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Abstract

The aim of this contribution is to make a connection between two recent results concerning
the dynamics of vortices in incompressible planar flows. The first one is an asymptotic
expansion, in the vanishing viscosity limit, of the solution of the two-dimensional Navier-
Stokes equation with point vortices as initial data. In such a situation, it is known [5] that
the solution behaves to leading order like a linear superposition of Oseen vortices whose
centers evolve according to the point vortex system, but higher order corrections can also
be computed which describe the deformation of the vortex cores due to mutual interactions.
The second result is the construction by D. Smets and J. van Schaftingen of “desingularized”
solutions of the two-dimensional Euler equation [22]. These solutions are stationary in a
uniformly rotating or translating frame, and converge either to a single vortex or to a vortex
pair as the size parameter ǫ goes to zero. We consider here the particular case of a pair
of identical vortices, and we show that the solution of the weakly viscous Navier-Stokes
equation is accurately described at time t by an approximate steady state of the rotating
Euler equation which is a desingularized solution in the sense of [22] with Gaussian profile
and size ǫ =

√
νt.

1 Introduction

Numerical simulations of freely decaying turbulence show that vortex interactions play a crucial
role in the dynamics of two-dimensional viscous flows [12, 13]. In particular, vortex mergers
are responsible for the appearance of larger and larger structures in the flow, a process which
is directly related to the celebrated “inverse energy cascade” [3]. Although nonperturbative
interactions such as vortex mergers are extremely complex and desperately hard to analyze
from a mathematical point of view [11, 20], rigorous results can be obtained in the perturbative
regime where the distances between the vortex centers are large compared to the typical size of
the vortex cores.

As an example of this situation, consider the case where the initial flow is a superposition of
N point vortices. This means that the initial vorticity ω0 satisfies

ω0 =
N

∑

i=1

αi δ(· − xi) , (1.1)

where x1, . . . , xN ∈ R
2 are the initial positions and α1, . . . , αN ∈ R the circulations of the
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Figure 1: The motion of two point vortices whith circulations α1 > α2 > 0 (left) and α1+α2 = 0 (right).

vortices. Let ω(x, t) be the solution of the two-dimensional vorticity equation

∂ω

∂t
+ u · ∇ω = ν∆ω , x ∈ R

2 , t > 0 , (1.2)

with initial data ω0, where u(x, t) is the velocity field defined by the Biot-Savart law

u(x, t) =
1

2π

∫

R2

(x− y)⊥

|x− y|2 ω(y, t) dy , x ∈ R
2 , t > 0 . (1.3)

Solutions of (1.2), (1.3) with singular initial data of the form (1.1) were first constructed by
Benfatto, Esposito, and Pulvirenti [2]. More generally, if ω0 ∈ M(R2) is any finite measure,
Giga, Miyakawa, and Osada [8] have shown that the vorticity equation (1.2) has a global solution
with initial data ω0, which moreover is unique if the total variation norm of atomic part of ω0

is small compared to the kinematic viscosity ν. This last restriction has been removed recently
by I. Gallagher and the author [4], so we know that (1.2) has a unique global solution ω ∈
C0((0,∞), L1(R2)∩L∞(R2)) with initial data (1.1), no matter how small the viscosity coefficient
is. This solution is uniformly bounded in L1(R2), and the total circulation

∫

R2 ω(x, t) dx is
conserved.

In the vanishing viscosity limit, the motion of point vortices in the plane is described by
a system of ordinary differential equations introduced by Helmholtz [9] and Kirchhoff [10]. If
z1(t), . . . , zN (t) ∈ R

2 denote the positions of the vortices, the system reads

d

dt
zi(t) =

1

2π

∑

j 6=i

αj
(zi(t) − zj(t))

⊥

|zi(t) − zj(t)|2
, i = 1, . . . , N , (1.4)

and the initial conditions zi(0) = xi for i = 1, . . . , N are determined by (1.1). A lot is known
about the dynamics of the point vortex system (1.4), see e.g. [21] for a recent monograph devoted
to this problem. Most remarkably, (1.4) is a Hamiltonian system with N degrees of freedhom,
which always possesses three independent involutive first integrals. In particular, system (1.4) is
integrable if N ≤ 3, whatever the vortex circulations α1, . . . , αN may be. In the simple situation
where N = 2, both vortices rotate with constant angular speeed around the common vorticity
center, see Fig. 1 (left). In the exceptional case where α1 +α2 = 0, there is no center of vorticity
and the vortices move with constant speed along parallel straight lines, see Fig. 1 (right).
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It should be remarked that system (1.4) is not always globally well-posed: if N ≥ 3 and if the
circulations α1, . . . , αN are not all of the same sign, vortex collisions may occur in finite time for
exceptional initial configurations [19, 21]. In what follows, we always assume that system (1.4)
is well-posed on some time interval [0, T ], and we denote by d the minimal distance between any
two vortices on this interval:

d = min
t∈[0,T ]

min
i6=j

|zi(t) − zj(t)| > 0 . (1.5)

We also introduce the turnover time

T0 =
d2

|α| , where |α| = |α1| + · · · + |αN | , (1.6)

which is a natural time scale for the inviscid dynamics described by (1.4). For instance, for a
pair of vortices with circulations of the same sign, one can check that the rotation period of each
vortex around the center is 4π2T0.

When the viscosity ν is nonzero, the point vortices in the initial data (1.1) are smoothed out
by diffusion, and the solution ω(x, t) of (1.2) is no longer described by the point vortex system.
In the particular case where N = 1, the unique solution of (1.2) with initial data ω0 = αδ0 is
the Lamb-Oseen vortex:

ω(x, t) =
α

νt
G

( x√
νt

)

, u(x, t) =
α√
νt
vG

( x√
νt

)

, (1.7)

where the vorticity profile G and the velocity profile vG have the following explicit expressions:

G(ξ) =
1

4π
e−|ξ|2/4 , vG(ξ) =

1

2π

ξ⊥

|ξ|2
(

1 − e−|ξ|2/4
)

. (1.8)

As was shown by C.E. Wayne and the author, Oseen vortices describe the long-time asymptotics
of all solutions of the two-dimensional Navier-Stokes equation for which the vorticity distribution
is integrable, and are also the only self-similar solutions of this equation with integrable vorticity
profile [7].

When N ≥ 2, the solution of (1.2) with initial data (1.1) is not explicit, but in some
parameter regimes it can be approximated by a linear superposition of Oseen vortices whose
centers evolve according to the point vortex system (1.4). More precisely, we have the following
result:

Theorem 1.1 [5] Given pairwise distinct initial positions x1, . . . , xN ∈ R
2 and nonzero circu-

lations α1, . . . , αN ∈ R, fix T > 0 such that the point vortex system (1.4) is well-posed on the
time interval [0, T ]. Let d > 0 be the minimal distance (1.5) and T0 the turnover time (1.6).
Then the (unique) solution of the two-dimensional vorticity equation (1.2) with initial data (1.1)
satisfies

1

|α|

∫

R2

∣

∣

∣
ω(x, t) −

N
∑

i=1

αi

νt
G

(x− zi(t)√
νt

)
∣

∣

∣
dx ≤ K

νt

d2
, t ∈ (0, T ] , (1.9)

where z(t) = {z1(t), . . . , zN (t)} is the solution of (1.4) and K is a (dimensionless) constant
depending only on the ratio T/T0.

Theorem 1.1 gives nontrivial information on the solution of (1.2) in the weak interaction
regime, where the size O(

√
νt) of the vortex cores is much smaller than the distance d between
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the centers. If the initial data are fixed, a convenient way to achieve this is to assume that the
viscosity ν is small compared to the total circulation |α|, and that the observation time T is
smaller than or comparable to the turnover time T0. Indeed, using definition (1.6), we see that

νt

d2
=

ν

|α|
t

T0
.

In particular, in the vanishing viscosity limit, we obtain the following corollary.

Corollary 1.2 [5] Under the assumptions of Theorem 1.1, the solution ων(x, t) of the viscous
vorticity equation (1.2) with initial data (1.1) satisfies

ων(·, t) −−−−⇀
ν→0

N
∑

i=1

αi δ(· − zi(t)) , for all t ∈ [0, T ] , (1.10)

where z(t) = {z1(t), . . . , zN (t)} is the solution of (1.4).

In other words, the solution of the vorticity equation (1.2) with initial data (1.1) converges
weakly, in the vanishing viscosity limit, to a superposition of point vortices which evolve ac-
cording to the point vortex dynamics (1.4). In particular, Corollary 1.2 provides a natural and
rigorous derivation of the point vortex system itself from the Navier-Stokes equation. As is
well-known, system (1.4) can also be rigorously derived from Euler’s equation [15, 18], but in
the latter approach it is necessary to regularize the initial vorticity because we do not know how
to solve Euler’s equation with singular data such as (1.1). In this respect, it is important to
keep in mind that the right-hand side of (1.10) is not a weak solution of the inviscid vorticity
equation ∂tω + u · ∇ω = 0. For completeness, we also mention that the vanishing viscosity
limit for solutions of (1.2) with concentrated vorticity has been studied by Marchioro [16], who
obtained the analog of Corollary 1.2 in that context.

The conclusion of Theorem 1.1 can be interpreted in the following simple and somewhat
naive way: If we solve the two-dimensional vorticity equation (1.2) with point vortices as initial
data, the diffusion term ν∆ω in (1.2) smooths out the point vortices into Oseen vortices, and
the advection term u · ∇ω translates the vortex centers according to the point vortex dynamics
(1.4). While correct, this interpretation ignores the important fact that the advection of a
smooth vortex by the inhomogeneous velocity field created by the other vortices results non
only in a translation of the vortex center, but also in a deformation of the vortex core. In our
case, this deformation is of order O(νt/d2) in L1 norm, and therefore does not appear in (1.9)
because it is included in the error term. However, as is explained in [5], such a small deformation
of the vortex profile creates a self-interaction effect of size O(1), which basically counterbalances
the influence of the external velocity field, except for a rigid translation.

As a matter of fact, self-interactions play a crucial role in the proof of Theorem 1.1, and
we even believe that is it not possible to establish (1.9) without computing a higher order
approximation of the solution. A systematic asymptotic expansion is carried out in [5], but if we
only keep the leading order nonradial corrections to the Oseen vortices we obtain the following
approximate solution of (1.2):

ωapp(x, t) =
N

∑

i=1

αi

νt

{

G
(x− zi(t)√

νt

)

+
νt

d2
Fi

(x− zi(t)√
νt

, t
)

}

, (1.11)

where

Fi(ξ, t) = a(|ξ|)
∑

j 6=i

αj

αi

d2

|zi(t) − zj(t)|2
(

2
|ξ · (zi(t) − zj(t))|2
|ξ|2|zi(t) − zj(t)|2

− 1
)

+ O
( ν

|α|
)

. (1.12)
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Figure 2: The level lines of the vorticity distribution for a pair of vortices with equal (left) or opposite
(right) circulations.

Here a : (0,∞) → R is a smooth, positive function satisfying a(r) ≈ C1r
2 as r → 0 and

a(r) ≈ C2r
4e−r2/4 as r → ∞ for some C1, C2 > 0. In the regime where the viscosity ν is much

smaller than the circulations αi of the vortices, we can use formulas (1.11), (1.12) to compute,
to leading order in our expansion parameter νt/d2, the deformation of the vortex cores due to
mutual interactions. For any fixed t ∈ (0, T ], this first order correction depends only on the
relative positions of the vortex centers, which are determined by (1.4). In the particular case of
a pair of vortices with equal or opposite circulations, the level lines of the vorticity distribution
ωapp(x, t) are represented in Fig. 2.

The discussion above shows that the dynamics of weakly interacting viscous vortices is es-
sentially driven by two different mechanisms: diffusion, which is responsible for the continuous
growth of the vortex cores, and advection, which creates the motion of the vortex centers and the
deformation of the vortex profiles. The latter effect persists in the vanishing viscosity limit, and
it is therefore reasonable to expect that, if we can find solutions of Euler’s equation describing
widely separated Gaussian vortices, these inviscid solutions will provide an accurate approxima-
tion of the viscous N -vortex solution considered in Theorem 1.1, if ν is sufficiently small. The
aim of this contribution is to explore this idea in the particular case of a single vortex pair. In
this simple situation, we only need to consider solutions of Euler’s equation that are stationary
in a uniformly rotating or translating frame.

Assume thus that N = 2 and, for definiteness, that both circulations α1, α2 are positive.
Given r1, r2 > 0 such that α1r1 = α2r2, let d = r1 + r2 and Ω = (α1 + α2)/(2πd

2). We consider
the inviscid vorticity equation in a rotating frame with angular speed Ω :

∂tω + (u− Ωx⊥) · ∇ω = 0 . (1.13)

Formally, the vorticity distribution

ω0 = α1δ(· − x1) + α2δ(· − x2) , where x1 =

(

r1
0

)

, x2 =

(

−r2
0

)

, (1.14)

is a stationary solution of (1.13). In the laboratory frame, this corresponds to a time periodic
solution of (1.4) where both vortices rotate around the origin with angular velocity Ω. Now,
let w∗ ∈ S(R2) be a nonnegative vorticity profile which is radially symmetric, decreasing along
rays, and normalized in the sense that

∫

R2 w∗(x) dx = 1. Given ǫ > 0, we look for a stationary
solution of (1.13) of the form

ωǫ(x) =
α1

ǫ2
w1,ǫ

(x− x1,ǫ

ǫ

)

+
α2

ǫ2
w2,ǫ

(x− x2,ǫ

ǫ

)

, (1.15)
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where xi,ǫ → xi and wi,ǫ → w∗ as ǫ → 0. Existence of such ”desingularized” solutions of
Euler’s equation has been investigated in a recent work by D. Smets and J. Van Schaftingen
[22]. In fact, the authors of [22] do not consider rotating vortex pairs of the form (1.15), but
they treat a variety of other interesting cases, including a single stationary vortex in a bounded
or unbounded domain, a rotating vortex in a disk, and a translating vortex pair in the plane.
They use the ”stream function method”, which consists in constructing (by variational methods)
a nontrivial solution to an elliptic equation of the form −∆ψ = fǫ(ψ + 1

2Ω|x|2), where fǫ is a
power-like nonlinearity which depends on ǫ in an appropriate way. The vorticity ω = −∆ψ is
then a stationary solution of (1.13). For technical reasons, the desingularized vorticity profiles
obtained in [22] are always compactly supported, but it is reasonable to expect that similar
results can be obtained with Gaussian profiles too. We hope to clarify this issue and to extend
the results of [22] to pairs of vortices of the same sign in a future work.

In Section 2 below, we study in detail the case of two identical vortices (α1 = α2). For a
large class of radially symmetric profiles w∗, we prove the existence of approximate stationary
solutions of (1.13) of the form (1.15). In other words, we construct an asymptotic expansion
in powers of ǫ of the vorticity distribution (1.15) as a steady state of (1.13). Under natural
symmetry assumptions, we show that this expansion can be performed to arbitrarily high order.
Then, in Section 3, we prove that the solution ων(x, t) of the rotating viscous vorticity equation
∂tω + (u − Ωx⊥) · ∇ω = ν∆ω with initial data (1.14) is very close to the inviscid stationary
solution ωǫ with asymptotic profile w∗ = G, if ǫ =

√
νt is sufficiently small. This means

that, when the viscosity is small, the solution of (1.2) with initial data (1.14) slowly travels
through a family of uniformly rotating solutions of Euler’s equation, whose vorticity profiles are
approximately Gaussian and evolve diffusively. We expect a similar picture to be relevant in the
general situation considered in Theorem 1.1, although the corresponding inviscid solutions may
be more difficult to identify in that case.

Acknowledgements. I am grateful to Felix Otto for suggesting the point of view adopted in
this paper, and to Didier Smets for many stimulating discussions.

2 Approximate steady states of Euler’s equation

The aim of this section is to construct an asymptotic expansion for a family of stationary
solutions of the inviscid vorticity equation, which correspond to weakly interacting vortex pairs.
For simplicity, we only consider the particular case where both vortices have the same circulation
α > 0. As is explained in the introduction, weak interaction means that the distance d between
the vortex centers is large compared to the size of the vortex cores. If the vorticity distribution
is given by (1.15), this condition is satisfied if ǫ > 0 is sufficiently small. Here, we find it more
convenient to fix the size of the vortex cores, and to assume that the distance d between the
centers is large. This alternative point of view is of course equivalent to the previous one, up
to a rescaling. Note, however, that the rotation speed Ω will now depend on d and behave like
α/(πd2) as d→ ∞.

From now on, we fix α > 0, d≫ 1, and we look for a stationary solution ω of (1.13) describing
a pair of identical vortices with circulation α. We make the ansatz

ω(x) = αw(x − xd) + αw(−x − xd) , u(x) = αv(x− xd) − αv(−x− xd) , (2.1)

where xd = (d/2, 0), w is a localized vorticity profile to be determined, and v = K[w] is the
velocity field obtained from w via the Biot-Savart law (1.3). We assume that w belongs to the
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Schwartz class S(R2), is nonnegative, and satisfies the normalization condition

∫

R2

w(x) dx = 1 . (2.2)

We also impose the following symmetry

w(x1,−x2) = w(x1, x2) , v1(x1,−x2) = −v1(x1, x2) , v2(x1,−x2) = v2(x1, x2) , (2.3)

which implies that ω(−x1, x2) = ω(x1,−x2) = ω(x1, x2) for all x = (x1, x2) ∈ R
2. Finally,

without loss of generality, we assume that
∫

R2

x1w(x) dx = 0 . (2.4)

This means that the vorticity distribution ω defined in (2.1) is indeed a superposition of two
localized vortices centered at the points ±xd.

The distribution ω will be a stationary solution of the rotating vorticity equation (1.13) if
the profile w satisfies

(

αv(x− xd) − αv(−x− xd) − Ωx⊥
)

· ∇w(x− xd) = 0 , x ∈ R
2 .

Replacing x by x+ xd and denoting Ω̃ = Ω/α, we obtain the equivalent equation

(

v(x) − v(−x− 2xd) − Ω̃(x+ xd)
⊥
)

· ∇w(x) = 0 , x ∈ R
2 . (2.5)

Note that the rotating term Ω̃(x+ xd)
⊥ behaves like the velocity field v(x) when x2 is changed

into −x2; this implies that the symmetry (2.3) is indeed compatible with Eq. (2.5). To determine
the rotation speed Ω, we multiply both members of (2.5) by x2 and we integrate by parts over
R

2. We easily obtain

Ω̃

∫

R2

(x1 + d/2)w(x) dx =

∫

R2

(

v2(x) − v2(−x− 2xd)
)

w(x) dx .

This identity can be simplified if we use (2.2), (2.4), and the fact that
∫

R2 v2w dx = 0. We thus
arrive at the following relation,

Ω̃ = Ω̃[w] := −2

d

∫

R2

v2(−x− 2xd)w(x) dx , (2.6)

which determines Ω̃ as a function of w.

As we shall see, since the vorticity profile w is normalized by (2.2), the corresponding velocity
field v = K[w] satisfies

−v2(−x− 2xd) ∼ 1

2πd
, as d→ ∞ ,

for any fixed x ∈ R
2. In view of (2.6), this means that Ω̃ ∼ (πd2)−1 as d→ ∞. In particular, if

we take formally the limit d → ∞ in (2.5), we obtain the limiting equation v · ∇w = 0, which
simply means that w (or v) is a stationary solution of Euler’s equation. In what follows, we
assume that the limiting profile w∗ is radially symmetric and stable in the sense of Arnold [1, 19].
Roughly speaking, this means that w∗(x) is a strictly decreasing function of |x|. Given any such
profile, we shall construct perturbatively a family of approximate solutions of (2.5), indexed
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by the parameter d ≫ 1, which converge to w∗ as d → ∞. Under natural assumptions, these
approximate solutions are uniquely determined by the asymptotic profile w∗.

An important question that we leave open here is whether we can actually construct exact
solutions of (2.5) which converge to w∗ as d→ ∞, in which case our approximate solutions could
be recovered by truncating the asymptotic expansion of the exact solutions. As was mentioned
in the introduction, it should be possible to prove the existence of such solutions, at least for
a particular class of compactly supported profiles w∗, by adapting the variational techniques of
D. Smets and J. van Schaftingen [22]. It might also be possible to construct exact solutions of
(2.5) for more general profiles using a fixed point argument of Nash-Moser type. We hope to
clarify these issues in a future work.

2.1 Asymptotic profile and functional setting

Let w∗ ∈ S(R2) be a radially symmetric, nonnegative function satisfying the normalization
condition (2.2), and let v∗ = K[w∗] be the velocity field obtained from w∗ via the Biot-Savart
law (1.3). We can thus write

w∗(x) =
1

π
q(|x|2) , v∗(x) =

1

2π

x⊥

|x|2 Q(|x|2) , x ∈ R
2 , (2.7)

where q : [0,∞) → R+ is a smooth, rapidly decreasing function and Q(r) =
∫ r
0 q(s) ds. Note

that Q(r) → 1 as r → ∞. We assume that w∗ satisfies the following strong stability conditions :

q′(r) < 0 for all r ≥ 0 , and sup
r>0

−r2q′(r)
Q(r)

< 1 . (2.8)

The first condition in (2.8) implies of course that q(r) > 0 for all r ≥ 0, so that Q(r) > 0 for all
r > 0. In particular, compactly supported asymptotic profiles w∗ are excluded. This condition
also implies that w∗ is a stable solution of the two-dimensional inviscid vorticity equation, with
respect to perturbations in L1 ∩ L∞ [17]. The second assumption in (2.8) is more technical in
nature, and can probably be relaxed. It is satisfied, for instance, if q(r) = γe−γr for some γ > 0.
Note that we always have

sup
r>0

−r2q′(r)
Q(r)

>
1

4
.

Indeed, if we assume on the contrary that Q(r) + 4r2q′(r) ≥ 0 for all r > 0, then the function
h(r) = Q′′(r) + Q(r)/(4r2) is nonnegative and satisfies h(r) ∼ q(0)/(4r) as r → 0, and h(r) ∼
1/(4r2) as r → ∞. Thus

√
rh ∈ L1((0,∞)), but if we integrate by parts we obtain

∫ ∞

0

√
rh(r) dr =

∫ ∞

0

√
r
(

Q′′(r) +
1

4r2
Q(r)

)

dr = 0 ,

which yields a contradiction. Finally, in addition to (2.8), we also assume that q2/q′ decays
rapidly at infinity :

sup
r>0

rkq(r)2

|q′(r)| < ∞ , for all k ∈ N . (2.9)

As was already observed, the asymptotic profile w∗ is already an approximate solution of
(2.5), (2.6) in the sense that, if we substitute (w∗, v∗) for (w, v) in (2.5), the left-hand side
converges to zero as d→ ∞. Our goal is to construct here more accurate approximations, which
take into account the interaction of the vortices. We look for solutions of the form

w = w∗ + ω , v = v∗ + u , (2.10)
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where u = K[ω] is the velocity field obtained from ω via the Biot-Savart law (1.3). The symmetry
(2.3) implies that

ω(x1,−x2) = ω(x1, x2) , u1(x1,−x2) = −u1(x1, x2) , u2(x1,−x2) = u2(x1, x2) , (2.11)

and in agreement with (2.2), (2.4) we impose

∫

R2

ω(x) dx =

∫

R2

x1ω(x) dx = 0 . (2.12)

Finally, we assume without loss of generality that ω has no radially symmetric component,
namely

∫ 2π

0
ω(r cos θ, r sin θ) dθ = 0 for all r ≥ 0 . (2.13)

We can always realize (2.13) by including, if necessary, the radially symmetric part of ω into the
asymptotic profile w∗. In this respect, it is important to note that both conditions in (2.8) are
open.

Inserting (2.10) into (2.5), we obtain for ω the following equation

Λω + u · ∇ω +Rd[ω] = 0 , (2.14)

where Λ is the linearized operator defined by

Λω = v∗ · ∇ω + u · ∇w∗ , (2.15)

and Rd[ω] is a remainder term which depends on the distance d between the vortex centers

Rd[ω](x) =
(

v∗(x+ 2xd) − u(−x− 2xd) − Ω̃[w∗ + ω](x+ xd)
⊥
)

· ∇(w∗(x) + ω(x)) . (2.16)

In (2.14)–(2.16), it is understood that u = K[ω] is the velocity field associated to ω.

We look for solutions ω of (2.14) in the Hilbert space

X =
{

ω ∈ L2(R2)
∣

∣

∣

∫

R2

|ω(x)|2p(|x|2) dx <∞
}

, (2.17)

equipped with the scalar product

〈ω1, ω2〉 =

∫

R2

ω1(x)ω2(x) p(|x|2) dx , ω1, ω2 ∈ X ,

and with the associated norm ‖ω‖ = 〈ω, ω〉1/2. Here the weight p : [0,∞) → R+ is defined by

p(r) =
−1

q′(r)
, r ≥ 0 . (2.18)

The reason for this particular choice is that the linear operator Λ has nice properties in the
space X, see Section 2.2 below. In view of (2.9), the asymptotic profile w∗ and all its moments
belongs to X : for any k ∈ N, we have

‖|x|2kw∗‖2 =
1

π2

∫

R2

|x|4kq(|x|2)2p(|x|2) dx =
1

π

∫ ∞

0
r2kq(r)2p(r) dr < ∞ .
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It is easy to verify that the operator Λ commutes with the rotations about the origin in R
2,

see Lemma 2.2 below. It is thus natural to use polar coordinates (r, θ) in the plane, and to
decompose our space X as a direct sum

X =
∞
⊕

n=0
Xn =

∞
⊕

n=0
PnX , (2.19)

where Pn is the orthogonal projection in X defined by the formula

(Pnω)(r cos θ, r sin θ) =
2 − δn,0

2π

∫ 2π

0
ω(r cos θ′, r sin θ′) cos(n(θ − θ′)) dθ′ , n ∈ N .

In particular, X0 = P0X is the subspace of all radially symmetric functions, and for n ≥ 1
the subspace Xn = PnX contains functions of the form ω(r cos θ, r sin θ) = a1(r) cos(nθ) +
a2(r) sin(nθ). With this notation, condition (2.13) means that P0ω = 0.

2.2 The linearized operator and its right-inverse

We now discuss the main properties of the linearized operator Λ defined in (2.15). In the
particular case where w∗ is the profile G of Oseen’s vortex (1.8), the operator Λ was studied in
detail in [7, 14], and we shall obtain here analogous results in a more general situation.

From (2.15) we know that Λ = Λ1 + Λ2, where Λ1ω = v∗ · ∇ω and Λ2ω = K[ω] · ∇w∗. As
is easily verified, Λ2 is compact in X, while Λ1 is unbounded. The maximal domain of Λ is
therefore

D(Λ) = D(Λ1) = {ω ∈ X | v∗ · ∇ω ∈ X} . (2.20)

The most remarkable property of this operator is that it is skew-symmetric in X.

Lemma 2.1 For all ω1, ω2 ∈ D(Λ), we have 〈Λω1, ω2〉 + 〈ω1,Λω2〉 = 0.

Proof. We shall prove in fact that both operators Λ1,Λ2 are skew-symmetric. First, since the
weight p(|x|2) is radially symmetric, we have

〈v∗ · ∇ω1, ω2〉 + 〈ω1, v∗ · ∇ω2〉 =

∫

R2

p(|x|2) v∗ · ∇(ω1ω2) dx = 0 ,

because the velocity field p(|x|2)v∗(x) is divergence-free. Next, since ∇w∗(x) = (2/π)xq′(|x|2),
we have

〈u1 · ∇w∗, ω2〉 + 〈ω1, u2 · ∇w∗〉 = − 2

π

∫

R2

(

(x · u1)ω2 + (x · u2)ω1

)

dx = 0 ,

see e.g. [7, Lemma 4.8]. Combining both equalities, we obtain the desired result. �

As in the Gaussian case [7], the operator Λ is invariant under rotations about the origin in
the plane R

2. It is thus natural to work in polar coordinates (r, θ), and to develop the vorticity
ω(r cos θ, r sin θ) in Fourier series with respect to the angular variable θ. In these variables, the
action of Λ can be described fairly explicitly. Let

φ(r) =
Q(r2)

2πr2
, g(r) = −2q′(r2)

π
, r > 0 . (2.21)

Then we have the following result :
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Lemma 2.2 Fix n ∈ N. If ω = an(r) sin(nθ), then Λω = n[φ(r)an(r) − g(r)An(r)] cos(nθ),
where An is the regular solution of the differential equation

−A′′
n(r) − 1

r
A′

n(r) +
n2

r2
An(r) = an(r) , r > 0 . (2.22)

Similarly, if ω = −an(r) cos(nθ), then Λω = n[φ(r)an(r) − g(r)An(r)] sin(nθ).

Proof. If n = 0, namely if ω is radially symmetric, it is straightforward to verify that Λω = 0.
Thus we assume that n ≥ 1, and that ω = an(r) sin(nθ). If ψ denotes the stream function
defined by −∆ψ = ω, we have ψ = An(r) sin(nθ), where An is the regular solution of (2.22),
namely

An(r) =
1

2n

(
∫ r

0

(s

r

)n
san(s) ds+

∫ ∞

r

(r

s

)n
san(s) ds

)

, r > 0 .

The velocity field u = K[ω] = −∇⊥ψ is thus

u =
n

r
An(r) cos(nθ)er −A′

n(r) sin(nθ)eθ , where er =
x

|x| , eθ =
x⊥

|x| .

Since Λω = v∗ · ∇ω + u · ∇w∗, we conclude that

Λω =
Q(r2)

2πr2
nan(r) cos(nθ) +

n

r
An(r) cos(nθ)

2r

π
q′(r2) ,

which, in view of (2.21), is the desired result. The case where ω = −an(r) cos(nθ) is similar. �

As an application of Lemma 2.2, we can characterize the kernel of the operator Λ. We
already know that Λω = 0 if ω is radially symmetric. Moreover, differentiating the identity
v∗ · ∇w∗ = 0 with respect to x1 and x2, we obtain Λ(∂1w∗) = Λ(∂2w∗) = 0. As in the Gaussian
case [14], we conclude :

Lemma 2.3 Ker(Λ) = X0 ⊕ {α1∂1w∗ + α2∂2w∗ |α1, α2 ∈ R}.

Proof. Since the decomposition (2.19) is invariant under the action of Λ, it is sufficient to
characterize the kernel in each subspace Xn. The case n = 0 is trivial, because X0 ⊂ Ker(Λ),
hence we assume from now on that n ≥ 1. If ω = an(r) sin(nθ) satisfies Λω = 0, we know from
Lemma 2.2 that φan − gAn = 0. In view of (2.22), this can be written in the equivalent form

−A′′
n(r) − 1

r
A′

n(r) +
(n2

r2
− g(r)

φ(r)

)

An(r) = 0 , r > 0 . (2.23)

Now, the second assumption in (2.8) means that

sup
r>0

r2g(r)

φ(r)
= sup

r>0

4r2|q′(r)|
Q(r)

< 4 .

Thus, if n ≥ 2, the “potential” term (n2/r2 − g/φ) in (2.23) is positive, and since An(r) → 0
as r → 0 and r → ∞, the maximum principle implies that An = 0, hence also an = 0. Thus
Ker(Λ) ∩Xn = {0} if n ≥ 2.

In the particular case n = 1, it is easy to verify that A1(r) = rφ(r) is the regular solution
of (2.23). Using (2.22) we find a1(r) = rg(r), so that ω = a1(r) sin(θ) = −∂2w∗. Similarly,
a1(r) cos(θ) = −∂1w∗, hence the kernel of Λ in X1 is spanned by the functions {∂1w∗, ∂2w∗}. �
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Using the same arguments as in [14], one can show that the operator Λ is not only skew-
symmetric, but also skew-adjoint in X. This implies that Ker(Λ) = Ran(Λ)⊥, hence

Ran(Λ) = Ker(Λ)⊥ .

Let
Y = {ω ∈ X | |x|2ω ∈ X} . (2.24)

We now show that Ker(Λ)⊥ ∩ Y ⊂ Ran(Λ), and we establish a semi-explicit formula for the
inverse of Λ on that subspace.

Proposition 2.4 If f ∈ Xn ∩Y for some n ≥ 2, there exists a unique ω ∈ Xn ∩D(Λ) such that
Λω = f . Specifically, if f = bn(r) cos(nθ), then ω = an(r) sin(nθ), where

an(r) =
g(r)

φ(r)
An(r) +

bn(r)

nφ(r)
, (2.25)

and An is the regular solution of the differential equation

−A′′
n(r) − 1

r
A′

n(r) +
(n2

r2
− g(r)

φ(r)

)

An(r) =
bn(r)

nφ(r)
, r > 0 . (2.26)

Similarly, if f = bn(r) sin(nθ), then ω = −an(r) cos(nθ).

Proof. If ω = an(r) sin(nθ), then Λω = n[φ(r)an(r) − g(r)An(r)] cos(nθ) by Lemma 2.2, where
An satisfies (2.22). The equation we have to solve is therefore n(φan − gAn) = bn, which gives
(2.25). Moreover, combining (2.25) and (2.22), we obtain (2.26).

Proceeding as in [5, Lemma 3.4], we now show that (2.26) has a unique regular solution, and
we establish a representation formula. As we observed in the proof of Lemma 2.3, the “potential”
term (n2/r2 − g/φ) in (2.23) is positive if n ≥ 2. Let ψ+, ψ− be the (unique) solutions of the
homogeneous equation (2.23) such that

ψ−(r) ∼ rn as r → 0 , and ψ+(r) ∼ r−n as r → ∞ . (2.27)

By the maximum principle, the functions ψ+, ψ− are strictly monotone and linearly independent.
The Wronskian determinant W = ψ+ψ

′
− − ψ−ψ′

+ satisfies W ′ +W/r = 0, hence W (r) = 2nκ/r
for some κ > 0, and we also have

ψ−(r) ∼ κrn as r → ∞ , and ψ+(r) ∼ κr−n as r → 0 .

With these notations, the unique regular solution of (2.26) has the following expression :

An(r) = ψ+(r)

∫ r

0

ψ−(s)

W (s)

bn(s)

nφ(s)
ds+ ψ−(r)

∫ ∞

r

ψ+(s)

W (s)

bn(s)

nφ(s)
ds , r > 0 . (2.28)

If f = bn(r) cos(nθ) ∈ Xn, it is straightforward to verify that the function An defined by
(2.28) is continuous and vanishes at the origin and at infinity. Moreover, we know from (2.21)
that φ(r) ∼ 1/(2πr2) as r → ∞. Thus, if we assume that f ∈ Xn ∩ Y , we see that the function
an defined by (2.25) satisfies

∫ ∞
0 an(r)2p(r2)r dr < ∞. As a consequence, if ω = an(r) sin(nθ),

we conclude that ω ∈ Xn ∩D(Λ), and Λω = f by construction. �

Remark 2.5 If n = 1, the conclusion of Proposition 2.4 fails because ∂jw∗ ∈ X1 ∩ Ker(Λ) for
j = 1, 2. However, if f ∈ X1 ∩ Y satisfies 〈f, ∂jw∗〉 = 0 for j = 1, 2, one can show that there
exists a unique ω ∈ X1 ∩D(Λ) ∩ Ker(Λ)⊥ such that Λω = f .

12



2.3 The perturbation expansion

Equipped with the technical results of the previous section, we now go back to equation (2.14),
which we want to solve perturbatively for large d. This equation can be written as Λω+Nd[ω] =
0, where Nd[ω] = u · ∇ω + Rd[ω]. Before starting the calculations, we briefly explain why we
expect to find a unique solution, under our symmetry assumptions.

First, if ω ∈ X satisfies (2.11)–(2.13), then ω ∈ Ker(Λ)⊥, hence ω is uniquely determined
by Λω. Indeed, as was already observed, (2.13) means that P0ω = 0. Moreover, it follows from
(2.11), (2.12) that

〈∂jw∗, ω〉 = − 2

π

∫

R2

xjω dx = 0 , j = 1, 2 ,

hence ω ∈ Ker(Λ)⊥ by Lemma 2.3. Next, if ω and u = K[ω] have the symmetries (2.11), it is
straightforward to verify that the nonlinearity in (2.14) satisfiesNd[ω](x1,−x2) = −Nd[ω](x1, x2)
for all x = (x1, x2) ∈ R

2. This implies that P0Nd[ω] = 0 and 〈∂1w∗, Nd[ω]〉 = 0. Moreover, we
have 〈∂2w∗, Nd[ω]〉 = 0 by construction, because this is the relation we imposed to determine the
angular speed Ω̃ in (2.6). Thus, we see that Nd[ω] ∈ Ker(Λ)⊥, and if we can prove in addition
that |x|2Nd[ω] ∈ X, then Proposition 2.4 (and Remark 2.5) will imply that Nd[ω] ∈ Ran(Λ).
We can therefore hope to find a unique ω ∈ Ker(Λ)⊥ ∩D(Λ) such that Λω +Nd[ω] = 0.

To begin our perturbative approach, we compute the remainder term (2.16) for ω = 0,
namely

Rd(x) ≡ Rd[0](x) =
(

v∗(x+ 2xd) − Ω̃[w∗](x+ xd)
⊥
)

· ∇w∗(x) , x ∈ R
2 . (2.29)

From (2.7), we know that

v∗(x) =
1

2π

x⊥

|x|2 (1 − Q̃(|x|2)) , where Q̃(r) =

∫ ∞

r
q(s) ds .

By assumption, the term Q̃(|x|2) decays faster than any inverse power of |x| as |x| → ∞, hence
we can neglect its contribution in our calculations. For any fixed x ∈ R

2 we thus have

v∗(x+ 2xd) =
1

2π

(2xd)
⊥

|2xd|2
+

1

2π
V (x, 2xd) + O

( 1

d∞

)

, as d→ ∞ , (2.30)

where

V (x, y) =
(x+ y)⊥

|x+ y|2 − y⊥

|y|2 .

Setting x = (r cos θ, r sin θ), y = 2xd = (d, 0), and proceeding as in [5, Lemma 3.2], we find

V1(x, y) =
1

d

∞
∑

n=1

(−1)n
rn

dn
sin(nθ) , V2(x, y) =

1

d

∞
∑

n=1

(−1)n
rn

dn
cos(nθ) . (2.31)

In particular, returning to (2.30) and using definition (2.6), we obtain

Ω̃[w∗] =
2

d

∫

R2

(v∗)2(x+ 2xd)w∗(x) dx =
1

πd2
+ O

( 1

d∞

)

, as d→ ∞ . (2.32)

Note that the term V (x, 2xd) in (2.30) gives no contribution to the angular velocity Ω̃[w∗]. On
the other hand, inserting (2.30), (2.32) into (2.29) and using the expansion (2.31) together with
the relation ∇w∗ = −xg(|x|), where g is defined in (2.21), we find for x = (r cos θ, r sin θ) :

Rd(x) =
g(r)

2π

∞
∑

n=2

(−1)n
rn

dn
sin(nθ) + O

( 1

d∞

)

, as d→ ∞ . (2.33)
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Motivated by this result, we now construct inductively an approximate solution of (2.14) of
the form

ω(x) =
ℓ

∑

n=2

1

dn
ω(n)(x) , u(x) =

ℓ
∑

n=2

1

dn
u(n)(x) , (2.34)

where each velocity profile u(n) is obtained from ω(n) via the Biot-Savart law (1.3). The order
ℓ of the approximation is in principle arbitrary, but the complexity of the calculations increases
rapidly with ℓ, and we shall restrict ourselves to ℓ = 4 for simplicity. Of course, we assume that
the symmetry and normalization conditions (2.11)–(2.13) hold at each order of the approxima-
tion. In particular, we have

∫

R2

ω(n)(x) dx =

∫

R2

x1ω
(n)(x) dx =

∫

R2

x2ω
(n)(x) dx = 0 , (2.35)

for all n ∈ {2, . . . , ℓ}. In view of [6, Appendix B], this implies that the velocity field u(n)(x)
decays at least as fast as |x|−3 when |x| → ∞. It follows that the term u(−x− 2xd) in (2.16) is
O(d−5) as d→ ∞, and will therefore not contribute to ω(n) for n ≤ 4. For the same reason,

Ω̃[w∗ + ω] =
2

d

∫

R2

(

(v∗)2(x+ 2xd) − u2(−x− 2xd)
)(

w∗(x) + ω(x)
)

dx =
1

πd2
+ O

( 1

d6

)

,

as d → ∞. Indeed, the leading term Ω̃[w∗] was computed in (2.32), and we know that the
contribution of u2(−x− 2xd) is negligible. Moreover, using (2.30), (2.31), and (2.35), it is easy
to verify that

∫

(v∗)2(x+ 2xd)ω(x) dx = O(d−5), as d→ ∞. Summarizing, we have shown that

Rd[ω](x) =
(

v∗(x+ 2xd) − Ω̃[w∗](x+ xd)
⊥
)

· ∇(w∗(x) + ω(x)) + O
( 1

d5

)

= Rd(x) +
( 1

2π
V (x, 2xd) −

x⊥

πd2

)

· ∇ω(x) + O
( 1

d5

)

, (2.36)

as d→ ∞. Similarly, the quadratic term u · ∇ω in (2.14) satisfies

u · ∇ω =
1

d4
u(2) · ∇ω(2) + O

( 1

d5

)

, as d→ ∞ . (2.37)

It is now a straightforward task to determine the first vorticity profiles in the expansion
(2.34). From (2.36), (2.37), we know that the nonlinearity Nd[ω] = u · ∇ω + Rd[ω] in (2.14)
satisfies, for x = (r cos θ, r sin θ) ∈ R

2,

Nd[ω](x) =
g(r)

2π

(

r2

d2
sin(2θ) − r3

d3
sin(3θ)

)

+ O
( 1

d4

)

, as d→ ∞ . (2.38)

Thus, to ensure that Λω +Nd[ω] = O(d−4), we must impose

Λω(n) +
g(r)

2π
(−1)nrn sin(nθ) = 0 , for n = 2, 3 . (2.39)

By Proposition 2.4, Eq. (2.39) has a unique solution ω(n) ∈ Xn ∩D(Λ) of the form

ω(n)(x) = an(r) cos(nθ) , u(n)(x) = −n
r
An(r) sin(nθ)er −A′

n(r) cos(nθ)eθ , (2.40)

where an(r), An(r) are given by (2.25), (2.26) with bn(r) = (−1)nrng(r)/(2π). As is easily
verified, the symmetry conditions (2.11)–(2.13), are satisfied by the profiles ω(n), u(n) for n = 2, 3,
and the velocity |u(n)(x)| decays like |x|−n−1 as |x| → ∞.
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Computing the profiles ω(4), u(4) is more cumbersome, but also more representative of what
happens in the general case. First of all, the quadratic term (2.37) is no longer negligible, and
using (2.40) for n = 2 we find

u(2)(x) · ∇ω(2)(x) = B1(r) sin(4θ) , where B1(r) =
1

r

(

A′
2(r)a2(r) −A2(r)a

′
2(r)

)

.

Note that, to ensure that u(2) · ∇ω(2) ∈ X, we need an assumption on the second derivative of
the function q appearing in (2.7). For instance, in analogy with (2.9), one can impose

sup
r>0

rkq′′(r)2

|q′(r)| < ∞ , for all k ∈ N . (2.41)

Next, we must compute the contribution of ω(2) to the right-hand side of (2.36). Using (2.31),
(2.40), we obtain

( d2

2π
V (x, 2xd) −

x⊥

π

)

· ∇ω(2)(x) = B2(r) sin(4θ) + C(r) sin(2θ) ,

where

B2(r) =
1

4π
(2a2(r) − ra′2(r)) , C(r) =

2

π
a2(r) .

Combining these results, we find instead of (2.38) :

Nd[ω](x) =
g(r)

2π

3
∑

n=2

(−1)n
rn

dn
sin(nθ) +

B(r)

d4
sin(4θ) +

C(r)

d4
sin(2θ) + O

( 1

d5

)

,

as d→ ∞, where B(r) = B1(r)+B2(r)+ r4g(r)/(2π). Therefore, in addition to (2.39), we must
impose

Λω(4) +B(r) sin(4θ) + C(r) sin(2θ) = 0 . (2.42)

Using again Proposition 2.4, we see that (2.42) has a unique solution ω(4) ∈ (X4 +X2) ∩D(Λ)
of the form ω(4)(x) = a4(r) cos(4θ) + ã2(r) cos(2θ), where a4(r) is given by (2.25), (2.26) with
n = 4 and b4(r) = B(r), while ã2(r) is given by the same relations with n = 2 and b2(r) = C(r).
An explicit expression of the velocity profile u(4) can also be obtained, as in (2.40).

Summarizing, we have shown :

Proposition 2.6 Let w∗ be a radially symmetric vorticity profile of the form (2.7), where the
function q satisfies (2.8), (2.9), (2.41), and let

w(x) = w∗(x) +

4
∑

n=2

1

dn
ω(n)(x) , v(x) = v∗(x) +

4
∑

n=2

1

dn
u(n)(x) , (2.43)

where the vorticity profiles ω(n) ∈ X ∩ D(Λ) ∩ Ker(Λ)⊥ satisfy (2.39), (2.42), and the velocity
profiles u(n) are obtained by the Biot-Savart law (1.3). Then w is an asymptotic solution of
Eqs. (2.5), (2.6) in the sense that

(

v(x) − v(−x− 2xd) − Ω̃[w](x + xd)
⊥
)

· ∇w(x) = O
( 1

d5

)

, (2.44)

in the topology of X and uniformly on R
2, as d→ ∞.

15



The asymptotic expansion (2.34) is very natural, and it is clear that it can be performed to
any finite order ℓ ∈ N if we make appropriate assumptions on the derivatives of the profile q, as
in (2.41). As was already mentioned, we also conjecture that there exists an exact solution of
(2.5) for d≫ 1 which coincides with (2.43) up to corrections of order O(d−5). It is important to
notice that, under the symmetry and normalization conditions (2.2)–(2.4), the exact solution (if
it exists) and the asymptotic expansion (2.43) are uniquely determined by the limiting profile
w∗.

Remark 2.7 Rather strong assumptions on the limiting profile w∗ were made in this section
to ensure that the asymptotic expansion (2.43) holds in the function space X defined in (2.17),
which we believe is naturally associated to the problem. This does not restrict the scope of our
results here, because these conditions are automatically fulfilled by the Gaussian profiles created
by the Navier-Stokes evolution. However, within the framework of Euler’s equation, it is certainly
interesting to construct interacting vortex pairs with more general profiles, including compactly
supported ones. If we do not insist on controlling our expansion in the space X, the calculations
presented in this section show that the assumptions on the function q can be considerably relaxed.
The most important point is that Eq. (2.26) should have a unique solution for n ≥ 2, and for
n = 1 if the right-hand side satisfies some orthogonality conditions. This is definitely the case if
the second inequality in (2.8) holds, but that condition does not imply that q is strictly decreasing
and can well be satisfied if q is compactly supported.

To conclude this section, we indicate how approximate solutions of (1.13) of the form (1.15)
can be obtained from Proposition 2.6 by a simple rescaling. Given α, d > 0, we consider the
situation described in (1.14) with α1 = α2 = α and r1 = r2 = d/2. If w∗ is a radially symmetric
vorticity profile satisfying the assumptions of Proposition 2.6, we define, for all sufficiently small
ǫ > 0,

wǫ(x) = w∗(x) +
4

∑

n=2

ǫn

dn
ω(n)(x) , vǫ(x) = v∗(x) +

4
∑

n=2

ǫn

dn
u(n)(x) , (2.45)

where ω(n), u(n) are as in (2.43). Then, by construction, the vorticity distribution

ωǫ(x) =
α

ǫ2
wǫ

(x− xd

ǫ

)

+
α

ǫ2
wǫ

(−x− xd

ǫ

)

, (2.46)

where xd = (d/2, 0), is an approximate solution of Eq. (1.13) with Ω = α/(πd2). More precisely,
it follows from (2.44) that

∂tωǫ + (uǫ − Ωx⊥) · ∇ωǫ = O(ǫ) , as ǫ→ 0 , (2.47)

where uǫ is obtained from ωǫ via the Biot-Savart law (1.3).

3 Inviscid approximation of viscous vortex pairs

In this final section, we describe in some detail the result of [5] in the particular case of a vortex
pair, and we interprete it using the approximate solutions of Euler’s equation constructed in
Section 2. Given α, d > 0, we set Ω = α/(πd2) and we denote by ω0 the vorticity distribution
(1.14) where α1 = α2 = α and r1 = r2 = d/2. For any ν > 0, we consider the (unique) solution
ων(x, t) of the rotating viscous vorticity equation

∂tω + (u− Ωx⊥) · ∇ω = ν∆ω , x ∈ R
2 , t > 0 , (3.1)
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with initial data ω0. Up to a rotation of angle Ωt, the vorticity distribution ων(x, t) coincides
with the solution of the nonrotating equation (1.2) with the same initial data, which is studied
in [5]. The advantage of using a rotating frame is that the vortex centers remain fixed, instead
of evolving according to the point vortex dynamics (1.4). As a matter of fact, Theorem 2.1 in
[5] establishes that ων(·, t) ⇀ ω0 as ν → 0, for any t > 0.

To obtain a more precise convergence result, we decompose the solution of (3.1) into a sum
of viscous vortices :

ων(x, t) =
α

νt
wν

1

(x− x1√
νt

, t
)

+
α

νt
wν

2

(x− x2√
νt

, t
)

, (3.2)

where x1 = −x2 = (d/2, 0). As is shown in [5], both vorticity profiles wν
1(ξ, t), wν

2 (ξ, t) can be
approximated by the same function

wν
app(ξ, t) = G(ξ) +

(νt

d2

)

Fν(ξ) , ξ ∈ R
2 , t > 0 , (3.3)

where G is the Gaussian profile (1.8) and the first order correction Fν is constructed as follows.
Let L be the Fokker-Planck operator

L = ∆ξ +
1

2
ξ · ∇ξ + 1 , ξ ∈ R

2,

and Λ be the linearized operator (2.15) with w∗ = G, namely

Λw = vG · ∇w +K[w] · ∇G .

Here we use the functional setting of Section 2 in the particular case where the asymptotic profile
w∗ is the Oseen vortex G. This means that q(r) = 1

4e
−r/4 in (2.7), and the assumptions (2.8),

(2.9), (2.41) are clearly satisfied. With these notations, the profile Fν is the unique solution of
the linear equation

ν

α
(1 − L)Fν + ΛFν +A = 0 , (3.4)

where A(ξ) = 1
2π ξ1ξ2G(ξ), see [5, Section 3.3]. In polar coordinates ξ = (r cos θ, r sin θ), we thus

have

A(ξ) =
1

16π2
r2e−r2/4 sin(2θ) =

1

2π
r2g(r) sin(2θ) ,

where g is defined in (2.21). In particular, if we use the angular decomposition (2.19) of the
function space (2.17), we see that A ∈ X2, and it follows that Fν ∈ X2 too. Now, setting ν = 0
in (3.4), we obtain the simple equation ΛF0 + A = 0, which coincides with (2.39) for n = 2.
Since X2 ∩ Ker(Λ) = {0}, we conclude that F0 = ω(2). It is clear from (3.4) that the actual
profile Fν is close to F0 if the viscosity ν is small compared to the circulation α of the vortices.
As a matter of fact, it is shown in [5, Lemma 3.5] that

‖Fν − F0‖X ≤ C
ν

ν + α
. (3.5)

To formulate our main approximation result, we introduce a function space with a weaker
norm than X. Given any β > 0, we denote by Zβ the space

Zβ =
{

w ∈ L2(R2)
∣

∣

∣
‖w‖β <∞

}

, where ‖w‖2
β =

∫

R2

|w(ξ)|2eβ|ξ| dξ .

Applying Theorem 2.5 of [5] to the particular situation considered here, we obtain
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Proposition 3.1 Fix T > 0, and let ων(x, t) be the solution of the rotating viscous vorticity
equation (3.1) with initial data ω0. There exist positive constants K,β, depending only on the
product ΩT , such that, if ων(x, t) is decomposed as in (3.2), then the vorticity profiles wν

i (ξ, t)
satisfy

max
i=1,2

‖wν
i (·, t) − wν

app(·, t)‖β ≤ K
(νt

d2

)3/2
, (3.6)

for all t ∈ (0, T ], where wν
app(ξ, t) is given by (3.3).

This result can be reformulated in a slightly different way, using the approximate solutions
of Euler’s equation constructed in Section 2. Indeed, if we set ǫ =

√
νt, and if we remember

that w∗ = G in the present case, we see that the inviscid profile wǫ defined in (2.45) satisfies

w√
νt(ξ) = wν

app(ξ, t) +
(νt

d2

)(

F0(ξ) − Fν(ξ)
)

+ O
((νt

d2

)3/2)

.

Thus, combining (3.5) and (3.6), we obtain :

Corollary 3.2 Under the assumptions of Proposition 3.1, we have

max
i=1,2

‖wν
i (·, t) −w√

νt‖β ≤ K
(νt

d2

)3/2
+C

νt

d2

ν

ν + α
, (3.7)

for all t ∈ (0, T ], where wǫ is the inviscid profile defined by (2.45) with w∗ = G.

Finally, using the continuous inclusion Zβ →֒ L1(R2), we can formulate an approximation
result for the original function ων(x, t). If we compare (2.46), (3.2) and use the fact that G(ξ)
and F0(ξ) are even functions of ξ, we arrive at :

Corollary 3.3 Under the assumptions of Proposition 3.1, we have

1

α

∫

R2

|ων(x, t) − ω√
νt(x)|dx ≤ K

(νt

d2

)3/2
+ C

νt

d2

ν

ν + α
, (3.8)

for all t ∈ (0, T ], where ωǫ is the approximate steady state of the rotating Euler equation defined
in (2.46) with w∗ = G.

Comparing this last result with Theorem 1.1, we see that replacing a linear superposition
of Oseen vortices by a more accurate solution of Euler’s equation, which takes into account the
deformation of the vortex cores due to mutual interaction, results in a better approximation.
If we believe that there exists an exact solution of Euler’s equation which is close to ωǫ for ǫ
sufficiently small, then (3.8) shows that the solution ων(x, t) of the rotating viscous vorticity
equation (3.1) slowly travels through a family of steady states of the inviscid equation (1.13)
indexed by the length parameter ǫ, which evolves diffusively according to ǫ =

√
νt.

Remark 3.4 The right-hand side of (3.8) suggests that both dimensionless quantities ν/α and
νt/d2 play an important role in the evolution of viscous vortices. It is tempting to eliminate
one of these quantities by considering, for instance, the limit ν → 0 while ǫ =

√
νt is kept fixed.

Under the assumptions of Proposition 3.1, one may conjecture that the solution ων(x, t) of (3.1)
satisfies, if ǫ > 0 is sufficiently small,

ων(x, ǫ2/ν) −−−→
ν→0

ωǫ(x) , for all x ∈ R
2 ,

where ωǫ(x) is an exact stationary solution of (1.13) of the form (2.46). Unfortunately, the
results of [5] do not provide any control on ων(x, t) in the limit where Ωt→ ∞.
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