Percolation and Gaussian fields

Workshop on Random Real Algebraic Geometry Middle East Technical University North Cyprus

Damien Gayet (Institut Fourier, Grenoble) Lectures based on a common work with Vincent Beffara Image: Alejandro Rivera

Introduction

n

 $\liminf_{n,m\to\infty}\mathbb{P}(\text{crossing})>c>0?$

nR

$$\liminf_{n \to \infty} \mathbb{P}(\text{crossing}) \ge c > 0 ?$$

Squares

Squares

With

- \blacktriangleright symmetry between + and -
- symmetry between x_1 and x_2 then both probabilities are equal...

 $\forall n, \mathbb{P}(\text{crossing}) = 1/2.$

Theorem (Russo, Seymour-Welsh 1978) Let $R \subset \mathbb{R}^2$ be a fixed rectangle. Then there exists c > 0,

 $\liminf_{n\to\infty}\mathbb{P}(\text{crossing of }nR)>c.$

Question: Let $f : \mathbb{R}^2 \to \mathbb{R}$ a be random smooth function and fix $R \subset \mathbb{R}^2$. Does it exist c > 0,

$$\liminf_{n \to \infty} \mathbb{P}(\{f > 0\} \text{ crosses } nR) > c?$$

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be

- ▶ a centered Gaussian field, that is $\forall x_1, \dots, x_N \in \mathbb{R}^2$ any linear combination of the $(f(x_i))_{i=1,\dots,N}$ is a centered Gaussian variable.
- We assume in this course that its covariant function is symmetric:

$$e(x,y) := \mathbb{E}\big(f(x)f(y)\big) = k(\|x-y\|).$$

• Almost surely, f is C^2 . This is true if is e is C^3 .

Two universal models with geometric origin

- ▶ The random wave model (Riemannian)
- ▶ The Bargmann-Fock model (algebraic)

The random wave model

$$g(r,\theta) = \sum_{m=-\infty}^{\infty} a_m J_{|m|}(r) e^{im\theta},$$

 $(a_m)_m$ are i.i.d. following N(0,1) and J_m is the *m*-th Bessel function.

The random wave model

$$g(r,\theta) = \sum_{m=-\infty}^{\infty} a_m J_{|m|}(r) e^{im\theta},$$

 $(a_m)_m$ are i.i.d. following N(0,1) and J_m is the *m*-th Bessel function.

▶ Limit model for the rescaled **spherical harmonics**.

The random wave model

$$g(r,\theta) = \sum_{m=-\infty}^{\infty} a_m J_{|m|}(r) e^{im\theta},$$

 $(a_m)_m$ are i.i.d. following N(0,1) and J_m is the *m*-th Bessel function.

- Limit model for the rescaled **spherical harmonics**.
- ▶ Universal from compact Riemannian manifolds.

Conjecture (Bogomolny-Schmidt 2007) RSW should hold for this model.

The Bargmann-Fock model

$$\forall (x_1, x_2) \in \mathbb{R}^2, \ f(x_1, x_2) = \sum_{i,j=0}^{\infty} a_{ij} \frac{x_1^i x_2^j}{\sqrt{i!j!}} e^{-\frac{1}{2} ||x||^2},$$

 $(a_{ij})_{i,j\geq 0}$ are i.i.d. following N(0,1).

The Bargmann-Fock model

$$\forall (x_1, x_2) \in \mathbb{R}^2, \ f(x_1, x_2) = \sum_{i,j=0}^{\infty} a_{ij} \frac{x_1^i x_2^j}{\sqrt{i!j!}} e^{-\frac{1}{2} ||x||^2},$$

(a_{ij})_{i,j≥0} are i.i.d. following N(0, 1).
▶ Limit model for the rescaled **polynomials**.

The Bargmann-Fock model

$$\forall (x_1, x_2) \in \mathbb{R}^2, \ f(x_1, x_2) = \sum_{i,j=0}^{\infty} a_{ij} \frac{x_1^i x_2^j}{\sqrt{i!j!}} e^{-\frac{1}{2} ||x||^2},$$

 $(a_{ij})_{i,j\geq 0}$ are i.i.d. following N(0,1).

- Limit model for the rescaled **polynomials**.
- ▶ Universal from (complex) algebraic geometry.

Theorem (Beffara-G 2016) RSW holds for Bargmann-Fock: for any rectangle R, there exists c > 0 such that

$$\liminf_{n \to \infty} \mathbb{P}(\{f > 0\} \text{ crosses } nR) > c.$$

Corollary For Bargmann-Fock,

$$\exists \alpha > 0, \ \forall \ell, n, \ \mathbb{P}(\text{one arm}) < \left(\frac{\ell}{n}\right)^{\alpha}.$$

Corollary (Alexander 1996) Almost surely there is no infinite component of $\{f > 0\}$.

Corollary (Alexander 1996) Almost surely there is no infinite component of $\{f > 0\}$.

Theorem (Rivera-Vanneuville 2017) For any $\epsilon > 0$, almost surely $\{f > -\epsilon\}$ as an infinite component.

Theorem (Belyaev-Muirhead-Wigman 2017) RSW holds for polynomials with the complex Fubini-Study measure.

Kostlan or complex Fubini-Study measure:

$$P = \sum_{i+j+k=d} a_{ijk} \frac{X_0^i X_1^j X_2^k}{\sqrt{i!j!k!}},$$

 $(a_{ijk})_{i+j+k=d}$ i.i.d. following N(0,1).

Kostlan or complex Fubini-Study measure:

$$P = \sum_{i+j+k=d} a_{ijk} \frac{X_0^i X_1^j X_2^k}{\sqrt{i!j!k!}},$$

 $(a_{ijk})_{i+j+k=d}$ i.i.d. following N(0,1).

Rescaling: For every $(x_1, x_2) \in \mathbb{R}^2$,

$$P\big(1,\frac{(x_1,x_2)}{\sqrt{d}}\big)$$

Kostlan or complex Fubini-Study measure:

$$P = \sum_{i+j+k=d} a_{ijk} \frac{X_0^i X_1^j X_2^k}{\sqrt{i!j!k!}},$$

 $(a_{ijk})_{i+j+k=d}$ i.i.d. following N(0,1).

Rescaling: For every $(x_1, x_2) \in \mathbb{R}^2$,

$$P(1, \frac{(x_1, x_2)}{\sqrt{d}}) = \sum_{i+j \le d} a_{i,j} \frac{1}{\sqrt{d - (i+j)!!!!j!}} \frac{x_1^i x_2^j}{\sqrt{d}^{i+j}}$$

Kostlan or complex Fubini-Study measure:

$$P = \sum_{i+j+k=d} a_{ijk} \frac{X_0^i X_1^j X_2^k}{\sqrt{i!j!k!}},$$

 $(a_{ijk})_{i+j+k=d}$ i.i.d. following N(0,1).

Rescaling: For every $(x_1, x_2) \in \mathbb{R}^2$,

$$P(1, \frac{(x_1, x_2)}{\sqrt{d}}) = \sum_{i+j \le d} a_{i,j} \frac{1}{\sqrt{d - (i+j)! i! j!}} \frac{x_1^i x_2^j}{\sqrt{d}^{i+j}}$$
$$\underset{d \to \infty}{\sim} \frac{1}{\sqrt{d!}} \sum_{i,j=0}^{\infty} a_{i,j} \frac{x_1^i x_2^j}{\sqrt{i! j!}}.$$

The natural scale for degree d polynomials is $1/\sqrt{d}$

The natural scale for degree d polynomials is $1/\sqrt{d}$

Theorem (G-Welschinger 2014) Let $x \in S^2$ and $\Sigma \in \mathbb{R}^2$ be any nested union of circles. Then with uniform probability in d, $\{P = 0\} \cap B(x, \frac{1}{\sqrt{d}})$ is a diffeomorphic copy of Σ .

The natural scale for degree d polynomials is $1/\sqrt{d}$

Theorem (G-Welschinger 2014) Let $x \in S^2$ and $\Sigma \in \mathbb{R}^2$ be any nested union of circles. Then with uniform probability in d, $\{P = 0\} \cap B(x, \frac{1}{\sqrt{d}})$ is a diffeomorphic copy of Σ .

Every topology happens at the natural scale
The natural scale for a Bargmann-Fock function is 1

The natural scale for a Bargmann-Fock function is 1

Theorem (Nazarov-Sodin 2016)

$$\mathbb{E}(\#\text{connected components of } \{f=0\} \text{ in } B_R) \underset{R \to \infty}{\sim} aR^2.$$

The natural scale for a Bargmann-Fock function is 1

Theorem (Nazarov-Sodin 2016)

 $\mathbb{E}(\#\text{connected components of } \{f=0\} \text{ in } B_R) \underset{R \to \infty}{\sim} aR^2.$

There is a uniform density of components of size one.

Sketch of the proof of the BF-RSW theorem

Sketch of the proof of the BF-RSW theorem

simplifications & improvements provided by Belyaev-Muirhead and Rivera-Vanneuville

- ► Symmetries
- ▶ Uniform crossing of squares

- ► Symmetries
- ▶ Uniform crossing of squares
- ► (Asymptotic) independence

- Symmetries
- ▶ Uniform crossing of squares
- ► (Asymptotic) independence
- ▶ Positive correlation of positive crossings (FKG)

FKG

FKG (Fortuin-Kasteleyn-Ginibre) implies

 $\mathbb{P}(\text{crossing of } R \text{ and crossing of } S) \\ \geq \\ \mathbb{P}(\text{crossing of } R) \qquad \mathbb{P}(\text{crossing of } S).$

29/71

 $\mathbb{P}(\text{circuit in the annulus}) \geq \mathbb{P}(\text{crossing the rectangle})^4$

► Symmetries

- ▶ Uniform crossing of squares
- ► Asymptotic independence
- ▶ Positive correlation of positive crossings (FKG)

► Symmetries

- ▶ Uniform crossing of squares
- ► Asymptotic independence
- ▶ Positive correlation of positive crossings (FKG)

Theorem (Tassion 2016) If $f : \mathbb{R}^2 \to \{-1, 1\}$ is random and satisfies these conditions, then it satisfies RSW.

Symmetries for Bargamnn-Fock?

Symmetries for Bargamnn-Fock?

3. and symmetry by horizontal axis.

Symmetries for Bargamnn-Fock?

These are the symmetries needed by Tassion.

- \blacktriangleright Symmetries \checkmark
- ▶ Uniform crossing of squares
- ► Asymptotic independence
- ▶ Positive correlation of positive crossings (FKG)

- \blacktriangleright Symmetries \checkmark
- \blacktriangleright Uniform crossing of squares \checkmark
- ► Asymptotic independence
- ▶ Positive correlation of positive crossings (FKG)

Correlation function for Bargmann-Fock:

$$e(x,y) = \exp(-\|x-y\|^2)$$

Correlation function for Bargmann-Fock:

$$e(x,y) = \exp(-\|x-y\|^2)$$

seems very decorrelating!

Correlation function for Bargmann-Fock:

$$e(x,y) = \exp(-\|x-y\|^2)$$

seems very decorrelating!

However...

Correlation function for Bargmann-Fock:

$$e(x,y) = \exp(-\|x-y\|^2)$$

seems very decorrelating!

However...

... because of the analytic continuation phenomenon.

Solution : blurring by discretization

- \blacktriangleright $\mathcal{T} =$ Union Jack lattice
- $\triangleright \mathcal{V} = \text{its vertices},$
- $\blacktriangleright \operatorname{sign} f_{|\mathcal{V}}: \mathcal{V} \to \{\pm 1\}.$
- ▶ Site percolation: the edge is positive iff its extremities are.

1. If \mathcal{T} is too coarse, then no.

1. If \mathcal{T} is too coarse, then no.

2. If \mathcal{T} is very thin, then yes, but...

1. If \mathcal{T} is too coarse, then no.

2. If \mathcal{T} is very thin, then yes, but... dependence comes back.

38/71

Topological Lemma If in a rectangle the nodal lines of f crosses only once every edge of the lattice, then

 $\{f > 0\}$ crosses $R \Leftrightarrow$ the discretization site percolation crosses R.

Quantitative blurring

Hypotheses: $f, \mathcal{T}, \mathcal{V}, e, k$ is $C^1, k'(0) \neq 0, B_n := [-n, n]^2$.

Theorem (Beffara-G 2016) There exists C > 0 such that for any n > 1,

$$\mathbb{P}\Big[\forall e \in \frac{1}{n^3} \mathcal{V} \cap B_n, \ \#\{f = 0 \cap e\} \le 1\Big] \ge 1 - \frac{C}{n}.$$

Hypotheses: $f, \mathcal{T}, \mathcal{V}, e, k$ is $C^1, k'(0) \neq 0, B_n := [-n, n]^2$.

Theorem (Beffara-G 2016) There exists C > 0 such that for any n > 1,

$$\mathbb{P}\Big[\forall e \in \frac{1}{n^3} \mathcal{V} \cap B_n, \ \#\{f = 0 \cap e\} \le 1\Big] \ge 1 - \frac{C}{n}.$$

Corollary Discretization site percolation on $\frac{1}{n^3} \mathcal{V} \cap B_n$ is equivalent to the continuous one with the same probability.

Fear: This gives

$$#(B_n \cap \frac{1}{n^3}\mathcal{V}) \sim_n n^8$$
 points!

This is a threat for independence. It must be counterbalanced by the decorrelation of the field.

Quantitative dependence

Theorem (, Beffara-G 2016) Let $f: \mathcal{V} \to \mathbb{R}$ be a centered symmetric Gaussian over \mathcal{V} a lattice. Then, there exists C > 0, such that for any R, S two disjoint open sets in \mathbb{R}^2 ,

dependence(R, S) :=

 $\max_{\substack{A \text{ crossing in } R \\ B \text{ crossing in } S}} \left| \mathbb{P}(A \text{ and } B) - \mathbb{P}(A)\mathbb{P}(B) \right|$
Quantitative dependence

Theorem (, Beffara-G 2016) Let $f: \mathcal{V} \to \mathbb{R}$ be a centered symmetric Gaussian over \mathcal{V} a lattice. Then, there exists C > 0, such that for any R, S two disjoint open sets in \mathbb{R}^2 ,

dependence(R, S) :=

 $\max_{\substack{A \text{ crossing in } R \\ B \text{ crossing in } S}} \left| \mathbb{P}(A \text{ and } B) - \mathbb{P}(A)\mathbb{P}(B) \right|$

$$\leq$$

$$C(\# \text{ vertices in } R \text{ and } S)^2 \max_{\substack{x \in R \\ y \in S}} \frac{|e(x,y)|}{\sqrt{1 - e(x,y)^2}}.$$

Quantitative dependence

Theorem (, Beffara-G 2016) Let $f: \mathcal{V} \to \mathbb{R}$ be a centered symmetric Gaussian over \mathcal{V} a lattice. Then, there exists C > 0, such that for any R, S two disjoint open sets in \mathbb{R}^2 ,

dependence(R, S) :=

 $\max_{\substack{A \text{ crossing in } R \\ B \text{ crossing in } S}} \left| \mathbb{P}(A \text{ and } B) - \mathbb{P}(A)\mathbb{P}(B) \right|$

 \leq

$$C(\# \text{ vertices in } R \text{ and } S)^2 \max_{\substack{x \in R \\ y \in S}} \frac{|e(x,y)|}{\sqrt{1 - e(x,y)^2}}.$$

The Ultimate Fight: Information versus Oblivion

Quantitative dependence

Theorem (Piterbarg 1982, Beffara-G 2016) Let $f : \mathcal{V} \to \mathbb{R}$ be a centered symmetric Gaussian over \mathcal{V} a lattice. Then, there exists C > 0, such that for any R, S two disjoint open sets in \mathbb{R}^2 ,

dependence(R, S) :=

 $\max_{\substack{A \text{ crossing in } R \\ B \text{ crossing in } S}} \left| \mathbb{P}(A \text{ and } B) - \mathbb{P}(A)\mathbb{P}(B) \right|$

 \leq

$$C(\# \text{ vertices in } R \text{ and } S)^2 \max_{\substack{x \in R \\ y \in S}} \frac{|e(x,y)|}{\sqrt{1 - e(x,y)^2}}.$$

The Ultimate Fight: Information versus Oblivion

dependence $(A(n, 2n), A(3n, n \log n)) \rightarrow_{n \to \infty} 0$,

where $A(n, n') = B_{n'} \setminus B_n$.

dependence $(A(n, 2n), A(3n, n \log n)) \rightarrow_{n \to \infty} 0$,

where $A(n, n') = B_{n'} \setminus B_n$.

For Bargmann-Fock:

1. Discretize in $B_{n \log n}$ over $\frac{1}{(n \log n)^3} \mathcal{T}$.

dependence $(A(n, 2n), A(3n, n \log n)) \rightarrow_{n \to \infty} 0$,

where $A(n, n') = B_{n'} \setminus B_n$.

For Bargmann-Fock:

- 1. Discretize in $B_{n \log n}$ over $\frac{1}{(n \log n)^3} \mathcal{T}$.
- 2. For this discretization,

dependence
$$(A(n, 2n), A(3n, n \log n)) \leq (n \log n)^{12} \frac{\exp(-n^2)}{\sqrt{1 - e^{-2n^2}}}$$

dependence $(A(n, 2n), A(3n, n \log n)) \rightarrow_{n \to \infty} 0$,

where $A(n, n') = B_{n'} \setminus B_n$.

For Bargmann-Fock:

- 1. Discretize in $B_{n \log n}$ over $\frac{1}{(n \log n)^3} \mathcal{T}$.
- 2. For this discretization,

$$\begin{aligned} \text{dependence} \left(A(n,2n), A(3n,n\log n) \right) &\leq \\ (n\log n)^{12} \frac{\exp(-n^2)}{\sqrt{1-e^{-2n^2}}} &\to_n 0 \quad ; \end{aligned}$$

3. The same holds for the continuous field with a further cost due to the discretization: $\frac{C}{n \log n} \rightarrow_n 0$.

dependence $(A(n, 2n), A(3n, n \log n)) \rightarrow_{n \to \infty} 0$,

where $A(n, n') = B_{n'} \setminus B_n$.

For Bargmann-Fock:

- 1. Discretize in $B_{n \log n}$ over $\frac{1}{(n \log n)^3} \mathcal{T}$.
- 2. For this discretization,

$$\begin{aligned} \text{dependence} & \left(A(n,2n), A(3n,n\log n) \right) &\leq \\ & \left(n\log n \right)^{12} \frac{\exp(-n^2)}{\sqrt{1-e^{-2n^2}}} &\to_n 0 \quad ; \end{aligned}$$

3. The same holds for the continuous field with a further cost due to the discretization: $\frac{C}{n \log n} \rightarrow_n 0$.

Oblivion wins!

- \blacktriangleright Symmetries \checkmark
- \blacktriangleright Uniform crossing of squares \checkmark
- \blacktriangleright Asymptotic independence \checkmark
- ▶ Positive correlation of positive crossings (FKG)

FKG (Fortuin-Kasteleyn-Ginibre) implies

$$\begin{split} & \mathbb{P}\big(\text{positive crossing of } R \quad \text{and} \quad \text{positive crossing of } S\big) \\ & \geq \\ & \mathbb{P}(\text{positive crossing of } R) \quad . \quad \mathbb{P}(\text{positive crossing of } S). \end{split}$$

Theorem (Loren Pitt 1982) For a centered Gaussian field,

 $FKG \Leftrightarrow \text{positive correlation function.}$

Theorem (Loren Pitt 1982) For a centered Gaussian field, $FKG \Leftrightarrow \text{positive correlation function.}$

Here: $e(x, y) = \exp(-\|x - y\|^2)$.

Theorem (Loren Pitt 1982) For a centered Gaussian field,

 $FKG \Leftrightarrow$ positive correlation function.

Here: $e(x, y) = \exp(-\|x - y\|^2)$.

- ▶ Symmetries ✓
- \blacktriangleright Uniform crossing of squares \checkmark
- \blacktriangleright Asymptotic independence \checkmark
- \blacktriangleright Positive correlation of positive crossings (FKG) \checkmark

RSW+FKG

 $\mathbb{P}(\text{circuit in the annulus}) \geq \mathbb{P}(\text{crossing the rectangle})^4$

RSW+FKG+weak dependence

$$\mathbb{P} < \left(\frac{\ell}{n}\right)^{\alpha}.$$

48/71

49/71

► Bargmann-Fock:

$$e(x, y) = \exp(-\|x - y\|^2).$$

► Bargmann-Fock:

$$e(x, y) = \exp(-\|x - y\|^2).$$

- 1. positive
- 2. fast decay \rightarrow weak dependence

► Bargmann-Fock:

$$e(x, y) = \exp(-\|x - y\|^2).$$

 $1. \ positive$

2. fast decay \rightarrow weak dependence

▶ Random waves:

$$e(x,y) = J_0(||x - y||)$$

► Bargmann-Fock:

$$e(x, y) = \exp(-\|x - y\|^2).$$

1. positive 2. fast decay \rightarrow weak dependence

▶ Random waves:

$$e(x, y) = J_0(||x - y||)$$

oscillating
slow decay → strong dependence

Tools and proofs

Tools and proofs

- 1. Discretization scheme
- 2. Asymptotic independence
- 3. Pitt's theorem (FKG)
- 4. Tassion's theorem

Discretization scheme

Theorem There exists C > 0 such that for any n > 1,

$$\mathbb{P}\Big[\forall e \in \frac{1}{n^3} \mathcal{E} \cap B_n, \ \#\{f = 0 \cap e\} \le 1\Big] \ge 1 - \frac{C}{n}.$$

Theorem (Kac-Rice formula)

Theorem (Kac-Rice formula) Let f be a Gaussian field on an interval $I \subset \mathbb{R}$, such that almost surely, f is C^1 and that for any $x \neq y \in I$, $\operatorname{cov}(f(x), f(y))$ is definite. If

$$N_I := \#\{f = 0\} \cap I,$$

then

$$\mathbb{E}(N_I(N_I - 1)) = \int_{I^2} \mathbb{E}(|f'(x)||f'(y)| \mid f(x) = f(y) = 0)$$

$$\phi_{(f(x), f(y))}(0, 0) dx dy.$$

where $\phi_X(u)$ is the Gaussian density of $X \in \mathbb{R}^2$ at $u \in \mathbb{R}^2$.

Theorem (Kac-Rice formula) Let f be a Gaussian field on an interval $I \subset \mathbb{R}$, such that almost surely, f is C^1 and that for any $x \neq y \in I$, $\operatorname{cov}(f(x), f(y))$ is definite. If

$$N_I := \#\{f = 0\} \cap I,$$

then

$$\mathbb{E}(N_I(N_I - 1)) = \int_{I^2} \mathbb{E}(|f'(x)||f'(y)| \mid f(x) = f(y) = 0)$$

$$\phi_{(f(x), f(y))}(0, 0) dx dy.$$

where $\phi_X(u)$ is the Gaussian density of $X \in \mathbb{R}^2$ at $u \in \mathbb{R}^2$.

Corollary If f is C^2 and $k'(0) \neq 0$, then

$$\mathbb{E}(N_I(N_I-1)) \le O(|I|^3).$$

$$\forall e \in \frac{1}{n^3} \mathcal{E} \cap B_n, \ N_e \le 1.$$

By Markov inequality and Kac-Rice,

$$\mathbb{P}[N_e > 1] = \mathbb{P}[N_e(N_e - 1) \ge 1] \le C|e|^3.$$

$$\forall e \in \frac{1}{n^3} \mathcal{E} \cap B_n, \ N_e \le 1.$$

By Markov inequality and Kac-Rice,

$$\mathbb{P}[N_e > 1] = \mathbb{P}[N_e(N_e - 1) \ge 1] \le C|e|^3.$$

$$\mathbb{P}\Big[\forall e \in \frac{1}{n^3} \mathcal{E} \cap B_n, \ N_e \le 1\Big]$$

$$\forall e \in \frac{1}{n^3} \mathcal{E} \cap B_n, \ N_e \le 1.$$

By Markov inequality and Kac-Rice,

$$\mathbb{P}[N_e > 1] = \mathbb{P}[N_e(N_e - 1) \ge 1] \le C|e|^3.$$

$$\mathbb{P}\Big[\forall e \in \frac{1}{n^3} \mathcal{E} \cap B_n, \ N_e \le 1\Big] \ge 1 - \#\{e \in \frac{1}{n^3} \mathcal{E} \cap B_n\}(C|e|^3)$$

$$\forall e \in \frac{1}{n^3} \mathcal{E} \cap B_n, \ N_e \le 1.$$

By Markov inequality and Kac-Rice,

$$\mathbb{P}[N_e > 1] = \mathbb{P}[N_e(N_e - 1) \ge 1] \le C|e|^3.$$

$$\mathbb{P}\Big[\forall e \in \frac{1}{n^3} \mathcal{E} \cap B_n, \ N_e \leq 1\Big] \geq 1 - \#\{e \in \frac{1}{n^3} \mathcal{E} \cap B_n\}(C|e|^3) \\ \geq 1 - Cn^2 n^6 \frac{1}{n^9}$$

$$\forall e \in \frac{1}{n^3} \mathcal{E} \cap B_n, \ N_e \le 1.$$

By Markov inequality and Kac-Rice,

$$\mathbb{P}[N_e > 1] = \mathbb{P}[N_e(N_e - 1) \ge 1] \le C|e|^3.$$

$$\mathbb{P}\Big[\forall e \in \frac{1}{n^3} \mathcal{E} \cap B_n, \ N_e \leq 1\Big] \geq 1 - \#\{e \in \frac{1}{n^3} \mathcal{E} \cap B_n\}(C|e|^3)$$
$$\geq 1 - Cn^2 n^6 \frac{1}{n^9} = 1 - C/n.$$

$$\mathbb{E}(N(N-1)) = \int_{I^2} \mathbb{E}(|f'(x)||f'(y)| \mid f(x) = f(y) = 0) \\ \phi_{(f(x), f(y))}(0, 0) dx dy.$$

$$\mathbb{E}(N(N-1)) = \int_{I^2} \mathbb{E}(|f'(x)||f'(y)| \mid f(x) = f(y) = 0) \\ \phi_{(f(x), f(y))}(0, 0) dx dy.$$

 $\begin{array}{l} \mbox{When } |I| \rightarrow 0, \\ 1. \ \int_{I^2} dx dy \sim |I|^2; \end{array}$

$$\mathbb{E}(N(N-1)) = \int_{I^2} \mathbb{E}(|f'(x)||f'(y)| \mid f(x) = f(y) = 0)$$

$$\phi_{(f(x), f(y))}(0, 0) dx dy.$$

When $|I| \to 0$,

1.
$$\int_{I^2} dx dy \sim |I|^2;$$

2. $f(x) = f(y)$ implies $|f'(x)| |f'(y)| \leq |I|^2;$

$$\mathbb{E}(N(N-1)) = \int_{I^2} \mathbb{E}(|f'(x)||f'(y)| \mid f(x) = f(y) = 0) \\ \phi_{(f(x), f(y))}(0, 0) dx dy.$$

When $|I| \to 0$, 1. $\int_{I^2} dx dy \sim |I|^2$; 2. f(x) = f(y) implies $|f'(x)||f'(y)| \le |I|^2$; 3. $\phi_{(f(x), f(y))}(0, 0) \sim |I|^{-1}$ since (f(x), f(y)) degenerates. This gives the $|I|^3$.
Kac-Rice first moment formula

$$\mathbb{E}N_I = \int_I \mathbb{E}\big(|f'(x)| \mid f(x) = 0\big)\phi_{f(x)}(0)dx.$$

Kac-Rice first moment formula

$$\mathbb{E}N_I = \int_I \mathbb{E}\big(|f'(x)| \mid f(x) = 0\big)\phi_{f(x)}(0)dx.$$

"Proof".

• If f vanishes transversally on I,

$$N_I = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_I |f'(x)| \mathbf{1}_{|f| \le \epsilon} dx,$$

Kac-Rice first moment formula

$$\mathbb{E}N_I = \int_I \mathbb{E}\big(|f'(x)| \mid f(x) = 0\big)\phi_{f(x)}(0)dx.$$

"Proof".

• If f vanishes transversally on I,

$$N_I = \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \int_I |f'(x)| \mathbf{1}_{|f| \le \epsilon} dx,$$

• so that

$$\mathbb{E}N_I = \int_I \mathbb{E}\Big(|f'(x)| \lim_{\epsilon \to 0} \frac{1}{2\epsilon} \mathbf{1}_{|f| \le \epsilon}\Big) dx.$$

- 1. Discretization scheme \checkmark
- 2. Asymptotic independence
- 3. Pitt's theorem (FKG)
- 4. Tassion's theorem

Asymptotic independence

Theorem (Piterbarg 1982- Beffara-G 2016) $f: \mathcal{V} \to \mathbb{R}$ centered symmetric Gaussian over \mathcal{V} a lattice. Then, there exists C > 0, such that for any R, S two disjoint open sets in \mathbb{R}^2 ,

dependence(R, S) :=

 $\max_{\substack{A \text{ crossing in } R \\ B \text{ crossing in } S}} \left| \mathbb{P}(A \text{ and } B) - \mathbb{P}(A)\mathbb{P}(B) \right|$

$$\leq$$

$$C(\# \text{ vertices in } R \text{ and } S)^2 \max_{\substack{x \in R \\ y \in S}} \frac{|e(x,y)|}{\sqrt{1 - e(x,y)^2}}$$

Asymptotic independence

Theorem (Piterbarg 1982- Beffara-G 2016) $f: \mathcal{V} \to \mathbb{R}$ centered symmetric Gaussian over \mathcal{V} a lattice. Then, there exists C > 0, such that for any R, S two disjoint open sets in \mathbb{R}^2 ,

dependence(R, S) :=

 $\max_{\substack{A \text{ crossing in } R \\ B \text{ crossing in } S}} \left| \mathbb{P}(A \text{ and } B) - \mathbb{P}(A)\mathbb{P}(B) \right|$

$$\leq$$

$$C(\# \text{ vertices in } R \text{ and } S)^2 \max_{\substack{x \in R \\ y \in S}} \frac{|e(x,y)|}{\sqrt{1 - e(x,y)^2}}$$

The cost for independency

Gaussian reminder

A real valued random variable $X \sim N(0, \sigma)$ iff $\sigma = \mathbb{E}(X^2)$ and for any Borelian $A \subset \mathbb{R}$,

$$\mathbb{P}(X \in A) = \int_A \phi_X(u) du,$$

Gaussian reminder

A real valued random variable $X \sim N(0, \sigma)$ iff $\sigma = \mathbb{E}(X^2)$ and for any Borelian $A \subset \mathbb{R}$,

$$\mathbb{P}(X \in A) = \int_A \phi_X(u) du,$$

with

$$\phi_X(u) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2}\langle \sigma^{-1}u, u \rangle\right).$$

 $X = (X_i) \in \mathbb{R}^N$ centered non-degenerate Gaussian

 $X = (X_i) \in \mathbb{R}^N$ centered non-degenerate Gaussian means that if $\Sigma := (\mathbb{E}(X_i X_j))_{1 \le i, j \le N},$

then for any Borelian $A \subset \mathbb{R}^N$,

$$\mathbb{P}(X \in A) = \int_A \phi_X(u) du,$$

$$\operatorname{with}$$

$$\phi_X(u) = \frac{1}{\sqrt{(2\pi)^N \det \Sigma}} \exp\left(-\frac{1}{2} \langle \Sigma^{-1} u, u \rangle\right).$$

 $X = (X_i) \in \mathbb{R}^N$ centered non-degenerate Gaussian means that if $\Sigma := (\mathbb{E}(X_i X_j))_{1 \le i, j \le N},$

then for any Borelian $A \subset \mathbb{R}^N$,

$$\mathbb{P}(X \in A) = \int_A \phi_X(u) du,$$

with

$$\phi_X(u) = \frac{1}{\sqrt{(2\pi)^N \det \Sigma}} \exp\left(-\frac{1}{2} \langle \Sigma^{-1} u, u \rangle\right).$$

If $X \in \mathbb{R}^N$ and $X' \in \mathbb{R}^{N'}$,

$$\operatorname{cov}(X, X') = \left(\mathbb{E}(X_i X'_j)\right)_{1 \le i \le N, 1 \le j \le N'}.$$

 $X = (X_i) \in \mathbb{R}^N$ centered non-degenerate Gaussian means that if $\Sigma := (\mathbb{E}(X_i X_j))_{1 \le i, j \le N},$

then for any Borelian $A \subset \mathbb{R}^N$,

$$\mathbb{P}(X \in A) = \int_A \phi_X(u) du,$$

with

$$\phi_X(u) = \frac{1}{\sqrt{(2\pi)^N \det \Sigma}} \exp\left(-\frac{1}{2} \langle \Sigma^{-1} u, u \rangle\right).$$

If $X \in \mathbb{R}^N$ and $X' \in \mathbb{R}^{N'}$,

$$\operatorname{cov}(X, X') = \left(\mathbb{E}(X_i X'_j)\right)_{1 \le i \le N, 1 \le j \le N'}$$

Fact. X and X' are independent iff cov(X, X') = 0.

$$U := (f(x))_{x \in R \cap \mathcal{V}} \quad V := (f(y))_{y \in S \cap \mathcal{V}}$$

$$X_1 := (U, V) \quad X_0 := (U, V)_{ind}$$

$$U := (f(x))_{x \in R \cap \mathcal{V}} \quad V := (f(y))_{y \in S \cap \mathcal{V}}$$

$$X_1 := (U, V) \quad X_0 := (U, V)_{ind}$$

where

- \triangleright X₀ and X₁ are independent, and
- for X_0 , V is an **independent** copy of f.

$$U := (f(x))_{x \in R \cap \mathcal{V}} \quad V := (f(y))_{y \in S \cap \mathcal{V}}$$

$$X_1 := (U, V) \quad X_0 := (U, V)_{ind}$$

where

- \triangleright X₀ and X₁ are independent, and
- for X_0 , V is an **independent** copy of f.

$$U := (f(x))_{x \in R \cap \mathcal{V}} \quad V := (f(y))_{y \in S \cap \mathcal{V}}$$

$$X_1 := (U, V) \quad X_0 := (U, V)_{ind}$$

where

- ▶ X_0 and X_1 are independent, and
- for X_0 , V is an **independent** copy of f.

For simplicity, let

 \blacktriangleright A be the event that there exists a positive crossing in R

 \blacktriangleright B the same in S.

We want a bound for

 $\mathbb{P}[A \cap B] - \mathbb{P}[A]\mathbb{P}[B]$

$$U := (f(x))_{x \in R \cap \mathcal{V}} \quad V := (f(y))_{y \in S \cap \mathcal{V}}$$

$$X_1 := (U, V) \quad X_0 := (U, V)_{ind}$$

where

- ▶ X_0 and X_1 are independent, and
- for X_0 , V is an **independent** copy of f.

For simplicity, let

 \blacktriangleright A be the event that there exists a positive crossing in R

 \blacktriangleright *B* the same in *S*.

We want a bound for

$$\mathbb{P}[A \cap B] - \mathbb{P}[A]\mathbb{P}[B] = \mathbb{E}_{X_1}(\mathbf{1}_{A \cap B}) - \mathbb{E}_{X_0}(\mathbf{1}_{A \cap B}).$$

Interpolate

$$X_t := \sqrt{t}X_1 + \sqrt{1-t}X_0.$$

Interpolate

$$X_t := \sqrt{t}X_1 + \sqrt{1-t}X_0.$$

Then X_t has variance

$$\Sigma_t = \begin{pmatrix} \operatorname{cov}(U, U) & t \operatorname{cov}(U, V) \\ t \operatorname{cov}(U, V)^T & \operatorname{cov}(V, V) \end{pmatrix}$$

with

$$\operatorname{cov} (U, V) = (e(x, y))_{x \in R \cap \mathcal{V}, y \in S \cap \mathcal{V}}.$$

$$\mathbb{E}_{X_0}(\mathbf{1}_{A\cap B}) - \mathbb{E}_{X_1}(\mathbf{1}_{A\cap B}) = \int_0^1 \frac{d}{dt} \mathbb{E}_{X_t}(\mathbf{1}_{A\cap B}) dt$$

$$\mathbb{E}_{X_0}(\mathbf{1}_{A\cap B}) - \mathbb{E}_{X_1}(\mathbf{1}_{A\cap B}) = \int_0^1 \frac{d}{dt} \mathbb{E}_{X_t}(\mathbf{1}_{A\cap B}) dt$$
$$= \int_0^1 dt \int_{(u,v)\in A\times B} \frac{d\phi_{X_t}}{dt}(u,v) d(u,v)$$

$$\mathbb{E}_{X_0}(\mathbf{1}_{A\cap B}) - \mathbb{E}_{X_1}(\mathbf{1}_{A\cap B}) = \int_0^1 \frac{d}{dt} \mathbb{E}_{X_t}(\mathbf{1}_{A\cap B}) dt$$
$$= \int_0^1 dt \int_{(u,v)\in A\times B} \frac{d\phi_{X_t}}{dt}(u,v) d(u,v)$$
$$= \sum_{i\leq j} \int_0^1 dt \int_{A\times B} \frac{d\sigma_{t,ij}}{dt} \frac{\partial\phi_{X_t}}{\partial\sigma_{t,ij}} d(u,v)$$

$$\mathbb{E}_{X_0}(\mathbf{1}_{A\cap B}) - \mathbb{E}_{X_1}(\mathbf{1}_{A\cap B}) = \int_0^1 \frac{d}{dt} \mathbb{E}_{X_t}(\mathbf{1}_{A\cap B}) dt$$
$$= \int_0^1 dt \int_{(u,v) \in A \times B} \frac{d\phi_{X_t}}{dt}(u,v) d(u,v)$$
$$= \sum_{i \le j} \int_0^1 dt \int_{A \times B} \frac{d\sigma_{t,ij}}{dt} \frac{\partial\phi_{X_t}}{\partial\sigma_{t,ij}} d(u,v)$$

with

$$\frac{d\sigma_{t,ij}}{dt} = \begin{cases} e(x,y) \text{ if } i = x \in R \cap \mathcal{V} \text{ and } j = y \in S \cap \mathcal{V} \\ 0 \text{ in the other cases.} \end{cases}$$

A very Gaussian equality

$$\forall i \neq j, \ \frac{\partial \phi_X}{\partial \sigma_{ij}} = \frac{\partial^2 \phi_X}{\partial u_i \partial u_j}.$$

A very Gaussian equality

$$\forall i \neq j, \ \frac{\partial \phi_X}{\partial \sigma_{ij}} = \frac{\partial^2 \phi_X}{\partial u_i \partial u_j}.$$

Proof. Use

$$\phi_X(u) = \int_{\xi \in \mathbb{R}^N} e^{i\langle u, \xi \rangle} e^{-\frac{1}{2} \langle \Sigma \xi, \xi \rangle} \frac{d\xi}{\sqrt{2\pi}^N}.$$

$$\mathbb{P}[A \cap B] - \mathbb{P}[A]\mathbb{P}[B] = \sum_{\substack{x \in R \\ y \in S}} e(x, y) \int_0^1 dt \int_{A \times B} \frac{\partial^2 \phi_{X_t}}{\partial u_x \partial v_y} d(u, v).$$

$$\mathbb{P}[A \cap B] - \mathbb{P}[A]\mathbb{P}[B] = \sum_{\substack{x \in R \\ y \in S}} e(x, y) \int_0^1 dt \int_{A \times B} \frac{\partial^2 \phi_{X_t}}{\partial u_x \partial v_y} d(u, v).$$

Note that that

• if
$$(f_x)_{x \in R \cap \mathcal{V}} \in A$$
, then for any $g_x \ge f_x$, $(g_x)_{x \in R \cap \mathcal{V}} \in A$;

$$\mathbb{P}[A \cap B] - \mathbb{P}[A]\mathbb{P}[B] = \sum_{\substack{x \in R \\ y \in S}} e(x, y) \int_0^1 dt \int_{A \times B} \frac{\partial^2 \phi_{X_t}}{\partial u_x \partial v_y} d(u, v).$$

Note that that

• if $(f_x)_{x \in R \cap \mathcal{V}} \in A$, then for any $g_x \ge f_x$, $(g_x)_{x \in R \cap \mathcal{V}} \in A$;

Since A depends only on the sign of f_x , then A intersects any coordinate axis $\mathbb{R}f_x$ along \mathbb{R} or \mathbb{R}^+ ,

$$\mathbb{P}[A \cap B] - \mathbb{P}[A]\mathbb{P}[B] = \sum_{\substack{x \in R \\ y \in S}} e(x, y) \int_0^1 dt \int_{A \times B} \frac{\partial^2 \phi_{X_t}}{\partial u_x \partial v_y} d(u, v).$$

Note that that

- if $(f_x)_{x \in R \cap \mathcal{V}} \in A$, then for any $g_x \ge f_x$, $(g_x)_{x \in R \cap \mathcal{V}} \in A$;
- Since A depends only on the sign of f_x , then A intersects any coordinate axis $\mathbb{R}f_x$ along \mathbb{R} or \mathbb{R}^+ ,
- depending if the sign of f_x is crucial for the crossing or not.

Integrating by parts gives, with $N = \# [(R \cup S) \cap \mathcal{V}],$

Integrating by parts gives, with $N = \# [(R \cup S) \cap \mathcal{V}],$

$$\sum_{x,x'} e(x,x') \int_0^1 dt \int_{(A\cap B)\cap(\mathbb{R}^{N-2}\times\{0\}^2) \text{ or } \emptyset} \phi_{X_t}(X,X^x = X^{x'} = 0) \frac{dX}{dX^x dX^{x'}}.$$

Integrating by parts gives, with $N = \# [(R \cup S) \cap \mathcal{V}],$

$$\sum_{x,x'} e(x,x') \int_0^1 dt \int_{(A\cap B)\cap(\mathbb{R}^{N-2}\times\{0\}^2) \text{ or } \emptyset} \phi_{X_t}(X,X^x = X^{x'} = 0) \frac{dX}{dX^x dX^{x'}}$$

Note that if $e(x, y) \ge 0$, we have proved that

$$\mathbb{P}[A\cap B]-\mathbb{P}[A]\mathbb{P}[B]\geq 0$$

which is Pitt's theorem.

$$\int_{Z \in A, Y=0} \phi_{Z,Y}(Z,0) dZ = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{Z \in A, Y \in [0,\epsilon]} \phi_{Z,Y} dZ dY$$

$$\int_{Z \in A, Y=0} \phi_{Z,Y}(Z,0) dZ = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{Z \in A, Y \in [0,\epsilon]} \phi_{Z,Y} dZ dY$$
$$= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Pr[(Z,Y) \in A \times [0,\epsilon]]$$

$$\begin{split} \int_{Z \in A, Y = 0} \phi_{Z,Y}(Z, 0) dZ &= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{Z \in A, Y \in [0, \epsilon]} \phi_{Z,Y} dZ dY \\ &= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Pr[(Z, Y) \in A \times [0, \epsilon]] \\ = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \frac{\Pr[(Z, Y) \in A \times [0, \epsilon]]}{\Pr(Y \in [0, \epsilon])} \qquad \Pr\left[Y \in [0, \epsilon]\right] \end{split}$$

$$\begin{split} \int_{Z \in A, Y = 0} \phi_{Z,Y}(Z, 0) dZ &= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \int_{Z \in A, Y \in [0, \epsilon]} \phi_{Z,Y} dZ dY \\ &= \lim_{\epsilon \to 0} \frac{1}{\epsilon} \Pr[(Z, Y) \in A \times [0, \epsilon]] \\ = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \frac{\Pr[(Z, Y) \in A \times [0, \epsilon]]}{\Pr[Y \in [0, \epsilon]]} & \Pr\left[Y \in [0, \epsilon]\right] \\ &= \Pr\left[Z \in A | Y = 0\right] \phi_Y(0). \end{split}$$
$$\int_{(A\cap B)\cap(\mathbb{R}^{N-2}\times\{0\}^2) \text{ or } \emptyset} \phi_{X_t}(X, X^x = X^{x'} = 0) \frac{dX}{dX^x dX^{x'}}$$

$$\begin{split} \int_{(A\cap B)\cap (\mathbb{R}^{N-2}\times\{0\}^2) \text{ or } \emptyset} \phi_{X_t}(X, X^x = X^{x'} = 0) \frac{dX}{dX^x dX^{x'}} \\ &= \frac{\Pr\left[(A\cap B) \text{ or } \emptyset \big| X^x = X^{x'} = 0\right]}{\sqrt{2\pi(1 - e(x, y)^2}} \big] \end{split}$$

$$\begin{split} \int_{(A\cap B)\cap(\mathbb{R}^{N-2}\times\{0\}^2) \text{ or } \emptyset} \phi_{X_t}(X, X^x = X^{x'} = 0) \frac{dX}{dX^x dX^{x'}} \\ &= \frac{\Pr\left[(A\cap B) \text{ or } \emptyset \big| X^x = X^{x'} = 0\right]}{\sqrt{2\pi(1 - e(x, y)^2}} \Big] \end{split}$$

where we used that

$$\operatorname{cov}(X, X') = \begin{pmatrix} e(x, x) & e(x, x') \\ e(x', x) & e(x', x') \end{pmatrix}.$$

$$\begin{split} \int_{(A\cap B)\cap(\mathbb{R}^{N-2}\times\{0\}^2) \text{ or } \emptyset} \phi_{X_t}(X, X^x = X^{x'} = 0) \frac{dX}{dX^x dX^{x'}} \\ &= \frac{\Pr\left[(A\cap B) \text{ or } \emptyset \big| X^x = X^{x'} = 0\right]}{\sqrt{2\pi(1 - e(x, y)^2}} \Big] \end{split}$$

where we used that

$$\operatorname{cov}(X, X') = \begin{pmatrix} e(x, x) & e(x, x') \\ e(x', x) & e(x', x') \end{pmatrix}.$$

This gives

$$\left|\mathbb{P}[A \cap B] - \mathbb{P}[A]\mathbb{P}[B]\right| \le (\#R \cap \mathcal{V})(\#S \cap \mathcal{V}) \max_{\substack{x \in R \\ y \in S}} \frac{|e(x,y)|}{\sqrt{2\pi(1 - e(x,y)^2)}}.$$

- 1. Discretization scheme \checkmark
- 2. Asymptotic independence \checkmark
- 3. Pitt's theorem (FKG) \checkmark
- 4. Tassion's theorem

Theorem (Tassion) If $f : \mathbb{R}^2 \to \{-1, 1\}$ is random and satisfies

- Symmetries
- ▶ Uniform crossing of squares
- ► Asymptotic independence
- ▶ Positive correlation of positive crossings (FKG)

then it satisfies RSW.

Not too hard

Not too hard \emptyset

Not too hard \emptyset

Hard

RSW for fast decorrelating fields without positive correlation

Not too hard \emptyset

Hard

RSW for fast decorrelating fields without positive correlation

Very hard RSW for random waves

Not too hard \emptyset

Hard RSW for fast decorrelating fields without positive correlation

Very hard RSW for random waves

Super very hard Prove a Cardy formula/conformal invariance