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lim inf
n,m→∞

P(crossing) > c > 0?
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P(crossing) →
n,λ→∞

0
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P(crossing) →
n,λ→∞

1
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lim inf
n→∞

P(crossing) ≥ c > 0 ?
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Squares

With

I symmetry between + and -

I symmetry between x1 and x2

then both probabilities are equal...
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∀n, P(crossing) = 1/2.
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Theorem (Russo, Seymour-Welsh 1978) Let R ⊂ R2 be a
�xed rectangle. Then there exists c > 0,

lim inf
n→∞

P(crossing of nR) > c.
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Question: Let f : R2 → R a be random smooth function and
�x R ⊂ R2. Does it exist c > 0,

lim inf
n→∞

P
(
{f > 0} crosses nR

)
> c?
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Let f : R2 → R be

I a centered Gaussian �eld, that is ∀x1, · · ·xN ∈ R2 any
linear combination of the (f(xi))i=1,··· ,N is a centered
Gaussian variable.

I We assume in this course that its covariant function is
symmetric:

e(x, y) := E
(
f(x)f(y)

)
= k(‖x− y‖).

I Almost surely, f is C2. This is true if is e is C3.
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Two universal models with geometric origin

I The random wave model (Riemannian)

I The Bargmann-Fock model (algebraic)
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The random wave model

g(r, θ) =

∞∑
m=−∞

amJ|m|(r)e
imθ,

(am)m are i.i.d. following N(0, 1) and Jm is the m-th Bessel
function.

I Limit model for the rescaled spherical harmonics.

I Universal from compact Riemannian manifolds.
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Conjecture (Bogomolny-Schmidt 2007) RSW should hold for
this model.
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The Bargmann-Fock model

∀(x1, x2) ∈ R2, f(x1, x2) =

∞∑
i,j=0

aij
xi1x

j
2√

i!j!
e−

1
2
‖x‖2 ,

(aij)i,j≥0 are i.i.d. following N(0, 1).

I Limit model for the rescaled polynomials.

I Universal from (complex) algebraic geometry.
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Theorem (Be�ara-G 2016) RSW holds for Bargmann-Fock:
for any rectangle R, there exists c > 0 such that

lim inf
n→∞

P
(
{f > 0} crosses nR

)
> c.
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Corollary For Bargmann-Fock,

∃α > 0, ∀`, n, P(one arm) <
( `
n

)α
.
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Corollary (Alexander 1996) Almost surely there is no
in�nite component of {f > 0}.

Theorem (Rivera-Vanneuville 2017) For any ε > 0, almost
surely {f > −ε} as an in�nite component.
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Theorem (Belyaev-Muirhead-Wigman 2017) RSW holds
for polynomials with the complex Fubini-Study measure.
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Prequel: random real polynomials

Kostlan or complex Fubini-Study measure:

P =
∑

i+j+k=d

aijk
Xi

0X
j
1X

k
2√

i!j!k!
,

(aijk)i+j+k=d i.i.d. following N(0, 1).

Rescaling: For every (x1, x2) ∈ R2,

P
(
1,

(x1, x2)√
d

)
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The natural scale for degree d polynomials is 1/
√
d

Theorem (G-Welschinger 2014) Let x ∈ S2 and Σ ∈ R2 be
any nested union of circles. Then with uniform probability in d,
{P = 0} ∩B(x, 1√

d
) is a di�eomorphic copy of Σ.

Every topology happens at the natural scale

25/71



The natural scale for degree d polynomials is 1/
√
d

Theorem (G-Welschinger 2014) Let x ∈ S2 and Σ ∈ R2 be
any nested union of circles. Then with uniform probability in d,
{P = 0} ∩B(x, 1√

d
) is a di�eomorphic copy of Σ.

Every topology happens at the natural scale

25/71



The natural scale for degree d polynomials is 1/
√
d

Theorem (G-Welschinger 2014) Let x ∈ S2 and Σ ∈ R2 be
any nested union of circles. Then with uniform probability in d,
{P = 0} ∩B(x, 1√

d
) is a di�eomorphic copy of Σ.

Every topology happens at the natural scale

25/71



The natural scale for a Bargmann-Fock function is 1

Theorem (Nazarov-Sodin 2016)

E
(
#connected components of {f = 0} in BR

)
∼

R→∞
aR2.

There is a uniform density of components of size one.
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Sketch of the proof of the BF-RSW theorem

simpli�cations & improvements

provided by

Belyaev-Muirhead and Rivera-Vanneuville
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Natural idea: Find common features with Bernoulli
percolation:

I Symmetries

I Uniform crossing of squares

I (Asymptotic) independence

I Positive correlation of positive crossings (FKG)
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FKG

FKG (Fortuin-Kasteleyn-Ginibre) implies

P
(
crossing of R and crossing of S

)
≥

P(crossing of R) P(crossing of S).
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= Prob (crossing the rectangle)2
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= Prob (crossing the rectangle)2
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= Prob (crossing the rectangle)2
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P(circuit in the annulus) ≥ P(crossing the rectangle)4
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I Symmetries

I Uniform crossing of squares

I Asymptotic independence

I Positive correlation of positive crossings (FKG)

Theorem (Tassion 2016) If f : R2 → {−1, 1} is random and
satis�es these conditions, then it satis�es RSW.
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Symmetries for Bargamnn-Fock?

I f centered ⇒ symmetry between ±1.

I e(x, y) = k(‖x− y‖2) ⇒ symmetries by

1. π/2-rotation,
2. translation
3. and symmetry by horizontal axis.

These are the symmetries needed by Tassion.
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I Symmetries X

I Uniform crossing of squares

I Asymptotic independence

I Positive correlation of positive crossings (FKG)
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Independence

Correlation function for Bargmann-Fock:

e(x, y) = exp(−‖x− y‖2)

seems very decorrelating!

However...

... because of the analytic continuation phenomenon.
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Solution : blurring by discretization

I T = Union Jack lattice

I V = its vertices,

I sign f|V : V → {±1}.
I Site percolation: the edge is positive i� its extremities are.
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Is the discretization trustful?

1. If T is too coarse, then no.

2. If T is very thin, then yes, but... dependence comes back.
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Is the discretization trustful?

Topological Lemma If in a rectangle the nodal lines of f
crosses only once every edge of the lattice, then

{f > 0} crosses R⇔ the discretization site percolation crosses R.
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Quantitative blurring

Hypotheses: f , T , V, e, k is C1, k′(0) 6= 0, Bn := [−n, n]2.

Theorem (Be�ara-G 2016) There exists C > 0 such that for
any n > 1,

P
[
∀e ∈ 1

n3
V ∩Bn, #{f = 0 ∩ e} ≤ 1

]
≥ 1− C

n
.

Corollary Discretization site percolation on 1
n3V ∩Bn is

equivalent to the continuous one with the same probability.

40/71



Quantitative blurring

Hypotheses: f , T , V, e, k is C1, k′(0) 6= 0, Bn := [−n, n]2.

Theorem (Be�ara-G 2016) There exists C > 0 such that for
any n > 1,

P
[
∀e ∈ 1

n3
V ∩Bn, #{f = 0 ∩ e} ≤ 1

]
≥ 1− C

n
.

Corollary Discretization site percolation on 1
n3V ∩Bn is

equivalent to the continuous one with the same probability.

40/71



Fear: This gives

#(Bn ∩
1

n3
V) ∼n n8 points!

This is a threat for independence. It must be counterbalanced
by the decorrelation of the �eld.
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Quantitative dependence

Theorem (

Piterbarg 1982

, Be�ara-G 2016) Let f : V → R
be a centered symmetric Gaussian over V a lattice. Then, there
exists C > 0, such that for any R, S two disjoint open sets in R2,

dependence(R,S) :=

max
A crossing in R
B crossing in S

|P(A and B)− P(A)P(B)|

≤

C(# vertices in R and S)2 max
x∈R
y∈S

|e(x, y)|√
1− e(x, y)2

.

The Ultimate Fight: Information versus Oblivion
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Tassion's condition:

dependence
(
A(n, 2n), A(3n, n log n)

)
→n→∞ 0,

where A(n, n′) = Bn′ \Bn.

For Bargmann-Fock:

1. Discretize in Bn logn over 1
(n logn)3

T .
2. For this discretization,

dependence
(
A(n, 2n), A(3n, n log n)

)
≤

(n log n)12 exp(−n2)√
1− e−2n2

→n 0 ;

3. The same holds for the continuous �eld with a further cost
due to the discretization: C

n logn →n 0.

Oblivion wins!

43/71



Tassion's condition:

dependence
(
A(n, 2n), A(3n, n log n)

)
→n→∞ 0,

where A(n, n′) = Bn′ \Bn.

For Bargmann-Fock:

1. Discretize in Bn logn over 1
(n logn)3

T .

2. For this discretization,

dependence
(
A(n, 2n), A(3n, n log n)

)
≤

(n log n)12 exp(−n2)√
1− e−2n2

→n 0 ;

3. The same holds for the continuous �eld with a further cost
due to the discretization: C

n logn →n 0.

Oblivion wins!

43/71



Tassion's condition:

dependence
(
A(n, 2n), A(3n, n log n)

)
→n→∞ 0,

where A(n, n′) = Bn′ \Bn.

For Bargmann-Fock:

1. Discretize in Bn logn over 1
(n logn)3

T .
2. For this discretization,

dependence
(
A(n, 2n), A(3n, n log n)

)
≤

(n log n)12 exp(−n2)√
1− e−2n2

→n 0 ;

3. The same holds for the continuous �eld with a further cost
due to the discretization: C

n logn →n 0.

Oblivion wins!

43/71



Tassion's condition:

dependence
(
A(n, 2n), A(3n, n log n)

)
→n→∞ 0,

where A(n, n′) = Bn′ \Bn.

For Bargmann-Fock:

1. Discretize in Bn logn over 1
(n logn)3

T .
2. For this discretization,

dependence
(
A(n, 2n), A(3n, n log n)

)
≤

(n log n)12 exp(−n2)√
1− e−2n2

→n 0 ;

3. The same holds for the continuous �eld with a further cost
due to the discretization: C

n logn →n 0.

Oblivion wins!

43/71



Tassion's condition:

dependence
(
A(n, 2n), A(3n, n log n)

)
→n→∞ 0,

where A(n, n′) = Bn′ \Bn.

For Bargmann-Fock:

1. Discretize in Bn logn over 1
(n logn)3

T .
2. For this discretization,

dependence
(
A(n, 2n), A(3n, n log n)

)
≤

(n log n)12 exp(−n2)√
1− e−2n2

→n 0 ;

3. The same holds for the continuous �eld with a further cost
due to the discretization: C

n logn →n 0.

Oblivion wins!

43/71



I Symmetries X

I Uniform crossing of squares X

I Asymptotic independence X

I Positive correlation of positive crossings (FKG)
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FKG

FKG (Fortuin-Kasteleyn-Ginibre) implies

P
(
positive crossing of R and positive crossing of S

)
≥

P(positive crossing of R) . P(positive crossing of S).
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Theorem (Loren Pitt 1982) For a centered Gaussian �eld,

FKG⇔ positive correlation function.

Here: e(x, y) = exp(−‖x− y‖2).

I Symmetries X

I Uniform crossing of squares X

I Asymptotic independence X

I Positive correlation of positive crossings (FKG) X
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RSW+FKG

P(circuit in the annulus) ≥ P(crossing the rectangle)4
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RSW+FKG+weak dependence

P <
( `
n

)α
.
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' (1− c)log2(n
`

) = (
`

n
)− log2(1−c).
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`

n
)− log2(1−c).
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Why Bargmann-Fock and not Random Waves?

I Bargmann-Fock:

e(x, y) = exp(−‖x− y‖2).

1. positive
2. fast decay → weak dependence

I Random waves:

e(x, y) = J0(‖x− y‖)

1. oscillating
2. slow decay → strong dependence
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Tools and proofs

1. Discretization scheme

2. Asymptotic independence

3. Pitt's theorem (FKG)

4. Tassion's theorem
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Discretization scheme

Theorem There exists C > 0 such that for any n > 1,

P
[
∀e ∈ 1

n3
E ∩Bn, #{f = 0 ∩ e} ≤ 1

]
≥ 1− C

n
.
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Theorem (Kac-Rice formula)

Let f be a Gaussian �eld on
an interval I ⊂ R, such that almost surely, f is C1 and that for
any x 6= y ∈ I, cov(f(x), f(y)) is de�nite. If

NI := #{f = 0} ∩ I,

then

E
(
NI(NI − 1)

)
=

∫
I2
E
(
|f ′(x)||f ′(y)|

∣∣ f(x) = f(y) = 0
)

φ(f(x),f(y))(0, 0)dxdy.

where φX(u) is the Gaussian density of X ∈ R2 at u ∈ R2.

Corollary If f is C2 and k′(0) 6= 0, then

E(NI(NI − 1)) ≤ O(|I|3).
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Proof of the discretization theorem.

We want to prove that with high probability,

∀e ∈ 1

n3
E ∩Bn, Ne ≤ 1.

By Markov inequality and Kac-Rice,

P
[
Ne > 1

]
= P

[
Ne(Ne − 1) ≥ 1

]
≤ C|e|3.

Hence,

P
[
∀e ∈ 1

n3
E ∩Bn, Ne ≤ 1

]
≥ 1−#{e ∈ 1

n3
E ∩Bn}(C|e|3)

≥ 1− Cn2n6 1

n9
= 1− C/n.

�
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Proof of the Corollary. We have

E(N(N − 1)) =

∫
I2
E
(
|f ′(x)||f ′(y)|

∣∣ f(x) = f(y) = 0
)

φ(f(x),f(y))(0, 0)dxdy.

When |I| → 0,

1.
∫
I2 dxdy ∼ |I|

2;

2. f(x) = f(y) implies |f ′(x)||f ′(y)| ≤ |I|2;
3. φ(f(x),f(y))(0, 0) ∼ |I|−1 since (f(x), f(y)) degenerates.

This gives the |I|3.
�
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Kac-Rice �rst moment formula

ENI =

∫
I
E
(
|f ′(x)| | f(x) = 0

)
φf(x)(0)dx.

"Proof".

I If f vanishes transversally on I,

NI = lim
ε→0

1

2ε

∫
I
|f ′(x)|1|f |≤εdx,

I so that

ENI =

∫
I
E
(
|f ′(x)| lim

ε→0

1

2ε
1|f |≤ε

)
dx.

�
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1. Discretization scheme X

2. Asymptotic independence

3. Pitt's theorem (FKG)

4. Tassion's theorem
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Asymptotic independence

Theorem (Piterbarg 1982- Be�ara-G 2016 ) f : V → R
centered symmetric Gaussian over V a lattice. Then, there exists
C > 0, such that for any R, S two disjoint open sets in R2,

dependence(R,S) :=

max
A crossing in R
B crossing in S

|P(A and B)− P(A)P(B)|

≤

C(# vertices in R and S)2 max
x∈R
y∈S

|e(x, y)|√
1− e(x, y)2

The cost for independency
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Gaussian reminder

A real valued random variable X ∼ N(0, σ) i� σ = E(X2) and
for any Borelian A ⊂ R,

P(X ∈ A) =

∫
A
φX(u)du,

with

φX(u) =
1√
2πσ

exp
(
− 1

2
〈σ−1u, u〉

)
.
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X = (Xi) ∈ RN centered non-degenerate Gaussian

means that if

Σ :=
(
E(XiXj)

)
1≤i,j≤N ,

then for any Borelian A ⊂ RN ,

P(X ∈ A) =

∫
A
φX(u)du,

with

φX(u) =
1√

(2π)N det Σ
exp

(
− 1

2
〈Σ−1u, u〉

)
.

If X ∈ RN and X ′ ∈ RN ′ ,

cov(X,X ′) =
(
E(XiX

′
j)
)

1≤i≤N,1≤j≤N ′ .

Fact. X and X ′ are independent i� cov(X,X ′) = 0.
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Proof of Plackett-Piterbarg theorem Let

U :=
(
f(x)

)
x∈R∩V V :=

(
f(y)

)
y∈S∩V

X1 := (U, V ) X0 := (U, V )ind

where

I X0 and X1 are independent, and

I for X0, V is an independent copy of f .

For simplicity, let

I A be the event that there exists a positive crossing in R

I B the same in S.

We want a bound for

P[A ∩B]− P[A]P[B] = EX1(1A∩B)− EX0(1A∩B).
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Interpolate
Xt :=

√
tX1 +

√
1− tX0.

Then Xt has variance

Σt =

(
cov(U,U) t cov(U, V )

t cov(U, V )T cov(V, V )

)
with

cov (U, V ) = (e(x, y))x∈R∩V,y∈S∩V .
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Then

EX0(1A∩B)− EX1(1A∩B) =

∫ 1

0

d

dt
EXt(1A∩B)dt

=

∫ 1

0
dt

∫
(u,v)∈A×B

dφXt

dt
(u, v)d(u, v)

=
∑
i≤j

∫ 1

0
dt

∫
A×B

dσt,ij
dt

∂φXt

∂σt,ij
d(u, v)

with

dσt,ij
dt

=

{
e(x, y) if i = x ∈ R ∩ V and j = y ∈ S ∩ V
0 in the other cases.
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A very Gaussian equality

∀i 6= j,
∂φX
∂σij

=
∂2φX
∂ui∂uj

.

Proof. Use

φX(u) =

∫
ξ∈RN

ei〈u,ξ〉e−
1
2
〈Σξ,ξ〉 dξ

√
2π

N
.
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Then

P[A ∩B]− P[A]P[B] =
∑
x∈R
y∈S

e(x, y)

∫ 1

0
dt

∫
A×B

∂2φXt

∂ux∂vy
d(u, v).

Note that that

I if (fx)x∈R∩V ∈ A, then for any gx ≥ fx, (gx)x∈R∩V ∈ A;
I Since A depends only on the sign of fx, then A intersects

any coordinate axis Rfx along R or R+,

I depending if the sign of fx is crucial for the crossing or not.
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Integrating by parts gives, with N = #
[
(R ∪ S) ∩ V

]
,

∑
x,x′

e(x, x′)

∫ 1

0
dt

∫
(A∩B)∩(RN−2×{0}2) or ∅

φXt(X,X
x = Xx′ = 0)

dX

dXxdXx′
.

Note that if e(x, y) ≥ 0, we have proved that

P[A ∩B]− P[A]P[B] ≥ 0

which is Pitt's theorem.
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In general,∫
Z∈A,Y=0

φZ,Y (Z, 0)dZ = lim
ε→0

1

ε

∫
Z∈A,Y ∈[0,ε]

φZ,Y dZdY

= lim
ε→0

1

ε
Pr[(Z, Y ) ∈ A× [0, ε]

]
= lim

ε→0

1

ε

Pr[(Z, Y ) ∈ A× [0, ε]
]

Pr(Y ∈ [0, ε])
Pr
[
Y ∈ [0, ε]

]
= Pr

[
Z ∈ A|Y = 0]φY (0).
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]
= Pr

[
Z ∈ A|Y = 0]φY (0).
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Therefore, applying the latter to Y = (X,X ′) and Z = X
(Xx,Xx′ )

,

∫
(A∩B)∩(RN−2×{0}2) or ∅

φXt(X,X
x = Xx′ = 0)

dX

dXxdXx′

=
Pr
[
(A ∩B) or ∅

∣∣Xx = Xx′ = 0
]√

2π(1− e(x, y)2

]
where we used that

cov(X,X ′) =

(
e(x, x) e(x, x′)
e(x′, x) e(x′, x′)

)
.

This gives

∣∣P[A ∩B]− P[A]P[B]
∣∣ ≤ (#R ∩ V)(#S ∩ V) max

x∈R
y∈S

|e(x, y)|√
2π(1− e(x, y)2)

.

�
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1. Discretization scheme X

2. Asymptotic independence X

3. Pitt's theorem (FKG) X

4. Tassion's theorem
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Theorem (Tassion) If f : R2 → {−1, 1} is random and
satis�es

I Symmetries

I Uniform crossing of squares

I Asymptotic independence

I Positive correlation of positive crossings (FKG)

then it satis�es RSW.
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Some open problems

Not too hard

∅

Hard

RSW for fast decorrelating �elds without positive correlation

Very hard

RSW for random waves

Super very hard

Prove a Cardy formula/conformal invariance
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