Percolation and Gaussian fields

Workshop on Random Real Algebraic Geometry
Middle East Technical University North Cyprus

Damien Gayet (Institut Fourier, Grenoble)
Lectures based on a common work with Vincent Beffara
Image: Alejandro Rivera

$\liminf _{n, m \rightarrow \infty} \mathbb{P}($ crossing $)>c>0 ?$
$n, m \rightarrow \infty$

$$
\mathbb{P}(\text { crossing }) \underset{n, \lambda \rightarrow \infty}{\rightarrow} 0
$$

\mathbb{P} (crossing) $\underset{n, \lambda \rightarrow \infty}{\rightarrow} 1$

$\liminf _{n \rightarrow \infty} \mathbb{P}($ crossing $) \geq c>0 ?$
$n \rightarrow \infty$

Squares

Squares

With

- symmetry between + and -
- symmetry between x_{1} and x_{2}
then both probabilities are equal...

$\forall n, \mathbb{P}($ crossing $)=1 / 2$.

Theorem (Russo, Seymour-Welsh 1978) Let $R \subset \mathbb{R}^{2}$ be a fixed rectangle. Then there exists $c>0$,

$$
\liminf _{n \rightarrow \infty} \mathbb{P}(\text { crossing of } n R)>c
$$

Question: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a be random smooth function and fix $R \subset \mathbb{R}^{2}$. Does it exist $c>0$,

$$
\liminf _{n \rightarrow \infty} \mathbb{P}(\{f>0\} \text { crosses } n R)>c ?
$$

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be

- a centered Gaussian field, that is $\forall x_{1}, \cdots x_{N} \in \mathbb{R}^{2}$ any linear combination of the $\left(f\left(x_{i}\right)\right)_{i=1, \cdots, N}$ is a centered Gaussian variable.
- We assume in this course that its covariant function is symmetric:

$$
e(x, y):=\mathbb{E}(f(x) f(y))=k(\|x-y\|)
$$

- Almost surely, f is C^{2}. This is true if is e is C^{3}.

Two universal models with geometric origin

- The random wave model (Riemannian)
- The Bargmann-Fock model (algebraic)

The random wave model

$$
g(r, \theta)=\sum_{m=-\infty}^{\infty} a_{m} J_{|m|}(r) e^{i m \theta}
$$

$\left(a_{m}\right)_{m}$ are i.i.d. following $N(0,1)$ and J_{m} is the m-th Bessel function.

The random wave model

$$
g(r, \theta)=\sum_{m=-\infty}^{\infty} a_{m} J_{|m|}(r) e^{i m \theta}
$$

$\left(a_{m}\right)_{m}$ are i.i.d. following $N(0,1)$ and J_{m} is the m-th Bessel function.

- Limit model for the rescaled spherical harmonics.

The random wave model

$$
g(r, \theta)=\sum_{m=-\infty}^{\infty} a_{m} J_{|m|}(r) e^{i m \theta}
$$

$\left(a_{m}\right)_{m}$ are i.i.d. following $N(0,1)$ and J_{m} is the m-th Bessel function.

- Limit model for the rescaled spherical harmonics.
- Universal from compact Riemannian manifolds.

Conjecture (Bogomolny-Schmidt 2007) RSW should hold for this model.

The Bargmann-Fock model

$$
\forall\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, f\left(x_{1}, x_{2}\right)=\sum_{i, j=0}^{\infty} a_{i j} \frac{x_{1}^{i} x_{2}^{j}}{\sqrt{i!j!}} e^{-\frac{1}{2}\|x\|^{2}}
$$

$\left(a_{i j}\right)_{i, j \geq 0}$ are i.i.d. following $N(0,1)$.

The Bargmann-Fock model

$\left(a_{i j}\right)_{i, j \geq 0}$ are i.i.d. following $N(0,1)$.

- Limit model for the rescaled polynomials.

The Bargmann-Fock model

$\left(a_{i j}\right)_{i, j \geq 0}$ are i.i.d. following $N(0,1)$.

- Limit model for the rescaled polynomials.
- Universal from (complex) algebraic geometry.

Theorem (Beffara-G 2016) RSW holds for Bargmann-Fock: for any rectangle R, there exists $c>0$ such that

$$
\liminf _{n \rightarrow \infty} \mathbb{P}(\{f>0\} \text { crosses } n R)>c .
$$

Corollary For Bargmann-Fock,

$$
\exists \alpha>0, \forall \ell, n, \mathbb{P}(\text { one arm })<\left(\frac{\ell}{n}\right)^{\alpha}
$$

Corollary (Alexander 1996) Almost surely there is no infinite component of $\{f>0\}$.

Corollary (Alexander 1996) Almost surely there is no infinite component of $\{f>0\}$.

Theorem (Rivera-Vanneuville 2017) For any $\epsilon>0$, almost surely $\{f>-\epsilon\}$ as an infinite component.

Theorem (Belyaev-Muirhead-Wigman 2017) RSW holds for polynomials with the complex Fubini-Study measure.

Prequel: random real polynomials

Kostlan or complex Fubini-Study measure:

$$
P=\sum_{i+j+k=d} a_{i j k} \frac{X_{0}^{i} X_{1}^{j} X_{2}^{k}}{\sqrt{i!j!k!}}
$$

$\left(a_{i j k}\right)_{i+j+k=d}$ i.i.d. following $N(0,1)$.

Prequel: random real polynomials

Kostlan or complex Fubini-Study measure:

$$
P=\sum_{i+j+k=d} a_{i j k} \frac{X_{0}^{i} X_{1}^{j} X_{2}^{k}}{\sqrt{i!j!k!}}
$$

$\left(a_{i j k}\right)_{i+j+k=d}$ i.i.d. following $N(0,1)$.
Rescaling: For every $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$,

$$
P\left(1, \frac{\left(x_{1}, x_{2}\right)}{\sqrt{d}}\right)
$$

Prequel: random real polynomials

Kostlan or complex Fubini-Study measure:

$$
P=\sum_{i+j+k=d} a_{i j k} \frac{X_{0}^{i} X_{1}^{j} X_{2}^{k}}{\sqrt{i!j!k!}}
$$

$\left(a_{i j k}\right)_{i+j+k=d}$ i.i.d. following $N(0,1)$.
Rescaling: For every $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$,

$$
P\left(1, \frac{\left(x_{1}, x_{2}\right)}{\sqrt{d}}\right)=\sum_{i+j \leq d} a_{i, j} \frac{1}{\sqrt{d-(i+j))!i!j!}} \frac{x_{1}^{i} x_{2}^{j}}{\sqrt{d}^{i+j}}
$$

Prequel: random real polynomials

Kostlan or complex Fubini-Study measure:

$$
P=\sum_{i+j+k=d} a_{i j k} \frac{X_{0}^{i} X_{1}^{j} X_{2}^{k}}{\sqrt{i!j!k!}}
$$

$\left(a_{i j k}\right)_{i+j+k=d}$ i.i.d. following $N(0,1)$.
Rescaling: For every $\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$,

$$
\begin{aligned}
P\left(1, \frac{\left(x_{1}, x_{2}\right)}{\sqrt{d}}\right)= & \sum_{i+j \leq d} a_{i, j} \frac{1}{\sqrt{d-(i+j))!i!j!}} \frac{x_{1}^{i} x_{2}^{j}}{\sqrt{d}^{i+j}} \\
& \underset{d \rightarrow \infty}{\sim} \frac{1}{\sqrt{d!}} \sum_{i, j=0}^{\infty} a_{i, j} \frac{x_{1}^{i} x_{2}^{j}}{\sqrt{i!j!}} .
\end{aligned}
$$

The natural scale for degree d polynomials is $1 / \sqrt{d}$

The natural scale for degree d polynomials is $1 / \sqrt{d}$

Theorem (G-Welschinger 2014) Let $x \in S^{2}$ and $\Sigma \in \mathbb{R}^{2}$ be any nested union of circles. Then with uniform probability in d, $\{P=0\} \cap B\left(x, \frac{1}{\sqrt{d}}\right)$ is a diffeomorphic copy of Σ.

The natural scale for degree d polynomials is $1 / \sqrt{d}$

Theorem (G-Welschinger 2014) Let $x \in S^{2}$ and $\Sigma \in \mathbb{R}^{2}$ be any nested union of circles. Then with uniform probability in d, $\{P=0\} \cap B\left(x, \frac{1}{\sqrt{d}}\right)$ is a diffeomorphic copy of Σ.

Every topology happens at the natural scale

The natural scale for a Bargmann-Fock function is 1

The natural scale for a Bargmann-Fock function is 1

Theorem (Nazarov-Sodin 2016)
$\mathbb{E}\left(\#\right.$ connected components of $\{f=0\}$ in $\left.B_{R}\right) \underset{R \rightarrow \infty}{\sim} a R^{2}$.

The natural scale for a Bargmann-Fock function is 1

Theorem (Nazarov-Sodin 2016)
$\mathbb{E}\left(\#\right.$ connected components of $\{f=0\}$ in $\left.B_{R}\right) \underset{R \rightarrow \infty}{\sim} a R^{2}$.
There is a uniform density of components of size one.

Sketch of the proof of the BF-RSW theorem

Sketch of the proof of the BF-RSW theorem

simplifications 83 improvements
provided by
Belyaev-Muirhead and Rivera-Vanneuville

Natural idea: Find common features with Bernoulli percolation:

Natural idea: Find common features with Bernoulli percolation:

- Symmetries

Natural idea: Find common features with Bernoulli percolation:

- Symmetries
- Uniform crossing of squares

Natural idea: Find common features with Bernoulli percolation:

- Symmetries
- Uniform crossing of squares
- (Asymptotic) independence

Natural idea: Find common features with Bernoulli percolation:

- Symmetries
- Uniform crossing of squares
- (Asymptotic) independence
- Positive correlation of positive crossings (FKG)

FKG

FKG (Fortuin-Kasteleyn-Ginibre) implies

$$
\begin{array}{ll}
\mathbb{P}(\text { crossing of } R & \text { and } \\
& \geq \\
\mathbb{P}(\text { crosssing of } S) \\
\geq & \mathbb{P}(\text { crossing of } S) .
\end{array}
$$

$$
=\text { Prob }(\text { crossing the rectangle })^{2}
$$

$\mathbb{P}($ circuit in the annulus $) \geq \mathbb{P}(\text { crossing the rectangle })^{4}$

- Symmetries
- Uniform crossing of squares
- Asymptotic independence
- Positive correlation of positive crossings (FKG)
- Symmetries
- Uniform crossing of squares
- Asymptotic independence
- Positive correlation of positive crossings (FKG)

Theorem (Tassion 2016) If $f: \mathbb{R}^{2} \rightarrow\{-1,1\}$ is random and satisfies these conditions, then it satisfies RSW.

Symmetries for Bargamnn-Fock?

- f centered \Rightarrow symmetry between ± 1.

Symmetries for Bargamnn-Fock?

- f centered \Rightarrow symmetry between ± 1.
- $e(x, y)=k\left(\|x-y\|^{2}\right) \Rightarrow$ symmetries by

1. $\pi / 2$-rotation,
2. translation
3. and symmetry by horizontal axis.

Symmetries for Bargamnn-Fock?

- f centered \Rightarrow symmetry between ± 1.
- $e(x, y)=k\left(\|x-y\|^{2}\right) \Rightarrow$ symmetries by

1. $\pi / 2$-rotation,
2. translation
3. and symmetry by horizontal axis.

These are the symmetries needed by Tassion.

- Symmetries \checkmark
- Uniform crossing of squares
- Asymptotic independence
- Positive correlation of positive crossings (FKG)
- Symmetries \checkmark
- Uniform crossing of squares \checkmark
- Asymptotic independence
- Positive correlation of positive crossings (FKG)

Independence

Correlation function for Bargmann-Fock:

$$
e(x, y)=\exp \left(-\|x-y\|^{2}\right)
$$

Independence

Correlation function for Bargmann-Fock:

$$
e(x, y)=\exp \left(-\|x-y\|^{2}\right)
$$

seems very decorrelating!

Independence

Correlation function for Bargmann-Fock:

$$
e(x, y)=\exp \left(-\|x-y\|^{2}\right)
$$

seems very decorrelating!
However...

Independence

Correlation function for Bargmann-Fock:

$$
e(x, y)=\exp \left(-\|x-y\|^{2}\right)
$$

seems very decorrelating!

However...

... because of the analytic continuation phenomenon.

Solution : blurring by discretization

- $\mathcal{T}=$ Union Jack lattice
- $\mathcal{V}=$ its vertices,
- $\operatorname{sign} f_{\mid \mathcal{V}}: \mathcal{V} \rightarrow\{ \pm 1\}$.
- Site percolation: the edge is positive iff its extremities are.

Is the discretization trustful?

Is the discretization trustful?

1. If \mathcal{T} is too coarse, then no.

Is the discretization trustful?

1. If \mathcal{T} is too coarse, then no.

2. If \mathcal{T} is very thin, then yes, but...

Is the discretization trustful?

1. If \mathcal{T} is too coarse, then no.

2. If \mathcal{T} is very thin, then yes, but... dependence comes back.

Is the discretization trustful?

Topological Lemma If in a rectangle the nodal lines of f crosses only once every edge of the lattice, then
$\{f>0\}$ crosses $R \Leftrightarrow$ the discretization site percolation crosses R.

Quantitative blurring

Hypotheses: $f, \mathcal{T}, \mathcal{V}, e, k$ is $C^{1}, k^{\prime}(0) \neq 0, B_{n}:=[-n, n]^{2}$.
Theorem (Beffara-G 2016) There exists $C>0$ such that for any $n>1$,

$$
\mathbb{P}\left[\forall e \in \frac{1}{n^{3}} \mathcal{V} \cap B_{n}, \#\{f=0 \cap e\} \leq 1\right] \geq 1-\frac{C}{n} .
$$

Quantitative blurring

Hypotheses: $f, \mathcal{T}, \mathcal{V}, e, k$ is $C^{1}, k^{\prime}(0) \neq 0, B_{n}:=[-n, n]^{2}$.
Theorem (Beffara-G 2016) There exists $C>0$ such that for any $n>1$,

$$
\mathbb{P}\left[\forall e \in \frac{1}{n^{3}} \mathcal{V} \cap B_{n}, \#\{f=0 \cap e\} \leq 1\right] \geq 1-\frac{C}{n} .
$$

Corollary Discretization site percolation on $\frac{1}{n^{3}} \mathcal{V} \cap B_{n}$ is equivalent to the continuous one with the same probability.

Fear: This gives

$$
\#\left(B_{n} \cap \frac{1}{n^{3}} \mathcal{V}\right) \sim_{n} n^{8} \text { points! }
$$

This is a threat for independence. It must be counterbalanced by the decorrelation of the field.

Quantitative dependence

Theorem (
, Beffara-G 2016) Let $f: \mathcal{V} \rightarrow \mathbb{R}$ be a centered symmetric Gaussian over \mathcal{V} a lattice. Then, there exists $C>0$, such that for any R, S two disjoint open sets in \mathbb{R}^{2},

$$
\text { dependence }(R, S):=
$$

$$
\max _{\substack{A \text { crossing in } R \\ B \text { crossing in } S}} \mid \mathbb{P}(A \text { and } B)-\mathbb{P}(A) \mathbb{P}(B) \mid
$$

Quantitative dependence

Theorem (

, Beffara-G 2016) Let $f: \mathcal{V} \rightarrow \mathbb{R}$ be a centered symmetric Gaussian over \mathcal{V} a lattice. Then, there exists $C>0$, such that for any R, S two disjoint open sets in \mathbb{R}^{2}, dependence $(R, S):=$
$\underset{\substack{A \text { crossing in } R \\ B \text { crossing in } S}}{\max } \mid \mathbb{P}(A$ and $B)-\mathbb{P}(A) \mathbb{P}(B) \mid$

$$
\leq
$$

C (\# vertices in R and $S)^{2} \max _{\substack{x \in R \\ y \in S}} \frac{|e(x, y)|}{\sqrt{1-e(x, y)^{2}}}$.

Quantitative dependence

Theorem (

, Beffara-G 2016) Let $f: \mathcal{V} \rightarrow \mathbb{R}$ be a centered symmetric Gaussian over \mathcal{V} a lattice. Then, there exists $C>0$, such that for any R, S two disjoint open sets in \mathbb{R}^{2}, dependence $(R, S):=$

C (\# vertices in R and $S)^{2} \max _{\substack{x \in R \\ y \in S}} \frac{|e(x, y)|}{\sqrt{1-e(x, y)^{2}}}$.
The Ultimate Fight: Information versus Oblivion

Quantitative dependence

Theorem (Piterbarg 1982, Beffara-G 2016) Let $f: \mathcal{V} \rightarrow \mathbb{R}$ be a centered symmetric Gaussian over \mathcal{V} a lattice. Then, there exists $C>0$, such that for any R, S two disjoint open sets in \mathbb{R}^{2}, dependence $(R, S):=$
$\underset{\substack{A \text { crossing in } R \\ B \text { crossing in } S}}{\max } \mid \mathbb{P}(A$ and $B)-\mathbb{P}(A) \mathbb{P}(B) \mid$

$$
\leq
$$

C (\# vertices in R and $S)^{2} \max _{\substack{x \in R \\ y \in S}} \frac{|e(x, y)|}{\sqrt{1-e(x, y)^{2}}}$.
The Ultimate Fight: Information versus Oblivion

Tassion's condition:

$$
\text { dependence }(A(n, 2 n), A(3 n, n \log n)) \rightarrow_{n \rightarrow \infty} 0 \text {, }
$$

where $A\left(n, n^{\prime}\right)=B_{n^{\prime}} \backslash B_{n}$.

Tassion's condition:

$$
\text { dependence }(A(n, 2 n), A(3 n, n \log n)) \rightarrow_{n \rightarrow \infty} 0 \text {, }
$$

where $A\left(n, n^{\prime}\right)=B_{n^{\prime}} \backslash B_{n}$.

For Bargmann-Fock:

1. Discretize in $B_{n \log n}$ over $\frac{1}{(n \log n)^{3}} \mathcal{T}$.

Tassion's condition:

$$
\text { dependence }(A(n, 2 n), A(3 n, n \log n)) \rightarrow_{n \rightarrow \infty} 0
$$

where $A\left(n, n^{\prime}\right)=B_{n^{\prime}} \backslash B_{n}$.
For Bargmann-Fock:

1. Discretize in $B_{n \log n}$ over $\frac{1}{(n \log n)^{3}} \mathcal{T}$.
2. For this discretization,

$$
\begin{aligned}
& \text { dependence }(A(n, 2 n), A(3 n, n \log n)) \leq \\
&(n \log n)^{12} \frac{\exp \left(-n^{2}\right)}{\sqrt{1-e^{-2 n^{2}}}}
\end{aligned}
$$

Tassion's condition:

$$
\text { dependence }(A(n, 2 n), A(3 n, n \log n)) \rightarrow_{n \rightarrow \infty} 0
$$

where $A\left(n, n^{\prime}\right)=B_{n^{\prime}} \backslash B_{n}$.
For Bargmann-Fock:

1. Discretize in $B_{n \log n}$ over $\frac{1}{(n \log n)^{3}} \mathcal{T}$.
2. For this discretization,

$$
\begin{aligned}
\operatorname{dependence}(A(n, 2 n), A(3 n, n \log n)) & \leq \\
(n \log n)^{12} \frac{\exp \left(-n^{2}\right)}{\sqrt{1-e^{-2 n^{2}}}} & \rightarrow_{n} 0 ;
\end{aligned}
$$

3. The same holds for the continuous field with a further cost due to the discretization: $\frac{C}{n \log n} \rightarrow_{n} 0$.

Tassion's condition:

$$
\text { dependence }(A(n, 2 n), A(3 n, n \log n)) \rightarrow_{n \rightarrow \infty} 0
$$

where $A\left(n, n^{\prime}\right)=B_{n^{\prime}} \backslash B_{n}$.
For Bargmann-Fock:

1. Discretize in $B_{n \log n}$ over $\frac{1}{(n \log n)^{3}} \mathcal{T}$.
2. For this discretization,

$$
\begin{aligned}
\text { dependence }(A(n, 2 n), A(3 n, n \log n)) & \leq \\
(n \log n)^{12} \frac{\exp \left(-n^{2}\right)}{\sqrt{1-e^{-2 n^{2}}}} & \rightarrow_{n} 0 ;
\end{aligned}
$$

3. The same holds for the continuous field with a further cost due to the discretization: $\frac{C}{n \log n} \rightarrow_{n} 0$.

Oblivion wins!

- Symmetries \checkmark
- Uniform crossing of squares \checkmark
- Asymptotic independence \checkmark
- Positive correlation of positive crossings (FKG)

FKG

FKG (Fortuin-Kasteleyn-Ginibre) implies

$$
\begin{array}{lll}
\mathbb{P}(\text { positive crossing of } R & \text { and } & \text { positive crossing of } S) \\
& \geq \\
\mathbb{P}(\text { positive crossing of } R) & . & \mathbb{P}(\text { positive crossing of } S) .
\end{array}
$$

Theorem (Loren Pitt 1982) For a centered Gaussian field,

 $F K G \Leftrightarrow$ positive correlation function.
Theorem (Loren Pitt 1982) For a centered Gaussian field,

 $F K G \Leftrightarrow$ positive correlation function.Here: $e(x, y)=\exp \left(-\|x-y\|^{2}\right)$.

Theorem (Loren Pitt 1982) For a centered Gaussian field,

 $F K G \Leftrightarrow$ positive correlation function.Here: $e(x, y)=\exp \left(-\|x-y\|^{2}\right)$.

- Symmetries
- Uniform crossing of squares
- Asymptotic independence
- Positive correlation of positive crossings (FKG)

$\mathrm{RSW}+\mathrm{FKG}$

$\mathbb{P}($ circuit in the annulus $) \geq \mathbb{P}(\text { crossing the rectangle })^{4}$

$\mathrm{RSW}+\mathrm{FKG}+$ weak dependence

$1 \wedge$
$2^{k+1} \ell$

$$
\simeq(1-c)^{\log _{2}\left(\frac{n}{\ell}\right)}=\left(\frac{\ell}{n}\right)^{-\log _{2}(1-c)}
$$

Why Bargmann-Fock and not Random Waves?

- Bargmann-Fock:

$$
e(x, y)=\exp \left(-\|x-y\|^{2}\right)
$$

Why Bargmann-Fock and not Random Waves?

- Bargmann-Fock:

$$
e(x, y)=\exp \left(-\|x-y\|^{2}\right)
$$

1. positive
2. fast decay \rightarrow weak dependence

Why Bargmann-Fock and not Random Waves?

- Bargmann-Fock:

$$
e(x, y)=\exp \left(-\|x-y\|^{2}\right)
$$

1. positive
2. fast decay \rightarrow weak dependence

- Random waves:

$$
e(x, y)=J_{0}(\|x-y\|)
$$

Why Bargmann-Fock and not Random Waves?

- Bargmann-Fock:

$$
e(x, y)=\exp \left(-\|x-y\|^{2}\right)
$$

1. positive
2. fast decay \rightarrow weak dependence

- Random waves:

$$
e(x, y)=J_{0}(\|x-y\|)
$$

1. oscillating
2. slow decay \rightarrow strong dependence

Tools and proofs

Tools and proofs

1. Discretization scheme
2. Asymptotic independence
3. Pitt's theorem (FKG)
4. Tassion's theorem

Discretization scheme

Theorem There exists $C>0$ such that for any $n>1$,

$$
\mathbb{P}\left[\forall e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}, \#\{f=0 \cap e\} \leq 1\right] \geq 1-\frac{C}{n}
$$

Theorem (Kac-Rice formula)

Theorem (Kac-Rice formula) Let f be a Gaussian field on an interval $I \subset \mathbb{R}$, such that almost surely, f is C^{1} and that for any $x \neq y \in I, \operatorname{cov}(f(x), f(y))$ is definite. If

$$
N_{I}:=\#\{f=0\} \cap I
$$

then

$$
\begin{aligned}
\mathbb{E}\left(N_{I}\left(N_{I}-1\right)\right)= & \int_{I^{2}} \mathbb{E}\left(\left|f^{\prime}(x) \| f^{\prime}(y)\right| \mid f(x)=f(y)=0\right) \\
& \phi_{(f(x), f(y))}(0,0) d x d y
\end{aligned}
$$

where $\phi_{X}(u)$ is the Gaussian density of $X \in \mathbb{R}^{2}$ at $u \in \mathbb{R}^{2}$.

Theorem (Kac-Rice formula) Let f be a Gaussian field on an interval $I \subset \mathbb{R}$, such that almost surely, f is C^{1} and that for any $x \neq y \in I, \operatorname{cov}(f(x), f(y))$ is definite. If

$$
N_{I}:=\#\{f=0\} \cap I
$$

then

$$
\begin{aligned}
\mathbb{E}\left(N_{I}\left(N_{I}-1\right)\right)= & \int_{I^{2}} \mathbb{E}\left(\left|f^{\prime}(x) \| f^{\prime}(y)\right| \mid f(x)=f(y)=0\right) \\
& \phi_{(f(x), f(y))}(0,0) d x d y
\end{aligned}
$$

where $\phi_{X}(u)$ is the Gaussian density of $X \in \mathbb{R}^{2}$ at $u \in \mathbb{R}^{2}$.
Corollary If f is C^{2} and $k^{\prime}(0) \neq 0$, then

$$
\mathbb{E}\left(N_{I}\left(N_{I}-1\right)\right) \leq O\left(|I|^{3}\right)
$$

Proof of the discretization theorem.

 We want to prove that with high probability,$$
\forall e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}, \quad N_{e} \leq 1
$$

By Markov inequality and Kac-Rice,

$$
\mathbb{P}\left[N_{e}>1\right]=\mathbb{P}\left[N_{e}\left(N_{e}-1\right) \geq 1\right] \leq C|e|^{3}
$$

Proof of the discretization theorem.

We want to prove that with high probability,

$$
\forall e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}, \quad N_{e} \leq 1
$$

By Markov inequality and Kac-Rice,

$$
\mathbb{P}\left[N_{e}>1\right]=\mathbb{P}\left[N_{e}\left(N_{e}-1\right) \geq 1\right] \leq C|e|^{3}
$$

Hence,

$$
\mathbb{P}\left[\forall e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}, \quad N_{e} \leq 1\right]
$$

Proof of the discretization theorem.

We want to prove that with high probability,

$$
\forall e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}, \quad N_{e} \leq 1
$$

By Markov inequality and Kac-Rice,

$$
\mathbb{P}\left[N_{e}>1\right]=\mathbb{P}\left[N_{e}\left(N_{e}-1\right) \geq 1\right] \leq C|e|^{3}
$$

Hence,

$$
\mathbb{P}\left[\forall e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}, \quad N_{e} \leq 1\right] \geq 1-\#\left\{e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}\right\}\left(C|e|^{3}\right)
$$

Proof of the discretization theorem.

We want to prove that with high probability,

$$
\forall e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}, \quad N_{e} \leq 1
$$

By Markov inequality and Kac-Rice,

$$
\mathbb{P}\left[N_{e}>1\right]=\mathbb{P}\left[N_{e}\left(N_{e}-1\right) \geq 1\right] \leq C|e|^{3}
$$

Hence,

$$
\begin{aligned}
\mathbb{P}\left[\forall e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}, \quad N_{e} \leq 1\right] & \geq 1-\#\left\{e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}\right\}\left(C|e|^{3}\right) \\
& \geq 1-C n^{2} n^{6} \frac{1}{n^{9}}
\end{aligned}
$$

Proof of the discretization theorem.

We want to prove that with high probability,

$$
\forall e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}, \quad N_{e} \leq 1
$$

By Markov inequality and Kac-Rice,

$$
\mathbb{P}\left[N_{e}>1\right]=\mathbb{P}\left[N_{e}\left(N_{e}-1\right) \geq 1\right] \leq C|e|^{3}
$$

Hence,

$$
\begin{aligned}
\mathbb{P}\left[\forall e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}, N_{e} \leq 1\right] & \geq 1-\#\left\{e \in \frac{1}{n^{3}} \mathcal{E} \cap B_{n}\right\}\left(C|e|^{3}\right) \\
& \geq 1-C n^{2} n^{6} \frac{1}{n^{9}}=1-C / n
\end{aligned}
$$

\square

Proof of the Corollary. We have

$$
\begin{aligned}
\mathbb{E}(N(N-1))= & \int_{I^{2}} \mathbb{E}\left(\left|f^{\prime}(x)\right|\left|f^{\prime}(y)\right| \mid f(x)=f(y)=0\right) \\
& \phi_{(f(x), f(y))}(0,0) d x d y
\end{aligned}
$$

Proof of the Corollary. We have

$$
\begin{aligned}
\mathbb{E}(N(N-1))= & \int_{I^{2}} \mathbb{E}\left(\left|f^{\prime}(x)\right|\left|f^{\prime}(y)\right| \mid f(x)=f(y)=0\right) \\
& \phi_{(f(x), f(y))}(0,0) d x d y
\end{aligned}
$$

When $|I| \rightarrow 0$,

1. $\int_{I^{2}} d x d y \sim|I|^{2}$;

Proof of the Corollary. We have

$$
\begin{aligned}
\mathbb{E}(N(N-1))= & \int_{I^{2}} \mathbb{E}\left(\left|f^{\prime}(x)\right|\left|f^{\prime}(y)\right| \mid f(x)=f(y)=0\right) \\
& \phi_{(f(x), f(y))}(0,0) d x d y
\end{aligned}
$$

When $|I| \rightarrow 0$,

1. $\int_{I^{2}} d x d y \sim|I|^{2}$;
2. $f(x)=f(y)$ implies $\left|f^{\prime}(x)\right|\left|f^{\prime}(y)\right| \leq|I|^{2}$;

Proof of the Corollary. We have

$$
\begin{aligned}
\mathbb{E}(N(N-1))= & \int_{I^{2}} \mathbb{E}\left(\left|f^{\prime}(x)\right|\left|f^{\prime}(y)\right| \mid f(x)=f(y)=0\right) \\
& \phi_{(f(x), f(y))}(0,0) d x d y
\end{aligned}
$$

When $|I| \rightarrow 0$,

1. $\int_{I^{2}} d x d y \sim|I|^{2}$;
2. $f(x)=f(y)$ implies $\left|f^{\prime}(x)\right|\left|f^{\prime}(y)\right| \leq|I|^{2}$;
3. $\phi_{(f(x), f(y))}(0,0) \sim|I|^{-1}$ since $(f(x), f(y))$ degenerates.

This gives the $|I|^{3}$.

Kac-Rice first moment formula

$$
\mathbb{E} N_{I}=\int_{I} \mathbb{E}\left(\left|f^{\prime}(x)\right| \mid f(x)=0\right) \phi_{f(x)}(0) d x .
$$

Kac-Rice first moment formula

$$
\mathbb{E} N_{I}=\int_{I} \mathbb{E}\left(\left|f^{\prime}(x)\right| \mid f(x)=0\right) \phi_{f(x)}(0) d x \text {. }
$$

"Proof".

- If f vanishes transversally on I,

$$
N_{I}=\lim _{\epsilon \rightarrow 0} \frac{1}{2 \epsilon} \int_{I}\left|f^{\prime}(x)\right| \mathbf{1}_{|f| \leq \epsilon} d x,
$$

Kac-Rice first moment formula

$$
\mathbb{E} N_{I}=\int_{I} \mathbb{E}\left(\left|f^{\prime}(x)\right| \mid f(x)=0\right) \phi_{f(x)}(0) d x \text {. }
$$

"Proof".

- If f vanishes transversally on I,

$$
N_{I}=\lim _{\epsilon \rightarrow 0} \frac{1}{2 \epsilon} \int_{I}\left|f^{\prime}(x)\right| \mathbf{1}_{|f| \leq \epsilon} d x
$$

- so that

$$
\mathbb{E} N_{I}=\int_{I} \mathbb{E}\left(\left|f^{\prime}(x)\right| \lim _{\epsilon \rightarrow 0} \frac{1}{2 \epsilon} \mathbf{1}_{|f| \leq \epsilon}\right) d x .
$$

1. Discretization scheme \checkmark
2. Asymptotic independence
3. Pitt's theorem (FKG)
4. Tassion's theorem

Asymptotic independence

Theorem (Piterbarg 1982- Beffara-G 2016) $f: \mathcal{V} \rightarrow \mathbb{R}$ centered symmetric Gaussian over \mathcal{V} a lattice. Then, there exists $C>0$, such that for any R, S two disjoint open sets in \mathbb{R}^{2},

$$
\text { dependence }(R, S):=
$$

$$
\max _{\substack{A \text { crossing in } R \\ B \text { crossing in } S}} \mid \mathbb{P}(A \text { and } B)-\mathbb{P}(A) \mathbb{P}(B) \mid
$$

$$
\leq
$$

C (\# vertices in R and $S)^{2} \max _{\substack{x \in R \\ y \in S}} \frac{|e(x, y)|}{\sqrt{1-e(x, y)^{2}}}$

Asymptotic independence

Theorem (Piterbarg 1982- Beffara-G 2016) $f: \mathcal{V} \rightarrow \mathbb{R}$ centered symmetric Gaussian over \mathcal{V} a lattice. Then, there exists $C>0$, such that for any R, S two disjoint open sets in \mathbb{R}^{2},

$$
\text { dependence }(R, S):=
$$

$$
\underset{\substack{A \text { crossing in } R \\ B \text { crossing in } S}}{\max } \mid \mathbb{P}(A \text { and } B)-\mathbb{P}(A) \mathbb{P}(B) \mid
$$

$$
\leq
$$

$C(\# \text { vertices in } R \text { and } S)^{2} \max _{\substack{x \in R \\ y \in S}} \frac{|e(x, y)|}{\sqrt{1-e(x, y)^{2}}}$

The cost for independency

Gaussian reminder

A real valued random variable $X \sim N(0, \sigma)$ iff $\sigma=\mathbb{E}\left(X^{2}\right)$ and for any Borelian $A \subset \mathbb{R}$,

$$
\mathbb{P}(X \in A)=\int_{A} \phi_{X}(u) d u
$$

Gaussian reminder

A real valued random variable $X \sim N(0, \sigma)$ iff $\sigma=\mathbb{E}\left(X^{2}\right)$ and for any Borelian $A \subset \mathbb{R}$,

$$
\mathbb{P}(X \in A)=\int_{A} \phi_{X}(u) d u,
$$

with

$$
\phi_{X}(u)=\frac{1}{\sqrt{2 \pi \sigma}} \exp \left(-\frac{1}{2}\left\langle\sigma^{-1} u, u\right\rangle\right) .
$$

$X=\left(X_{i}\right) \in \mathbb{R}^{N}$ centered non-degenerate Gaussian
$X=\left(X_{i}\right) \in \mathbb{R}^{N}$ centered non-degenerate Gaussian means that if

$$
\Sigma:=\left(\mathbb{E}\left(X_{i} X_{j}\right)\right)_{1 \leq i, j \leq N}
$$

then for any Borelian $A \subset \mathbb{R}^{N}$,

$$
\mathbb{P}(X \in A)=\int_{A} \phi_{X}(u) d u
$$

with

$$
\phi_{X}(u)=\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}\left\langle\Sigma^{-1} u, u\right\rangle\right)
$$

$X=\left(X_{i}\right) \in \mathbb{R}^{N}$ centered non-degenerate Gaussian means that if

$$
\Sigma:=\left(\mathbb{E}\left(X_{i} X_{j}\right)\right)_{1 \leq i, j \leq N}
$$

then for any Borelian $A \subset \mathbb{R}^{N}$,

$$
\mathbb{P}(X \in A)=\int_{A} \phi_{X}(u) d u
$$

with

$$
\phi_{X}(u)=\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}\left\langle\Sigma^{-1} u, u\right\rangle\right)
$$

If $X \in \mathbb{R}^{N}$ and $X^{\prime} \in \mathbb{R}^{N^{\prime}}$,

$$
\operatorname{cov}\left(X, X^{\prime}\right)=\left(\mathbb{E}\left(X_{i} X_{j}^{\prime}\right)\right)_{1 \leq i \leq N, 1 \leq j \leq N^{\prime}}
$$

$X=\left(X_{i}\right) \in \mathbb{R}^{N}$ centered non-degenerate Gaussian means that if

$$
\Sigma:=\left(\mathbb{E}\left(X_{i} X_{j}\right)\right)_{1 \leq i, j \leq N}
$$

then for any Borelian $A \subset \mathbb{R}^{N}$,

$$
\mathbb{P}(X \in A)=\int_{A} \phi_{X}(u) d u
$$

with

$$
\phi_{X}(u)=\frac{1}{\sqrt{(2 \pi)^{N} \operatorname{det} \Sigma}} \exp \left(-\frac{1}{2}\left\langle\Sigma^{-1} u, u\right\rangle\right)
$$

If $X \in \mathbb{R}^{N}$ and $X^{\prime} \in \mathbb{R}^{N^{\prime}}$,

$$
\operatorname{cov}\left(X, X^{\prime}\right)=\left(\mathbb{E}\left(X_{i} X_{j}^{\prime}\right)\right)_{1 \leq i \leq N, 1 \leq j \leq N^{\prime}}
$$

Fact. $\quad X$ and X^{\prime} are independent iff $\operatorname{cov}\left(X, X^{\prime}\right)=0$.

Proof of Plackett-Piterbarg theorem Let

$$
\begin{array}{ll}
U:=(f(x))_{x \in R \cap \mathcal{V}} & V:=(f(y))_{y \in S \cap \mathcal{V}} \\
X_{1}:=(U, V) & X_{0}:=(U, V)_{\text {ind }}
\end{array}
$$

Proof of Plackett-Piterbarg theorem Let

$$
\begin{array}{ll}
U:=(f(x))_{x \in R \cap \mathcal{V}} & V:=(f(y))_{y \in S \cap \mathcal{V}} \\
X_{1}:=(U, V) & X_{0}:=(U, V)_{\text {ind }}
\end{array}
$$

where

- X_{0} and X_{1} are independent, and
- for X_{0}, V is an independent copy of f.

Proof of Plackett-Piterbarg theorem Let

$$
\begin{array}{ll}
U:=(f(x))_{x \in R \cap \mathcal{V}} & V:=(f(y))_{y \in S \cap \mathcal{V}} \\
X_{1}:=(U, V) & X_{0}:=(U, V)_{\text {ind }}
\end{array}
$$

where

- X_{0} and X_{1} are independent, and
- for X_{0}, V is an independent copy of f.

Proof of Plackett-Piterbarg theorem Let

$$
\begin{array}{ll}
U:=(f(x))_{x \in R \cap \mathcal{V}} & V:=(f(y))_{y \in S \cap \mathcal{V}} \\
X_{1}:=(U, V) & X_{0}:=(U, V)_{\text {ind }}
\end{array}
$$

where

- X_{0} and X_{1} are independent, and
- for X_{0}, V is an independent copy of f.

For simplicity, let

- A be the event that there exists a positive crossing in R
- B the same in S.

We want a bound for

$$
\mathbb{P}[A \cap B]-\mathbb{P}[A] \mathbb{P}[B]
$$

Proof of Plackett-Piterbarg theorem Let

$$
\begin{array}{ll}
U:=(f(x))_{x \in R \cap \mathcal{V}} & V:=(f(y))_{y \in S \cap \mathcal{V}} \\
X_{1}:=(U, V) & X_{0}:=(U, V)_{\text {ind }}
\end{array}
$$

where

- X_{0} and X_{1} are independent, and
- for X_{0}, V is an independent copy of f.

For simplicity, let

- A be the event that there exists a positive crossing in R
- B the same in S.

We want a bound for

$$
\mathbb{P}[A \cap B]-\mathbb{P}[A] \mathbb{P}[B]=\mathbb{E}_{X_{1}}\left(\mathbf{1}_{A \cap B}\right)-\mathbb{E}_{X_{0}}\left(\mathbf{1}_{A \cap B}\right)
$$

Interpolate

$$
X_{t}:=\sqrt{t} X_{1}+\sqrt{1-t} X_{0}
$$

Interpolate

$$
X_{t}:=\sqrt{t} X_{1}+\sqrt{1-t} X_{0}
$$

Then X_{t} has variance

$$
\Sigma_{t}=\left(\begin{array}{cr}
\operatorname{cov}(U, U) & t \operatorname{cov}(U, V) \\
t \operatorname{cov}(U, V)^{T} & \operatorname{cov}(V, V)
\end{array}\right)
$$

with

$$
\operatorname{cov}(U, V)=(e(x, y))_{x \in R \cap \mathcal{V}, y \in S \cap \mathcal{V}}
$$

Then

$\mathbb{E}_{X_{0}}\left(\mathbf{1}_{A \cap B}\right)-\mathbb{E}_{X_{1}}\left(\mathbf{1}_{A \cap B}\right)=\int_{0}^{1} \frac{d}{d t} \mathbb{E}_{X_{t}}\left(\mathbf{1}_{A \cap B}\right) d t$

Then

$$
\begin{aligned}
\mathbb{E}_{X_{0}}\left(\mathbf{1}_{A \cap B}\right)-\mathbb{E}_{X_{1}}\left(\mathbf{1}_{A \cap B}\right) & =\int_{0}^{1} \frac{d}{d t} \mathbb{E}_{X_{t}}\left(\mathbf{1}_{A \cap B}\right) d t \\
& =\int_{0}^{1} d t \int_{(u, v) \in A \times B} \frac{d \phi_{X_{t}}}{d t}(u, v) d(u, v)
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathbb{E}_{X_{0}}\left(\mathbf{1}_{A \cap B}\right)-\mathbb{E}_{X_{1}}\left(\mathbf{1}_{A \cap B}\right) & =\int_{0}^{1} \frac{d}{d t} \mathbb{E}_{X_{t}}\left(\mathbf{1}_{A \cap B}\right) d t \\
& =\int_{0}^{1} d t \int_{(u, v) \in A \times B} \frac{d \phi_{X_{t}}}{d t}(u, v) d(u, v) \\
& =\sum_{i \leq j} \int_{0}^{1} d t \int_{A \times B} \frac{d \sigma_{t, i j}}{d t} \frac{\partial \phi_{X_{t}}}{\partial \sigma_{t, i j}} d(u, v)
\end{aligned}
$$

Then

$$
\begin{aligned}
\mathbb{E}_{X_{0}}\left(\mathbf{1}_{A \cap B}\right)-\mathbb{E}_{X_{1}}\left(\mathbf{1}_{A \cap B}\right) & =\int_{0}^{1} \frac{d}{d t} \mathbb{E}_{X_{t}}\left(\mathbf{1}_{A \cap B}\right) d t \\
& =\int_{0}^{1} d t \int_{(u, v) \in A \times B} \frac{d \phi_{X_{t}}}{d t}(u, v) d(u, v) \\
& =\sum_{i \leq j} \int_{0}^{1} d t \int_{A \times B} \frac{d \sigma_{t, i j}}{d t} \frac{\partial \phi_{X_{t}}}{\partial \sigma_{t, i j}} d(u, v)
\end{aligned}
$$

with

$$
\frac{d \sigma_{t, i j}}{d t}=\left\{\begin{array}{l}
e(x, y) \text { if } i=x \in R \cap \mathcal{V} \text { and } j=y \in S \cap \mathcal{V} \\
0 \text { in the other cases } .
\end{array}\right.
$$

A very Gaussian equality

$$
\forall i \neq j, \frac{\partial \phi_{X}}{\partial \sigma_{i j}}=\frac{\partial^{2} \phi_{X}}{\partial u_{i} \partial u_{j}}
$$

A very Gaussian equality

$$
\forall i \neq j, \quad \frac{\partial \phi_{X}}{\partial \sigma_{i j}}=\frac{\partial^{2} \phi_{X}}{\partial u_{i} \partial u_{j}}
$$

Proof. Use

$$
\phi_{X}(u)=\int_{\xi \in \mathbb{R}^{N}} e^{i\langle u, \xi\rangle} e^{-\frac{1}{2}\langle\Sigma \xi, \xi\rangle} \frac{d \xi}{\sqrt{2 \pi}^{N}} .
$$

> Then
> $\mathbb{P}[A \cap B]-\mathbb{P}[A] \mathbb{P}[B]=\sum_{\substack{x \in R \\ y \in S}} e(x, y) \int_{0}^{1} d t \int_{A \times B} \frac{\partial^{2} \phi_{X_{t}}}{\partial u_{x} \partial v_{y}} d(u, v)$.

Then

$\mathbb{P}[A \cap B]-\mathbb{P}[A] \mathbb{P}[B]=\sum_{\substack{x \in R \\ y \in S}} e(x, y) \int_{0}^{1} d t \int_{A \times B} \frac{\partial^{2} \phi_{X_{t}}}{\partial u_{x} \partial v_{y}} d(u, v)$.
Note that that

- if $\left(f_{x}\right)_{x \in R \cap \mathcal{V}} \in A$, then for any $g_{x} \geq f_{x},\left(g_{x}\right)_{x \in R \cap \mathcal{V}} \in A$;

Then

$\mathbb{P}[A \cap B]-\mathbb{P}[A] \mathbb{P}[B]=\sum_{\substack{x \in R \\ y \in S}} e(x, y) \int_{0}^{1} d t \int_{A \times B} \frac{\partial^{2} \phi_{X_{t}}}{\partial u_{x} \partial v_{y}} d(u, v)$.
Note that that

- if $\left(f_{x}\right)_{x \in R \cap \mathcal{V}} \in A$, then for any $g_{x} \geq f_{x},\left(g_{x}\right)_{x \in R \cap \mathcal{V}} \in A$;
- Since A depends only on the sign of f_{x}, then A intersects any coordinate axis $\mathbb{R} f_{x}$ along \mathbb{R} or \mathbb{R}^{+},

Then

$\mathbb{P}[A \cap B]-\mathbb{P}[A] \mathbb{P}[B]=\sum_{\substack{x \in R \\ y \in S}} e(x, y) \int_{0}^{1} d t \int_{A \times B} \frac{\partial^{2} \phi_{X_{t}}}{\partial u_{x} \partial v_{y}} d(u, v)$.
Note that that

- if $\left(f_{x}\right)_{x \in R \cap \mathcal{V}} \in A$, then for any $g_{x} \geq f_{x},\left(g_{x}\right)_{x \in R \cap \mathcal{V}} \in A$;
- Since A depends only on the sign of f_{x}, then A intersects any coordinate axis $\mathbb{R} f_{x}$ along \mathbb{R} or \mathbb{R}^{+},
- depending if the sign of f_{x} is crucial for the crossing or not.

Integrating by parts gives, with $N=\#[(R \cup S) \cap \mathcal{V}]$,

Integrating by parts gives, with $N=\#[(R \cup S) \cap \mathcal{V}]$,

$$
\begin{array}{r}
\sum_{x, x^{\prime}} e\left(x, x^{\prime}\right) \int_{0}^{1} d t \int_{(A \cap B) \cap\left(\mathbb{R}^{N-2} \times\{0\}^{2}\right) \text { or } \emptyset} \\
\phi_{X_{t}}\left(X, X^{x}=X^{x^{\prime}}=0\right) \frac{d X}{d X^{x} d X^{x^{\prime}}}
\end{array}
$$

Integrating by parts gives, with $N=\#[(R \cup S) \cap \mathcal{V}]$,

$$
\begin{array}{r}
\sum_{x, x^{\prime}} e\left(x, x^{\prime}\right) \int_{0}^{1} d t \int_{(A \cap B) \cap\left(\mathbb{R}^{N-2} \times\{0\}^{2}\right) \text { or } \emptyset} \\
\phi_{X_{t}}\left(X, X^{x}=X^{x^{\prime}}=0\right) \frac{d X}{d X^{x} d X^{x^{\prime}}}
\end{array}
$$

Note that if $e(x, y) \geq 0$, we have proved that

$$
\mathbb{P}[A \cap B]-\mathbb{P}[A] \mathbb{P}[B] \geq 0
$$

which is Pitt's theorem.

In general,

$$
\int_{Z \in A, Y=0} \phi_{Z, Y}(Z, 0) d Z=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{Z \in A, Y \in[0, \epsilon]} \phi_{Z, Y} d Z d Y
$$

In general,

$$
\begin{aligned}
\int_{Z \in A, Y=0} \phi_{Z, Y}(Z, 0) d Z & =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{Z \in A, Y \in[0, \epsilon]} \phi_{Z, Y} d Z d Y \\
& =\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \operatorname{Pr}[(Z, Y) \in A \times[0, \epsilon]]
\end{aligned}
$$

In general,

$$
\begin{aligned}
\int_{Z \in A, Y=0} \phi_{Z, Y}(Z, 0) d Z= & \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{Z \in A, Y \in[0, \epsilon]} \phi_{Z, Y} d Z d Y \\
= & \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \operatorname{Pr}[(Z, Y) \in A \times[0, \epsilon]] \\
=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \frac{\operatorname{Pr}[(Z, Y) \in A \times[0, \epsilon]]}{\operatorname{Pr}(Y \in[0, \epsilon])} & \operatorname{Pr}[Y \in[0, \epsilon]]
\end{aligned}
$$

In general,

$$
\begin{aligned}
\int_{Z \in A, Y=0} \phi_{Z, Y}(Z, 0) d Z= & \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \int_{Z \in A, Y \in[0, \epsilon]} \phi_{Z, Y} d Z d Y \\
= & \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \operatorname{Pr}[(Z, Y) \in A \times[0, \epsilon]] \\
=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon} \frac{\operatorname{Pr}[(Z, Y) \in A \times[0, \epsilon]]}{\operatorname{Pr}(Y \in[0, \epsilon])} & \operatorname{Pr}[Y \in[0, \epsilon]] \\
= & \operatorname{Pr}[Z \in A \mid Y=0] \phi_{Y}(0) .
\end{aligned}
$$

Therefore, applying the latter to $Y=\left(X, X^{\prime}\right)$ and $Z=\frac{X}{\left(X^{x}, X^{x^{\prime}}\right)}$,

Therefore, applying the latter to $Y=\left(X, X^{\prime}\right)$ and $Z=\frac{X}{\left(X^{x}, X^{x^{\prime}}\right)}$,

$$
\int_{(A \cap B) \cap\left(\mathbb{R}^{N-2} \times\{0\}^{2}\right) \text { or } \emptyset} \phi_{X_{t}}\left(X, X^{x}=X^{x^{\prime}}=0\right) \frac{d X}{d X^{x} d X^{x^{\prime}}}
$$

Therefore, applying the latter to $Y=\left(X, X^{\prime}\right)$ and $Z=\frac{X}{\left(X^{x}, X^{x^{\prime}}\right)}$,

$$
\begin{array}{r}
\int_{(A \cap B) \cap\left(\mathbb{R}^{N-2} \times\{0\}^{2}\right) \text { or } \emptyset} \phi_{X_{t}}\left(X, X^{x}=X^{x^{\prime}}=0\right) \frac{d X}{d X^{x} d X^{x^{\prime}}} \\
\left.=\frac{\operatorname{Pr}\left[(A \cap B) \text { or } \emptyset \mid X^{x}=X^{x^{\prime}}=0\right]}{\sqrt{2 \pi\left(1-e(x, y)^{2}\right.}}\right]
\end{array}
$$

Therefore, applying the latter to $Y=\left(X, X^{\prime}\right)$ and $Z=\frac{X}{\left(X^{x}, X^{x^{\prime}}\right)}$,

$$
\begin{array}{r}
\int_{(A \cap B) \cap\left(\mathbb{R}^{N-2} \times\{0\}^{2}\right) \text { or } \emptyset} \phi_{X_{t}}\left(X, X^{x}=X^{x^{\prime}}=0\right) \frac{d X}{d X^{x} d X^{x^{\prime}}} \\
\left.=\frac{\operatorname{Pr}\left[(A \cap B) \text { or } \emptyset \mid X^{x}=X^{x^{\prime}}=0\right]}{\sqrt{2 \pi\left(1-e(x, y)^{2}\right.}}\right]
\end{array}
$$

where we used that

$$
\operatorname{cov}\left(X, X^{\prime}\right)=\left(\begin{array}{ll}
e(x, x) & e\left(x, x^{\prime}\right) \\
e\left(x^{\prime}, x\right) & e\left(x^{\prime}, x^{\prime}\right)
\end{array}\right)
$$

Therefore, applying the latter to $Y=\left(X, X^{\prime}\right)$ and $Z=\frac{X}{\left(X^{x}, X^{x^{\prime}}\right)}$,

$$
\begin{array}{r}
\int_{(A \cap B) \cap\left(\mathbb{R}^{N-2} \times\{0\}^{2}\right) \text { or } \emptyset} \phi_{X_{t}}\left(X, X^{x}=X^{x^{\prime}}=0\right) \frac{d X}{d X^{x} d X^{x^{\prime}}} \\
\left.=\frac{\operatorname{Pr}\left[(A \cap B) \text { or } \emptyset \mid X^{x}=X^{x^{\prime}}=0\right]}{\sqrt{2 \pi\left(1-e(x, y)^{2}\right.}}\right]
\end{array}
$$

where we used that

$$
\operatorname{cov}\left(X, X^{\prime}\right)=\left(\begin{array}{ll}
e(x, x) & e\left(x, x^{\prime}\right) \\
e\left(x^{\prime}, x\right) & e\left(x^{\prime}, x^{\prime}\right)
\end{array}\right)
$$

This gives
$|\mathbb{P}[A \cap B]-\mathbb{P}[A] \mathbb{P}[B]| \leq(\# R \cap \mathcal{V})(\# S \cap \mathcal{V}) \max _{\substack{x \in R \\ y \in S}} \frac{|e(x, y)|}{\sqrt{2 \pi\left(1-e(x, y)^{2}\right)}}$.
\square

1. Discretization scheme \checkmark
2. Asymptotic independence \checkmark
3. Pitt's theorem (FKG) \checkmark
4. Tassion's theorem

Theorem (Tassion) If $f: \mathbb{R}^{2} \rightarrow\{-1,1\}$ is random and satisfies

- Symmetries
- Uniform crossing of squares
- Asymptotic independence
- Positive correlation of positive crossings (FKG) then it satisfies RSW.

Some open problems

Not too hard

Some open problems

Not too hard
\emptyset

Some open problems

Not too hard
\emptyset

Hard
RSW for fast decorrelating fields without positive correlation

Some open problems

Not too hard
\emptyset

Hard

RSW for fast decorrelating fields without positive correlation

Very hard
RSW for random waves

Some open problems

Not too hard

\emptyset

Hard

RSW for fast decorrelating fields without positive correlation

Very hard
RSW for random waves

Super very hard
Prove a Cardy formula/conformal invariance

