor Wigman in [7].

3. What about taking upper level sets with constants di�erent than zero? That is, what
happens for the sets f−1([ε,+∞[)? Alejandro Rivera and Hugo Vanneuville answered
to this question [29]: for ε < 0, with probability one there is one unique connected
component of f−1([ε,+∞[), see �gure 4.5

Figure 4.5: Bargmann-Fock random functions [29]. Left: the region f ≥ 0.1 is colored
in black, the small components of the region f < 0.1 are colored in white, and the giant
component of the region f < 0.1 is colored in red. On the right hand side, the small
components of the region f ≥ −0.1 are colored in black, the giant component of the region
f ≥ −0.1 is colored in blue, and the region f < −0.1 is colored in white. The two pictures
correspond to the same sample o�.

4.2 A metatheorem

4.2.1 Statement

We will use a general result proved by Vincent Tassion in 2016, which gives in particular a
proof of the Russo and Seymour-Welsh theorem 4.1.1, was written for Voronoi percolation,
but holds in a very general situations:

Theorem 4.2.1 (Tassion [36]) Let f : R2 → {−1, 1} be a random sign function over the
plane, satisfying the following three conditions :

• (Symmetries) The measure is invariant under f 7→ −f , under π/2-rotation and hori-
zontal axis, and translations.

• (Crossing squares) There exists c > 0, such that for any horizontal square R,

Pr(Cross+(R)) ≥ c.
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• (Positive correlation) For any two positive crossing events A and B in a bounded open
set, Pr(A ∩B) ≥ PrAPrB.

1. Then for any rectangle R, there exists c > 0, such that

lim sup
n→∞

Pr(Cross+(nR)) ≥ c.

2. If furthermore f satis�es the following additional condition:

• (quasi-independency) For any crossing event A in the annulus [−2n, 2n]2\[−n, n]2

and B in [−n log n, n log n]2 \ [−3n, 3n]2,∣∣Pr(A ∩B)− Pr(A) Pr(B)
∣∣→n→0 0,

then for any rectangle R, there exists c > 0,

∀n ≥ 1, Pr(Cross+(nR)) ≥ c.

4.2.2 The square crossings

Lemma 4.2.2 In the following three percolation cases, the squares are uniformly crossed:

1. For the critical (that is p = 1/2) bond correlation on the lattice integer,

2. for the critical (that is p = 1/2) site percolation on a triangulation lattice invariant by
π/2-rotation,

3. and for the continuous positive percolation for a continuous Gaussian �eld whose co-
variance depends only on the distance.

Proof. For the �rst case, the probability is "morally" 1/2. Indeed if there is no horizontal
positive crossing, then there is a vertical negative crossing on the dual integer lattice, which
is made of the centers of the faces of Z2, and of the translated of the edges of Z2 that link
these vertices. I wrote "morally" because they are boundary e�ects that tend to zero when
the size of the square grows to in�nity.

For the second case, topology says that if there is no horizontal positive crossing, then
there is a vertical negative crossing, see [18, pp. 52�53]. Note that this is false for the square
lattice, which is not a triangulation. By the symmetries between + and − and the rotation,
the crossing probability is 1/2. Again, there are boundaries e�ects.

In the third case, the probability of crossing any square is exactly 1/2, using the latter
proof. 2

4.2.3 The Fortuin Kasteleyn Ginibre condition

In this paragraph, we deal the positive correlation condition, in particular for the sign of
a Gaussian vector. In fact, this condition is a particular case of the so-called Fortuin-
Kasteleyn-Ginibre property, which is one of the most useful in percolation theory.

De�nition 4.2.3 1. A function f : RN → R is called increasing if it is increasing in
each of the coordinates.

2. An event A depending on the value of a vector X ∈ RN is said increasing if 1A is
increasing for the latter de�nition.
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3. A random function X : RN → R is said to satisfy the FKG condition if for any pair
f : RN → R of increasing functions,

Cov
(
f(X)g(X)

)
:= E

(
f(X)g(X)

)
− E

(
f(X))E(g(X)

)
≥ 0.

Example 4.2.4 1. If X satis�es the FKG condition and if A,B are two increasing
events, then

Pr(A ∩B) ≥ Pr(A) Pr(B).

2. Let (T ,V) be a lattice and its set of vertices, R be a rectangle, N = #R ∩ V, x =
(x1, · · · , xN ) an enumeration of R ∩ V, f : RN → {0, 1} be de�ned by f(x) = 1 if x
produces a positive crossing for the site percolation of R, and f(x) = 0 in the contrary
case. Then, f is an increasing function.

Figure 4.6: When the random coloring satis�es the FKG condition, the probability of cross-
ing an "L" is greater than the squared probability of crossing one of the rectangles that
make the L.

Proposition 4.2.5 Let (T ,V) be as in example 4.2.4, R and R′ two rectangles, disjoint or
not. Let X = (X1, · · · , XN ) be a random coloring of R∩R′∩V satisfying the FKG condition.
Then,

Pr(Cross(R) ∩ Cross(R′)) ≥ Pr(Cross(R)) Pr(Cross(R′)).

Proof. Let f : RN → {0, 1} (resp. g) be de�ned by f(x) = 1 (resp. g(x) = 1) if R (resp.
R′) is positively crossed. Then example 4.2.4 gives the result. 2

Theorem 4.2.6 (Lauren Pitt 1982 [28]) Let X ∈ RN be a random Gaussian vector with
a zero mean and non-singular variance matrix. Then, X satis�es FKG its covariance matrix
has all its coe�cient non negative.

Corollary 4.2.7 Bernoulli percolation for p = 1/2 satis�es the FKG condition.

Proof. For any p ∈ [0, 1], let Y ∈ R be a normal law, so that Pr(Y ≥ 0) = 1/2. For any
rectangle R, the sign at every vertex in V ∩ R for Bernoulli can be seen as the sign of N
independent copies of Y . Then, theorem 4.2.6 applies. 2

As a consequence of the Tassion theorem 4.2.1 and Pitt theorem 4.2.6 we obtain a proof of
the Russo-Seymour-Welsh for site percolation on lattices with good symmetries:

Proof of Theorem 4.1.3 and 4.1.1. The symmetry condition of Theorem 4.2.1 are
insured by the hypotheses on the lattice and the probability 1/2. The square crossing
condition is given by Lemma 4.2.2. Corollary 4.2.7 gives the positive correlation for the site
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percolation. The proof for bond percolation is similar. The last condition of quantitative
dependency is trivial since this is Bernoulli percolation. 2

As a consequence of the �rst part of Tassion theorem 4.2.1 and Pitt theorem 4.2.6 we
obtain:

Corollary 4.2.8 Let f : R2 → R be a centered Gaussian �eld whose correlation function
depends only on the distance between points and is non negative, and such that f is C0

almost surely. Then for any rectangle R, there exists c > 0, such that

lim sup
n→∞

Pr(Cross+(nR)) ≥ c.

Proof. The symmetry condition is induced by the hypothesis, and the square crossing by
Lemma 4.2.2. The only thing to prove is the positive correlation. Pitt's theorem holds for
�nite dimension Gaussian vectors, but we prove now that it implies positive correlation for
crossing events. Let U be an bounded subset of R2 and A, B two crossing events.

For any n ∈ N∗ let fn : 1
nZ

2 ∩ U → {−1, 1} be the restriction of the sign of f over the
re�ned lattice 1

2nZ
2. Let An and Bn be the crossing events for the associated site percolation,

see de�nition 4.1.2.
Then, A ⊂ ∪k ∩n≥k An. Indeed, �x f ∈ A and k ∈ N∗. By (uniform) continuity of

f (on U), there exists k ∈ N and a positive A-crossing continuous path γ ⊂ f−1(R+),
such that its 2

k−neighborhood lies in f−1(R+). This implies that f ∈ An for any n ≥ k.
Similarly, if f ∈ Ac, then there is a "dual" negative crossing f and, for the same reasons,
Ac ⊂ ∪k ∩n≥k Acn. This implies that for any f ∈ Ω, 1An(f) →n→∞ 1A(f) almost surely,
so that PrAn → PrA by the dominated convergence theorem, and similarly for Bn and B,
and for An ∩Bn and A ∩B.

Now, since Ãn and B̃n are increasing events, by Theorem 4.2.6,

Pr(A ∩B) = lim
n∞

Pr(An ∩Bn) ≥ Pr(Ãn) Pr(B̃n)→ Pr(A ∩B).

2

If we want now to obtain the second part of theorem 4.2.1, we need to insure quantitative
dependency. We will get a uniform lower bound for the probabilities of crossing instead of
an inf limit and get theorem 4.1.6.

4.2.4 Proof of Pitt's theorem

First, we will give a general relation for Gaussian �elds which will be useful for two appli-
cations : Pitt's theorem 4.2.6 and the independence theorem 4.3.5.

Proposition 4.2.9 Let S0 = (σ0
ij)1≤i,j≤N and S1 = (σ1

ij)1≤i,j≤N be two non-singular co-

variance matrices and X0 ∈ RN , X1 ∈ RN two associated Gaussian vectors. Let f : RN → R
be a C2 function, such that there exists N , max(|f(x)|, ‖df(x)‖) = O‖x‖→∞(‖x‖N ). Then,

E(f(X1))− E(f(X0)) =
∑

1≤i≤j≤N

1

2δij
(σ1
i,j − σ0

i,j)

∫ 1

0

∫
x∈RN

∂2f

∂xi∂xj
φXt(x)dxdt,

where x = (x1, · · · , xn) and φXt(x) is the density associated to the covariance (1−t)S0 +tS1.
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Proof. For any t ∈ [0, 1] de�ne the non negative covariance matrix

St := (1− t)S0 + tS1 = (σtij)i,j =
(
(1− t)σ0

ij + tσ1
ij

)
i,j

and Xt an associated Gaussian vector. Note that the hypothesis on the non-singularity
implies that St is uniformly non-singular, that is the eigenvalues of St are uniformly bounded
in t from below by a positive constant. We have, using the chain rule,

E(f(X1))− E(f(X0)) =

∫ 1

0

d

dt
Ef(Xt)dt

=

∫ 1

0

d

dt

∫
x∈RN

f(x)φXt(x)dxdt

=
∑
i≤j

∫ 1

0

∫
x∈RN

f(x)
∂

∂σtij
φXt(x)

dσti,j
dt

dxdt

=
∑
i≤j

(σ1
ij − σ0

ij)

∫ 1

0

∫
x∈RN

f(x)
∂

∂σtij
φXt(x)dxdt.

Now we use a important relation, which proof is left as an exercise for the reader.

Lemma 4.2.10 Let Σ = (σij)1≤i,j≤N be a covariance matrix, X ∈ RN an associated Gaus-
sian vector, and φX(x) its density. Then,

∀x ∈ RN , ∀1 ≤ i 6= j ≤ N, ∂φ(x)

∂σij
=
∂2φ(x)

∂xi∂xj
and ∀1 ≤ i ≤ N, ∂φ(x)

∂σii
=

1

2

∂2φ(x)

∂x2
i

.

We can �nish the proof or Proposition 4.2.9. Utilizing Lemma 4.2.10, we obtain

E(f(X1))− E(f(X0)) =
∑
i≤j

1

2δij
(σ1
ij − σ0

ij)

∫ 1

0

∫
x∈RN

f(x)
∂2φXt(x)

∂xi∂xj
dxdt.

Since St is uniformly non-singular, the density decreases uniformly exponentially fast for
x → ±∞. Using two integrations by parts in the coordinates xi and xj , and using the
bound condition for f , we obtain

E(f(X1))− E(f(X0)) =
∑
i≤j

1

2δij
(σ1
ij − σ0

ij)

∫ 1

0

∫
x∈RN

∂2f(x)

∂xi∂xj
φXt(x)dxdt.

2

The �rst application of this Proposition 4.2.9 is the proof of Pitt's theorem.

Proof of Theorem 4.2.6. Assume �rst that X satis�es FKG. For any (i, j) ∈ {1, · · · , N},
de�ne f(x) = xi and g(x) = xj . Then f and g are increasing and by hypothesis,

(Var(X))i,j = E(xixj) = E(f(x)g(x)) ≥ E(f(x))E(g(x)) = 0.

For the converse, let

S1 := Var(X,X) =

(
Var(X) Var(X)
Var(X) Var(X)

)
and

S0 := Var(X,Y ) =

(
Var(X) 0
0(X) Var(X)

)
,
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where Y is an independent copy of X. De�ne

F : (RN )2 → R
(x, y) 7→ F (x, y) := f(x)g(y)

Note that

EF (X0) = E(f(X))E(g(X))

and EF (X1) = E
(
f(X)g(X)

)
.

Since S1 is singular, we cannot use directly Proposition 4.2.9. But for any t < 1, St is
non-singular, so that we have

E
(
f(X)g(X)

)
− E(f(X))E(g(X)) = lim

ε→0

∫ 1−ε

0

d

dt
E(f(Xt))

= lim
ε→0

∑
1≤i≤j≤2N

(s1,ij − s0,ij)

∫ 1−ε

0

∫
x∈R2N

∂2F

∂xi∂xj
φXt(x)dxdt

= lim
ε→0

∑
i∈{1,···N}j∈{N+1,···2N}

Var(X)i(j−N)

∫ 1−ε

0

∫
x∈R2N

∂f

∂xi

∂g

∂xj−N
φXt(x)dxdt.

Since f and g are increasing, their derivatives are non negative, and since moreover the
coe�cients of Var(X) are non negative, this gives the FKG inequality after passing through
the limit ε→ 0. 2

4.3 Proof of Theorem 4.1.6

4.3.1 The analytic continuation problem

Figure 4.7: Knowing the sign of an analytic Gaussian �eld in a rectangle can give the
information of its vanishing locus, and then by the continuation principle (right) information
on another rectangle, as far as it is. This is a problem for the application of the second part
of Theorem.

In order to apply the second part of Tassion's theorem 4.2.1, we must prove the de-
pendency condition. However, there is a big problem for our functions, which are analytic:
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the analytic continuation phenomenon. Indeed, knowing the sign of f on a whole rectangle
where f vanishes gives its vanishing locus in the rectangle. If this a connected component
of this vanishing locus crosses another rectangle, then by the ACP, we will know it, even if
the other rectangle is very far. The solution for this problem which was chosen in [4] was to
blur the information through discretization.

4.3.2 Discretization

Theorem 4.3.1 (Improvement of [4, Theorem 1.6]) Let f : R2 → R be a centered Gaussian
function with covariance function e satisfying e(x, y) = k(‖x−y‖2) for k C1, with k′(0) 6= 0.
Let T be a lattice in R2. Then, there exists CT ,f > 0 such that for any �xed η > 0, for

any n > 1, with probability at least 1 − CT ,f
nη , the vanishing locus of f in the box [−n, n]2

cuts at most one times every edge of 1
n2+η T . In particular, with the same probability, any

continuous crossing in rectangles in the box is a discrete crossing and vice versa.

Figure 4.8: Discretization through a lattice. If the lattice is too coarse (left), the discretiza-
tion is not trustful enough. The solution os too re�ne it, but the amount of information
on the �eld increases and the dependency of two restrictions of the �eld to two disjoint
rectangles increases.

In fact, the result in [4] is less precise (the power is 9 instead of 3) and its proof was pretty
complicated. Here we follow the simpler proof giving better estimates of [5], see also [29].
The proof uses the following extended version of Kac-Rice formula;

Theorem 4.3.2 (Theorem 3.2 [3]) Let f be a Gaussian �eld on an interval I ⊂ R, such
that almost surely, f is C1 and that for any x, y ∈ I, Cov(f(x), f(y)) is de�nite. Let N be
the number of zeros of f on an interval I. Then,

E(N(N − 1)) =

∫
I2

E
(
|f ′(x1)||f ′(x2)|

∣∣ f(x1) = f(x2) = 0
)
φ(f(x1),f(x2))(0, 0)dx1dx2.

We do not write down the proof and refer to the book [3].

Corollary 4.3.3 [5, Proposition 7] Under the hypotheses of Theorem 4.3.2, and if e(x, y) =
k(x− y) with k C2 and k′′(0) 6= 0. Then, there exists a constant C depending only on k′′(0)
such that

E(N(N − 1)) ≤ C|I|3.

Proof. Theorem 4.3.2 gives

E(N(N − 1)) =

∫
(x,y)∈I2

∫
(u,v)∈R2

|u||v|e−
1
2
〈Σ−1(u,v),(u,v)〉 1

2π
√

det Σ
φ(f(x),f(y))(0, 0)dxdy.
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where
Σ = S1 − CtS−1

2 C,

with

S2 := Var
(
f(x), f(y)

)
=

(
1 e(x, y)

e(x, y) 1

)
is the covariance of the Gaussian vector (f(x), f(y)),

S1 := Var
(
f ′(x), f ′(y)

)
=

(
∂2
xyex=y ∂2

xyex,y
∂2
xyex,y ∂2

xyex=y

)
.

is the variance matrix of he Gaussian vector (f ′(x), f ′(y)), and

C := Cov
((
f(x), f(y)

)
,
(
f ′(x), f ′(y)

))
=

(
0 ∂yex,y

∂xex,y 0

)
where we used E(f(x)f ′(x)) = ∂xe(x, y)|x=y = k′(0)∂x‖x − y‖2|x=y = 0. The covariance
matrix S2 implies

φ(f(x1),f(x2))(0, 0) =
1√

1− e(x, y)22π
.

Now, using

e(x, y) = k(x− y) = 1 +
1

2
au2 +O(‖k(4)‖L∞(I)u

4),

with a := k′′(0), u = x− y,

k2(u) = 1 + au2 +O((k′′(0)4 + ‖k(4)‖L∞(I))u
4), ,

k′ = au+O(3), k′2 = a2u2 +O(4),

k′′ = a+O(2),

k′2

1− k2
=
a2u2 +O(u4)

−au2 +O(4)
= −a(1 +O(u2))

S1 − CtS−1
2 C =

(
−k′′(0) −k′′(x− y)
−k′′(x− y) −k′′(0)

)
− 1

1− k2

(
0 k′

−k′ 0

)(
1 −k
−k 1

)(
0 −k′
k′ 0

)
=

(
−k′′(0) −k′′(x− y)
−k′′(x− y) −k′′(0)

)
− k′2

1− k2

(
1 k
k 1

)
=

(
O(2) O(2)
O(2) O(2)

)

Now,

Lemma 4.3.4 Fix n ≥ 1. Then there exists a constant C > 0, such that for any X ∈ Rn a
centered Gaussian vector with variance matrix Σ,

E(‖X‖k) ≤ C‖Σ‖k/2.
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Proof. Since Σ is a positive real symmetric matrix, there exists an orthonormal basis (ei)i
of Rn of eigenvectors of Σ and associated positive eigenvalues λ1, · · · , λn, so that

E‖X‖k =

∫
(xi)i∈Rn

‖(xi)i‖
n∏
i=1

e−
1
2
x2
i /λidx1 · · · dxn

1∏√
λi(
√

2π)n
.

With the change of variables ui = xi/
√
λi, which gives

E‖X‖k =

∫
(ui)i∈Rn

‖(ui)i‖k(max
i
λi)

k/2
n∏
i=1

e−
1
2
u2
i du1 · · · dun

1

(
√

2π)n
≤ Cn‖Σ‖k/2.

2

In our case, since ‖S1 − CtS−1
2 C‖ = O((x− y)2), this gives

E(N(N − 1)) ≤ C

∫
I2

O((x− y)2)
dxdy

2π
√
−2a(x− y)2 +O(x− y)4)

≤ C ′
∫
I2

O((x− y))dxdy ≤ C ′′|I|3.

2

Proof of Theorem 4.3.1. Fix ε > 0 and εE an edge of εT . The restriction of f on εE
is a Gaussian �eld satisfying the hypotheses of Corollary 4.3.3. By Markov's inequality and
Corollary 4.3.3,

Pr(N(e) ≥ 2) = Pr(N(N − 1) ≥ 2) ≤ 1

2
E(N(N − 1)) ≤ C ′′′ε3.

On [−n, n]2, there are at most Cn2/ε2 edges of εT , so that

Pr(∃e ∈ [−n, n]2
∣∣ N(e) ≥ 2) ≤

∑
e∈[−n,n]2

1

2
E(N(N − 1)) ≤ C ′′′n

2

ε2
ε3 ≤ C ′′′′n2ε.

Now, let us choose ε = ε(n) = 1/n2+η. Then, with probability at last 1− C ′′′′ 1
nη , the nodal

lines of f on [−n, n]2 crosses at most once every edge of 1
n2+η T . 2

4.3.3 Quantitative dependency

The discretization have temporally solved the analytic continuation problem. However the
problem now we have to face is the following: by theorem 4.3.1, the number of points at
which we look the sign of f increases in a rectangle R of size r as r4. The more we know on
the sign R, the more it gives informations on the sign on another rectangle R′ and threats
the independency condition of Tassion theorem.

The second application of Proposition 4.2.9 is an quantitative dependency theorem for
events that depend only on the sign of the Gaussian �eld restricted to a �nite number of
points. In our case, this will be vertices of a lattice in a large box.

Theorem 4.3.5 (Piterbarg 1982 [27, Theorem 1.1, p. 37]) Let A be an event that de-
pends only on the signs of the coordinates of X ∈ RN , and S0 = (σ0,ij)1≤ij≤N and S1 =
(σ1,ij)1≤i,j≤N two covariance matrices for X0 ∈ RN and X1 ∈ RN , such that their diagonal
elements equal 1. Then,

|Pr(X0 ∈ A)− Pr(X1 ∈ A)| ≤ 1

π
N2 max

i<j
|σ1
ij − σ0

ij | sup
t∈[0,1]

(1− σ2
t,ij)
−1/2,

where for any t ∈ [0, 1], σ2
t,ij := (1− t)σ0,ij + tσ1,ij .
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The left hand side compares the two Gaussian vectors for events depending on their signs.
The given upper bound for it is the product which increases polynomially with the dimension
of the vector, for us with the number of the sites where we look at the sign of the Gaussian
�eld, and a second term which is bounded by the di�erence between the covariance matrices.

Remark 4.3.6 There exists in fact an equality, see the proof below and [29] for a more
profound analysis of it which gives a far better bound.

Proof of Theorem 4.3.5. We use the notation of Proposition 4.2.9, that is St :=
(1− t)S0 + tS1 and Xt is a centered Gaussian vector associated to St. The proof of Propo-
sition 4.2.9 gives, for f(x) = 1A,

Pr(X1 ∈ A)− Pr(X0 ∈ A) = E(f(X1))− E(f(X0))

=
∑
i<j

(σ1
ij − σ0

ij)

∫ 1

0

∫
x∈A

∂2φXt(x)

∂xi∂xj
dxdt.

Note that here f is not C2, but it was used for the integration by parts in the sequence of
the proof, so it is not necessary here. Now since A depends only on the signs of the xi's,
de�ne

∀x ∈ RN , sign(x) := (sign(xi))i ∈ {−1,+1}N .
For any couple i < j and any εi, εj ∈ {−1,+1}

Zεi,εj (A) := {x ∈ A | sign(xi) = εi, sign(xj) = εj}.

The integration by part of φXt(x) gives

Pr(X1 ∈ A)− Pr(X0 ∈ A) =

∫ 1

0

∑
i<j

(σ1,i,j − σ0,i,j)
∑
εi,εj

∫
Z
εi,εj
A

∂2φt(x)

∂xi∂xj
dxdt

=

∫ 1

0

∑
i<j

(σ1,i,j − σ0,i,j)
∑
εi,εj

∫
Z
εi,εj
A

(−1)εi+εjφt(x)|xi=xj=0
dx

dxidxj
dt

By section 5.1.4,

φt(x)|xi=xj=0 = φXt|(Xt
i ,X

t
j)

(x|(0, 0))φ(Xt
i ,X

t
j)

(0, 0),

we get

Pr(X1 ∈ A)− Pr(X0 ∈ A) =

∫ 1

0

∑
i<j

(σ1,i,j − σ0,i,j)∑
εi,εj

(−1)εi+εj Pr(x ∈ Zεi,εjA

∣∣ xi = xj = 0)φt(Xi,Xj)(0, 0)dt.

so that, using φt(Xi,Xj)(0, 0) = 1
2π (1− σ2

t,ij)
−1/2,

|Pr(X1 ∈ A)− Pr(X0 ∈ A)| ≤ 4

2π

N(N − 1)

2
max
i<j
|σ1,i,j − σ0,i,j | sup

t∈[0,1]
(1− σ2

t,ij)
−1/2.

2

Note that we bound the probability in the sum by 1, which is a very crude bound. See [30]
and [6] for better bounds.

The following corollary measures the dependency between the positive crossings of a
discretized Gaussian �eld over two disjoint rectangles.
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Corollary 4.3.7 Let V be the set of vertices of a lattice in Rn, f : Rn → R be a Gaussian
�eld with covariance function e, such that e(x, x) = 1, and U0 and U1 a pair of disjoint
bounded open sets of Rn. Then, there exists a constant C such that for any pair (Ai)i=0,1 of
events depending on the sign of f on V ∩ (Ui)i=0,1,

|Pr
(
A0, A1)− Pr(A0) Pr(A1)

)
≤ 1

π
|(V0|+ |V1|)2 max

x∈V0,y∈V1

|e(x, y)|(1− e(x, y)2)−1/2.

Proof. Let
X0 := (X,Y ) :=

(
(f(x))x∈V0 , (f(y))y∈V1

)
.

Then, this Gaussian vector has a covariance matrix S0 of the form

S0 := Var(X0) =

(
Var(X) Cov(X,Y )

Cov(X,Y )t Var(Y )

)
.

Let

S1 =

(
Var(X) 0

0 Var(Y )

)
.

If X1 is the associated Gaussian vector, then X ′ := (X1,i)1≤i≤|V0| has the same law than X,
and is independent of X ′′ := (X1,i)|V0|+1≤j≤|V0|+|V1|, the latter having the same law than Y .
By Theorem 4.3.5,

|Pr(X1 ∈ A0 ∩A1)− Pr(X0 ∈ A0 ∩A1)| ≤ 1

π
|
(
|V0|+ |V1|

)2
max

x∈V0,y∈V1

|e(x, y)|(1− e(x, y)2)−1/2.

Now Pr(X0 ∈ A0 ∩ A1) = Pr(A0, A1) and Pr(X1 ∈ A0 ∩ A1) = Pr(A0) Pr(A1), which
concludes. 2

Proof of the main Theorem 4.1.6 . In Corollary 4.2.8 we showed that the symmetry
and positivity of correlations are satis�ed for our continuous model. We must now prove
the last quantitative dependence condition. Let T = (V, E) be the Union Jack lattice, see
Figure 4.3. Fix η > 0, such that 12 + 4η < D. This is possible since D > 16. Then,
Theorem 4.3.1 shows that there exists C > 0 such that for any n ≥ 2, with probability at
least 1 − C(n log n)−η, in the box [−n log n, n log n]2, the continuous percolations happen
simultaneously with the discrete site percolations on the vertices

Vn :=
1

(n log n)2+η
V.

Moreover by Corollary 4.3.7 applied to U0 := [−n log n, n log n]2\[−3n, 3n]2, U1 := [−2n, 2n]2\
[−n, n]2 and

Xn = f|Vn∩[−n logn,n logn]2 ,

there exists a constant C > 0 depending only on the kernel e such that for sign events A0

on V0 (resp. A1 on V1),

max
A0,A1

|Pr
(
A0, A1)− Pr(A0) Pr(A1)| ≤ C(n log n)4(n log n)8+4ηn−D.

Since this is bounded by Cn12+4η−D log4n+4η, this max tends to 0 when n grows to in�nity.
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Now let ε > 0, and N be such that

∀n ≥ N, C(n log n)4(n log n)8+4ηn−D + C(n log n)−η < ε.

Then, by 4.3.1 and the last computation, the max of the sign events in Tassion theorem for
the continuous percolation problem is no greater than ε for n ≥ N , so that it converges to
zero, which proves Theorem 4.1.6. 2

4.4 Proof of Tassion's theorem

Figure 4.9: The events Asα, B
s
β and Xs

α

Figure 4.10: The event Rba and the event N b
a.

For 0 < a < b, 0 < α < s/2 Consider the events Rba, N
b
a, A

s
α, B

s
β and Xs

α de�ned by
�gure 4.10 and �gure 4.9 respectively. Note that Xs

α can be achieved if we have 4 symmetric
copies of Aα and a vertical crossing, so that

Pr(Xs
α) ≥ 1

2
Pr(Asα)4.

We will use a simple useful lemma:

Lemma 4.4.1 There exists C > 0, such that for any a < b, k ∈ N∗,

Pr(Rb+k(b−a)
a ) >

1

2k
Pr(Rba)

k and if b > 2a, Pr(N b
2b−a) ≥ Pr(Rba)

4.

Proof. This is a consequence of the FKG formula and �gure 4.11. 2

Proof of Theorem 4.2.1. Let 0 < ε < 1/2 (in the article of Tassion, ε = 1/3). By FKG
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Figure 4.11: Pr(R2b−a
a ) ≥ 1

2(PrRba)
2 and Pr(N b

2b−a) ≥ Pr(Rba)
4.

Figure 4.12: This is a horizontal crossing of the rectangle (3 − ε)s × 2s produced by 4

particular events translated or symmetrized from B2s
β (two times) and Xs(1+ε)

α , if β ≤ 2α
and α < s

2(1− ε).

inequality, we see on �gure 4.12 that the probability of crossing a rectangle (3 − ε)s × 2s
satis�es

Pr(R
(3−ε)s
2s ) ≥ Pr(Xs

α) Pr(B2s
β )2 ≥ 1

2
Pr(Asα)4 Pr(B2s

β )2

if β ≤ 2α and α+ s
2(1 + ε) < s which means α < s

2(1− ε). We see that we must have both
large probabilities for A and B. By horizontal symmetry, we have,

Pr(Asα) + Pr(Bs
α) ≥ 1/4

Now de�ne

φs : [0, s/2] → [−1, 1]

φs(α) := Pr(Bs
α)− Pr(Asα).

Then φs is non decreasing, φs(0) ≤ 0 since Bs
0 ⊂ As0 and φs/2 ≥ 1/4 if the extremity α of

s/2×]α, s/2] is not allowed in the de�nition of Bs
α. Since φs is continuous à voir, let αs be
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such that φ(αs) = 1/8. Then,

min
(

Pr(Asαs),Pr(Bs
αs)
)
≥ 1/8.

Now, by �gure 4.12 we have

αs <
s

2
(1− ε) and α2s < 2αs(1+ε) ⇒ Pr(R

(3−ε)s
2s ) ≥ 1

219
.

Now, �x s0 > 0, N ∈ N∗ and ∀k ∈ N, sk := s0( 2
1+ε)

k.
• Assume �rst that

∃k ∈ {0, · · · , N}, αsk ≥
sk
2

(1− ε).

Then αsk ≥ sk/4 since ε < 1/2 and in this case we construct large crossing without by
�gure 4.13. By this �gure, we see that FKG and the condition implies that

Pr(R
3
2
sk

sk ) ≥ Pr(Xsk
αsk

)3 ≥ 1

225
.

• Assume now that that

Figure 4.13: If αs > s/4, by FKG we can construct a crossing of the rectangle 3s
2 × s with

three events Xs
s/4.

∀k ∈ {0, · · ·N}, α2sk > 2αsk(1+ε) and αsk <
sk
2

(1− ε).

Recall that the latter condition is required for the small square being in the rectangle. Then,

α( 2
1+ε

)N+1 > 2Nαs0(1+ε).

However, αs ≤ s implies 2kα1 ≤ ( 2
1+ε)

k+1, so that k ≤ Cε. That is, for s1 large enough,
there is a positive crossing of s1R. The �rst part of Theorem 4.2.1 is proved.

We prove now the second assertion of Theorem 4.2.1. 2

We prove now the one-arm bound.
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Theorem 4.4.2 For any random centered Gaussian �eld f : R2 → R such that e(x, y) =
k(‖x− y‖), with e(x, y) ≤ C/‖x− y‖D with D > 12, there exists γ > 0 and C > 0 such that
for any 1 ≤ s < t,

Pr(one arm in A(s, t) ≤ C(s/t)γ .

Proof. Fix 1 ≤ s < t, and let T be a periodic symmetric triangulation. By Theorem 4.3.1,
for any η > 0, there exist a constant C > 0, such that the probability of the continuous one
arm event in A(s, t) is bounded by the the one of the discrete one arm over the lattice t−2+η

plus Ct−η. The probability p of the latter event satis�es

p ≤ Pr
[ ⋂
i∈N, s≤5i

√
st≤t/2

Ac
5i
√
st

]
,

where As denotes the event that there is a positive circuit in the annulus A(s, 2s). Then,
by Corollary 4.3.7,

p ≤ Pr[Ac√
st

] Pr
[ ⋂

1≤i≤blog5( 1
2

√
t
s
)c

Ac
5i
√
st

]
+ Ct4+4(2+η)(

√
st)−D

≤
∏

0≤i≤blog5( 1
2

√
t
s
)c

Pr[Ac
5i
√
st

] + C ′t4+4(2+η)(
√
st)−D log t.

By Theorem 4.1.6 and the FKG condition, there exists c > 0, such that PrAs ≥ c for the
continuous model, so that PrAs ≥ c− t−η for the discrete one. This implies

p ≤ C ′′(1− c+ t−η)log
√
t/s + C ′′t4+4(2+η)(

√
st)−D log t

≤ C ′′(s/t)log(1−c+t−η + C ′′(s/t)D−12−4η log t.

Fix η such that D−12−4η > 0 and t0 such that 1− c+ t−η0 > 1− c/2.We obtain the result
for t ≤ t0, hence for all t. 2
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Chapter 5

Annex

5.1 Probability toolbox

5.1.1 Generalities.

De�nition 5.1.1 1. A probability space is a triplet (Ω,F ,P), where Ω is a set, F a
σ-algebra, that is a non empty subset of P(Ω) which is closed under complement and
coutable unions, and P a measure over (Ω,F), that is a map : P : F → [0,∞] satisfying
P(∅) = 0 and P is additive for the union of disjoint sets.

2. If Ω is topological space, the Borelian σ-algebra is the σ−algebra generated by the open
sets of Ω.

3. A random variable X : Ω → R is is a F-measurable map, that is for any Borelian
B ⊂ R, B ∈ B(R), X−1(B) ∈ F . Note if X is (Ω, {Ω, ∅},P)-measurable (that is we
choose the trivial σ-algebra), then X is constant.

4. We say that events (A1, · · · , An) ∈ Fn are independent if

∀(Ik ⊂ R)k, Pr(A1, · · · , AN ) =
N∏
i=1

Pr(Ak).

5. (X1, · · · , XN ) are independent variables i�

∀(Ik ⊂ R)k, Pr(X1 ∈ I1, · · · , Xn ∈ IN ) =
N∏
i=1

Pr(Xi ∈ Ik).

5.1.2 Gaussian vectors.

For m ∈ R and Σ > 0, a random variable X follows the normal law N(m,Σ) i�

∀t ∈ R, Pr(X ≤ t) =

∫ t

−∞
e−

1
2

(x−m)2

Σ
dx√

Σ
√

2π
.

Exercise 5.1.2 Verify that Pr(X ∈ R) = 1. You can use the classical∫
R
e−

1
2
x2
dx =

√
2π.

57
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De�nition 5.1.3 A random vector X = (Xi)i=1,··· ,N ∈ RN is a non-degenerate Gaussian
vector i� there exist m ∈ RN and a positive symmetric matrix Σ ∈ SymN (R) such that for
any Borelian A ⊂ RN ,

Pr(X ∈ A) =

∫
A
e−

1
2
〈Σ−1(X−m),(X−m)〉 dx1 · · · dxN√

(2π)n det Σ
.

Σ is called the variance matrix of X, and denoted by Var(X).

Notation. For any Gaussian vector X ∈ RN , and any deterministic t ∈ RN , we denote
by φX(x) the density of the law of X at x with respect to the Lebesgue measure, that is,

Pr(X ∈ A) =

∫
x∈A

φX(x)dx.

Proposition 5.1.4 1. The coe�cients of Σ can be computed by the formula

Σi,j = E
(
(Xi − E(Xi)(Xj − E(Xj)

)
,

or Σ = E
(
(X −m)(X −m)t).

2. If X1 ∼ N(m1,Σ1) ∈ RN1 and X2 ∼ N(m2,Σ2) ∈ RN2 are two non-degenerate
Gaussian vectors, then the random vector (X1, X2) has variance

Σ =

(
Σ1 Cov(X1, X2)

Cov(X1, X2)t Σ2

)
,

where Cov(X1, X2) = E
(
(X1 −m1)(X2 −m2)t).

3. If X1 ∼ N(m1,Σ1) ∈ RN and X2 ∼ N(m2,Σ2) ∈ RN are two non-degenerate Gaussian
vectors, then

X1 +X2 ∼ N(m1 +m2,Var(X1) + Var(X2) + 2 Cov(X1, X2)).

4. If Rn 3 X ∼ N(m,Σ) and A ∈ Mmn(R) a matrix and b ∈ Rm is a deterministic
vector, then

Rm 3 AX + b ∼ N(Am+ b, AΣAt).

We will see that X1 is independent of X2 i� Cov(X1, X2) = 0. If X1 = X2, then
Cov(X1, X2) = Var(X1).

Lemma 5.1.5 For Gaussian vector X ∼ N(m,Σ), the density of X

φX(x) =
1√

(2π)N det Σ
exp(−1

2
〈Σ−1(x−m), (x−m)〉)

satis�es

φX(x) =

∫
λ∈RN

ei〈x−m,λ〉e−
1
2
〈Σλ,λ〉 dλ

(2π)N
.

Proof. To prove this (a Fourier transform), we diagonalize Σ into an orthonormal basis
and use the elementary

e−
1
2
x2

=

∫
y∈R

eixye−
1
2
y2 dy√

2π
.

2

This equality allows to de�ne Gaussian vectors with non negative covariance matrix, that is
with Σ having a kernel. In this cases, any vector in the kernel correspond to �nir.
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5.1.3 Gaussian �elds

The correlation function.

De�nition 5.1.6 Let (Ω,F ,Pr) be a probability space. A Gaussian �eld f over a topological
space M a measurable function on f : Ω×M → R, where M and R are equipped with their
Borelian σ-algebra, such that for any �nite set of points (x1, · · · , xn) ∈ Mk, the random
vector Xω := (f(ω, xi))

n
i=1 is Gaussian.

Example 5.1.7 Let (φi)i=1,··· ,N be a �nite set of functions φi : M → R, and (ai)i=1···n a
Gaussian vector. Then, f(x) :=

∑n
i=1 aiφ(x) is a Gaussian �eld over M .

De�nition 5.1.8 The two-point correlation function associated to a random Gaussian func-
tion is the function

e : (Rn)2 → R

(x, y) 7→ Cov(f(x), f(y)) = E
((
f(x)− Ef(x)

)(
f(y)− Ef(y)

))
In particular, Var(f(x)) = e(x, x), and f(x) is independent of f(y) i� e(x, y) = 0.

Example 5.1.9 In example 5.1.7, the correlation function equals

e(x, y) =

N∑
i=1

Cov(ai, aj)φi(x)φj(x).

Assume that ai are independent and follow the same normal law N(0, 1). Then,

e(x, y) =
N∑
i=1

φi(x)φi(y).

1. For the Kac random polynomials de�ned by 1.0.1,

e(x, y) =

d∑
k=0

xkyk =
1− (xy)d+1

1− xy
.

2. There is another, more natural in fact, random model for polynomial, the complex
Fubini-Study, or Kostlan measure:

p(x) =

d∑
k=0

ak

√(
d

k

)
xk,

where the (ak)k are still independent and follow the same centered normal law. We
will see later why this is a good measure to choose, which is not really clear at �rst
sight! For the moment, let us compute the 2-point correlation:

e(x, y) =
d∑

k=0

(1 + xy)d.

Theorem 5.1.10 (Kolmogorov theorem, see [26]) Let k ∈ N∗ and f : Rn → R be a
Gaussian �eld with covariance e, such that e can be derivated in at least k times in x and
k times in y, and that these derivatives are continuous. Then, almost surely f is Ck−1.
Moreover, for any di�erential operator P , Pf is a Gaussian �eld whose kernel equals

E(Pf(x)Pf(y)) = PxPye.

Theorem 5.1.11 ([1, Lemma 12.11.12]) Let M be a manifold and f : M → R a Gaussian
�eld, almost surely C1. Then, almost surely f vanishes transversally.
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5.1.4 Conditional expectation.

Assume two real random variables X,Y are de�ned on the same probability space have a
derivable joint density, that is

F (x, y) = Pr(X ≤ x, Y ≤ y) =

∫
s≤u,t≤v

φX,Y (u, v)dudv

is di�erentiable in x and y. Note that we can recover the law of X by

Pr(X ≤ x) = Pr(X ≤ x, Y ≤ +∞) =

∫
s≤x

(

∫
v∈R

φX,Y (u, v)dv)du,

so that

φX(u) =

∫
v∈R

φX,Y (u, v)dv.

De�ne the conditional density by

φ
X
∣∣Y (x|y) = {

φX,Y (x,y)
φY (y) if φY (y) > 0

0 if φY (y) = 0

and denote by Zy = (X
∣∣ Y = y) the associate random variable. Then,

lim
∆→0

Pr(X ≤ x | Y ∈ [y ±∆]) = lim
∆→0

Pr((X,Y ) ∈]−∞, x]× [y ±∆])

Pr(Y ∈ [y ±∆])

= lim
∆→0

∫ x
−∞ φX,Y (u, v)∆ + o(∆)du

φY (y)∆ + o(∆)

= lim
∆→0

∫ x

−∞
φX|Y (u)du+ o(1)

=

∫ x

−∞
φX|Y (u|y) = Pr(Zy ≤ x),

which shows that the de�nition of Zy is coherent with the intuitive de�nition given by de
latter limit. Now

E(f(X,Y )) =

∫
(x,y)∈R2

f(x, y)φX,Y (x, y)dxdy

=

∫
(x,y)∈R2

f(x, y)φX|Y (x|y)φY (y)dxdy

=

∫
y∈R

(∫
x∈R

f(x, y)φX|Y (x|y)dx
)
φY (y)dy

=

∫
y∈R

(
E(f | Y = y)φY (y)dy

The following proposition in the Gaussian case is very useful, and is called the regression
formula in books. It gives the law of Gaussian vector conditioned that another Gaussian
vector has a particular value in terms of another unconditioned Gaussian vector.

Proposition 5.1.12 (see [3, Proposition 1.2]) Let X1 ∼ N(m1,Σ1) ∈ RN1 and X2 ∼
N(m2,Σ2) ∈ RN2 be two Gaussian vectors, such that X2 is non-degenerate. Then, for any
x2 ∈ RN2 and any bounded function f : RN1 → R,

E(f(X1)|X2 = x2) = E(f(X3 + Cx2)),
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where
C = Cov(X1, X2)Σ−1

2 ∈MN1,N2(R)

and X3 ∈ RN1 is a Gaussian vector satisfying

X3 ∼ N
(
m1 − Cm2,Σ1 − Cov(X1, X2)Σ−1

2 Cov(X1, X2)t.
)
.

Remark 5.1.13 1. Note that if X1 and X2 are independent, C = 0, X3 = X1 and
E(f(X1)|X2 = y) = E(f(X1)) : knowing something on X2 has no in�uence on the
result for X1.

2. On the converse, if X1 = X2, then (f(X1)
∣∣ X1 = x2) = f(x2). Here C = IN1 , and

X3 = 0 !

Proof of Proposition 5.1.12. The trick is to �nd a matrix C such that X3 := X1−CX2

is independent of X2. Since X3 is Gaussian, independence is equivalent to Cov(X3, X2) = 0,
that is

Cov(X1, X2) = Cov(CX2, X2) = E
(

(C(X2 −m2))(X2 −m2)t)
)

= CS2,

so that
C = Cov(X1, X2)S−1

2 .

From Proposition 5.1.4,

X3 ∼ N
(
m1 − Cm2, S1 − Cov(X1, X2)S−1

2 Cov(X1, X2)t.
)
.

Now
E(f(X1)

∣∣ X2 = x2) = E(f(X3 + CX2)
∣∣ X2 = x2) = E(f(X3 + Cx2)).

2

Exercise 5.1.14 For f(x) a centered Gaussian �eld,

Pr(f(x) > 0
∣∣ f(y) > 0) =

1

2
+

1

π
arcsin e(x, y).

5.2 Reminder for the projective spaces

5.2.1 De�nition and basic properties

For K = R or C, and n ≥ 1, the n-dimensional projective space KPn is de�ned by

KPn = Kn+1/ ∼,

where

(X0, · · · , Xn) ∼ (Y0, · · · , Yn)⇔ ∃t ∈ K∗, (Y0, · · · , Yn) = t(X0, · · · , Xn).

In other terms, Kn is the set of lines in Kn+1. Note that we have

RPn = Sn/ ∼,

where Sn := {‖x‖ = 1}, and if
π : Kn+1 → KPn,
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is the projection, then for any [X] ∈ RPn, π−1([X]) = RX and

π−1
|Sn([X]) = {±X}.

For K = C, we have π−1([X]) = CX and

π−1
|S2n+1([X]) = {tX|t ∈ C, |t| = 1}.

The set KPn can be equipped with the topology induced by π, that is U ⊂ KPn is open i�
π−1(U) ∈ Kn+1 is open for the standard topology in the a�ne space.

Theorem 5.2.1 [20, p. 60�61] The projective space RPn (resp. CPn) is a smooth compact
manifold of dimension n (resp. 2n).

Remark 5.2.2 In fact, CPn is a complex manifold, that is we can choose transition func-
tions as holomorphic functions (locally de�ned on Cn).

5.2.2 Metric on RP n.

Recall that RPn can be de�ned as the quotient of Sn ⊂ Rn+1 by the projection π : Sn →
Sn/ ∼= RPn. Moreover, π is a local di�eomorphism. This allows to de�ne a natural metric
on RPn by

∀x ∈ RPn, ∀u, v ∈ TxRPn, g(u, v) := 〈dπ−1(u), dπ−1(v)〉.

Here, dπ−1 is the di�erential of a local inverse π−1. If we choose another and di�erent
inverse π−1′ , then π−1′ = −π−1, so that dπ−1′ = −dπ−1 and the metric de�ned by π−1′

equals the �rst one.

5.3 Volumes and coarea formula

5.3.1 Riemannian volumes

We recall here some generalities for volumes in manifolds. If (Mn, g) is a smooth Riemannian
manifold, that is a manifold equipped with a metric g, that is a scalar product gx on
the tangent space TxM which is smooth in x. The de�nition of the latter means that in
local coordinates (xi)i, for any pair of tangent vectors v, w ∈ TxM , v =

∑n
i=1 vi∂xi and

w =
∑n

i=1wi∂xi ,

g(v, w) =
∑
i,j

gij(x)vivj

, where gij(x) is a smooth function. Now, the volume form associated to g is de�ned in
coordinates by the n-form √

(det(gij(x))ij)dx1 ∧ · · · ∧ dxn.

This de�nition does not depend on coordinates, since if (yj) are other coordinates, then

(dxi)i = (
∂xi
∂yj

)ij(dyj)j ,

so that by de�nition of the determinant,

dx1 ∧ · · · ∧ dxn = det(
∂xi
∂yj

)ijdy1 ∧ · · · ∧ dyn.
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Moreover, ∂xif =
∑

j ∂yjf
∂yj
∂xi

so that

∂xi =
∑
j

∂yj
∂yj
∂xi

,

so that the transformation matrix equals P := (
∂yj
∂xi

)ij . This implies

G := (gij(x))ij = (g(∂xi , ∂xj ))ij (5.3.1)

= P tG̃P, (5.3.2)

where G̃ is the matrix of the scalar product in the basis (∂yi)i, so that detG = det2 P det G̃,
and √

detGdx1 ∧ · · · ∧ dxn =
√

det G̃dy1 ∧ · · · ∧ dyn.

We denote this intrinsic (that is, independent of the coordinates) form the volume form
associated to the metric g and we dente it by dvolM .

Note that if G is the matrix of a scalar product on Rn, then
√

detG is the volume of
the volume generated by the vectors ∂xj . In particular, if this basis is orthonormal, then√

detG = 1. This is why in a Riemannian manifold we de�ne

∀U ⊂M, Vol(U) :=

∫
U
dvolM (x).

5.3.2 The coarea formula

We will need the following useful equation:

Lemma 5.3.1 For any linear map: F : (E, g)→ (E′, g′) between euclidean spaces of �nite
dimension, such that dimE′ ≤ dimE and F is onto. Then

√
detF ◦ F ∗ = | detF| kerF⊥ |,

where in the right-hand-side, det is computed in orthormal basis.

Proof. Let (ei)i be an ONB of kerF and (e′j)j an ONG of kerF⊥, and (fk)k an ONB of
imF . Then,

mat(F ) =
(
0 matF| kerF⊥

)
,

so that

matFF ∗ =
(
0 matFkerF⊥

)( 0
matF ∗| kerF⊥

)
= matF| kerF⊥matF

∗
| kerF⊥ ,

which gives the result since detmatF ∗ = detmatF . 2

Proof of Theorem 2.2.4. By Sard's theorem, since f is C1, the Lebesgue measure of the
set of critical points of f vanishes. Since for any such critical point x we have det df ◦df∗ = 0,
we can assume that any x in both integrals are regular for f . Fix x ∈ M , and choose local
coordinates (xi)i based on an open subset U 3 x, such that

〈∂xm−n+1 , · · · , ∂xm〉 t ker df(x).
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For this �x �rst coordinates. This gives a basis of TxM ; �nd a linear change of variables
to �nd a new basis that split in two parts that satis�es the condition, and apply this linear
change of variables to the coordinates themselves. De�ne

∀x ∈ U, φ(x) := (f(x), x′) ∈ Rn × Rm−n,

where x′ = (x1, · · ·xm−n). Then

ker dφ(x) = ker df(x) ∩ 〈∂x′′〉 = {0},

where x′′ = (xm−n+1, · · · , xm), so that by the local inversion theorem, φ is a local di�eo-
morphism. Note that for any x ∈M ,

vx := φ−1(f(x), ·) : Rm−n → M (5.3.3)

x′ 7→ φ−1(f(x), x′) (5.3.4)

is in fact a parametrization of the �ber f−1(x), so that

im dvx(x′) = Tvx(f(x),x′)f
−1(x) = ker df(v(f(x), x′)).

The volume form on Txf−1(x) in the coordinates x′ write

dvolf−1(x) = |det dvx|dx′

Decomposing TxM = ker df(x)⊥ ⊕ ker df(x) gives

dφ(x) =

(
df| ker df⊥ 0

∗ dv−1
x

)
,

so that in orthonormal basis,

| det dφ(x)| = |det df| ker df⊥ ||det dv−1
x |.

This implies∫
U
g
√

det df ◦ df∗dx =

∫
U
g| det dφ(x)| det dvx(φ(x)|dx (5.3.5)

=

∫
φ(U)

g ◦ φ−1|det dvx|dx′dx′′ (5.3.6)

=

∫
Rn

∫
φ(U)∩f−1(x)

g ◦ φ−1|det dvx(x′)|dx′dx′′ (5.3.7)

=

∫
x′′

∫
φ(U)∩f−1(x))

gdvolf−1(x)dx
′dx′′ (5.3.8)

Now, using a partition of unity compatible with the chart we have chosen, we obtain the
result. 2

5.4 Solutions of exercices
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5.4.1 Exercice 5.1.14

We have

Pr(f(x) > 0
∣∣ f(y) > 0) = 2

∫
a>0,b>0

e−
1
2
〈Σ−1(a,b),(a,b)〉 dadb

2π
√

det Σ
.

with

Σ =

(
1 e(x, y)

e(x, y) 1

)
so that

Σ−1 = (1− e(x, y)2)−1

(
1 −e(x, y)

−e(x, y) −1

)
and

Pr(f(x) > 0
∣∣ f(y) > 0) = 2

∫
a>0,b>0

e
− 1

2
a2+b2−2e(x,y)ab

1−e(x,y)2
dadb

2π(1− e(x, y)2)1/2
.

Using u = r
√

1− e(x, y)2 cos θ and a = r
√

1− e(x, y)2 sin θ, this gives, with

duda = rdr(1− e(x, y)2)dθ,

Pr(f(x) > 0
∣∣ f(y) > 0) = 2

√
1− e(x, y)2

∫ π/2

0

∫ +∞

0
e−

1
2
r2(1−e(x,y) sin(2θ))rdr

dθ

2π

=
1

π

√
1− e(x, y)2

∫ π/2

0

1

1− e(x, y) sin(2θ)
dθ.

Before going on, let us check that if f(x) is independent of f(y), then the result is 1/2. In
this case, e(x, y) = 0 and we see that it is true. Let us go on: let v = tan θ. Then,

Pr(f(x) > 0
∣∣ f(y) > 0) =

1

π

√
1− e(x, y)2

∫ +∞

0
(1− 2e(x, y)

v

1 + v2
))−1 dv

1 + v2

=
1

π

√
1− e2

∫ +∞

0
(1 + v2 − 2ve)−1dv

=
1

π

√
1− e2

∫ +∞

0

(
(v − e)2 + (1− e2)

)−1
dv

Now with

w =
v − e(x, y)√
1− e(x, y)2

this gives

Pr(f(x) > 0
∣∣ f(y) > 0) =

1

π

∫ +∞

− e(x,y)√
1−e(x,y)2

1

1 + w2
dw =

1

2
+

1

π
arctan

e(x, y)√
1− e(x, y)2

)
=

1

2
+

1

π
arcsin e(x, y).

Other method for the beginning. Using the conditional expectation. In this case,
Σ1 = Σ2 = 1 and Cov(f(x), f(y)) = e(x, y). By the former proposition, for any a ∈ R,

(f(x)|f(y) = a) ∼ N(e(x, y)a, 1− e(x, y)2).
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We have

Pr(f(x) > 0
∣∣ f(y) > 0) =

Pr(f(x) > 0 and f(y) > 0)

Pr(f(y) > 0)

= 2

∫ +∞

0
Pr(f(x) > 0

∣∣ f(y) = a)e−
1
2
a2 da√

2π

= 2

∫ +∞

0

( ∫ +∞

0
e
− 1

2
(u−e(x,y)a)2

1−e(x,y)2
du√

1− e(x, y)2
√

2π

)
e−

1
2
a2 da√

2π

= 2

∫ +∞

0

( ∫ +∞

0
e
− 1

2
u2−2e(x,y)ua+a2

1−e(x,y)2
du√

1− e(x, y)2
√

2π

da√
2π
.

5.4.2 Exercise 2.3.6

1. Let λ ∈ R, ∆f = λf . That means f ′′ + λf = 0. For λ < 0, the solutions are
Vect(e

√
−λθ, e

√
−λθ), which has no non-trivial 2π-periodic. Hence λ ≥ 0, and the

solutions are Vect(sin(
√
λθ), cos(

√
λθ)). By 2π-periodicity, λ = k2 with k ∈ N.

2. We have

‖ sin kx‖22 = ‖ cos kx‖22 :=

∫ 2π

0
cos2(kx)

dθ

2π
=:

∫ 2π

0

1

2
(1 + cos(2kx))

dθ

2π
=

1

2

if k ≥ 1, and 1 si k = 0. Moreover, these functions are orthogonal, so that {1, (
√

2 cos kx)k≥1, (
√

2 sin kx)k≥1}
is an ONB made of eigenfunctions, and we choose k ≤ L for the answer.

3. We have

eL(x, y) = 1 + 2
N∑
k=1

cos(kx) cos(ky) + sin(kx) sin(ky)

= 1 + 2

N∑
k=1

cos[k(x− y)] = <
N∑

k=−N
eik(x−y) =

= e−iN(x−y) e
i(2N+1)(x−y) − 1

ei(x−y) − 1
=

sin((N + 1
2)(x− y))

sin(x−y2 )

if ei(x−y) 6= 1 and in the other case. In the latter case, this is

5.4.3 Exercise 2.2.7

Let us use a classical trick that begins with

1 =

∫
Rn+1

e−
1
2
‖x‖2 dx

(
√

2π)n+1
.

De�ne f := ‖x‖2 on Rn+1. Then, ∇f(x) = 2x, so that by the coarea formula∫
Rn+1

e−
1
2
‖x‖2 dx
√

2π
n+1dx =

∫
R+

e−
1
2
t2 dx√

2π
n

∫
tSn

dvol
1

2‖x‖
dt

=

∫
R+

e−
1
2
t2 dx
√

2π
n+1 Vol(Sn)

tn

2
dt
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so that

Vol(Sn) = (
√

2π)n(

∫
R
tne−

1
2
t2 dt√

2π
)−1.

Since RPn is locally isometric to Sn and the covering π is 2 − 1, We obtain Vol(RPn) =
1
2 Vol(Sn). In particular, Length(RP 1) = π.

5.4.4 Exercise 2.3.5.

We have

∂2
xjyjeL = δij

1

(2π)n
L
n
2

+1

∫
‖ξ‖≤1

ξ2
i dξ + o(L

n
2

+1).

We have

n

∫
‖ξ‖≤1

ξ2
i dξ =

∫
‖ξ‖≤1

‖ξ‖2dξ = Vol(Sn−1)

∫ 1

0
r2rn−1dr

= Vol(Sn−1)(n+ 2) = nVol(Bn)(n+ 2).

5.4.5 Exercise 2.2.5

This is well-de�ned because u 7→ g′(u′, f(u)) is a linear form on E, and because g is non-
degenerate, φ : E → E∗ φ : v 7→ (u 7→ g(u, v)) ∈ E∗ is a one-to- one map, so that
f∗(u′) = φ−1(u 7→ g′(u′, f(u))).

5.4.6 Exercise 3.2.10

We see that qi(x, y) = 0 implies ‖y‖ ≤ 1 and |‖x‖2 − 2| ≤ 1, so that ‖x‖2 ≤ 3 and
‖x‖2 + ‖y‖2 ≤ 4, so that q−1

i (0) ⊂ B(0, 2). We have dxqi = 2(‖x‖2 − 2)
∑

i xidxi which is
onto if ‖x‖2 6= 2. If ‖x‖2 = 2, then ‖y‖2 = 1 and in this case dyqi is onto. Now we prove
that q−1

i (0) ∼ Si × Sn−i−1. For this, let

ϕ : Σi → Ri+1 × Rn−i (5.4.1)

(x, y) 7→ (x′, y′) =
(
x, (y, Y )

)
:=
(
x, (y, ‖x‖2 − 2)

)
. (5.4.2)

Then clearly, ϕ is injective and smooth, and y′ ∈ Sn−1−i. For �xed y′, x ∈ S(0,
√

2 + Y )
�nir

5.4.7 Exercise 3.2.14

Let n ≥ 1 and f : Rn → Rn be a Gaussian �eld, where f = (f1, · · · , fn). The goal of
this problem is, in a simple case, to estimate the number of zeros of f in an bounded open
set of Rn. We assume that there exists a Gaussian centered �eld g : Rn → R, such that
for any i ∈ {1, · · · , n}, fi is a copy of g, and all the f ′is are independent. We denote by
e : (Rn)2 → R the covariance function associated to g, and we assume that e is C1.

1. For any x ∈ Rn, write the variance matrix of the vector f(x) as related to e.
We have V arf(x) = (E(fi(x)fj(x))ij) = (δije(x, x))ij) = e(x, x)1n
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2. For any x ∈ Rn, compute the density φf(x)(0) as a function of e.
We have

φf(x)(0) =
1

(2πe(x, x))n/2
.

3. For any x ∈ Rn, denote by Df(x) ∈ Mn(R) the Jacobian matrix of f at x in the
canonical basis. Write the variance matrix of the vector Df(x) as a function of e
and its derivative. In this question we consider that a matrix in Mn(R) is a vector
(mij)1≤i,j≤n ∈ Rn2

, however we keep the notations 1 ≤ i, j ≤ n instead of 1 ≤ k ≤ n2.
We have

V arDf(x) = V ar
(
Mat(df(x), Bcan)

)
= V ar

(
(∂jfi|x)i,j)

)
= (E(∂jfi(x)∂`fk(x))1≤i,j,k,`≤n) = (δik∂

2
xjy`

e|x=y)ij,k`.

4. Write Cov(f(x), Df(x)).
We have

Cov(f(x), Df(x)) = (Efi(x)∂`fk(x))1≤i,k,`≤n = (δik∂`e)1≤i,k,`≤n.

Til the end of the problem we assume that there exists a smooth ρ : R+ → R such that

∀x, y ∈ Rn, e(x, y) = ρ(−1

2
‖x− y‖2).

5. Write V arf(x), V arDf(x) and Cov(f(x), Df(x)) as a function of ρ and its derivatives.
We have V arf(x) = ρ(0)1n. Besides,

∂xje = ρ′(−1

2
‖x− y‖2)(−(xj − yj))

and ∂2
xiy`

e|x=y = δi`ρ
′(0). so that

V arDf(x) = ρ′(0)1n2 .

Lastly, Cov(f(x), Df(x)) = 0n3 .

6. Let U ⊂ Rn be an open subset and

N(f, U) := #{x ∈ U, f(x) = 0}.

Show that
EN(f, U) = cV ol(U)αρ(0)βρ′(0)γ ,

with α, β, γ and c constants which depend only on n. Give the values of α, β and γ
and write c as an integral over Mn(R).
By Kac-Rice, we have

EN(f, U) =

∫
U
E(| detDf(x)| |f(x) = 0)φf(x)(0)dx,
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where dx is the Lebesgue measure. Since Cov(Df(x), f(x)) = 0, the Gaussian
vectors Df(x) and f(x) are independent, so that

E(|detDf(x)| |f(x) = 0) = E(|detDf(x)|)

=

∫
M∈Mn(R)

|detM |e−
1
2
〈(V arDf(x))−1M,M〉dµ(M),

with

dµ(M) =

∏
dMij√

(2π)n2 detV arDf(x)
.

Since V arDf(x) = ρ′(0)1n2, the change of variables M =
√
ρ′(0)N gives

E(|detDf(x)| |f(x) = 0) =
√
ρ′(0)

n
∫
N∈Mn(R)

|detN |e−
1
2
‖N‖2

∏
dNij√

(2π)n2
,

hence

EN(f, U) =
( ρ′(0)

2πρ(0)

)n/2
V ol(U)

∫
N∈Mn(R)

| detN |e−
1
2
‖N‖2

∏
dNij√

(2π)n2
.

7. Let M ∈Mn(R), and C1, · · · , Cn its column vectors. Show that

| detM | =
n∏
i=1

‖C⊥i ‖,

where for any i ≥ 2, C⊥i denotes the orthogonal projection onto V ect⊥(C1, · · · , Ci−1),
and C⊥1 = C1.

8. Let M ∈ Mn(R) be random, such that its coe�cients are independent and follow a
normal law N(0, 1).

(a) Show that

E(|detM |) =
n∏
k=1

E(‖Xk‖),

where for any k, Xk ∈ Rk is a random vector which coe�cients are independent
and follow a normal law N(0, 1).

(b) Show that E(‖Xk‖) =
√

2π V ol(S
k−1)

V ol(Sk)
.

We have

E(‖Xk‖) =

∫
X∈Rk

‖X‖e−
1
2
‖X‖2 dX

(2π)k/2
(5.4.3)

=

∫ ∞
0

re−
1
2
r2
rk−1dr

V ol(Sk−1)

(2π)k/2
. (5.4.4)

Moreover

1 =

∫
x∈Rk+1

e−
1
2
‖x‖2 dx
√

2π
k+1

= V ol(Sk)

∫
rne−

1
2
r2 dr
√

2π
k+1

,

which gives the result.

(c) Deduce E(| detM |) as a function for V ol(Sn).
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5.4.8 Proof of Lemma 4.2.10

By Lemma 5.1.5,

φX(x) =

∫
λ∈RN

ei〈x−m,λ〉e−
1
2
〈Σλ,λ〉 dλ

(2π)N
,

so that for i 6= j, remembering that 〈Σλ, λ〉 =
∑

i,j σijλiλj , and σji = σij ,

∂

σij
φX(x) =

∫
λ∈RN

ei〈x−m,λ〉(−1

2
(2λiλj))e

− 1
2
〈Σλ,λ〉 dλ

(2π)N
,

whereas for every i, j,

∂

∂xi∂xj
φX(x) =

∫
λ∈RN

(−iλi)(−iλj)ei〈x−m,λ〉(−
1

2
(2λiλj))e

− 1
2
〈Σλ,λ〉 dλ

(2π)N
,

which gives the result for i 6= j.
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