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Squares
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P> symmetry between + and -

P> symmetry between x; and xo

then both probabilities are equal...
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Vn, P(crossing) = 1/2.
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Theorem (Russo, Seymour-Welsh 1978) Let R C R% be a
fixed rectangle. Then there exists ¢ > 0,

lim inf P(crossing of nR) > c.

n—0o0
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Question: Let f: R? — R a be random smooth function and
fix R C R2. Does it exist ¢ > 0,

. 5
hnnigng({f > 0} crosses nR) > c
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Let f: R? — R be
» a centered Gaussian field, that is V1, - -2y € R? any
linear combination of the (f(x;))i=1,.. n is a centered
Gaussian variable.

» We assume in this course that its covariant function is
symmetric:

e(z,y) =E(f(2)f(y) = k(= — ).

» Almost surely, f is C2. This is true if is e is C3.



Two universal models with geometric origin
» The random wave model (Riemannian)

» The Bargmann-Fock model (algebraic)
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The random wave model

g(r,0) = Z amJ|m|(r)eim0,
(@m)m are i.i.d. following N(0,1) and J,, is the m-th Bessel

function.
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The random wave model

g(r,0) = Z amJ|m|(r)eim0,
(@m)m are i.i.d. following N(0,1) and J,, is the m-th Bessel

function.
» Limit model for the rescaled spherical harmonics.
» Universal from compact Riemannian manifolds.
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Conjecture (Bogomolny-Schmidt 2007) RSW should hold for
this model.

&
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The Bargmann-Fock model

2 $1x2 _1 2
V(a:l,xg) € R*, :cl,azg E aij ' 2zl ,
,J=0 ZJ

(aij)ij>0 are ii.d. following N(0,1).

15/71



The Bargmann-Fock model

2 I1x2 _1 2
V(ml,xg) € R*, :cl,azg E oy ' zllzll ,
,J=0 Z‘j

(aij)ij>0 are ii.d. following N(0,1).
» Limit model for the rescaled polynomials.
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The Bargmann-Fock model

2 I1x2 _1 2
V(ml,xg) € R*, :cl,azg E oy ' zllzll ,
,J=0 Z‘j

(aij)ij>0 are ii.d. following N(0,1).
» Limit model for the rescaled polynomials.

» Universal from (complex) algebraic geometry.
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Theorem (Beffara-G 2016) RSW holds for Bargmann-Fock:
for any rectangle R, there exists ¢ > 0 such that

liminf P({f > 0} crosses nR) > c.

n—oo
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Corollary For Bargmann-Fock,

da >0, V¢, n, P(one arm) < (



Corollary (Alexander 1996) Almost surely there is no
infinite component of {f > 0}.
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Corollary (Alexander 1996) Almost surely there is no
infinite component of {f > 0}.

Theorem (Rivera-Vanneuville 2017) For any € > 0, almost
surely {f > —e} as an infinite component.
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Theorem (Belyaev-Muirhead-Wigman 2017) RSW holds
for polynomials with the complex Fubini-Study measure.
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Prequel: random real polynomials

Kostlan or complex Fubini-Study measure:

, X§xix}
= E Qijk— =y
itj+k=d viljlk!

(aijk)i+j+k:d iid. fOHOWIHg N(O, 1)
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Prequel: random real polynomials

Kostlan or complex Fubini-Study measure:

. XX{ X
= E Qijk— =y
it+j+k=d viljlk!

(aijk)i+j+k:d iid. fOHOWIHg N(O, 1)
Rescaling: For every (z1,12) € R?,

(z1,22)
P
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Prequel: random real polynomials

Kostlan or complex Fubini-Study measure:

X§x{X5
P= > au” et
i+j+k=d R

(aijk)i+j+k:d ii.d. fOHOWiIlg N(O, 1).

Rescaling: For every (z1,12) € R?,

J

(x1,22) 1 i
P(1, = Qi,j - — i
=) ;d TVA— i+ ) /g
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Prequel: random real polynomials

Kostlan or complex Fubini-Study measure:

X§x{X5
P= > au” et
i+j+k=d R

(aijk)i+j+k:d ii.d. fOHOWiIlg N(O, 1).

Rescaling: For every (z1,12) € R?,

(x1,22) 1 xilx]
P(1, ) = ij e
vd ;d Vd— @i+ )t yat

.o i a; i -

d—o0 /! 52 VT
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The natural scale for degree d polynomials is 1/\/&
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The natural scale for degree d polynomials is 1/\/c>i

1

R2

Theorem (G-Welschinger 2014) Let x € S? and ¥ € R? be
any nested union of circles. Then with uniform probability in d,
{P =0} N B(x, \f) is a diffeomorphic copy of .
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The natural scale for degree d polynomials is 1/\/c>i

1

R2

Theorem (G-Welschinger 2014) Let x € S? and ¥ € R? be
any nested union of circles. Then with uniform probability in d,
{P =0} N B(x, \f) is a diffeomorphic copy of .

Every topology happens at the natural scale



The natural scale for a Bargmann-Fock function is 1
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The natural scale for a Bargmann-Fock function is 1

Theorem (Nazarov-Sodin 2016)

[E(#connected components of {f = 0} in Bg) e aR?.
—00
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The natural scale for a Bargmann-Fock function is 1

Theorem (Nazarov-Sodin 2016)

[E(#connected components of {f = 0} in Bg) e aR?.
—00

There is a uniform density of components of size one.
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Sketch of the proof of the BF-RSW theorem
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Sketch of the proof of the BF-RSW theorem

simplifications € improvements
provided by
Belyaev-Muirhead and Rivera-Vanneuville
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Natural idea: Find common features with Bernoulli
percolation:
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Natural idea: Find common features with Bernoulli
percolation:

> Symmetries
» Uniform crossing of squares
» (Asymptotic) independence

» Positive correlation of positive crossings (FKG)
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FKG

7&

FKG (Fortuin-Kasteleyn-Ginibre) implies

P(crossing of R and crossing of S)
>

P(crossing of R) P(crossing of S).
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Prob

> Frob
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Prob

> Frob

Prob /\%

= Prob (crossing the rectangle)?
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P(circuit in the annulus) > P(crossing the rectangle)?



> Symmetries
» Uniform crossing of squares
> Asymptotic independence

» Positive correlation of positive crossings (FKG)
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> Symmetries
» Uniform crossing of squares
> Asymptotic independence

» Positive correlation of positive crossings (FKG)

Theorem (Tassion 2016) If f: R? — {—1,1} is random and
satisfies these conditions, then it satisfies RSW.

32/71



Symmetries for Bargamnn-Fock?

> f centered = symmetry between +1.
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Symmetries for Bargamnn-Fock?

> f centered = symmetry between +1.

> e(z,y) = k(|lx — y[|*) = symmetries by
1. 7 /2-rotation,
2. translation

3. and symmetry by horizontal axis.
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Symmetries for Bargamnn-Fock?

> f centered = symmetry between +1.

> e(z,y) = k(|lx — y[|*) = symmetries by
1. 7 /2-rotation,
2. translation

3. and symmetry by horizontal axis.

These are the symmetries needed by Tassion.
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> Symmetries
» Uniform crossing of squares
> Asymptotic independence

» Positive correlation of positive crossings (FKG)
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> Symmetries
» Uniform crossing of squares
> Asymptotic independence

» Positive correlation of positive crossings (FKG)
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Independence

Correlation function for Bargmann-Fock:

e(z,y) = exp(—||z — y||*)
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seems very decorrelating!

36/71



Independence

Correlation function for Bargmann-Fock:
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seems very decorrelating!

However...
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Independence

Correlation function for Bargmann-Fock:

e(z,y) = exp(—||z — y||*)

seems very decorrelating!

However...

... because of the analytic continuation phenomenon.
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Solution : blurring by discretization
NN

S

» 7 = Union Jack lattice
> V = its vertices,
> sign fly : V — {£1}.

> Site percolation: the edge is positive iff its extremities are.

37/71



Is the discretization trustful?
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Is the discretization trustful?

1. If 7 is too coarse, then no.
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Is the discretization trustful?

1. If 7 is too coarse, then no.

AVAN
NN/

/!

2. If T is very thin, then yes, but...
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Is the discretization trustful?

1. If 7 is too coarse, then no.

AVAN
NN/

/!

2. If T is very thin, then yes, but... dependence comes back.
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Is the discretization trustful?

RS+

P N\X
/_!

Topological Lemma If in a rectangle the nodal lines of f
crosses only once every edge of the lattice, then

{f > 0} crosses R < the discretization site percolation crosses R.
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Quantitative blurring

Hypotheses: f, T, V, e, k is C1, ¥'(0) # 0, B, := [-n,n]%.

Theorem (Beffara-G 2016) There exists C' > 0 such that for
any n > 1,

1 C
P|Ve€ SV NB, #{f=0ne}<1|>1- —.
n n
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Quantitative blurring
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Hypotheses: f, T, V, e, k is C1, ¥'(0) # 0, B, := [-n,n]%.
Theorem (Beffara-G 2016) There exists C' > 0 such that for
any n > 1,

1
P|Ve € VN By, #{f=0ne} <1 >1-¢
n n

Corollary Discretization site percolation on %V N B, is
equivalent to the continuous one with the same probability.



Fear: This gives
1 8 .
#(B, N ﬁV) ~p n° points!

This is a threat for independence. It must be counterbalanced
by the decorrelation of the field.
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Quantitative dependence

Theorem ( , Beffara-G 2016) Let f: V — R
be a centered symmetric Gaussian over V a lattice. Then, there
exists C' > 0, such that for any R, S two disjoint open sets in R?,

dependence(R, S) :=

max |P(A and B) — P(A)P(B)]
A crossing in R
B crossing in S
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Quantitative dependence

Theorem ( , Beffara-G 2016) Let f: V — R
be a centered symmetric Gaussian over V a lattice. Then, there
exists C' > 0, such that for any R, S two disjoint open sets in R?,

dependence(R, S) :=

max |P(A and B) — P(A)P(B)]
A crossing in R
B crossing in S

<

C(# vertices in R and S)? max le(x, )|

R — 2’
velt V1 —e(z,y)
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Quantitative dependence

Theorem ( , Beffara-G 2016) Let f: V — R
be a centered symmetric Gaussian over V a lattice. Then, there
exists C' > 0, such that for any R, S two disjoint open sets in R?,

dependence(R, S) :=

max |P(A and B) — P(A)P(B)]
A crossing in R
B crossing in S

<
C(# vertices in R and S)? max M.
zeR (/1 —e(x,y)?
yGS 7y

The Ultimate Fight: Information versus Oblivion
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Quantitative dependence

Theorem (Piterbarg 1982, Beffara-G 2016) Let f: V — R
be a centered symmetric Gaussian over V a lattice. Then, there
exists C' > 0, such that for any R, S two disjoint open sets in R?,

dependence(R, S) :=

max |P(A and B) — P(A)P(B)]
A crossing in R
B crossing in S

<
C(# vertices in R and S)? max M.
zeR (/1 —e(x,y)?
yGS 7y

The Ultimate Fight: Information versus Oblivion

42/71



Tassion’s condition:
dependence(A(n,2n), A(3n,nlogn)) —n—oo 0,

where A(n,n') = By \ By.
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where A(n,n') = By \ By.

For Bargmann-Fock:

T.

. . . 1
1. Discretize in By, 105p OVer W Togn)®

2. For this discretization,
dependence(A(n, 2n), A(3n,nlogn))

12 exp(—n2)

V1—e 207

IN

(nlogn)
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Tassion’s condition:
dependence(A(n,2n), A(3n,nlogn)) —n—oo 0,

where A(n,n') = By \ By.

For Bargmann-Fock:

T.

. . . 1
1. Discretize in By, 105p OVer W Togn)®

2. For this discretization,
dependence(A(n, 2n), A(3n,nlogn)) <
12_exp(—n?)

V1—e 207

3. The same holds for the continuous field with a further cost
due to the discretization: —n 0.

(nlogn) —n0

_Cc
nlogn



43/71

Tassion’s condition:
dependence(A(n,2n), A(3n,nlogn)) —n—oo 0,

where A(n,n') = By \ By.

For Bargmann-Fock:

T.

. . . 1
1. Discretize in By, 105p OVer W Togn)®

2. For this discretization,
dependence(A(n, 2n), A(3n,nlogn)) <
12_exp(—n?)

V1—e 207

3. The same holds for the continuous field with a further cost
due to the discretization: —n 0.

(nlogn) —n0

_Cc
nlogn

Oblivion wins!



> Symmetries
» Uniform crossing of squares
> Asymptotic independence

» Positive correlation of positive crossings (FKG)
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FKG

7&

FKG (Fortuin-Kasteleyn-Ginibre) implies

]P’(positive crossing of R and positive crossing of S’)
>

P(positive crossing of R) .  P(positive crossing of S).
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Theorem (Loren Pitt 1982) For a centered Gaussian field,

FKG & positive correlation function.
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Theorem (Loren Pitt 1982) For a centered Gaussian field,
FKG & positive correlation function.

Here: e(z,y) = exp(—||z — y||?).
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Theorem (Loren Pitt 1982) For a centered Gaussian field,
FKG & positive correlation function.

Here: e(z,y) = exp(—||z — y||?).
> Symmetries
» Uniform crossing of squares
> Asymptotic independence

» Positive correlation of positive crossings (FKG)
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RSW+FKG
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P(circuit in the annulus) > P(crossing the rectangle)?
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RSW-+FKG+weak dependence
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Prob ¢

[/

')'H—lt(

Prob| %0 < k < lthg(’;) NO
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Prob ¢

[/

')'H—lt(

Prob| w0 < k < lthg(’;) NO

n 4
~ _ \loga(F) — (= logy(1—c)
~ (1 C) £ (n) .
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Why Bargmann-Fock and not Random Waves?

» Bargmann-Fock:

e(z,y) = exp(—|z — y|*).
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Why Bargmann-Fock and not Random Waves?

» Bargmann-Fock:

e(z,y) = exp(~lz — y[|*).

1. positive
2. fast decay — weak dependence

» Random waves:

e(x,y) = Jo(llz —yl)

1. oscillating
2. slow decay — strong dependence

50/71



Tools and proofs
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Tools and proofs

Discretization scheme
Asymptotic independence
Pitt’s theorem (FKG)

Tassion’s theorem



Discretization scheme

Theorem There exists C' > 0 such that for any n > 1,

P Vee%é’ﬂBn, #{f:()me}g1] z1-g.
n n
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Theorem (Kac-Rice formula)
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Theorem (Kac-Rice formula) Let f be a Gaussian field on
an interval I C R, such that almost surely, f is C' and that for
any x #y € I, cov(f(x), f(y)) is definite. If

Ny=#{f=0}n1,
then
E(NI(NI—l)) = /12E(|f 2)||f (y ||f ):0)
D(f (). f(y)) (0, 0)dzdy.

where ¢x (u) is the Gaussian density of X € R? at u € R2.
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Theorem (Kac-Rice formula) Let f be a Gaussian field on
an interval I C R, such that almost surely, f is C' and that for
any x #y € I, cov(f(x), f(y)) is definite. If

Ny = #{f=0}n1I,
then
BNV -1) = [ E(F@IF 0| ) = ) = 0)
(s (0, 0)dxdy.
where ¢x (u) is the Gaussian density of X € R? at u € R2.
Corollary If f is C? and k’(0) # 0, then

E(Ni(N; 1)) < O(I).
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Proof of the discretization theorem.
We want to prove that with high probability,

1
VeéﬁgﬂBn, Negl-

By Markov inequality and Kac-Rice,

P[N. > 1] =P[Ne(N. — 1) > 1] < Clef.
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Proof of the discretization theorem.
We want to prove that with high probability,

Ve € %SQBH, N, < 1.
By Markov inequality and Kac-Rice,
P[N. > 1] =P[Ne(N. — 1) > 1] < Clef.
Hence,

1
P|Ve € —£N By, N. < 1]
n



Proof of the discretization theorem.
We want to prove that with high probability,

1
Ve € ?gmBn, Ne§ 1.
n
By Markov inequality and Kac-Rice,
P[N. > 1] =P[Ne(N. — 1) > 1] < Clef.

Hence,

P[ve e %e B, Ne<1] > 1-#{ec %g A B} (Clel?)
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Proof of the discretization theorem.
We want to prove that with high probability,

1
Ve € ?gﬂBn, Ne§ 1.
n
By Markov inequality and Kac-Rice,
P[N. > 1] =P[Ne(N. — 1) > 1] < Clef.
Hence,
1 1 3
P[Ve € —EN By, N, < 1} > 1-#{e€ ENBYHCIeP)

1-— C’nQnGi
nd

v
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Proof of the discretization theorem.
We want to prove that with high probability,

1
Ve € ?gﬂBn, Ne§ 1.
n
By Markov inequality and Kac-Rice,
P[N. > 1] =P[Ne(N. — 1) > 1] < Clef.

Hence,

P[ve e %e B, Ne<1] > 1-#{ec %g A B} (Clel?)

v

1
1-— C’nQnGE =1-C/n.
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Proof of the Corollary. We have

BNV -1) = [ E(r@Irel| f@
(1)1 () (0, 0)dwdy.

()

0)
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Proof of the Corollary. We have

BNV -1) = [ E(r@Irel| f@
(1)1 () (0, 0)dwdy.

When |I| — 0,
1. fp dxdy ~ \1]2;

()

0)
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Proof of the Corollary. We have

BNV -1) = [ E(r@Irel| f@
(1)1 () (0, 0)dwdy.

When |I] — 0,
L. [po dady ~ |1]?;
2. f(=) = f(y) implies | f'(2)|[f'(y)| < |11

(¥)

0)
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Proof of the Corollary. We have

BN -1) = [ B(r@IIW | e = 1) -
D). 1)) (0, 0)ddy.

When |I] — 0,
L. [po dady ~ |1]?;
2. f(=) = f(y) implies | f'(2)|[f'(y)| < |11

3. O(f(a).£(y))(0,0) ~ [I|71 since (f(z), f(y)) degenerates.

This gives the |1]3.
U

0)



Kac-Rice first moment formula

EN; = [ B @)l | £(z) = 0)6 500 0)da.
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Kac-Rice first moment formula

EN; = [ B @)l | £(z) = 0)6 500 0)da.

"Proof".

» If f vanishes transversally on I,

o1
Ny = 11m/\f/(95)‘1f|<6dx’
I

e—0 2¢
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Kac-Rice first moment formula

EN; = / E(f ()] | £(x) = 0) ) (0)da

"Proof".

» If f vanishes transversally on I,

N[ = hm/\f ‘1‘f|<6d.%'

e—0 2¢

> so that

BN = [ B(1f @)t 51 e, )

e—0 2¢
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Discretization scheme v/
Asymptotic independence
Pitt’s theorem (FKG)

Tassion’s theorem

Ll
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Asymptotic independence

Theorem (Piterbarg 1982- Beffara-G 2016 ) f:V — R
centered symmetric Gaussian over V a lattice. Then, there exists
C > 0, such that for any R, S two disjoint open sets in R?,

dependence(R, S) :=

max |P(A and B) — P(A)P(B)]
A crossing in R
B crossing in S

<

C(# vertices in R and S)? max _ lelz,y)|
2 1=

58 /71



Asymptotic independence

Theorem (Piterbarg 1982- Beffara-G 2016 ) f:V — R
centered symmetric Gaussian over V a lattice. Then, there exists
C > 0, such that for any R, S two disjoint open sets in R?,

dependence(R, S) :=

max |P(A and B) — P(A)P(B)]
A crossing in R
B crossing in S

<

C(# vertices in R and S)? max _ lelz,y)|
2 1=

The cost for independency
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Gaussian reminder

A real valued random variable X ~ N(0,0) iff o = E(X?) and
for any Borelian A C R,

PO 4) = [ oxtuu
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Gaussian reminder

A real valued random variable X ~ N(0,0) iff o = E(X?) and
for any Borelian A C R,

PO 4) = [ oxtuu

with . .
ox(u) = Jono exp ( — 5<g_1u,u>).
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X = (X;) € RY centered non-degenerate Gaussian
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X = (X;) € RY centered non-degenerate Gaussian means that if

2= (B(XiX)) 1 <; < n

then for any Borelian A ¢ RY,

POX e 4) = [ oxtuydu

with 1 1
v e
dx(u) = TV oS exp ( 5 (X" u, u>)
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2= (B(XiX)) 1 <; < n

then for any Borelian A ¢ RY,

POX e 4) = [ oxtuydu

with 1 1
v e
dx(u) = TV oS exp ( 5 (X" u, u>)

If X e RY and X’ e RV,

cov(X, X') = (E(X@'XJI‘))lsigN,lstNf'



X = (X;) € RY centered non-degenerate Gaussian means that if

2= (B(XiX)) 1 <; < n

then for any Borelian A ¢ RY,

POX e 4) = [ oxtuydu

with ] ]
-+ e
dx(u) = TV oS exp ( 5 (X" u, u>)

If X € RN and X’ € RY,
cov(X, X') = (E(XiXJ/'))lgigN,lgjgN"

Fact. X and X' are independent iff cov(X,X’) =0.
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Proof of Plackett-Piterbarg theorem Let

U= () ey V= (f(y))yGSﬂV
X = (U, V) Xo = (U’ V)znd
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Proof of Plackett-Piterbarg theorem Let

U= (f@),epny V= (f(y))yGSﬂV
X = (U, V) Xo = (U’ V)znd

where
> X, and X; are independent, and
> for Xy, V is an independent copy of f.
For simplicity, let
> A be the event that there exists a positive crossing in R
» B the same in S.

We want a bound for

P[Aﬂ B] — ]P)[A]P[B] = EX1(1AOB) — EXO(]-AOB)-



Interpolate

X, = VX1 + V1 — tXo.
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Interpolate

X, = VX1 + V1 — tXo.

Then X; has variance

~( cov(U,U) tcov(UV)
X = <t cov(U, V)T cov(V, V))

with
cov (U, V) = (6($7y))x€RﬂV,y€SﬂV-
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Then

1
d
Ex,(1anB) —Ex,(1anB) = /thXt(lAnB)dt
0
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Then

dt

1
= /dt/ d(bXt(u,v)d(u,v)
0 (uw)eAxB dt

1
d
Ex,(1anB) —Ex,(1anB) = /EXt(lAnB)dt
0

63/71



Then

1
d
Ex,(1anB) —Ex,(1anB) = / EXt(lAﬂB)dt
0

_ dox,
B /dt/uv cAxp dt (1w, v)d(u, )

datl 8¢X
= dt/ — 2ty
Z/ AxB dt aUt i ( )

i<j
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Then

1
d
Ex,(1anB) —Ex,(1anp) = / EXt(lAﬂB)dt
0

_ dox,
= /dt/UUEAXB 7 (u,v)d(u,v)

dO’tl 8(]5)(
= dt/ — =g
Z/ AxB dt aUtz] ( )

i<j

with

dovij [ e(z,y)ifi=z€e RNVandj=yeSNY
dt | 0in the other cases.



A very Gaussian equality

Iox _ px
(902']' Guzauj

Vi # J,
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A very Gaussian equality

., 0ox  0%¢x
vi # I (902']' - 6u,8uj

Proof. Use



Then

P[AN B] — P[AJP[B] = e(z,y / dt/ P ox, d(u
xER AxB 8’11,3[; Yy
yeS
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Then
O?ox,

d(u
% B Ouz0vy

P[AN B] — PIA|P[B] = zeg e(z,y / dt/A

Note that that
» if (fz)eerny € A, then for any g, > fo, (92)zerny € A;
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Then

P[AN B] — P[AJP[B] = e(z,y / dt/ O9x, d(u, v).
xER AxB 811,1- Yy
yeS

Note that that

> if (fz)serny € A, then for any go > fu, (92)acrny € 4;
» Since A depends only on the sign of f,, then A intersects
any coordinate axis Rf, along R or RT,

» depending if the sign of f, is crucial for the crossing or not.



Integrating by parts gives, with N = # [(R us)n V},
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Integrating by parts gives, with N = # [(R us)n V},

e(x, o / dt/
(ANB)N(RN—=2x{0}2) or 0

xr XZU _
ox (X, X O)dX:vde
Note that if e(z,y) > 0, we have proved that
P[AN B] — P[A]P[B] > 0

which is Pitt’s theorem.



In general,

1
/ ¢zy(Z,0)dZ = lim - ¢z ydZdY
Z€AY=0 =0 € Jzea el
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In general,

1
/ ¢zy(Z,0)dZ = lim - ¢z ydZdY
ZeAY=0 20 € Jzeayeo,d
1
= lim-Pr[(Z,Y) € Ax[0,€]]
e—0 €
Pr[(Z,Y) € A x [0,
g APHEVI €AXDA] g

e—0 € PI‘(Y € [07 6})
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In general,

/ bzyv(Z,0)dZ
ZEAY=0

1Pr[(Z,Y) € Ax[0,€]

= lim —
e—0 €

Pr(Y € [0,¢€])

1
lim ~ bz ydZdY
€20 € JzeA ye[o,

lim Pr[(Z,Y) € Ax [0,€]

e—0 €
Pr[Y €[0,€]

Pr[Z € AlY = 0]¢y(0).



Therefore, applying the latter to Y = (X, X’) and Z = (X-TXXﬂ”')’
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Therefore, applying the latter to Y = (X, X’) and Z = (mexm,),

dX

Px(6 X5 = X0 =0 e

/(AﬁB)ﬁ(IRN2 x{0}2) or 0
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Therefore, applying the latter to Y = (X, X’) and Z = (X-TXXﬂ”’)’

/ dXx
(ANB)N(RN=2x{0}2) or 0 dX=dXx
Pr[(ANB) or §|X® = X% =0

= |

27(1 — e(x,y)?

ox, (X, X" = X =0)
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Therefore, applying the latter to Y = (X, X’) and Z = (X-TXXﬂ”’)’

/ dXx
(ANB)N(RN=2x{0}2) or 0 dX=dXx
Pr[(ANB) or §|X® = X% =0

= |

27(1 — e(x,y)?

ox, (X, X" = X =0)

where we used that

et )= (57 )



Therefore, applying the latter to Y = (X, X’) and Z = (X-TXXﬂ”’)’

/ dXx
(ANB)N(RN=2x{0}2) or 0 dX=dXx
Pr[(ANB) or §|X® = X% =0

= |

27(1 — e(x,y)?

ox, (X, X" = X =0)

where we used that
e(x,z) e(x, 2
cov(X,X’)z( (, )« )>

This gives

le(z,y)|
P[A N B] — PAJP[B]| < (#R N V)(#5 N V) max :
[P[A N B] ~ PAJP[B]| < (#RNV)(# ﬂ)£§¢%u—d%w%

O
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Discretization scheme v/
Asymptotic independence v’
Pitt’s theorem (FKG) v/

Tassion’s theorem

Ll
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Theorem (Tassion) If f: R? — {—1,1} is random and
satisfies

> Symmetries

» Uniform crossing of squares

> Asymptotic independence

» Positive correlation of positive crossings (FKG)
then it satisfies RSW.
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Some open problems

Not too hard
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Some open problems

Not too hard
0

Hard
RSW for fast decorrelating fields without positive correlation

Very hard
RSW for random waves

Super very hard
Prove a Cardy formula/conformal invariance
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